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1 Introduction

We thank the reviewers for their careful reading of the manuscript and the suggestions to improve
this work. In reaction to the comments, we have incorporated the minor corrections and further-
more substantially enriched the manuscript with further material, in particular with (1) more data
concerning the experiments on the Super-CLEVR dataset and (2) a new Computer Vision task, viz.
image classification, besides object detection, which is considered over a real-world image dataset
based on the popular ImageNet dataset. For the new vision task, extensive experiments have been
conducted and data collected similarly as for the previous task. The results obtained confirm the
viability and usefulness of the approach.

The paper has significantly gained from the revision, which due to the requests of the reviewers
necessarily incurred an amount of work that did not make it possible to stick to the original deadline
for the revision. We are confident, however, that the paper now meets the requirements as the issues
of the reviewers have been addressed. In addition to the requested changes, minor corrections and
linguistic improvements have been made. In order to ease the work of the reviewers, relevant
changes in the document are shown in blue (excepting headings and tables that were difficult to
color).

In the sections below, we respond in detail to the comments of the reviewers.

2 Review 1

1. The technical contribution is limited. Further experiments would be needed to support the
general applicability of the proposed task and to compare it against the state-of-the-art.

Answer: To better support the general applicability of the proposed Slice Discovery Method
(SDM), we have significantly extended our experimental evaluation in the revised manuscript
in Section 6 (“Experiments”) and Appendices C and D. Specifically:

(a) We have added new experiments on the real-world image dataset ImageNet to validate
our SDM on an image classification task. This complements our original experiments
on the synthetic Super-CLEVR dataset, which focused on object detection, and demon-
strates the versatility of the SDM approach across different Computer Vision (CV) tasks
and its effectiveness in a more challenging and realistic domain.
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(b) We have included more iterations of our SDM pipeline for the experiments. This better
illustrates the iterative nature of the slice discovery and mending process and its ability
to handle increasingly subtle model failures after an initial repair.

We believe that these substantial additions, which now cover different tasks and datasets,
better support the utility and general applicability of our method. Our extended experi-
mental evaluation now more robustly supports the claims made in this paper. Furthermore,
while a direct performance comparison is not applicable in our context because other systems
do not produce symbolic rules, in Sections 2 and 7 (“Related Work” and “Discussion”) we
technically compare our work with state-of-the-art methods, highlighting the advantage of our
neurosymbolic SDM in addressing the fundamental challenge of slice discovery interpretability.

2. The manuscript only considers one dataset (Super-CLEVR) and one task (object detection),
which is relatively simple and does not include object relations as well as properties. More
tasks should have been included in the extension to demonstrate how the proposed method-
ology could be applied.

Answer: Based on this suggestion, as described in Point 1, we have added new experiments on
the ImageNet dataset to validate our SDM on the image classification task. This demonstrates
that the SDM approach is not limited to a single domain but can be effectively applied across
different CV tasks and datasets, as described in Section 6 (“Experiments”) and Appendix C
and D. Regarding object properties, our SDM is fundamentally based on them. As detailed
in Section 4.4 (“Rule Extraction via Inductive Logic Programming”), our SDM approach con-
verts image scene graphs into logical representations that explicitly encode attributes for each
object, such as its shape, colour, material, size, and direction. These attributes are crucial
for discovering rare slices defined by these specific object characteristics. Regarding object
relations, it is correct that the current work focuses on discovering rare slices defined only
by the object attributes. As we now state in Section 8 (“Conclusion and Future Work”),
incorporating relationships between objects (e.g., discovering a slice like “a bicycle next to a
car”) is a key direction for our future research. This extension will allow for the discovery of
more specific rare slices subject to increased difficulty for parsing and learning.

3. The proposed methodology requires complete scene graph descriptions, even though the task
is considerably simpler (object detection). In its current form, it assumes that additional
labels, beyond those needed for the task at hand, are available.

Answer: We agree that our SDM relies on scene graph descriptions, which contain more
information than the target class labels used for training a YOLOv5 object detector. This is
a fundamental aspect of the neurosymbolic SDM approach, as these detailed attributes are
precisely what enable Inductive Logic Programming (ILP) systems to discover and describe
rare slices. To demonstrate the feasibility of our SDM, the experiments were designed to cover
two distinct scenarios:

(a) For the Super-CLEVR experiments, we used the ground-truth scene graphs provided by
the generator. This allowed us to validate the SDM approach in a controlled setting,
proving its effectiveness when a perfect semantic description is available.

(b) For the ImageNet experiments, since real-world datasets do not come with ground-truth
scene graphs, we demonstrated a more realistic setting by using GPT-4.1 as the Vision
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Language Model (VLM) for generating the necessary scene graph descriptions directly
from the images.

Our SDM is based on image scene graphs, but it does not assume that they are already avail-
able for a dataset. We have clarified this in Sections 4.3 and 7.4 (“Scene Graph Generation”
and “Limitations”), and highlighted the scene graph generation via VLMs as a promising
research direction in Section 8 (“Conclusion and Future Work”).

