Proceedings of Machine Learning Research vol 284:1-42, 2025

Sound and Complete Neurosymbolic Reasoning with
LLM-Grounded Interpretations

Bradley P. Allen B.P.ALLENQUVA.NL
University of Amsterdam, Amsterdam, NL

Prateek Chhikara PRATEEKCHHIKARA24@QGMAIL.COM
University of Southern California, CA, US

Thomas Macaulay Ferguson FERGUT5@QRPI.EDU
Rensselaer Polytechnic Institute, Troy, NY, US

Filip Ilievski F.ILIEVSKIQVU.NL
Vrije Universiteit Amsterdam, Amsterdam, NL

Paul Groth P.T.GROTHQUVA.NL
University of Amsterdam, Amsterdam, NL

Abstract

Large language models (LLMs) have demonstrated impressive capabilities in natural lan-
guage understanding and generation, but exhibit problems with logical consistency in their
output. How can we harness LLMs’ broad-coverage parametric knowledge in formal reason-
ing despite their inconsistency? We present a method for directly integrating an LLM into
the interpretation function of the formal semantics for a paraconsistent logic. We provide
experimental evidence for the feasibility of the method by evaluating the function using
datasets created from short-form factuality benchmarks, and describe a proof-of-concept
tableau reasoner that implements the method. Unlike prior work, our method offers a
theoretical framework with a practical implementation for neurosymbolic reasoning that
leverages an LLM’s knowledge while preserving the underlying logic’s soundness and com-
pleteness properties.

1. Introduction

Applications involving commonsense reasoning and biomedical knowledge, where inconsis-
tencies and incomplete information are commonplace, remain challenging frontiers for Al
systems. While LLMs encode vast parametric knowledge (Petroni et al., 2019), they also
suffer from inconsistency and incompleteness (Cheng et al., 2025), limiting their use as
knowledge bases for such applications. Efforts to connect logical reasoning with LLMs re-
lying on prompting strategies and external symbolic solvers (Wei et al., 2022; Cheng et al.,
2025) show potential but exhibit significant shortcomings as well (Hoppe et al., 2025), lack-
ing formal frameworks for managing LLM knowledge inconsistency and incompleteness.

Paraconsistent logics (Priest et al., 2025) are multi-valued non-classical logics that han-
dle inconsistent information without logical explosion, where contradictions would make
everything provable. Belnap computers (Belnap, 1977a,b) are theoretical constructions de-
scribed by Nuel Belnap to model contexts in which machines are responsible for reasoning
in the face of incomplete or inconsistent information.

We propose a Belnap computer using an LLM judge as an external knowledge source
(Figure 1). LLM judges scale factuality evaluation of LLM output for short- or long-form
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Figure 1: A Belnap computer using an LLM judge as a source of knowledge. Let £ be
the object language for a paraconsistent logic, and let L7 be the set of atomic
formulas. A paraconsistent reasoner (left) sends an atomic formula ¢ € L to
the LLM judge (right), which returns a generalized truth value (u,v), such that
u indicates if the LLM judge was able to verify ¢, and v indicates if the LLM
judge was able to refute .

question answering tasks, returning truth valuations for statements in the LLM’s output
(Li et al., 2024). In our approach, an LLM judge responds to a query for the valuation
of an atomic formula in the context of a paraconsistent reasoner with a generalized truth
value (Shramko and Wansing, 2025, 2011). Generalized truth values allow the LLM judge to
provide information to the reasoner not only about the degree of truth of an atomic formula
given the LLM’s parametric knowledge, but also with respect to the degree of knowledge
the LLM has about the formula.

Section 2 discusses related work, and Section 3 defines a bilateral factuality evalu-
ation function (contribution i), which separately assesses whether an LLM can verify
and whether it can refute a claim made by an atomic formula. Unlike standard factuality
evaluation, which yields a single truth value, bilateral evaluation surfaces the LLM’s epis-
temic state: consistent knowledge, inconsistency (where the LLM both affirms and denies),
or uncertainty (where the LLM can do neither). This is valuable as an evaluation method in
and of itself, providing actionable information beyond that provided by current LLM judge
approaches to factuality evaluation. Section 4 shows how bilateral evaluation integrates
naturally into the formal semantics of a paraconsistent logic through an LLM-grounded
interpretation (contribution ii) that preserves the soundness and completeness of an-
alytic tableau systems for reasoning in the logic, enabling principled reasoning over LLM
parametric knowledge despite its inherent inconsistency and incompleteness. Section 5
provides empirical evidence for practical implementation of bilateral factuality
evaluation (contribution iii), presenting evaluation findings using benchmarks derived
from short-form factuality benchmarks and discussing limitations. Section 6 describes a
demonstration of a scalable proof-of-concept implementation of a Belnap com-
puter as a paraconsistent reasoner with LLM integration (contribution iv) as
described in Section 3 and 4, and demonstrates our approaches feasibility and scalability.
Section 7 discusses limitations of our approach, and Section 8 concludes with a summary
and discussion of future work.!

1. We note that this article is an extended version of Allen et al. (2025); we express our deep appreciation
to the two anonymous reviewers for valuable feedback which contributed to this version.
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2. Related work

Logical reasoning with LLMs Current approaches to reasoning with LLMs (Hoppe
et al., 2025; Cheng et al., 2025) appear in Figure 2. In a prompt-based approach (a), an
LLM is prompted with a verbalization §(I') € X* of a set of formulas I', and performs
natural language reasoning to produce a verbalization §(¢) of ¢ (Wei et al., 2022; Kojima
et al., 2022; Dhuliawala et al., 2023; Yao et al., 2023). In a solver-based approach (b), an
LLM is prompted with a verbalization of a set of formulas and produces a set of formulas
I’ in an object language £, which a reasoner uses to deduce ¢ (Pan et al., 2023; Olausson
et al., 2023; Callewaert et al., 2025). In an approach based on pre-training or fine-tuning
(¢), a reasoner provides a training set of proofs II, and the LLM learns from that to reason
as in (a) (Jiao et al., 2023; Morishita et al., 2024; Feng et al., 2024; Liu et al., 2025).
Unlike approaches (b) and (¢) that use LLMs alongside reasoning systems, in our proposed
interpretation-based approach (d) we integrate LLMs directly into the formal semantics of
the reasoner’s logic itself, by using an LLM to implement an interpretation function Z to
be used by the reasoner in inferring ¢. This allows us to provide formal guarantees about
the soundness and completeness of the reasoning process that incorporates the LLM. In
contrast with approaches (a), (b), and (c¢), instead of trying to get an LLM to reason using
logic, we get a logic to reason using an LLM.

This architectural distinction has important methodological implications. Systems such
as Logic-LM (Pan et al., 2023) and LINC (Olausson et al., 2023) fall within configurations
(b) or (c): they use neural components to generate or transform logical representations,
which are then processed by symbolic reasoners. DeepProbLog (Manhaeve et al., 2018)
shares our interpretation-based architecture but operates within classical probabilistic se-
mantics, which cannot accommodate the contradictions LLMs routinely produce. Our ap-
proach addresses a different problem than do these systems: how to formally integrate
unreliable knowledge sources (in our case, LLMs) into reasoning systems while preserv-
ing soundness and completeness guarantees. The relevant comparison is not benchmark
accuracy on clean reasoning tasks, but robustness to the inconsistencies that real-world
knowledge sources exhibit. Our contribution is that bilateral evaluation surfaces the epis-
temic state of the LLM, and paraconsistent semantics provides principled machinery for
reasoning over that state.

