
Dear Editors and Reviewers,

We would like to thank you for your effort invested in reviewing our submission and providing
constructive feedback. This is much appreciated.

Below, we provide detailed answers (in green italics) to the points raised by the Reviewers
(regular font). In the revised version, we did our best to address your remarks while keeping
the article within reasonable length. Please notice that our original submission was already
16 pages long (not counting the appendices and bibliography), which, given the rather
capacious template of the NAI Journal, puts quite a heavy burden on the reader.

As both Reviewers were pointing primarily to the incompleteness of the presentation of the
DSL and related topics (program generation, program normalization), the majority of
changes and extensions concern Section 3. On top of text modifications, we introduced a
new Table 2 that presents the signatures of DSL functions/operators (it is a shortened
version of a table that was in the Appendix of the original submission, now Table 8) and
added two new figures 4 and 5, which elucidate the process of program execution and
program synthesis.

In addition to the changes required and requested by the Reviewers, we carefully proofread
the manuscript, polishing the language, simplifying the text, and introducing minor
reorganizations (in particular, moving some statements to the experimental sections).

For your convenience, this PDF file contains both the answers to Reviewers and,
attached at the end, the result of ‘Latex diff’ between the original submission and the
revised one, where the added fragments are shown in blue and the deleted ones in
red.

We hope that the introduced extensions and amendments will meet your expectations.

With kind regards,
Jakub Bednarek and Krzysztof Krawiec

Review #1
Recommendation: Minor revision
Detail Comments
The paper presents a neurosymbolic system designed to tackle and solve tasks from the
ARC dataset. The system architecture is modular, combining symbolic and subsymbolic
components, including a DSL, to generate synthetic tasks and iteratively train a model to
solve a subset of these generated tasks alongside the original tasks. The paper presentation
and organization are good. The language is correct with only minor revisions required. The
work also explains why the research should be placed in the scope of neurosymbolic
systems.

Thank you for your overall positive opinion on our work.

1

Some points to raise that require the attention of the authors and might need addressing:

[R1] Section 3.2 describes the solver's distributional generation of programs as solutions
to given tasks and mentions capturing the relevant semantics needed in addition to the
syntax for solving tasks. I am unsure to what extent language-building with grammars
can be circumvented and how robust probabilistic semantics might be in replacing
them. It seems like there remains a missing link here between syntax and semantics that is
not thoroughly covered by the methodology employed.

Concerning “circumventing the language-building with grammars”:
For the avoidance of doubt, let us start by stating that our DSL has a fixed, formal grammar
– it is just that we didn’t present it in the paper. for the reasons outlined below. The grammar
of the DSL remains fixed during training, and TransCoder complies with it by design, i.e. it
cannot generate a syntactically incorrect program, by construction. What changes in training
is only the engine/algorithm that synthesizes programs.

We did not present the formal grammar of our DSL in the original submission, and we do not
do it in the revised version. The reason is that it is type-parametric (due to the presence of
generic types) and thus not context-free, so it looks quite convoluted when written down
formally. We find it more natural and convenient for the reader to express it implicitly, using
the types presented in Table 1 and operations shown in the newly introduced Table 2, which
is a shortened version of Table 8 from the appendix. We also provided an extended
description of the DSL and the implicit grammar in the revised version.

Concerning “how robust probabilistic semantics might be in replacing them
[grammars]”:
Programs expressed in our DSL have deterministic, well-defined semantics: there are no
random effects in program execution, so a program applied to a given input always produces
the same output. We use the term ‘semantics’ quite informally in the paper, as formalizing
the semantics of our DSL would be even more complex and verbose than for the grammar.

What is non-deterministic in TransCoder is [part of] the program synthesis process, due to
the presence of the variational layer in the model. As a result, TransCoder may come up with
different proposed programs when queried multiple times on the same task, but those
programs will still belong to the adopted DSL. This mechanism has been intentionally
introduced to improve exploration during training, and can be switched off for test-set
querying, should that be necessary, making the synthesis process deterministic (we also
remark on in the text). However, this does not affect the semantics of program execution –
that remains deterministic.

To address the doubts that may arise around these aspects, in the revised version of our
submission, we extended the text at places (in the Sec. 3.2 indicated above and elsewhere)
to convey the above characteristics in a more lucid fashion. We hope that these changes
provide the ‘missing link’ between syntax and semantics of our DSL. We also added two
new diagrams, in Figures 4 and 5, which should help convey the process of program
generation and execution.