4. The resulting slices are dependent on the chosen ontology. Further details would be benefi-
cial for the reader to understand how the ontologies were constructed and why the original
Super-CLEVR ontology was not used. Given that the selected ontology constrains the rare
slices that can be discovered and generated, I believe this aspect is important.

Answer: We agree that the resulting slices are dependent on the chosen ontology. This is an
intentional and important feature of our methodology. To test our neurosymbolic SDM in
identifying rare slices, we first had to induce systematic errors in CV models in a controlled
manner. To achieve this, we applied a taxonomy-based heuristic that separates visually sim-
ilar vehicle subclasses into different target classes. Regarding the original Super-CLEVR
ontology, we want to clarify that our experimental evaluation did include it as the VT:H3
hierarchy. We have clarified this point in the “Taxonomies” paragraph within Section 6.2.1
(“Experimental Setup”). However, to create more challenging scenarios to test our SDM,
we also designed other custom hierarchies (e.g., VT:H4 and PP:H1 ) that separate a greater
number of visually similar vehicle subclasses. We applied the same principle to the ImageNet
experiments. Instead of using the entire, vast WordNet hierarchy, we created a custom tax-
onomy from a selected subset of vehicles from WordNet, again with the goal of inducing the
generation of rare slices in the realistic domain of ImageNet . This heuristic-driven approach
to taxonomy design is fundamental to our methodology, as it allows us to create a controlled
and reproducible testbed for evaluating SDMs. We have clarified this point in the revised
manuscript in the “Taxonomies” paragraph within Section 6.2.1 (“Experimental Setup”) and
in the “Taxonomy” paragraph within Section 6.3.1 (“Experimental Setup”).

5. The proposed methodology was not compared against any baseline apart from the original
model prior to mending. However, multiple techniques have been proposed in literature to
discover and tackle rare issues, both in the field of SDM and in the more general field of
active learning and long-tail learning. It would be appropriate to compare the proposed
methodology against other SDM methods, at least in terms of technical characteristics, if
not in terms of performance. Alternatively, the effectiveness of the proposed methodology in
mending the model could be compared against simple baseline, e.g., taken from the active
learning literature (as done in Jiang, Chiyu Max, et al. “Improving the intra-class long-tail
in 3d detection via rare example mining.” European Conference on Computer Vision. Cham:
Springer Nature Switzerland, 2022).

Answer: In both Section 2 and 7 (“Related Work” and “Discussion”), we now address this
point by technically comparing our SDM approach against recent methods such as Domino,
Talisman, and the work by Jiang, Chiyu Max et al. (2022). These methods typically
operate in the embedding space to identify underperforming data regions. In contrast, our
framework prioritises interpretability by leveraging ILP to extract human-readable logical
rules identifying rare slices.

3



6. Tables 1, 2, and 3 offer a detailed comparison of the three ILP systems used, but it is not so
straightforward to compare. A few summary measurements could be useful. Also, the number
and quality of the generated rules should be compared.

Answer: In the revised manuscript in Sections 6.2.2 and 6.3.2 (“Experimental Results”) and
Appendix C and D, we have now introduced new summary tables (e.g., Table 5, 6, etc.) that
aggregate the performance of each ILP system across all runs for each hierarchy. These tables
provide a clear comparison based on specific summary measurements, i.e. total runtime, total
number of rules, and total number of rules per vehicle subclass (from which we infer the
quality of the generated rules).

7. It is not clear which ILP configuration was used to generate the rules for model mending, and
how sensitive the mending process is to the specific choice of rules.

Answer: We clarify that our methodology does not rely on selecting rules from a single, arbi-
trary ILP configuration. Instead, our approach is more robust. The candidate rules used for
model mending are derived from a consensus analysis across the entire set of extracted rules
from all ILP systems and configurations. We select the attributes (e.g., the utility bike

vehicle subclass and the north direction) that appear most frequently and consistently. This
ensures that the rules guiding the model mending are stable and not just an artefact of a spe-
cific hyperparameter choice. We have made this process clearer in the “Rule Extraction and
Selection” paragraph within Section 6.2.1 (“Experimental Setup”). While our experiments
confirm that model mending based on our consensus-driven rules is effective, a full sensitivity
analysis represents a significant research effort that is beyond the scope of this current work.
We agree that a systematic study of how the choice of rules impacts model mending effective-
ness is an important research question. Therefore, as suggested, we have highlighted this as
a future work in Section 8 (“Conclusion”).

8. Experimental settings for training the YOLOv5 model should be given for greater repro-
ducibility.

Answer: We have revised the manuscript to include the specific experimental settings used
for training the YOLOv5 models in both experiments. The following details have now been
added to the “Neural Network” paragraph within Sections 6.2.1 and 6.3.1 (“Experimental
Setup”) of each respective experiment:

• Super-CLEVR (object detection) experiments: For each of the five hierarchies, aYOLOv5
model version yolov5s was built on the training set running 80, 160, and 320 epochs using
an image size of 640 × 640 pixels and a batch size of 16. We used the default YOLOv5
hyperparameters provided by the official implementation, which include the SGD opti-
miser, initial learning rate of 0.01, final learning rate factor of 0.01, momentum of 0.937,
and weight decay of 5.0× 10−4.

