
Dear Editors and Reviewers,  
 
We would like to thank you for your effort invested in reviewing our submission and providing 
constructive feedback. This is much appreciated.  
 
Below, we provide detailed answers (in green italics) to the points raised by the Reviewers 
(regular font). In the revised version, we did our best to address your remarks while keeping 
the article within reasonable length. Please notice that our original submission was already 
16 pages long (not counting the appendices and bibliography), which, given the rather 
capacious template of the NAI Journal, puts quite a heavy burden on the reader.  
 
As both Reviewers were pointing primarily to the incompleteness of the presentation of the 
DSL and related topics (program generation, program normalization), the majority of 
changes and extensions concern Section 3. On top of text modifications, we introduced a 
new Table 2 that presents the signatures of DSL functions/operators (it is a shortened 
version of a table that was in the Appendix of the original submission, now Table 8) and 
added two new figures 4 and 5, which elucidate the process of program execution and 
program synthesis. 
 
In addition to the changes required and requested by the Reviewers, we carefully proofread 
the manuscript, polishing the language, simplifying the text, and introducing minor 
reorganizations (in particular, moving some statements to the experimental sections).  
 
For your convenience, this PDF file contains both the answers to Reviewers and, 
attached at the end,  the result of ‘Latex diff’ between the original submission and the 
revised one, where the added fragments are shown in blue and the deleted ones in 
red.  
 
We hope that the introduced extensions and amendments will meet your expectations.  
 
With kind regards,  
Jakub Bednarek and Krzysztof Krawiec 
 
 

Review #1  
Recommendation: Minor revision  
Detail Comments  
The paper presents a neurosymbolic system designed to tackle and solve tasks from the 
ARC dataset. The system architecture is modular, combining symbolic and subsymbolic 
components, including a DSL, to generate synthetic tasks and iteratively train a model to 
solve a subset of these generated tasks alongside the original tasks. The paper presentation 
and organization are good. The language is correct with only minor revisions required. The 
work also explains why the research should be placed in the scope of neurosymbolic 
systems.  
 
Thank you for your overall positive opinion on our work.  
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Some points to raise that require the attention of the authors and might need addressing:  
 
[R1] Section 3.2 describes the solver's distributional generation of programs as solutions 
to given tasks and mentions capturing the relevant semantics needed in addition to the 
syntax for solving tasks. I am unsure to what extent language-building with grammars 
can be circumvented and how robust probabilistic semantics might be in replacing 
them. It seems like there remains a missing link here between syntax and semantics that is 
not thoroughly covered by the methodology employed.  
 
Concerning “circumventing the language-building with grammars”:  
For the avoidance of doubt, let us start by stating that our DSL has a fixed, formal grammar 
– it is just that we didn’t present it in the paper. for the reasons outlined below. The grammar 
of the DSL remains fixed during training, and TransCoder complies with it by design, i.e. it 
cannot generate a syntactically incorrect program, by construction. What changes in training 
is only the engine/algorithm that synthesizes programs.  
 
We did not present the formal grammar of our DSL in the original submission, and we do not 
do it in the revised version. The reason is that it is type-parametric (due to the presence of 
generic types) and thus not context-free, so it looks quite convoluted when written down 
formally. We find it more natural and convenient for the reader to express it implicitly, using 
the types presented in Table 1 and operations shown in the newly introduced Table 2, which 
is a shortened version of Table 8 from the appendix. We also provided an extended 
description of the DSL and the implicit grammar in the revised version. 
 
Concerning “how robust probabilistic semantics might be in replacing them 
[grammars]”:  
Programs expressed in our DSL have deterministic, well-defined semantics: there are no 
random effects in program execution, so a program applied to a given input always produces 
the same output.  We use the term ‘semantics’ quite informally in the paper, as formalizing 
the semantics of our DSL would be even more complex and verbose than for the grammar.  
 
What is non-deterministic in TransCoder is [part of] the program synthesis process, due to 
the presence of the variational layer in the model. As a result, TransCoder may come up with 
different proposed programs when queried multiple times on the same task, but those 
programs will still belong to the adopted DSL. This mechanism has been intentionally 
introduced to improve exploration during training, and can be switched off for test-set 
querying, should that be necessary, making the synthesis process deterministic (we also 
remark on in the text). However, this does not affect the semantics of program execution – 
that remains deterministic. 
 