Factuality evaluation using LLM judges Factuality evaluation is the assessment of
whether the output of a language model is factually correct (Wang et al., 2023; Bang et al.,
2025). Recent work has focused on LLM judges (Zheng et al., 2023; Zhu et al., 2023) as
a means to scale factuality evaluation, by prompting an LLM to produce a truth value
assignment of the output of an LLM that is being evaluated, specifically a short- (Wei
et al., 2024) or long-form (Jacovi et al., 2025) answer to a question. We apply LLM judges
to assign generalized truth values to natural language translations of atomic formulas, taking
a single-answer grading approach (Zheng et al., 2023). In contrast with current approaches
to factuality evaluation, the use of generalized truth values provides information as to the
LLM’s epistemic stance towards the formula in question.

Generalized truth values Generalized truth values offer significant advantages over
truth valuations provided by current approaches to factuality evaluation using LLM judges,
presenting a more sophisticated framework for handling complex evidential scenarios. These
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Figure 2: Approaches to logical reasoning with LLMs. Let £ be a first-order language, I" be
a set of statements in £, ¢ be a statement in £, Z be an interpretation for £, IT be
a set of proofs of statements in £, and ¢ : P(L) — X* be a verbalization function
that takes a set of formulas in £ and returns a natural language translation of the
formulas. In each approach, we show how reasoning is performed in the context
of generating a formal or natural language proof showing that I' - .

systems enable systematic distinctions between different types of evidence, as demonstrated
by the theoretical work of Shramko and Wansing (2011) and Ferguson (2021b), allowing
evaluators to categorize and weight various forms of factual support rather than treating all
evidence as equivalent. Additionally, generalized truth values provide principled methods
for handling inconsistent and incomplete information, a critical advantage given the messy
nature of real-world factual claims where evidence may be contradictory or absent, as ex-
plored in the foundational work by Shramko and Wansing (2011), the extensions by Szmuc
(2019) and Ferguson (2021b), and the theoretical groundwork laid by Correia (2010). Per-
haps, most importantly, for practical evaluation applications, these frameworks enhance the
explanatory transparency of logical valuations through their structured nature, as noted by
Shramko and Wansing (2011), Ferguson (2021b), and Fine (2016), providing clear logical
foundations that make evaluation decisions more interpretable and allowing researchers to
understand not just whether a claim is deemed factual, but why that determination was
reached and what types of evidence contributed to the final assessment. Our work, following
Ferguson (2021b), uses truth values that are elements of the bilattice NZNE (Arieli and
Avron, 1998).

Bilateralism Bilateralism in logic (Rumfitt, 2000) holds that understanding a proposition
requires grasping both the conditions under which it can be asserted and the conditions
under which it should be denied. Meaning isn’t just about knowing when something is
true, but also explicitly understanding when it is false. This philosophical view contrasts
with unilateral approaches where only conditions for truth or assertion are primary, and
falsity or denial is treated as derivative (just the absence or negation of truth). Bilateralists
argue this misses something fundamental about meaning and inference, and that having
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explicit roles for both verification and refutation leads to better logical reasoning and clearer
understanding. Our work empirically validates Rumfitt’s philosophical position: treating
assertion and denial as primitive speech acts (rather than reducing one to the other) provides
superior analytical power.

Multi-valued logics for paraconsistent reasoning Work that builds on Belnap’s four-
valued semantics has led to the development of a range of non-classical paraconsistent logics.
Patel-Schneider (1989) showed how this idea could be applied to make terminological logics
capable of performing subsumption correctly in the presence of contradictory knowledge.
Kamide (2010), Ma et al. (2007), and Maier et al. (2013) expanded on this work to define a
number of paraconsistent description logics. More recently, Ferguson (2017b) has proposed
a computational interpretation of versions of first degree entailment (FDE) and Richard
Angell’s logic of analytic containment (AC). This interpretation models reasoners using
these logics as Belnap computers, and leads to a formal framework for FDE and AC
as bilateral logics with sound and complete analytic tableau systems. We show how an
LLM judge can be used to provide an interpretation for AC that preserves the soundness
and completeness of the tableau system ACrQ, with applications to description logics as
described in (Ferguson, 2021a).

Interpreting symbols in logical statements as natural language terms Previous
efforts have explored the degree to which meaning can be captured through the use of natural
language terms as symbols in a formal knowledge representation language. Google distance
between symbol names has been used to weight ontology matches, explicitly leveraging
that ontology concepts are often named with meaningful words (Gligorov et al., 2007).
Semantic distances between natural language representations of concepts have been used
to reason with inconsistent ontologies, selecting maximally consistent subsets based on
linguistic similarity (Huang and van Harmelen, 2008). The degree to which symbol names
carry social meaning in knowledge graphs has been quantified, providing an information-
theoretic framework for measuring the effectiveness of this symbol-language correspondence
(de Rooij et al., 2016). Most recently, work on context-aware clause selection in theorem
proving has shown that symbol names can provide valuable heuristics even in purely formal
reasoning tasks (Schon, 2025). Our approach builds on these efforts, using the linguistic
processing capabilities of LLMs to interpret the predicate and constant symbols in atomic
formulas in AC as terms in natural language. At first glance, this may seem to fly in the
face of traditional approaches to logic; however, traditional formal systems have always
required human judgment to determine what constitutes truth for atomic formulas. Our
contribution makes this interpretative act explicit by using LLMs to operationalize how
humans assess claims through language.

3. Bilateral factuality evaluation of an atomic formula using an LLM

AC is a conceptivist logic (Ferguson, 2017a) that addresses hierarchical relationships be-
tween concepts. While in this work we focus on AC as a paraconsistent logic, it is also
paracomplete, i.e., it rejects the law of the excluded middle. The combination of those two
properties makes it particularly suitable for applications involving vague predicates, incom-
plete information, or situations where classical logic’s demands for both consistency and
completeness are too strong. Appendix A provides a definition of AC with restricted quan-
tification, which is necessary to support concept subsumption and existential quantification
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of roles when used as a description logic (Ferguson, 2021b). This definition treats AC as a
bilateral logic, i.e., a logic which manages values for both the truth and falsity of a formula
separately. Bilateralism in philosophical logic (Rumfitt, 2000) holds that understanding a
proposition requires grasping both the conditions under which it can be asserted and the
conditions under which it should be denied. We operationalize this principle by evaluating
the factuality of atomic formulas using an LLM judge.

First, we generate a natural language verbalization of an atomic formula, then prompt
the LLM to generate two statements on the verifiability and refutability of the assertion.
The statements are then mapped into the set of truth values V3 used in weak Kleene logic
(Kleene, 1952; Szmuc, 2019), i.e., t (true), ¢ (undefined), and § (false). Weak Kleene truth
values allow us to formalize the semantics of LLM-judge output. For example, the Sim-
pleQA grader used in the SimpleQA benchmark (Wei et al., 2024) grades an LLM’s answer
to a question as either “CORRECT”, “INCORRECT”, or “NOT ATTEMPTED?”; the Pre-
ciseWikiQA Question Answerability Prompt in the HalluLens benchmark (Bang et al., 2025)
uses “UNVERIFIABLE” instead of “NOT ATTEMPTED”. We equate “CORRECT” with t
and “INCORRECT” with f; equating ¢ with “NOT ATTEMPTED” or “UNVERIFIABLE”
is consistent with Kleene’s original statement that it indicates “an absence of information”
that a given formula is either t or f (Kleene, 1952, p. 333).

Finally, we pair the weak Kleene truth value u for verifiability with the weak Kleene
truth value v for refutability to yield a generalized truth value (u,v) € V3 x V3. Generalized
truth values offer significant advantages over truth values provided by current approaches
to factuality evaluation using LLM judges: they enable systematic distinctions between
different types of evidence (Shramko and Wansing, 2011; Ferguson, 2021b), provide princi-
pled methods for handling inconsistent and incomplete information (Shramko and Wansing,
2011; Szmuc, 2019; Ferguson, 2021b; Correia, 2010), and enhance the explanatory trans-
parency of logical valuations through their structured nature (Shramko and Wansing, 2011;
Ferguson, 2021b; Fine, 2016). Figure 3 shows an example of this process in action; a longer
example is provided in Appendix C.