• ImageNet (image classification) experiments: For the VE:H1 hierarchy, a YOLOv5
model version yolov5s-cls was built on the training set running 20, 40, and 80 epochs us-
ing an image size of 224×224 pixels and a batch size of 16. We used the default YOLOv5
hyperparameters provided by the official implementation, which include the Adam opti-
miser, initial learning rate of 0.001, final learning rate factor of 0.01, momentum of 0.9,
and weight decay of 5.0× 10−5.
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We believe this addition makes the experimental setup much clearer and enhances the repro-
ducibility of our work.

9. To evaluate model mending, I would suggest comparing not only confusion matrices, but also
standard metrics for object detection (such as mAP) which take into account also correct
localization and false positives.

Answer: We agree that including standard object detection metrics provides a more complete
picture of model performance. We have now included standard object detection metrics –
specifically mAP@0.5 – in Appendix C and have added a discussion about them in Section 7
(“Discussion”). YOLOv5 models achieved high overall performance on the Super-CLEVR
dataset, with mAP@0.5 values approaching 1.0 in all experiments. However, the goal of
this work was not to maximise general object detection metrics, but rather to diagnose and
correct specific systematic errors known as rare slices. For this purpose, per-class recall
serves as a more precise diagnostic tool than a global metric like mAP. While a high mAP
score confirms the good overall model performance, it can mask the poor performance on
a specific, underrepresented slice of data, as the error is averaged out. By focusing on the
recall of the problematic classes, we can directly measure the impact of the slice and, more
importantly, verify the success of the mending process in a targeted manner. While the main
analysis focuses on recall to clearly illustrate the diagnosis and repair of rare slices, a more
comprehensive set of performance metrics is provided for completeness. We have included
detailed results in Appendix C, which contains the confusion matrices, F1-Confidence curves,
and other model training and validation performance metrics (e.g., mAP@0.5) for all Super-
CLEVR hierarchies, both before and after model mending. This supplementary data confirms
that the targeted improvements in recall are accompanied by corresponding positive gains in
the F1-score, reinforcing the overall efficacy of the proposed SDM pipeline.

3 Review 2

1. It is mentioned that FastLAS allows for a penalty setting, but how is this penalty set? Is it
done manually?

Answer: The penalty values for positive and negative examples were set empirically, which is
a standard practice for such hyperparameters. Our choice was guided by the need to address
the significant class imbalance inherent in the rule learning task, where there are few positive
examples (the misclassified rare slices) compared to a large number of negative examples.
Consequently, we assigned a higher penalty to positive examples than to negative ones (e.g.,
penalties of 4 and 2, respectively, in our experiments). This forces FastLAS to prioritise
finding rules that cover these few, but important, positive examples that characterise the
rare slices. This approach ensures the learning process is focused on discovering meaningful
and accurate logical rules for the rare slices. The rule head penalty in FastLAS was also set
empirically to explore the effect of this hyperparameter on the quality of the extracted rules.
These justifications have now been added to the “Rule Extraction and Selection” paragraph
in Section 6.2.1 (“Experimental Setup”).

2. Three ILP systems were used for rule extraction in the experimentation phase, each with their
parameters, but their parameter selection is not justified.
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Answer: In our study, the goal in this phase was not to find an optimal hyperparameter
setting for each ILP system, but rather to ensure that our findings were robust and not an
artefact of a specific, arbitrary configuration. All hyperparameter values were empirically
fine-tuned by exploratory experimentation. Specifically, we selected several reasonable values
to test different configurations of ILP systems in extracting meaningful rules describing rare
slices. We acknowledge that manual parameter selection may not always be ideal, and future
work could explore automated methods for setting hyperparameters. We have clarified this
in the revised manuscript in the “Rule Extraction and Selection” paragraph in Section 6.2.1
(“Experimental Setup”) and in Section 8 (“Conclusion and Future Work”).

3. The model mending part I believe is one of the most valuable contributions of the paper, but
there is not a lot of insight on this part. How is the mending done? Is it iteratively? What
is the final impact?

Answer: We have updated the model mending paragraphs in Section 6 (“Experiments”) to
provide a clear description of the process. Model mending is performed through a targeted
data augmentation strategy. Based on the extracted rules by the ILP systems (e.g., “an image
is difficult for the object detection model if it contains a utility bike facing north” in Super-
CLEVR), we add new images to the training set that match these hypotheses. The defective
model is then retrained on this augmented dataset. We tested several retraining epochs to
find the most effective one for each case. The process of our SDM pipeline is iterative. As
is now detailed in Sections 6.2.2 and 6.3.2 (“Experimental Results”), we demonstrate this by
performing two iterations of the SDM on both the Super-CLEVR and ImageNet experiments.
The second iteration shows how our framework can be applied again to diagnose and repair
the more subtle, persistent errors that may remain after an initial model mending. The final
impact was a significant and consistent improvement in model performance on the previously
problematic classes. We have expanded Sections 6.2.2 and 6.3.2 (“Experimental Results”)
and Section 7.2 (“Impact of Model Mending”) to better quantify this impact. To provide
some illustrative examples:

• In the Super-CLEVR (object detection) experiment, the recall for the “urban bicycle”
class improved from 80.00% to 94.00% after the first model mending iteration, and further
to 98.00% after the second.