To address the doubts that may arise around these aspects, in the revised version of our 
submission, we extended the text at places (in the Sec. 3.2 indicated above and elsewhere) 
to convey the above characteristics in a more lucid fashion. We hope that these changes 
provide the ‘missing link’ between syntax and semantics of our DSL. We also added two 
new diagrams, in Figures 4 and 5, which should help convey the process of program 
generation and execution.  
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[R2] Section 3.4 details the DSL created for the purpose of the experiments and the tasks, 
and the language seems like an interesting bridge between lower-order types and 
higher-order functions. But since the DSL must deal with different kinds of operations 
(e.g., general arithmetic versus domain-specific filtering or rotation), it is difficult to 
see the motivation behind creating a DSL instead of using existing methods like 
Inductive Logic Programming or existing languages like Prolog to do the job. The 
motivation for implementing the language from a practical (i.e., this is a language that will 
have to scale if applied to other problems) and effective perspective (i.e., newly created and 
for the purpose of this task versus more robust pre-existing languages that are proven to 
handle logical problem framing and solving) does not seem sufficiently strong and 
persuasive.  
 
Thank you for this insightful question. There are a few arguments in favor of using a bespoke 
DSL rather than relying on generic languages and approaches like ILP or programming in 
logic. We outline them here, and decided to extend the manuscript with similar arguments at 
the end of Section 3.4 (admittedly, our original submission was somewhat bit scant in this 
respect).  

1.​ Our dedicated DSL is equipped with an adequate type system from the very start. 
There are specialized types for coordinates, regions of connected pixels, and 
generics (like Pair). This domain-specific knowledge is essential for efficient training, 
especially in the initial phases of the process, where the model struggles to 
synthesize programs capable of ‘doing anything interesting’.  

2.​ A fair share of ARC puzzles are ‘operational’ in nature, in the sense that they require 
the input panel (raster image) to be somehow transformed into the answer panel. It is 
thus natural to express such transformations as executable sequences (or other 
control structures) of steps/instructions that change some initial state (often given by 
the input panel) into some kind of dependent state (e.g. the output panel). Examples 
include moving objects, connecting points, mirroring fragments of the input image, 
counting objects in the input image and ‘expressing’ the obtained number in the 
output raster, and more. Expressing operations/transformations of this kind in ILP or 
Prolog, which are declarative rather than imperative, while hypothetically possible, 
would be much more cumbersome.  

3.​ Given the above arguments, we don’t feel entirely convinced that “the pre-existing 
languages are more robust”. We definitely agree that they are more general and 
expressive than our DSL, but there’s a price to pay for that, as argued above: starting 
from scratch would make the program synthesis task significantly harder.  

 
 
[R3] Section 3.6 presents the training of TransCoder. It is explained that the RL method is 
not useful at the start of training and kicks in later. It would have been interesting to have 
a comparison between using RL versus using sole SL training which is more 
straightforward to implement and effective from the start. It would also help to 
convince of the criticality of having the RL method on top of the SL method.  
 
Perhaps our wording was not precise enough in that paragraph. What we meant is that RL 
did not prove particularly effective at any stage of training, whether the initial one or the later 
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one (with emphasis on the former). We have now reworded the beginning of Sec. 3.6 to 
make this clear.  
 
The gap between the effectiveness of SL and RL we observed in preliminary experimenting 
was so significant that we gave up RL altogether in this particular study. At the moment we 
find it very unlikely for any variant of RL to be useful for training our TransCoder – given the 
sparsity of positive rewards (no rewards for programs that do not solve the problem) and the 
complicated structure of the search space (minor differences between programs 
corresponding to fundamental changes in their behavior/semantics).  
 
We also think that the generative mode proposed in this paper provides a much more 
elegant and effective avenue towards effective training of TransCoder (and similar 
architectures).  
 
 
 
[R4] Section 4 mentions related works and addresses LLM technologies, stating that their 
advancement has enabled better performances at solving ARC tasks than any DSL. This 
claim raises questions: why haven't LLMs been included in the experiments and 
compared as benchmarks to TransCoder? Why wasn't LLM technology considered as 
part of the design of the TransCoder modules? They would have possibly made for a less 
tedious implementation and more performant solution than a DSL according to the stated 
literature.  
 
There are multiple reasons why LLMs are not part of this study (even though we discussed 
them at the end of Sec. 4 in the original submission): 

1.​ LLMs do not guarantee the synthesized programs to be syntactically correct. 
TransCoder, in contrast, assures it by explicitly engaging DSL grammar in the 
process of program synthesis, when the DRNN traverses the AST of the program 
being generated. Having this guarantee makes the approach more elegant and 
computationally efficient, as the programs don’t need to be additionally checked for 
syntactic consistency.  

2.​ LLMs are known to be flawed in many ways: confabulating, unpredictable, hungry for 
computing resources, etc.  

3.​ ARC does not involve natural language. While this does not preclude LLMs from 
being used here, that requires additional ‘tinkering’. See, for instance, 
https://arcprize.org/blog/oai-o3-pub-breakthrough for the attempts of solving ARC 
problems with LLMs.  