2

[R2] Section 3.4 details the DSL created for the purpose of the experiments and the tasks,
and the language seems like an interesting bridge between lower-order types and
higher-order functions. But since the DSL must deal with different kinds of operations
(e.g., general arithmetic versus domain-specific filtering or rotation), it is difficult to
see the motivation behind creating a DSL instead of using existing methods like
Inductive Logic Programming or existing languages like Prolog to do the job. The
motivation for implementing the language from a practical (i.e., this is a language that will
have to scale if applied to other problems) and effective perspective (i.e., newly created and
for the purpose of this task versus more robust pre-existing languages that are proven to
handle logical problem framing and solving) does not seem sufficiently strong and
persuasive.

Thank you for this insightful question. There are a few arguments in favor of using a bespoke
DSL rather than relying on generic languages and approaches like ILP or programming in
logic. We outline them here, and decided to extend the manuscript with similar arguments at
the end of Section 3.4 (admittedly, our original submission was somewhat bit scant in this
respect).

1.​ Our dedicated DSL is equipped with an adequate type system from the very start.
There are specialized types for coordinates, regions of connected pixels, and
generics (like Pair). This domain-specific knowledge is essential for efficient training,
especially in the initial phases of the process, where the model struggles to
synthesize programs capable of ‘doing anything interesting’.

2.​ A fair share of ARC puzzles are ‘operational’ in nature, in the sense that they require
the input panel (raster image) to be somehow transformed into the answer panel. It is
thus natural to express such transformations as executable sequences (or other
control structures) of steps/instructions that change some initial state (often given by
the input panel) into some kind of dependent state (e.g. the output panel). Examples
include moving objects, connecting points, mirroring fragments of the input image,
counting objects in the input image and ‘expressing’ the obtained number in the
output raster, and more. Expressing operations/transformations of this kind in ILP or
Prolog, which are declarative rather than imperative, while hypothetically possible,
would be much more cumbersome.

3.​ Given the above arguments, we don’t feel entirely convinced that “the pre-existing
languages are more robust”. We definitely agree that they are more general and
expressive than our DSL, but there’s a price to pay for that, as argued above: starting
from scratch would make the program synthesis task significantly harder.

[R3] Section 3.6 presents the training of TransCoder. It is explained that the RL method is
not useful at the start of training and kicks in later. It would have been interesting to have
a comparison between using RL versus using sole SL training which is more
straightforward to implement and effective from the start. It would also help to
convince of the criticality of having the RL method on top of the SL method.

Perhaps our wording was not precise enough in that paragraph. What we meant is that RL
did not prove particularly effective at any stage of training, whether the initial one or the later

3

one (with emphasis on the former). We have now reworded the beginning of Sec. 3.6 to
make this clear.

The gap between the effectiveness of SL and RL we observed in preliminary experimenting
was so significant that we gave up RL altogether in this particular study. At the moment we
find it very unlikely for any variant of RL to be useful for training our TransCoder – given the
sparsity of positive rewards (no rewards for programs that do not solve the problem) and the
complicated structure of the search space (minor differences between programs
corresponding to fundamental changes in their behavior/semantics).

We also think that the generative mode proposed in this paper provides a much more
elegant and effective avenue towards effective training of TransCoder (and similar
architectures).

[R4] Section 4 mentions related works and addresses LLM technologies, stating that their
advancement has enabled better performances at solving ARC tasks than any DSL. This
claim raises questions: why haven't LLMs been included in the experiments and
compared as benchmarks to TransCoder? Why wasn't LLM technology considered as
part of the design of the TransCoder modules? They would have possibly made for a less
tedious implementation and more performant solution than a DSL according to the stated
literature.

There are multiple reasons why LLMs are not part of this study (even though we discussed
them at the end of Sec. 4 in the original submission):

1.​ LLMs do not guarantee the synthesized programs to be syntactically correct.
TransCoder, in contrast, assures it by explicitly engaging DSL grammar in the
process of program synthesis, when the DRNN traverses the AST of the program
being generated. Having this guarantee makes the approach more elegant and
computationally efficient, as the programs don’t need to be additionally checked for
syntactic consistency.

2.​ LLMs are known to be flawed in many ways: confabulating, unpredictable, hungry for
computing resources, etc.

3.​ ARC does not involve natural language. While this does not preclude LLMs from
being used here, that requires additional ‘tinkering’. See, for instance,
https://arcprize.org/blog/oai-o3-pub-breakthrough for the attempts of solving ARC
problems with LLMs.