• In the ImageNet (image classification) experiment, the first model mending iteration
significantly improved the Top-1 accuracy of the four problematic classes, raising them
from as low as 62.25% to over 90.00%.

These results, demonstrated across two different datasets and CV tasks, confirm that our
model mending process leads to substantial and targeted performance gains.

4. Finally, it would have been interesting to see a comparison of the performance of the architec-
ture across different datasets, since only one is considered and it can give a biased perception
on the behavior of the model.

Answer: To address this, in Section 6.3 (“ImageNet Experiments”), we have added new ex-
periments on the real-world image dataset ImageNet to validate our SDM on an image clas-
sification task. This complements our original experiments on the synthetic Super-CLEVR
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dataset, which focused on object detection, and demonstrates the versatility of the SDM ap-
proach across different Computer Vision (CV) tasks and its effectiveness in a more challenging
and realistic domain.

4 Review 3

4.1 Problem Definition

1. I imagine that in [16] the definition of a slice contains the sentence “the model performs
poorly” but this is ambiguous, and a criterion should be defined/adopted. This can be seen
in Fig. 9 and Section 6.2.1, where no reason is given why those particular classes of objects
are rare slices. Which is the chosen criterion? Last 5 performant classes? Classes with a
recall lower than a threshold? I think that this part should be clearer with a better defini-
tion/criterion for rare slices.

Answer: A rare slice is a subset of data, sharing a set of attributes, on which the model
underperforms. It is induced by providing specific vehicle subclasses with a low occurrence
probability in the training set. To make the “underperforms” condition concrete and measur-
able, we have now clarified that we adopt a formal criterion. A low-frequency vehicle subclass
is considered a problematic rare slice if model performance on its parent target class falls at
or below a dataset-dependent target class threshold τc. As we now motivate in the text, this
threshold is determined for each experiment (e.g., 95.00% recall for Super-CLEVR and 86.00%
Top-1 accuracy for ImageNet). This definition provides a clear and systematic method for
identifying underperforming classes that possibly contain rare slices, making our methodol-
ogy transparent and reproducible. We have clarified this point in the revised manuscript in
Section 5 (“Rare Slice Generation Methodology”).

2. Regarding Fig. 9 again, I would have expected lower performance for the rare slices. I would
not call a class with 80% of recall as rare slice.

Answer: We agree that an 80.00% recall value might seem acceptable in many standard,
complex benchmarks. However, the significance of this score is relative to the specific con-
text and high performance baseline of our experiments. As now clarified in Section 5 (“Rare
Slice Generation Methodology”) and in the “Rare Slice Generation and Initial Model Train-
ing” paragraph of Section 6.2.2 (“Experimental Results”), our methodology operates on the
premise that the YOLOv5 model is expected to achieve near-perfect (> 95.00%) recall on all
Super-CLEVR target classes under normal conditions, a baseline that is consistently met by
the non-problematic classes in our experiments. Therefore, we define “underperformance” not
in absolute terms, but as a significant deviation from this high baseline. We formalize this
using the target class threshold τc, which is set at 95.00% for the Super-CLEVR experiments.
A drop to 80.00% recall is not a minor fluctuation but a clear underperforming class to be
investigated with our SDM.

3. In hierarchies 1 and 2 of the VT taxonomy there are no rare slices “as expected”. But why
did you expect this?

Answer: Our taxonomy-based heuristic hinges on the fact that problematic rare slices are not
just a result of low occurrence probability, but are most effectively induced when a model is
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forced to distinguish between visually similar subclasses that have been placed into different
target classes. To validate this heuristic, we designed the hierarchies in the following way:

• In VT:H3 and VT:H4, we applied the heuristic to separate visually similar vehicle pairs
(e.g., “dirtbike” and “mountain bike”) into different target classes (“motorcycle” and
“bicycle”, respectively). As predicted by our heuristic, these hierarchies successfully
induced problematic rare slices.

• In VT:H1 and VT:H2, we deliberately did not apply the heuristic. In these hierarchies,
visually similar vehicle pairs are always grouped together within the same parent class
(e.g., both “dirtbike” and “mountain bike” fall under the general “land vehicle” class).

Therefore, we expected no problematic rare slices to emerge in VT:H1 and VT:H2. Even
though the training set did contain vehicle subclasses with low occurrence probability, the
model trained on these hierarchies did not underperform. This demonstrates that the taxon-
omy structure is critical in creating scenarios that challenge a model with problematic rare
slices, as low occurrence probability alone is insufficient to cause a failure. We have updated
the “Taxonomies” paragraph in Section 6.2.1 (“Experimental Setup”) and the “Rare Slice
Generation and Initial Model Training” paragraph in Section 6.2.2 (“Experimental Results”).

4.2 Paper Contextualization

1. The related work focuses on slice discovery methods and ILP. Where the former is the focus of
the paper, the latter is just a background that (in my opinion) should be reduced and moved
in the background section.

Answer: We have now revised Section 2 (“Related Work”) to focus on slice discovery methods
and have moved and reduced the discussion of ILP to Section 3 (“Preliminaries”).