Preliminaries Let X be a countable set of tokens and ¥* be the set of finite sequences
of tokens "ty ...t ", where to<;<r € 3, k € N. Given sequences 0,0’ € £*, 0 < o' iff 0 is a
proper contiguous subsequence of o’. Let L¢ be an LLM trained on a corpus € € P(3*).

Definition 1 A verbalization function § : P(L) — £* is a total function that maps a set
of formulas to a sequence of tokens.

The verbalization function ¢ thus serves as a critical bridge between formal logic and
natural language in our framework, and makes the assumption that symbols in our logical
language can meaningfully correspond to words or phrases that an LLM can interpret. In
practice,  can be implemented through three distinct approaches:

1. Direct syntactic mapping: Logical formulas are provided directly in their formal
syntax (e.g., yearOfDiscovery(America, 1492)). This assumes the LLM can parse
and understand logical notation. This is the approach used in the implementation
of bilateral factuality evaluation used in the evaluation in Section 5 and the tableau
reasoning system described in Section 6.



SOUND AND COMPLETE NEUROSYMBOLIC REASONING WITH LLM-GROUNDED INTERPRETATIONS
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LLM Judge
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Verification
Verbalization PT(0) = ... The answer is contextually
o =46{¢}) = accurate within the framework of Euro-
yearO f Discovery(America, 1492) © " America was pean exploration history, but it does not
discovered encompass the full scope of human discov-
in 1492 7 ery of the Americas. CANNOT VERIFY
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>< :
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f.f = (. 1) America was discovered in 1492 from a European
historical perspective. CANNOT REFUTE !
= v = f
- J

Figure 3: An example of bilateral factuality evaluation (. as performed by the LLM judge
shown in Figure 1. Let ¢ € L7 be an assertion that the discovery of America
occurred in the year 1492. o = §({p}) is the verbalization of ¢ (Definition 1).
The bilateral factuality evaluation of ¢ by an LLM judge (Definitions 2, 3, and 4)
generates the truth value (.(¢) = (f,f). The LLM has in effect identified incom-
pleteness in its knowledge — based on differing perspectives on who discovered
America, it can neither verify nor refute ¢.

2. Template-based transformation: Formulas are converted using predefined tem-
plates (e.g., “America was discovered in 1492”). This approach provides more natural
language but requires manual template creation for each predicate type.

3. LLM-generated verbalization: An LLM generates the natural language represen-
tation of the formula. This is the most flexible approach, but it introduces another
layer of potential error and interpretation.

Definition 2 A verification function P : ¥* — ¥* prompts L¢ to take a verbalization of
an atomic formula ¢ € Lar and generate a token sequence o that states that ¢ is verified
or that it cannot be verified.

Definition 3 A refutation function P~ : ¥* — ¥* prompts L¢ to take a verbalization of
an atomic formula ¢ € LaT and generate a token sequence o~ that states that ¢ is refuted
or that it cannot be refuted.

Definition 4 A bilateral factuality evaluation function ¢ : Lar — V3 X V3 is a total
function that given an atomic formula ¢ € Lar yields a pair (u,v) where:

t if "VERIFIED < P*(8(¢))
uw=1{f if TCANNOT VERIFYT < P*(§(¢))

¢ otherwise
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t if "REFUTED™ < P~(5(¢))
v=1{§ if CANNOT REFUTE < P~(5(¢))

¢ otherwise

The “otherwise” cases in Definition 4 reflect LLMs failing to output tokens indicating
verification or refutation state, e.g., by failing to follow instructions or timing out during API
calls. We use repeated sampling with majority vote (Brown et al., 2024) to determine truth
value components; other hallucination mitigation approaches, such as chain-of-verification
(Dhuliawala et al., 2023), are also admissible.

The definition of ¢ leaves open the possibility that multiple calls over time might return
different truth values. This violates the assumption of analytic tableau reasoning that
atomic formulas have stable truth values within the scope of the reasoning process. We
ensure this by using a caching version of the bilateral evaluation function (. where valuations
for atomic formulas are persistently and immutably stored. This type of caching is consistent
with the range of optimization techniques used in description logics tableau reasoners (Goré
and Nguyen, 2007; Nguyen, 2009).

Definition 5 A caching bilateral factuality evaluation function (. : Lo — V3 X V3 is a
total function defined as:

_ [fele) if p € dom(c)
Celip) = {((Qp) otherwise, and ¢ := cU {(p,((¢))}

where ¢ is a persistent and immutable cache mapping atomic formulas to truth value pairs.

Having established a bilateral evaluation, we now show how this enables LLM judges to
implement interpretation functions directly.

4. LLM-grounded interpretations

We formalize how the bilateral evaluation function (. is integrated into the definition of an
interpretation for AC, show that for every LLM-grounded AC interpretation there is an
equivalent standard AC interpretation, and then show that soundness and completeness of
the tableau-style analytic calculus ACrQ defined in Definition 18 of Ferguson (2021b) is
preserved when we adopt an LLM-grounded interpretation.

Definition 6 An LLM-grounded AC interpretation Z = (C*, R%) is an AC interpreta-
tion such that for every function RT € RT and cf,. .., ct € CL:

RY(ci,...,c;) = Ce(R(ers - cn))

Lemma 7 (Stability of LLM-grounded interpretations) For any LLM-grounded AC
interpretation T and atomic formula @ € Lar:

1. I(p) is well-defined and yields exactly one pair (u,v) € V3 x V3
2. Once computed, Z(p) remains constant throughout the reasoning process
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Proof The stability follows directly from Definition 5 of (.. Let ¢y be the time at which ¢
is first called to set c(p). If (.(¢) = (u,v) at time o, then for all subsequent calls at ¢ > to,
Ce(p) = (u,v). This ensures that once an atomic formula ¢ has been evaluated and the
returned pair (u,v) € V3 x V3 has been cached, all subsequent evaluations will return the
same pair from the cache, guaranteeing stability. |

Lemma 7 states that the logical validity of derivations depends on logical operator struc-
ture rather than atomic proposition content, a fundamental principle in formal logic. The
tableau method only depends on the truth-functional behavior of the logical connectives,
which remains unchanged between standard and LLM-grounded interpretations.

Lemma 8 (LLM-grounded to standard interpretation mapping) For any LLM-grounded
AC interpretation T = <CI,RI>, there exists a standard AC interpretation I' that pre-
serves the semantic behavior of T on all formulas.

Proof Given an LLM-grounded AC interpretation Z = <CZ , RI>, we define a standard
AC interpretation 7' = (CZ',RT') such that:

1. cT =2t

2. R = R?

3. Forall Re R, RT(F,...,F) = RY(Z,. .., L)
4. ForallceC, ' =&

We show that for any formula ¢ € £, Z(p) = Z'(¢) by induction on the complexity of :

e For o = R(c1,...cn) € Lar, then by Definition 6, Z(¢) = Z(R(c1, . ..cn)) = RE(cf, ..., ck) =
RY(F ...,y =T (R(cy,...cn)) =T ().

o For ¢ = =, by Definition 16, Z(—)) = (Z1(¢), Zo(v)) and Z' (=) = (Z1(¢), Zo(¢)).
By the inductive hypothesis, Z(¢) = Z'(v)). Therefore Z(—¢)) = Z'(—)).

o For ¢ = ¢Ax, by Definition 16, Z(¢pAx) = (Zo(v¥) AZo(x), Z1 () V 1 (x)) and similarly
for Z/. By the inductive hypothesis, Z(¢)) = Z'(¢)) and Z(x) = Z'(x). Therefore

I Ax) =T Ax).