4.​ There are arguments for claiming that natural language is not best fitted to solve
ARC problems by, among others, being too informal and `coarse’ and struggling to
capture certain forms of regularities. The operations contained in our DSL are much
more principled in this sense.

5.​ We (i.e., the scientific community) do not really know how LLMs work. Embedding
them into the kind of architecture like TransCoder would not explain anything: we
would have a black box generating candidate solutions. No explanations, no
understanding of the ‘inner workings’, no actionable insights. In contrast, TransCoder
is modular, with each module having a well-defined role and place in the overall

4

https://arcprize.org/blog/oai-o3-pub-breakthrough

architecture, opening the door to proper understanding of its internal operation (not
attempted in this paper for brevity, but certainly possible).

6.​ Last but not least, in this project, we strive at achieving insightful scientific results,
rather than exercising pure engineering. With this in mind, we are studying the
capacities of learning agents, rather than picking the tools/algorithms/methods that
are expected to ‘work better’.

[R5] In Section 5, there is mention of a normalization step without real justification of
the importance of this step beyond grouping code into other code logic. The authors
mention reducing lines of code but in the examples given it seems more like code
substitution and a tedious and unnecessary process to include.

We have added in Sec. 5 a description that motivates the need to have a normalization
mechanism integrated with the process of generating new training examples and presenting
them during the training cycle. In particular, we have described the situation in which the
generator learns redundant expressions and prioritizes their use during inference. Detecting
redundant operations during program generation is difficult (it requires full knowledge of the
subroutines, as in the case of Union type, where both subroutines must be the same),
therefore we decided to carefully select the training data to minimize the probability of such
situations.

[R6] Figure 5 is hard to read and may be more exploitable if separated into 2 figures (one for
SolveRate and one for SynthRate).

We have separated SolveRate and SynthRate into two distinct graphs (now in Fig. 7) while
maintaining the same x-axis scale for efficient analysis of events occurring during
experiments.

[R7] Table 5 is hard to read and I am not sure how to understand it. The explanation seems
to suggest there is gradual learning (including of historical tasks), but the table presentation
makes it very hard to render these kinds of conclusions.

We have extended the caption of this table (Table 6 in the revised manuscript) with a
broader explanation of the results achieved by the model snapshot from a given training
moment.

Review #2
Recommendation: Major revision
Detail Comments Undoubtedly, this is a very interesting paper. Essentially, along the lines of
Dreamcoder, the paper proposes something calledcoder. The idea is to use program
synthesis for abstract task generation and solving Like Dreamcoder and a host of other
papers, they introduce a domain-specific and discuss how it can provide the constructs to

5

train a program to solve these reasoning tasks. They tackle the ARC reasoning tasks, which
are challenging and worthy of consideration. Overall, in terms of the project's goals and
ambition, I have issues at all.

Thank you for your overall positive opinion on our work.

[R8] What I do somewhat struggle with is that, unlike those other papers, this article is
specifically submitted to the Neurosymbolic Journal. In this case, I would expect a bit more
emphasis on the formal machinery behind all of these constructions. The way the paper is
introduced is somewhat high-level, presenting some machine learning constructs and
terminology without much detail. In fact, the paper is largely textual. Given the venue, I
would expect a greater emphasis on semantics, syntax, and the assumptions behind some
of the modeling of the distributions and the correctness of the whole thing.

Thank you for this insight. This remark seems to strongly resonate with the sentiments of
Reviewer #1 (especially in his/her first two remarks, [R1] and [R2]). Please refer to our
answers to those remarks above. Overall, we have significantly extended our submission to
cover the approach, and in particular the language, in greater detail (Sec. 3 and new figures
4 and 5).

[R9] I understand that as a proof of concept, the pipeline is coming together nicely, but as a
formal object, there's much to be desired in the writing.

In addition to addressing the specific remarks by the Reviewers (most of them concerning
Section 3, presenting the approach), we revised the entire paper carefully, and introduced
multiple improvements in presentation and language. Hopefully those will meet your
expectations.

[R10] I recommend that the authors stay with this piece of work but try to provide some kind
of soundness, completeness, or some sort of formal structure to how the various pieces fit
together. I understand that this is challenging, but that's what would make it worthwhile for
this journal.

Admittedly, our proposed architecture is quite complex, and presenting it clearly is a
challenge – especially without overwhelming the reader with too many technical details. We
are quite confident that the revised version reads better and conveys our ideas more clearly.

6

	Review #1
	Review #2