2. In the related work about slice discovery methods, a comparison with other works showing
how the proposal addresses open problems not addressed in precedence would help the reader
in a better contextualization of the paper.

Answer: We have now revised Section 2 (“Related Work”) and Section 7.3 (“Comparison with
Existing Methods”) to emphasise this point. Recent methods in slice discovery and rare data
mining, such as Domino and Talisman, have introduced strategies to identify rare or un-
derperforming data regions by operating largely in embedding spaces or latent distributions.
While effective, these approaches lack interpretability. For example, Jiang, Chiyu Max et
al. (2022) proposed density-based rare example mining using normalizing flows over learned
detection features in a 3D object detection setting. Although this approach significantly im-
proves performance on rare intraclass instances, it does not provide semantic explanations
of errors or provides insight into the nature of failure modes. In contrast, our neurosym-
bolic framework extracts interpretable logical rules that characterise performance drops on
semantically coherent slices. These symbolic rules not only support direct error attribution
and human-in-the-loop model debugging, but also enable targeted data augmentation and
model mending. Compared to baselines in active learning or distributional mining, our SDM
thus offers the advantage of transparency and editability, allowing model correction based on
explicit domain-level logical rules.
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3. The paper would be improved if contextualized with respect to the kind of approaches used,
that is Neurosymbolic AI and mining of discriminative knowledge from pos/neg example.
Regarding Neurosymbolic AI, this approach is quite different from approaches that embed
the logic in neural networks or embed some differentiable function in logic systems. It would
be interesting a discussion on what kind of NeSy integration this paper proposes. To this
extent, the Kautz’s taxonomy could be helpful, see Section 2 of the paper at https://arxiv.
org/pdf/2105.05330. Regarding mining of discriminative knowledge from pos/neg examples,
a recent paper does something similar for characterizing pos/neg examples of temporal traces,
see the paper titled “Making Sense of Temporal Event Data: A Framework for Comparing
Techniques for the Discovery of Discriminative Temporal Patterns” (Di Francescomarino et
al., CAiSE 2024). It would be interesting to contextualize the present paper with respect to
this trend of research.

Answer: We have integrated this suggestion in Section 4 (“Neurosymbolic Framework for Slice
Discovery”). According to Kautz’s taxonomy of neurosymbolic systems, our SDM approach
aligns with the [Neuro→Symbolic] paradigm, where the outputs of a neural system (here, a
CV model) are post-processed by a symbolic module to derive explainable rules. Also, we
thank the reviewer for the pointer to the recent work by Di Francescomarino et al. (CAiSE
2024). In Section 2 (“Related Work”), we have now added a discussion that contextualizes
our work within this line of research. We now cite several related works that use logic-based
methods in different domains, such as temporal data. We clarify that our method follows this
trend but specifically focuses on using ILP for discovering explainable rules in the context of
slice discovery for high-dimensional visual data. This helps to connect our specific application
to a broader, active research area in explainable AI.

4.3 Results

1. The results are measured only according to the recall (if I understand correctly as it is not
specified in the confusion matrixes) but there is no argumentation why only recall has been
chosen. I would appreciate to see also the precision and F1 results as, after model mending,
to a higher recall could correspond a lower precision.

Answer: As stated in a previous comment, we agree that including standard object detection
metrics provides a more complete picture of model performance. We have now included
standard object detection metrics – specifically mAP@0.5 – in Appendix C and have added
a discussion about them in Section 7 (“Discussion”). YOLOv5 models achieved high overall
performance on the Super-CLEVR dataset, with mAP@0.5 values approaching 1.0 in all
experiments. However, the goal of this work was not to maximise general object detection
metrics, but rather to diagnose and correct specific systematic errors known as rare slices. For
this purpose, per-class recall serves as a more precise diagnostic tool than a global metric like
mAP. While a high mAP score confirms the good overall model performance, it can mask the
poor performance on a specific, underrepresented slice of data, as the error is averaged out.
By focusing on the recall of the problematic classes, we can directly measure the impact of the
slice and, more importantly, verify the success of the mending process in a targeted manner.
While the main analysis focuses on recall to clearly illustrate the diagnosis and repair of rare
slices, a more comprehensive set of performance metrics is provided for completeness. We have
included detailed results in Appendix C, which contains the confusion matrices, F1-Confidence
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curves, and other model training and validation performance metrics (e.g., mAP@0.5) for all
Super-CLEVR hierarchies, both before and after model mending. This supplementary data
confirms that the targeted improvements in recall are accompanied by corresponding positive
gains in the F1-score, reinforcing the overall efficacy of the proposed SDM pipeline.

2. I would discuss more the impact of the rule head penalty as, for some classes, certain values
bring to wrong or no rules. The exception ration, instead, does not seem to impact the dis-
covery. Please specify this.

Answer: We have now added a discussion in Section 7.1 (“Comparison of ILP Systems”) to
address this point and clarify the sensitivity of ILP hyperparameters. As it was correctly
noted, experimental results show that the rule head penalty in FastLAS has a significant
impact on its ability to discover rare slices. We now discuss that lower penalty values con-
sistently produced meaningful rules, whereas higher values sometimes prevented the system
from discovering any rules. Conversely, we confirm the observation that the exception ratio
in FOLD-R++ had a minimal impact on its rule extraction, indicating limited sensitivity to
this hyperparameter in our context.