The same arguments apply in the cases of disjunction, restricted universal quantification,
and restricted existential quantification, again following Definition 16 in Appendix A. M

Lemma 9 (Standard to LLM-grounded interpretation mapping) For any standard
AC interpretation T = (CT,RZ), there exists an LLM-grounded AC interpretation I' that
preserves the semantic behavior of T on all formulas.

Proof Let T = (CT,R7%) be a standard AC interpretation. Define a key-value store cr
such that for all atomic R(cy, ..., c,) € AT, c(R(cq, ..., ¢n)) = RE(cE, ..., cE). Then cz induces
a caching bilateral factuality evaluation function (.z such that the induced LLM-grounded
AC interpretation Z' agrees with Z on all atoms. Consequently, an induction along the
lines of that in Lemma 8 ensures agreement. |

Note that as a corollary of Lemmas 8 and 9, I' Fac ¢ holds if and only if the inference
from I to ¢ is valid over all LLM-grounded AC interpretations. This allows the following
two theorems:
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Theorem 10 (Preservation of soundness) Let I' be a finite set of formulas and ¢ a
formula in AC. IfT' Facrq ¢, then T' =1 ¢ is valid for all LLM-grounded AC interpreta-
tions T.

Proof By Theorem 3 of Ferguson (2021b), if I' Facrq ¢, then I' =ac ¢. Therefore
I' =7 ¢, as is the case for any AC interpretation, standard or LLM-grounded. |

Theorem 11 (Preservation of completeness) Let ' be a finite set of formulas and ¢
a formula in AC. Then if for all LLM-grounded AC interpretations Z, T' =7 ¢, then

I'-acrq -

Proof By Lemma 8, given Z, we can construct a standard AC interpretation Z' such
that if I' =7 ¢ then I =7 ¢. By the established completeness theorem for standard AC
interpretations (Theorem 4 of Ferguson (2021b)), if I' =7/ ¢, then I Facrq ¢- [ |

Section 6 presents our implementation of these theoretical concepts in a complete tableau
reasoning system, demonstrating the practical realizability of LLM-grounded interpreta-
tions.

5. Factuality evaluation of LLM-grounded interpretations

To validate the factuality of LLM-grounded interpretations, we evaluate the bilateral eval-
uation function ¢ that underlies them, using question/answer pairs from two short-form
factuality benchmarks. Given our theoretical results above, this focus on the practicality of
atomic formula valuation within our framework provides a proof-of-concept that a Belnap
computer of the type described above is feasible.?

Data and metrics Question/answer pairs in short-form factuality benchmarks are typi-
cally factoids providing a question together with a short answer (Figure 3). We use these as
an approximation to the verbalization () of an atomic formula ¢. We used the short-form
factuality benchmarks GPQA (Rein et al., 2023) and SimpleQA (Wei et al., 2024) to create
two test datasets (each with N=400) for our experiments, each balanced between positive
and negative examples. Test data preparation and experimental setup are discussed in
Appendix D. We evaluated the performance of ¢ over the two datasets using two metrics:
macro F1 against question/answer pairs that the judge did not abstain from, i.e., where
the judge provided a valuation of {(p) = (t,f) (i.e., verified and not refuted) or {(¢) = (f, t)
(i.e., not verified and refuted), and coverage, which is the percentage of the total set of
question/answer pairs where the judge did not abstain. We also measured the time taken
per evaluation, and the number of tokens used per evaluation.

LLM judges We used three flagship LLMs (Llama 4 Maverick, GPT-40, and Claude 3.5
Sonnet), and three distilled LLMs (Llama 4 Scout, GPT-40 Mini, and Claude 3.5 Haiku).
Each LLM was evaluated using three different pairs of prompts: direct prompts that asked
for a verification or refutation for the QA pair, zero-shot chain-of-thought prompts, and few-
shot chain-of-thought prompts. As a baseline, we also used the six models and three prompt

2. Code and data for the experiment is available at https://github.com/bradleypallen/
bilateral-factuality-evaluation.
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Bilateral (¢) Unilateral
Dataset Model Type Macro F1 Coverage Macro F1 Coverage
GPQA flagship 0.699 (0.010) 0.589 (0.008) 0.633 (0.007) 1.000 (0.000)
distilled 0.608 (0.011) 0.504 (0.008) 0.559 (0.008) 1.000 (0.000)
SimpleQA  flagship 0.736 (0.009) 0.584 (0.008) 0.657 (0.008) 1.000 (0.000)
distilled 0.624 (0.011) 0.499 (0.008) 0.570 (0.008) 1.000 (0.000)

Table 1: Summary macro F1 (given abstention) and coverage metrics for the bilateral factu-
ality evaluation function ¢ and a baseline unilateral factuality evaluation function.

types to perform unilateral factuality evaluation, which asks an LLM to simply determine
whether a question/answer pair is t or f. The prompt templates used are provided in
Appendix B. Standard errors (in parentheses) presented in tables in this section and in
Appendix D were estimated by bootstrap resampling: 1000 subsamples of size N=100 were
drawn from the classification results within each model category (Politis and Romano, 1994).

Results Table 1 compares macro F1 and coverage between the unilateral and bilateral
evaluations across the two datasets, grouped by whether a model’s type was flagship or
distilled, and Table 2 does the same for mean time of execution and mean tokens used. Table
3 summarizes the distribution of truth values produced in bilateral evaluation. Detailed
breakouts are shown in the tables in Appendix D. Our key findings are as follows.

1. Bilateral evaluation macro F1 outperforms unilateral evaluation (p < 0.01)
at the cost of lower coverage. The mean difference between bilateral and unilateral
macro F1 is 0.062 and for coverage is -0.456.

2. Flagship models outperform distilled models (p < 0.01). Table 1 shows that
this is the case for both unilateral and bilateral approaches, though the difference is
more pronounced with bilateral evaluation (0.091 on the GPQA dataset, 0.112 on the
SimpleQA dataset) versus unilateral evaluation (0.074 on the GPQA dataset, 0.087
on the SimpleQA dataset).

3. Bilateral evaluation is more expensive than unilateral evaluation (p < 0.01).
Table 2 shows that bilateral evaluation takes roughly twice as much time and twice
as many tokens as unilateral evaluation. However, evaluation times vary widely, with
GPT-40 Mini using direct prompting taking a mean of 2.5 seconds, and Llama 4 Scout
using zero-shot prompting taking a mean of 43.4 seconds. Token consumption scales
predictably, from up to a mean of 2,008.6 tokens with direct prompting, and up to a
mean of 6,704.7 tokens with few-shot prompting.

4. Inconsistency occurs significantly more frequently than incompleteness (p <
0.05). Table 3 shows that bilateral judge models more frequently abstain by assigning
(t,t) (both verified and refuted) as opposed to (f,f) (neither verified nor refuted).

The accuracy-coverage trade-off A key finding from our experimental results is that
bilateral evaluation achieves higher macro F1 than unilateral evaluation at the cost of lower
coverage (Table 2). This trade-off is not a limitation but a feature: the increased visibility
into the LLM’s epistemic state that bilateral evaluation provides enables more conservative
and reliable predictions.
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Bilateral (¢) Unilateral
Dataset  Model Type Time (s) Tokens Time (s) Tokens
GPQA flagship 36.747 (0.281)  4781.663 (45.878)  12.411 (0.140) 2212.766 (27.182)
distilled 34.771 (0.224)  4731.672 (41.661) 13.439 (0.095) 2532.153 (26.615)
SimpleQA  flagship 32.789 (0.274)  4163.807 (37.704) 12.256 (0.140) 2100.465 (25.634)
distilled 30.310 (0.253)  3964.037 (39.991) 11.424 (0.120) 2167.419 (28.044)

Table 2: Summary execution time (in seconds) and total tokens used for the bilateral factu-
ality evaluation function ¢ and a baseline unilateral factuality evaluation function.