4.​ There are arguments for claiming that natural language is not best fitted to solve 
ARC problems by, among others, being too informal and `coarse’ and struggling to 
capture certain forms of regularities. The operations contained in our DSL are much 
more principled in this sense.   

5.​ We (i.e., the scientific community) do not really know how LLMs work. Embedding 
them into the kind of architecture like TransCoder would not explain anything: we 
would have a black box generating candidate solutions. No explanations, no 
understanding of the ‘inner workings’, no actionable insights. In contrast, TransCoder 
is modular, with each module having a well-defined role and place in the overall 
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architecture, opening the door to proper understanding of its internal operation (not 
attempted in this paper for brevity, but certainly possible).    

6.​ Last but not least, in this project, we strive at achieving insightful scientific results, 
rather than exercising pure engineering. With this in mind, we are studying the 
capacities of learning agents, rather than picking the tools/algorithms/methods that 
are expected to ‘work better’.  

 
 
[R5] In Section 5, there is mention of a normalization step without real justification of 
the importance of this step beyond grouping code into other code logic. The authors 
mention reducing lines of code but in the examples given it seems more like code 
substitution and a tedious and unnecessary process to include.  
 
We have added in Sec. 5 a description that motivates the need to have a normalization 
mechanism integrated with the process of generating new training examples and presenting 
them during the training cycle. In particular, we have described the situation in which the 
generator learns redundant expressions and prioritizes their use during inference. Detecting 
redundant operations during program generation is difficult (it requires full knowledge of the 
subroutines, as in the case of Union type, where both subroutines must be the same), 
therefore we decided to carefully select the training data to minimize the probability of such 
situations. 
 
 
[R6] Figure 5 is hard to read and may be more exploitable if separated into 2 figures (one for 
SolveRate and one for SynthRate).  
 
We have separated SolveRate and SynthRate into two distinct graphs (now in Fig. 7) while 
maintaining the same x-axis scale for efficient analysis of events occurring during 
experiments. 
 
 
[R7] Table 5 is hard to read and I am not sure how to understand it. The explanation seems 
to suggest there is gradual learning (including of historical tasks), but the table presentation 
makes it very hard to render these kinds of conclusions. 
 
We have extended the caption of this table (Table 6 in the revised manuscript) with a 
broader explanation of the results achieved by the model snapshot from a given training 
moment. 
 
 

Review #2  
Recommendation: Major revision  
Detail Comments Undoubtedly, this is a very interesting paper. Essentially, along the lines of 
Dreamcoder, the paper proposes something calledcoder. The idea is to use program 
synthesis for abstract task generation and solving Like Dreamcoder and a host of other 
papers, they introduce a domain-specific and discuss how it can provide the constructs to 
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train a program to solve these reasoning tasks. They tackle the ARC reasoning tasks, which 
are challenging and worthy of consideration. Overall, in terms of the project's goals and 
ambition, I have issues at all.  
 
Thank you for your overall positive opinion on our work.  
 
 
[R8] What I do somewhat struggle with is that, unlike those other papers, this article is 
specifically submitted to the Neurosymbolic Journal. In this case, I would expect a bit more 
emphasis on the formal machinery behind all of these constructions. The way the paper is 
introduced is somewhat high-level, presenting some machine learning constructs and 
terminology without much detail. In fact, the paper is largely textual. Given the venue, I 
would expect a greater emphasis on semantics, syntax, and the assumptions behind some 
of the modeling of the distributions and the correctness of the whole thing.  
 
Thank you for this insight. This remark seems to strongly resonate with the sentiments of 
Reviewer #1 (especially in his/her first two remarks, [R1] and [R2]). Please refer to our 
answers to those remarks above. Overall, we have significantly extended our submission to 
cover the approach, and in particular the language, in greater detail (Sec. 3 and new figures 
4 and 5).  
 
 
[R9] I understand that as a proof of concept, the pipeline is coming together nicely, but as a 
formal object, there's much to be desired in the writing.  
 
In addition to addressing the specific remarks by the Reviewers (most of them concerning 
Section 3, presenting the approach), we revised the entire paper carefully, and introduced 
multiple improvements in presentation and language. Hopefully those will meet your 
expectations.  
 
 
[R10] I recommend that the authors stay with this piece of work but try to provide some kind 
of soundness, completeness, or some sort of formal structure to how the various pieces fit 
together. I understand that this is challenging, but that's what would make it worthwhile for 
this journal.  
 
Admittedly, our proposed architecture is quite complex, and presenting it clearly is a 
challenge – especially without overwhelming the reader with too many technical details. We 
are quite confident that the revised version reads better and conveys our ideas more clearly.  
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