3. The paper shows the confusion matrix only for the recall of the VT hierarchy 4. Other results
(precision, recall, F1 for all the hierarchies VT 3, VT 4 and PP 1 before and after model
mending) would make the paper more self-contained if included as appendixes.

Answer: A more comprehensive set of performance metrics is now provided for complete-
ness in Appendix C, which contains the confusion matrices, F1-Confidence curves, and other
model training and validation performance metrics (e.g., mAP@0.5) for all Super-CLEVR
hierarchies, both before and after model mending.

4.4 Limitations

1. I find the method highly tailored to the Super-Clever image generator and to the scene graph
generation tasks. There is no discussion how the extracted rules can be used for other methods
of synthetic-image generation for generating images of a different domain. In addition, it seems
to me that the method is applicable to only images where a scene graph can be extracted
from. Therefore, it can be hard to extend the method to, for example, medical images coming
from radiographies. This kind of images cannot always be traduced in a scene graph. If this
is the case, the example of chest X-rays in the introduction can be misleading and should be
changed.

Answer: Image generators are typically available for synthetic datasets and can easily adopt
our methodology, as it only requires adjusting the occurrence probability of specific objects.
In Section 6 (“Experiments”), we have now included a new set of experiments on the real-
world ImageNet dataset, which has neither a synthetic image generator nor ground-truth scene
graphs. For the ImageNet experiments, we simulated the data generation process by carefully
subsampling from the complete dataset to construct splits with controlled distributions of
rare slices. Notably, we generated the scene graph descriptions of the images using GPT-
4.1 as a Vision Language Model (VLM). The new experiments demonstrate that our SDM
pipeline is not tied to a specific data generator. The logical rules extracted by the ILP
systems can guide any data augmentation process, whether it is through a synthetic generator,
controlled subsampling, or generative models. We believe that scene graphs can, in principle,
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be generated for any image domain, although we acknowledge that this may be more difficult
in areas such as medical imaging. Therefore, we have followed the suggestion and replaced
the chest X-rays example from Section 1 (“Introduction”) with a more appropriate one.

2. In addition, a section showing the limitations of the approach can help the reader to under-
stand what the method does not address (or it does with difficulties) and potentially can
foster further research.

Answer: Following this advice, we have added Section 7.4 (“Limitations”) that discusses
the main limitations of the proposed SDM approach. We acknowledge that our SDM relies
on the availability of scene graph representations to extract the logical rules identifying rare
slices. We clarify that while scene graphs are not usually available for real-world datasets,
this limitation is becoming increasingly tractable with the recent successful development of
VLMs to fully automate this step, a key direction for our future work. A second limitation is
the current need for manual, exploratory tuning for the hyperparameters of the ILP systems,
which can be time-consuming and may require domain expertise. Furthermore, the scalability
of ILP systems can be computationally intensive, especially with large validation sets or with
a complex hypothesis space defined by numerous attributes and predicates, as observed with
some timeouts in our experiments. Finally, the current implementation of our SDM focuses
on discovering rare slices defined by object attributes (e.g., “a yellow rubber utility bike facing
south”). Extending it to include rare slices defined by the relationships between objects (e.g.,
“a bicycle next to a car”) remains a key direction for future work.

4.5 Presentation

1. The structure of the paper is good but sometimes I feel lost without a proper running example.
There are some examples but not always connected among them. I strongly suggest using a
running example.

Answer: To address this, we have revised the manuscript to incorporate a running example
throughout the paper. This example, drawn from our Super-CLEVR experiments, follows a
specific underperforming rare slice: a “utility bike” with certain attributes (e.g., facing south)
that the model systematically misclassifies. This example now appears in Sections 3.1 (“Super-
CLEVR”), 3.3 (“Inductive Logic Programming”), 4.4 (“Rule Extraction via Inductive Logic
Programming”), and 4.5 (“Model Mending”) illustrating the ILP encodings, rule extraction
process, and model mending impact.

2. Section 3.2: What is the expressivity of the language of B, h and E? Fully propositional,
First-Order? Please specify it for all the three methods.

Answer: All three ILP systems are first-order and operate using sets of positive and negative
ground examples. We specified this in Section 3.3 (“Inductive Logic Programming”).

3. Page 6: two different symbols are used for bounding boxes: b and B, please adjust.

Answer: In Section 4.2 (“Object Detection and Image Classification”), we adjusted the sym-

bols using b̂ for the predicted bounding box, and ĥ for the predicted class.

4. Section 4.1 the class dirtbike can have many “root classes” according to Fig. 6. Why has the
class ”motorcycle“ been chosen? I am afraid I missed something.
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Answer: Yes, the “dirtbike” subclass can indeed have multiple potential root classes depend-
ing on the specific hierarchy H being considered. The choice of “motorcycle” was an example
of a possible root class for “dirtbike” to clarify the concept of hi. As noted, and as shown in
Fig. 7, different hierarchies selected from the Vehicle Type taxonomy could assign different
root classes. To avoid confusion, we have clarified this in the revised sentence in Section 4.1
(“Data Generation”), explicitly mentioning that the root class depends on the hierarchy H
under consideration and providing alternative possibilities like “land vehicle” alongside “mo-
torcycle”.