Dataset Model Type (t, 1) (t,f) (f, 1) {§, 1)
GPQA flagship 0.301 (0.008) 0.211 (0.007) 0.378 (0.008) 0.110 (0.005)
distilled 0.299 (0.007)  0.192 (0.006) 0.312 (0.007) 0.197 (0.006)
SimpleQA  flagship 0.310 (0.007)  0.228 (0.007) 0.357 (0.008)  0.106 (0.005)
distilled 0.301 (0.007) 0.233 (0.007) 0.266 (0.007) 0.200 (0.006)

Table 3: Summary truth value distributions for the bilateral factuality evaluation function
¢. Of note is the fact that the models evaluated did not produce any truth values
where u = ¢ or v = ¢ during the evaluation.

The coverage reduction occurs because bilateral evaluation abstains whenever the LLM’s
epistemic state is indefinite—either inconsistent ((t,t)) or ignorant ((f,f)). Rather than
forcing a commitment when evidence is conflicting or absent, the system acknowledges
uncertainty. This epistemic humility is precisely what produces the accuracy improvement:
by abstaining on difficult or ambiguous cases, the system’s definite verdicts are more reliable.

This pattern aligns with the well-established framework of selective classification (also
known as classification with abstention or the reject option) (El-Yaniv and Wiener, 2010;
Geifman and El-Yaniv, 2017). Selective classification is motivated by applications where
conservative prediction is critical—the cost of an incorrect prediction outweighs the cost
of abstention. Medical diagnosis is a canonical example: a system that abstains on am-
biguous cases and defers to human judgment is preferable to one that confidently misdi-
agnoses. The medication safety example in Section 6 illustrates this directly: the system’s
abstention on Cardiosafe(aspirin) (a genuinely contested claim) and its glut detection on
Nonaddictive(valium) (a claim the LLM can refute) both represent appropriate epistemic
caution in a domain where errors carry significant consequences.

Bilateral evaluation provides a principled mechanism for selective classification that goes
beyond simple confidence thresholding. Standard approaches to selective classification typi-
cally use model confidence scores to decide when to abstain, but such scores are notoriously
miscalibrated in LLMs (Kadavath et al., 2022). Our approach instead grounds abstention
in the structure of evidence: abstention occurs when verification and refutation evidence
are both present (glut) or both absent (gap). This provides interpretable diagnostics—a
downstream system can distinguish between “the LLM is conflicted” and “the LLM lacks
relevant knowledge,” enabling different handling strategies for each case.

12



SOUND AND COMPLETE NEUROSYMBOLIC REASONING WITH LLM-GROUNDED INTERPRETATIONS

The connection to verbalization (Section 7) is direct: gap valuations ((f,f)) arise when
the verbalized formula fails to activate relevant LLM knowledge. Improving verbalization
strategies would shift some gaps to definite valuations, increasing coverage while maintain-
ing accuracy. Glut valuations ((t,t)), by contrast, reflect genuine LLM inconsistency that
no verbalization strategy can resolve—these represent cases where the LLM’s parametric
knowledge is itself contradictory.

Bilateral truth value distributions across subject domains We note that our exper-
imental benchmarks (GPQA and SimpleQA) span diverse subject matters, and the distri-
bution of truth values likely varies across domains. Highly technical domains may produce
more gaps due to verbalization challenges; domains with contested claims may produce
more gluts. Table 14 presents the distribution of bilateral truth values across ten topic cat-
egories in the SimpleQQA dataset using zero-shot evaluation, revealing systematic variation
in epistemic states both across models and subject domains.

Three distinct behavioral patterns emerge among model families. GPT models ex-
hibit a pronounced tendency toward contradiction, with glut rates ((t,t)) averaging 59.0%
and near-zero gap rates ((f,f) ~ 0.1%), indicating that these models routinely find both
supporting and refuting evidence for the same claim. In contrast, Claude models display
greater epistemic caution, producing substantially lower glut rates (19.6%) and higher gap
rates (30.4%), suggesting a willingness to withhold judgment when evidence is inconclusive.
Llama models occupy an intermediate position with high verification rates ((t,f) = 29.8%)
but also elevated glut rates (52.9%).

Notably, topic difficulty varies considerably: Video games and Sports exhibit the highest
glut rates (63.6% and 47.3%, respectively), while History shows the lowest (35.7%) and the
most consistent cross-model behavior (o = 15.0). These findings demonstrate that bilateral
evaluation exposes model-specific epistemic signatures that unilateral TRUE/FALSE judg-
ments would collapse, and suggest that certain knowledge domains—particularly entertain-
ment and popular culture—present greater challenges for consistent factuality assessment
than more extensively documented domains such as History.

6. A Belnap computer with paraconsistent reasoning and LLM
integration

To evaluate the practical utility of our theoretical framework, we implemented a reasoning
system for ACrQ in Python with type annotations and a modular architecture separating
formula representation, semantic evaluation, and tableau construction.

System architecture The architecture supports two complementary reasoning modes:

e Forward-chaining inference derives new atomic formulas by instantiating univer-
sally quantified rules over ground assertions. Given a theory containing rules of the
form ¢t:[VX P(X)]Q(X) and ground assertions ¢: P(a), the forward-chaining procedure
derives ¢ : @Q(a) and iterates until no new facts can be inferred. Each newly derived
atomic formula is then evaluated by the LLM judge using the caching bilateral fac-
tuality evaluation function (., which may introduce additional assertions (confirming
the inference) or their duals (indicating LLM refutation), potentially surfacing gluts.

o Tableau-based satisfiability checking determines whether the current theory is
satisfiable under ACrQ semantics, extending the tableau calculus defined by Ferguson
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(2021b). The tableau procedure decomposes signed formulas according to ACrQ rules
until branches either close (indicating unsatisfiability) or remain open (indicating
satisfiability). For theories containing gluts—formulas ¢ where both ¢: ¢ and ¢ : ¢*
hold—the paraconsistent semantics prevents logical explosion, allowing the reasoner to
identify exactly which conclusions are contested while maintaining overall satisfiability.

Together, these two modes support an iterative workflow: users assert formulas in natural
language, the system translates them to AC syntax, forward-chaining derives consequences
and queries the LLM for validation, and satisfiability checking identifies any gaps (neither
verified nor refuted) or gluts (both verified and refuted) in the resulting theory.

The system adds to the set of tableau rules in Definition 18 in (Ferguson, 2021b) an
additional LLM evaluation rule that queries external knowledge sources during tableau
construction. The LLM evaluation rule is formally specified as:

LLM(P(a)) = (u,v)
o: P(a) F Appm(o, P(a),u,v)

(llm-eval)

where Ap,m generates conclusions based on the bilateral truth value returned by the LLM.
This rule is applied with lowest priority, after all deterministic tableau rules have been ex-
hausted. The implementation of the tableau procedure uses the caching bilateral factuality
evaluation function ¢, where valuations for atomic formulas are persistently and immutably
stored, ensuring the stability of truth values throughout the reasoning process, consistent
with optimization techniques used in description logic tableau reasoners (Goré and Nguyen,
2007). The tableau maintains full tree connectivity by chain-connecting initial formulas as
siblings, ensuring all properties remain observable and verifiable throughout the reasoning
process. The system preserves ACrQ’s paraconsistent properties, handling contradictions
(or "knowledge gluts”) without logical explosion. For example, when the LLM returns
(t,t), indicating both positive and negative evidence, the tableau construction procedure
generates nodes for both t : P(a) and t : P*(a), maintaining the glut without causing
branch closure, applying Norihiro Kamide’s method (Kamide, 2010) of encoding bilateral
valuations for atomic formulas with a predicate P using a predicate P* that corresponds to
P’s refutability value (Maier et al., 2013; Ferguson, 2021b).