5. Page 7: How did you select positive and negative images? I guess there is a ground truth
label for the whole image, but I cannot find its description. However, at the beginning of
Section 4.2, an object detection problem is described, therefore I do not understand what a
(un)correctly classified image is.

Answer: Indeed, the task for the Super-CLEVR dataset is object detection, and the ground
truth labels exist at the object level (bounding box and target class for each object), not as
a single label for the whole image. The E+

h and E−
h image sets are defined after running the

model on the validation split and are specific to each root class h in a hierarchy H. They are
based on the performance of a model f on the objects labelled h within an image:

• An image is in E+
h (positive set for a class h) if the model misclassifies at least one object

that has ground truth label h.

• An image is in E−
h (negative set for a class h) if the model correctly classifies all objects

that have ground truth label h.

Essentially, we aggregate the object-level classification results for a specific class h to categorise
the entire image based on whether any misclassification occurred for that class within it.
This categorisation is necessary for the subsequent step using ILP, which leverages positive
and negative examples to identify rare slices of classes where the model underperforms. We
have clarified this in the revised manuscript in Section 4.2 (“Object Detection and Image
Classification”).

6. Section 4.4: not clear to me the difference between GE+ and E+ILP. Why are they assembled?

Answer:

• GE+
h

resp. GE−
h
: These represent the sets of scene graphs for the positive and nega-

tive examples, respectively, of class h. They are the graph-based representations of the
images.

• ILPE+
h

resp. ILPE−
h
: These represent the sets of positive and negative examples trans-

lated into their logical representation suitable for an ILP system. This involves converting
the objects and their attributes depicted in the scene graphs into logical facts.

We have revised and improved the explanation in Section 4.4 (“Rule Extraction via Inductive
Logic Programming”) to clarify this.

7. In Section 4.4 I get lost when Figure 3 is described. Here I feel the need of a running example
for a better understanding of the pos/neg examples. In general, the background knowledge
(BK) should state general common sense information, such as, if A is next to B then B is
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next to A, but here there is a not defined “contains(19, 0)”. The mode bias seems a more
suitable candidate for BK but, unfortunately, there is no definition of what a mode bias for
non-experts in ILP is.

Answer: We have revised the manuscript to incorporate a running example throughout the
paper. This example, drawn from our Super-CLEVR experiments, follows a specific underper-
forming rare slice: a “utility bike” with certain attributes (e.g., facing south) that the model
systematically misclassifies. This example now appears in Sections 3.1 (“Super-CLEVR”),
3.3 (“Inductive Logic Programming”), 4.4 (“Rule Extraction via Inductive Logic Program-
ming”), and 4.5 (“Model Mending”) illustrating the ILP encodings, rule extraction process,
and model mending impact. Then, we have revised Section 4.4 (“Rule Extraction via Inductive
Logic Programming”) to clarify that our SDM approach uses context-dependent background
knowledge, particularly with FastLAS . This means the background knowledge is not a set of
general rules (like next to(A,B) -> next to(B,A)), but rather a set of scene-specific facts
that describe a single image (e.g., contains(19, 0) means “scene 19 contains object 0”, and
shape(0, utility) means “object 0 is a utility bike”). This context-dependent background
knowledge is directly derived from the scene graph of each image and is provided to the ILP
system alongside each positive or negative example. We have also added an explanation of
mode bias. The mode bias defines the structure of hypotheses that the ILP system can con-
sider. In essence, it acts as a guide for the hypothesis search, telling the ILP system what
predicates can appear in the head (#modeh, in FastLAS ) versus the body (#modeb, in Fast-
LAS ) of a rule, how many variables can be used in a rule, and so on. This helps prune the
search space and ensures that the learned rules are semantically meaningful for our task.

8. Page 9: What do you mean with “... applying it, with appropriate adjustments, in similar
applications settings is suggestive”? Please use a more precise and formal wording as required
in a scientific paper.

Answer: We have revised this sentence in Section 5 (“Rare Slice Generation Methodology”)
to make it more precise and better reflect our intended meaning regarding the potential of
the methodology for other application domains.

9. Page 9, bullet 4: How are other attributes (e.g., material, shape, color) chosen? Randomly?

Answer: For rare slices, the user may restrict each subclass in S by specifying any combination
of attribute values that makes the respective slice more specific. For example, a rare slice can
be defined as the “dirtbike” subclass with colour “red” and material “metal”. These user-
specified attributes are exhaustively combined with all values of the remaining attributes. For
example, if the attribute “size” is not specified, then the rare slice “dirtbike-red-metal” will
include all possible values of “size”, i.e. “dirtbike-red-metal-small” and “dirtbike-red-metal-
large”. Non-rare slices consist of all remaining combinations of subclasses and attribute values
that are not rare slices. For example, the combination “dirtbike-blue-metal-small” is a non-
rare slice because the user has restricted the rare slice to the colour “red”. We have clarified
this point in the revised manuscript in Section 5 (“Rare Slice Generation Methodology”).

10. Caption of Table 1: why did you test only on the models trained for 160 epochs and not on the
models trained for 80 and 320 epochs? It seems that these models are never used. Why did
you use the plural in neural network models? I thought you trained only one Yolov5 model
for all the classes in the hierarchies. If this is not the case, please explicit state it. What is
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the criterion for wrong rules that you used for the X symbol?

Answer: We did not train only one YOLOv5 model. Instead, we trained a distinct YOLOv5
model for each of the five hierarchies (VT:H1 – VT:H4 and PP:H1), as each hierarchy repre-
sents a unique classification task with a different set of target classes. The problematic rare
slices appeared consistently across all training epochs, i.e. 80, 160, and 320. The models
trained for 160 epochs were selected for slice discovery because they yielded the best initial
classification results on the validation set across the different hierarchies. We have updated
Sections 6.2.1 and 6.2.2 (“Experimental Setup” and “Experimental Results”) to be explicit on
these points. Furthermore, in the “First Rule Extraction and Selection Iteration” paragraph
within Section 6.2.2 (“Experimental Results”), we have updated the text introducing the rule
extraction tables to clarify the meaning of their symbols. As explained, an entry is marked
with a ✓ if at least one rule extracted by the ILP system agrees with a candidate rule for the
target class, while a ✗ indicates that, under a specific configuration, no extracted rule does.
As detailed in the “Rule Extraction and Selection” paragraph in Section 6.2.1 (“Experimental
Setup”), to formalise which of the candidate rules to consider as descriptions of potential rare
slices, we introduce the rare slice hypothesis threshold τh. Consequently, only candidate rules
that agree with a percentage of extracted rules greater than or equal to τh are retained.

11. Page 14, second to last line: Popper fails with offroad car, offroad vehicles and specialized
vehicles (Table 1) and not with pickup truck and articulated bus as in the sentence.

Answer: This explanation is now clearer following a significant revision of the entire Section 6
(“Experiments”) to improve its clarity, structure, and exposition. We believe the updated
section is now more rigorous, easier to follow, and transparently details our methodology and
results.

12. What is a “native scene graph” mentioned at page 16? Please clarify this.

Answer: The term “native scene graph” was intended to refer to scene graphs that are
generated directly from raw images, as opposed to the ground-truth scene graphs that are
synthetically produced alongside the images by the Super-CLEVR generator. To avoid this
ambiguity, we have removed such a term and rewritten the paragraph in Section 8 (“Conclu-
sion and Future Work”) more explicitly. The revised text now clarifies that a key direction for
future work is to systematically explore and integrate VLMs to our SDM to fully automate
the generation of scene graphs for slice discovery.

4.6 Other (not minor) technicalities

1. Two concerns regard the model mending. In section 6.1, in the model mending paragraph only
12 new images are generated. For me 12 new images for slice are totally irrelevant in a training
set of 10K images. If 12 images are sufficient, this is a result that deserves more discussion.
The second concern regards the extracted rules. My understanding of Fig. 5 is that hard(V0)
is described by the first rule OR the second OR the third. Is this the case? If so, how did
you encode this OR in the image generator? In general, there is no detailed description about
how the mined rules are translated into specifications for the image generator.

Answer: In our revised manuscript, we have improved the experimental setting regarding the
model mending process. The goal was to solve the data imbalance by augmenting the original
training set with new images based on the selected rules, so as to avoid catastrophic forgetting
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in the CV model. Based on this, we determined that a more substantial number of new images
was required. For the Super-CLEVR experiments, we augmented the training set with 500
new images for each identified rare slice. For the ImageNet experiments, we followed the
same model mending process, augmenting the dataset with a similar number of new images
for each slice to balance the subclass distribution. Your understanding of Fig. 4 (previously
Fig. 5) is correct: the extracted rules for a rare slice represent a logical OR (e.g., “a utility
bike facing north” OR “a utility bike facing south”). Note that the dataset augmentation
is done according to all the candidate rules that agree with a percentage of extracted rules
greater than or equal to the rare slice hypothesis threshold τh. We have now added a more
detailed description of how these mined rules are translated into specifications in the model
mending paragraphs in Section 6 (Experiments).

2. Fig. 2 shows the system architecture that is interesting as it is a closed loop. Therefore, it
would be interesting having experiments with more cycles of this loop (at least 2) and see
whether performance increase.

Answer: To address this, in the revised manuscript in Section 6 (“Experiments”) and Ap-
pendices C and D, we have significantly extended our experimental evaluation to include a
second iteration of the SDM pipeline for both the Super-CLEVR and ImageNet experiments.
Experimental results show that this pipeline is effective when applied iteratively. After the
first model mending iteration, we evaluated again the models, identified the new underper-
forming classes, and applied the rule extraction and model mending process a second time.
Experimental results show that this second iteration led to further performance improve-
ments. For example, in VT:H4, the recall on the “urban bicycle” class increased from 94.00%
to 98.00%, successfully resolving the persistent rare slice regarding the “utility bike” vehicle
subclass. This shows the effectiveness of our closed-loop pipeline for slice discovery and model
mending.
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