Claude Code (Anthropic, 2025) was used to accelerate implementation while maintaining
correctness through rigorous verification: the system is supported by extensive test suites
(311 tests covering compliance with Ferguson (2021b), semantic correctness, and edge cases)
with all features validated through code review by two of the authors (BA and TF) before
integration.3

To support interactive use of the reasoner, the implementation includes a dialogue man-
agement system, Theory Manager, that bridges natural language input and formal reason-
ing. Natural language assertions are entered by the user, translated into formulas in AC,
and added to a set of assertions stored persistently by the reasoner as a theory. The user
can issue commands to perform forward-chaining inference, and to perform satisfiability
checking of the current theory, including gap and glut detection.

3. Code and data for the reasoner is available at https://github.com/bradleypallen/wkrq; in addition,
the Python package used by the reasoner for the implementation of ¢ and (. is available at https:
//github.com/bradleypallen/bilateral-truth.
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Metric Value Glut Category Count
Asserted statements 228 Opioids nonaddictive 25
Inferred statements 712 Antipsychotics metabolically neutral 15
Satisfiability SAT Beta-blockers safe in asthma 11
Gluts detected 92 Benzodiazepines nonaddictive 11
Gaps detected 2 Other categories 30

Table 4: Scaled evaluation results (940 statements total).

As an illustration of the reasoner in action, Figure 4 shows a trace of an interactive ses-
sion with the Theory Manager. In this example, the user first specifies the use of OpenAl’s
GPT-40 model with the session, and then makes two assertions in natural language, the
canonical example of all humans are mortal and Socrates is a human, which the Theory
Manager translates into the AC syntax. The user then invokes the prover to apply rules in
a forward-chaining fashion, yielding the inference that Socrates is a mortal. Given the ap-
pearance of atomic statements in the tableau being constructed, whether directly asserted
or inferred, the 11m-eval rule is being applied; given it agrees with the atomic formulas
added to this point, the tableau construction procedure does not add any additional nodes.
Then the user asserts that Socrates is a pig, and this time the 1lm-eval rule yields an
assertion that Socrates is not a pig. Satisfiability checking invoked by the user identifies
that an inconsistency now exists in the set of assertions in the theory; however, as this does
not result in explosion per the definition of AC, the theory is still satisfiable.

A medication safety reasoning use case To illustrate the system’s capabilities for a
use case where inconsistency tolerance is practically motivated, we present a medication
safety example. Medical knowledge bases frequently contain errors, outdated information,
or conflicting guidelines that can lead to incorrect inferences (da Costa and Subrahmanian,
1989). Traditional approaches to managing such inconsistencies in medical ontologies focus
on detecting and repairing problematic axioms through techniques such as axiom pinpoint-
ing (Schlobach et al., 2007; Kalyanpur, 2006; Baader and Suntisrivaraporn, 2008). However,
these methods require that inconsistencies manifest as logical contradictions within the on-
tology itself; they cannot detect axioms that are logically consistent but factually incorrect
given external medical knowledge. Our approach addresses this gap: by validating in-
ferred conclusions against LLM-encoded medical knowledge, we can surface errors (gluts)
that would otherwise remain hidden, while the paraconsistent semantics allows reasoning
to continue even when conflicts are detected. This example is deliberately artificial—it in-
cludes intentionally incorrect rules to test glut detection—but it demonstrates a capability
that could complement existing ontology debugging tools in domains where knowledge bases
must be validated against evolving empirical evidence.

The medication safety example knowledge base contains 228 asserted statements en-
coding 28 universally quantified rules and 200 ground assertions across 16 drug classes.
Table 4 summarizes the results of asserting the statements in the knowledge base, running
the forward chaining reasoner, and then running the tableau satisfiability checker to detect
gluts. Forward-chaining derived 712 new atomic formulas, yielding a theory of 940 total
statements. The system detected 92 gluts corresponding to medically significant errors: all
25 opioid medications yielded gluts for Nonaddictive(X) because the LLM correctly iden-
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1| theory> 1lm openai gpt-4o

2| [0K] LLM evaluator enabled: openai
3

4

theory> assert all humans are mortal
5/ [0K] Asserted: S0001
6 Formula: t:[forall X Human(X)]Mortal (X)

8| theory> assert socrates is a human
ol [0K] Asserted: S0002
10 Formula: t:Human(socrates)

12| theory> infer
13| [0K] Inferred 1 new statement(s):
14 I0003: t:Mortal(socrates) < logical inference

16| theory> assert socrates is a pig
17| [0K] Asserted: 50004
18 Formula: t:Pig(socrates)

0| theory> infer
[0K] Inferred 1 new statement(s):
E0005: t:Pigx*(socrates) < LLM refutation

theory> check

[0K] Satisfiable

['] Found 1 glut (conflicting evidence):
S0004: t:Pig(socrates)
E0005: t:Pigx*(socrates)

NONON NN NN N
[~ S I N CR )

~

N
00

Figure 4: Example interaction with the Theory Manager demonstrating paraconsistent rea-
soning. The system correctly infers Mortal (socrates) through logical deduction
(line 13), then queries the LLM when a false claim is asserted. The LLM returns
C(Pig(socrates)) = (f, t) (cannot verify, can refute), resulting in Pig* (socrates)
(line 20). Despite the glut between the user assertion and LLM evidence (lines
24-25), the system remains satisfiable, demonstrating paraconsistent handling of
contradictions.

tifies opioids as highly addictive. The system also correctly identified that beta-blockers
are contraindicated in asthma patients (11 gluts) and that fluoroquinolones pose risks for
children (7 gluts). Despite 92 contradictions, the theory remained satisfiable. We encode
rules about drug classifications, some correct and some deliberately erroneous:

S0001 : t : [VX Benzodiazepine(X )]Nonaddictive(X) (incorrect)
S0002 : t : [VX Benzodiazepine(X)]Sedative(X) (correct)
S0003 : t : [VX Nsaid(X)]Analgesic(X) (correct)
S0004 : t : [VX Nsaid(X)]Cardiosafe(X) (incorrect)

Rule S0001 is medically false: benzodiazepines carry significant dependence risks. Rule
S0004 is also false: NSAIDs increase cardiovascular risk. We add ground assertions about
specific medications (e.g., t : Benzodiazepine(valium), t : Nsaid(ibuprofen)). Forward-chaining
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Formula KB LLM Status
Nonaddictive(valium) t (f,£)  Glut
Cardiosafe(ibuprofen) t f,£)  Glut
Sedative(valium) t (t,f)  Agreement
Analgesic(ibuprofen)  t (t,f)  Agreement
Cardiosafe(aspirin) t f,f) Gap

Table 5: LLM-grounded evaluation of derived formulas in the medication safety example.
The KB column shows the truth value from symbolic inference; the LLM column

shows (.(¢) = (u,v).

derives consequences such as Nonaddictive(valium) and Cardiosafe(ibuprofen). The LLM
judge (GPT-40) then evaluates each derived formula bilaterally.

Table 5 shows the results of the evaluation. The deliberately erroneous rules produced
gluts: the LLM correctly identifies that Valium carries dependence risks and that ibuprofen
increases cardiovascular risk. Where rules are accurate, the LLM confirmed the derived
conclusions. The gap for Cardiosafe(aspirin) reflects genuine medical ambiguity—low-dose
aspirin has cardioprotective effects in some populations but bleeding risks in others. De-
spite multiple gluts, the system remained satisfiable. A classical reasoner would face ex-
plosion; our paraconsistent semantics localizes contradictions, allowing identification of ex-
actly which conclusions are contested while maintaining valid inferences from uncontested
premises.

Computational complexity The forward-chaining phase computes the deductive clo-
sure of the asserted knowledge base under the rule set, producing a finite ground theory. Let
R denote the number of rules, C' the number of constants, and k£ the maximum number of
distinct variables in any rule body. Standard Datalog complexity analysis applies (Dantsin
et al., 2001): each iteration considers O(R - C*) candidate instantiations, and since each
iteration must add at least one new ground atom or terminate, the fixpoint is reached in at
most O(|P|-C?) iterations, where | P| is the number of predicates and a the maximum arity.
For fixed schema parameters, forward-chaining is polynomial in the number of constants,
consistent with Datalog’s PTIME data complexity for ground query answering. Following
the definition of the bilateral factuality evaluation function, each atom requires n queries to
assess support and n queries to assess refutation where n is the size of the repeated sample,
yielding 2n LLM calls per inference. For F' inferred atoms with mean call latency L, total
interpretation time is O(nF'L) sequentially, or O(nF L/P) with parallelism degree P.

The tableau procedure checks satisfiability of the ground theory under ACrQ semantics
via the signed tableau calculus of Ferguson (2021b), which provides a sound and complete
proof procedure for AC with restricted quantifiers. Because forward-chaining eliminates
quantifiers by grounding, the tableau operates over a quantifier-free theory of N ground
atoms. The key complexity observation, noted by Ferguson (2021b), is that AC validity is
polynomial-time reducible to classical propositional validity via a translation that preserves
formula structure. This translation doubles the signature (introducing R for each predicate
R to track refutation) but preserves formula size up to a constant factor. For ground
theories, tableau satisfiability thus reduces to propositional satisfiability over O(N) atoms—
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Phase Time LLM Calls Notes

Forward-chaining (logic)  0.006s —  Grounding

Forward-chaining (LLM) 463s 4,272 712 x 6 calls at ~0.11s
Tableau (logic + LLM) 297s varies Expansion over 940 statements
Total 760s

Table 6: Timing from the medication safety evaluation. LLM interpretation dominates
computational cost.

NP-complete in general (Cook, 1971), though the conjunctive structure of theories produced
by forward-chaining often admits more efficient decision procedures. The tableau invokes
Zrram whenever a ground atomic formula appears as a node in the tableau tree; letting A
denote the number of distinct atoms encountered during expansion, semantic interpretation
requires O(nAL) time. Unlike classical description logics, where TBox reasoning ranges
from ExpTiME-complete for ALC (Schild, 1991) to 2NEXpPTiME-complete for SROZQ
(Kazakov, 2008), ACrQ’s grounding strategy yields complexity comparable to ABox-only
reasoning. The cost of paraconsistency is not computational but rather the overhead of
LLM-based semantic interpretation.

Table 6 reports timing from the medication safety use case, with R = 28 rules, C' = 200
constants, kK = 2 maximum variables per rule, N = 940 ground statements after closure,
and n = 3 samples per verification/refutation direction. These results confirm that LLM
latency dominates execution time: forward-chaining logic completes in under 10ms, while
semantic interpretation accounts for over 99% of total runtime. This cost structure indi-
cates that moderately-sized knowledge bases are tractable with the current proof-of-concept
implementation—the medication safety knowledge base, with 200 entities and 940 ground
statements, completes in under 13 minutes. More significantly, the dominant costs are
amenable to optimization strategies that can plausibly scale throughput by one to two
orders of magnitude. First, the 2n LLM calls per atom are trivially parallelizable across
independent atoms; with parallelism degree P = 50 (readily achievable with standard API
rate limits), the 463s forward-chaining LLM phase would reduce to under 10s. Second,
mature DL reasoners have developed sophisticated optimization techniques—including ab-
sorption, lazy unfolding, dependency-directed backjumping, and semantic branching (Hor-
rocks, 2003)—that substantially reduce tableau expansion; adapting these techniques to
ACrQ would decrease both logical overhead and the number of LLM-interpreted atoms A.
Third, local LLM deployment eliminates network latency entirely: current quantized models
achieve sub-10ms inference on consumer hardware, which would reduce per-call latency by
an order of magnitude relative to API-based inference. Combined, these optimizations sug-
gest that knowledge bases with 10%-10° ground statements—comparable to medium-scale
industrial ontologies—are within reach of production deployment.

7. Limitations

We have provided a theoretical framework for integrating an LLM with a paraconsistent
reasoner, demonstrated the feasibility of providing LLM-grounded valuations of atomic for-
mulas, and demonstrated a Belnap computer that implements the framework. In this sec-
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tion we discuss the limitations of our approach with respect to verbalization, computational
complexity, error propagation, and belief revision.

Verbalization The bilateral factuality evaluation function ¢ depends critically on the
verbalization function §, which translates atomic formulas into natural language for LLM
evaluation. This translation determines whether the LLM can provide a meaningful valu-
ation or must return (f, f), indicating epistemic gap. An atomic formula ¢ = R(cq,...,¢p)
is evaluable when two conditions hold: (i) the arguments cy,..., ¢, refer to entities about
which the LLM has parametric knowledge, and (ii) the predicate R expresses a property
or relation the LLM can assess for those entities. When both conditions are met, the
LLM can draw on its training data to provide verification or refutation evidence. When
either condition fails, the LLM lacks grounds for evaluation and returns (f, f). Consider the
contrast between Addictive(valium) and Addictive(compound7). The former is evalu-
able: “Valium” refers to a well-documented pharmaceutical (diazepam), and “addictive”
is a property extensively discussed in medical literature. The LLM can assess this claim.
The latter is not evaluable: “compound7” is an opaque identifier about which the LLM
has no knowledge. The LLM cannot verify or refute claims about unknown entities, so it
returns (f, f). Similarly, predicate interpretability matters. The formula Sedative(valium)
verbalizes naturally to “Valium is a sedative,” a claim the LLM can evaluate. But a domain-
specific predicate like Cyp3a4Inhibitor(valium) may or may not be evaluable depending
on whether the LLM’s training data includes sufficient pharmacological detail about cy-
tochrome P450 interactions. Highly technical or abbreviated predicates may fail to activate
relevant LLM knowledge even when that knowledge is present. When the LLM cannot eval-
uate a formula, the returned value (f, ) represents a legitimate epistemic state: the LLM
has neither evidence for nor evidence against the claim. This is not a system failure. The
paraconsistent semantics of AC handles gaps naturally—the formula’s valuation remains
underdetermined by the LLM, and reasoning proceeds based on symbolic inference and ex-
plicit assertions. The LLM-grounded interpretation thus acts as a partial oracle, validating
what it can and remaining silent otherwise. This contrasts with approaches that force binary
verdicts. A unilateral evaluation function that must return true or false cannot represent
ignorance; it must either guess or abstain entirely. The bilateral approach using NZN &-
valued semantics provides a middle path: the LLM contributes what epistemic signal it can,
and the logic handles the rest. As the medication safety example in Section 6 illustrates,
formulas with transparent predicate names referring to well-documented properties (e.g.,
Analgesic(ibuprofen)) yield definite valuations, while formulas with less evocative names
(e.g., Monitored(warfarin)) may return gaps—not necessarily because the LLM lacks the
relevant knowledge, but because the verbalization fails to activate it. The implementa-
tion described in Section 3 uses direct syntactic mapping, providing the formula’s surface
syntax to the LLM (e.g., Nonaddictive(valium) verbalized as “Nonaddictive(valium)”).
This minimal approach relies on the LLLM’s ability to parse logical notation and on implicit
grounding through symbol names that happen to correspond to natural language terms.
While sufficient for formulas with transparent symbol names, this approach has limitations:

1. Opaque symbol names: Knowledge bases often use abbreviated or systematic naming
conventions (e.g., rxn 4521, hasCADRisk) that do not transparently convey meaning.
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2. Predicate-argument structure: The relationship between predicate and arguments may
require explicit verbalization. The formula Treats(aspirin, headache) is more
naturally evaluated as “Aspirin treats headaches” than as “Treats(aspirin, headache).”

3. Ambiguity: A symbol like mercury could refer to the element, the planet, or the Roman
god. Without disambiguation, the LLM may evaluate against the wrong referent.

Alternative verbalization strategies can address these limitations. Template-based trans-
formation uses predefined patterns for each predicate: Treats(X, Y) — “X treats Y7,
Contraindicated(X, Y) — “X is contraindicated for patients with Y”. This provides more
natural language input but requires manual template creation. LLM-generated verbalization
uses a language model to produce natural language renderings of formulas, offering flexi-
bility at the cost of introducing another potential source of error. Investigating alternative
implementations of § remains future work.

These considerations suggest guidelines for knowledge base design when LLM-grounded
evaluation is intended:

1. Use transparent symbol names: Choose constant and predicate names that correspond
to natural language terms the LLM will recognize. Prefer ibuprofen over drug_0042;
prefer CausesLiverDamage over hepTox.

2. Favor well-documented entities: Formulas involving entities with substantial presence
in LLM training data (approved drugs, named diseases, public figures, established
concepts) will be more reliably evaluable than those involving obscure or private en-
tities.

3. Expect gaps for domain-specific content: Formulas involving proprietary identifiers,
internal codes, or specialized terminology will likely yield (f,f). Plan for the reasoner
to handle these through symbolic inference alone.

4. Consider verbalization at design time: When defining predicates, consider how they
will verbalize. A predicate that produces awkward or ambiguous verbalizations will
be harder for the LLM to evaluate.

A natural extension would enrich the verbalization function to incorporate contextual infor-
mation from the theory itself. If the knowledge base contains assertions about an otherwise-
unknown entity (e.g., HasCondition(patient42, RenalImpairment)) this context could
be included in the prompt when evaluating formulas involving that entity. The LLM would
then evaluate not in isolation but in light of what the theory asserts about the entity. We
leave exploration of such context-aware verbalization strategies to future work.

Scalability The moderately-sized knowledge base used in the medication safety example
raises natural questions about how ACrQ-based reasoning compares to mature description
logic (DL) reasoners in terms of scalability, and what optimizations might enable further
scaling. Description logics are decidable fragments of first-order logic with well-characterized
complexity. DL reasoners achieve decidability by carefully restricting expressivity, while
ACrQ preserves full restricted quantification and tolerates contradictions. Mature DL
reasoners (HermiT (Glimm et al., 2014), Pellet (Sirin et al., 2007), FaCT++ (Tsarkov
and Horrocks, 2006)) employ sophisticated optimizations developed over decades, many of
which are directly transferable to our paraconsistent reasoner. These include lazy unfolding,
which unfolds definitions only when needed for clash detection (yielding 10-100x speedup
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Feature ACrQ Description Logics

Quantification  Restricted [VX P(X)]Q(X) Guarded (role restrictions)
Truth values 3 (t, f,e) + 3 meta-signs 2 (classical)

Contradictions Tolerated (gluts) Cause explosion
Decidability Semi-decidable Decidable (by design)
Primary use Paraconsistent reasoning Ontology reasoning

Table 7: Feature comparison between ACrQ and description logics.

for sparse theories); semantic branching, which chooses branch order based on likelihood
of closure (2-10x speedup); dependency-directed backjumping, which skips irrelevant choice
points (exponential gains in pathological cases); satisfiability caching for subformulas (10—
1000x for theories with repeated patterns); formula indexing via hash-based lookup to reduce
O(N?) to O(N) average case; incremental reasoning through dependency tracking for par-
tial recomputation; and parallel branch exploration for near-linear speedup with available
cores (Horrocks, 2003). Beyond these transferable DL techniques, ACrQ’s paraconsistent
nature enables unique optimizations that, to our knowledge, have not been previously ex-
plored, and which we leave to future work: glut-aware pruning, whereby known gluts are
recorded and excluded from closure checking; bilateral predicate indexing, which maintains
dual index structures for P and P* to enable O(N) glut/gap detection; and sign-stratified
processing, which handles definite signs before branching signs.

Error Propagation A natural concern with LLM-grounded interpretations is error prop-
agation: if the LLM judge returns an incorrect valuation for an atomic formula, does that
error propagate through the reasoning system and corrupt downstream inferences? The
bilateral architecture mitigates this risk in two ways. First, errors in definite valuations
((t,§) or (f,t)) behave identically to errors in classical interpretations—they produce un-
sound conclusions, but no worse than reasoning over any other knowledge base containing
incorrect facts. Second, and more importantly, the indefinite valuations that bilateral eval-
uation surfaces—gaps ({f,f)) and gluts ({t,t))—act as natural error containment. When
the LLM is uncertain or conflicted, this uncertainty propagates conservatively through the
paraconsistent semantics rather than forcing a potentially incorrect commitment. The rea-
soner can identify which conclusions depend on definite versus indefinite premises, enabling
downstream systems to assign different confidence levels accordingly. For instance, in the
medication safety example of Section 6, the gluts detected for Nonaddictive (valium) and
Cardiosafe(ibuprofen) flag exactly those conclusions where the knowledge base’s rules
conflict with LLM knowledge, enabling a downstream system to treat these conclusions
with appropriate caution. Full error analysis, including empirical measurement of how ver-
balization failures and LLM miscalibration affect end-to-end reasoning accuracy, remains
future work.

Belief Revision The current implementation supports cache invalidation with replay:
when external evidence indicates a cached valuation may be stale, the entry is cleared and
the formula is re-evaluated on subsequent queries. This approach is orthogonal to the para-
consistent semantics: where paraconsistency tolerates contradictions within a knowledge
state, belief revision addresses changes between knowledge states over time. Recent work
on paraconsistent belief revision (Testa et al., 2017; Coniglio et al., 2024) has adapted AGM-
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style postulates (Alchourrén et al., 1985) to logics of formal inconsistency, but retains the
AGM motivation of restoring consistency when new information contradicts prior beliefs.
Our framework takes a different stance: gluts ((t,t)) are valid epistemic states reflecting
genuine LLM inconsistency, not errors requiring repair. Whether and how to integrate
revision mechanisms that respect this tolerance, or to explore alternatives such as truth
maintenance systems (Forbus and de Kleer, 1993), remains future work.

8. Conclusion and future work

We described a novel approach to logical reasoning using LLMs with several key contri-
butions. We defined a bilateral approach to factuality evaluation that identifies gaps and
contradictions in LLM parametric knowledge. We introduced the concept of LLM-grounded
interpretations that integrate an LLM directly into the formal semantics of the underlying
logic while preserving its soundness and completeness. We provided empirical evidence
that bilateral factuality evaluation outperforms unilateral approaches, and demonstrated
through concrete examples how the system handles contradictory information without logi-
cal explosion. And finally, we implemented a Belnap computer that demonstrates the prac-
tical feasibility of this approach, including an interactive dialogue management interface
that bridges natural language and formal reasoning. Our evaluation with an example med-
ication safety knowledge base of 940 statements (228 asserted, 712 inferred) demonstrates
that LLM-grounded reasoning maintains its theoretical properties at realistic knowledge
base sizes. The system successfully identified 92 gluts where deductively inferred conclu-
sions conflicted with LLM medical knowledge—including medically significant errors such as
claiming opioids are non-addictive, beta-blockers are safe in asthma, and fluoroquinolones
are safe for children. Despite these contradictions, the paraconsistent semantics preserved
satisfiability and allowed identification of exactly which rules conflicted with empirical med-
ical knowledge. Computational analysis reveals that the primary bottleneck is LLM API
latency rather than logical reasoning, suggesting that standard optimization techniques
from description logic reasoners—including batching, parallelization, and caching—could
enable scaling to knowledge bases of over one hundred thousand axioms.

In addition to the future work described in Section 7, we plan to conduct a user evalua-
tion of the usability of the Theory Manager for ontology and knowledge graph construction,
and to extend our approach based on work in the area of generalized truth values (Shramko
and Wansing, 2005; Hornischer, 2025) to provide a multi-valued semantics for modeling
factuality in LLMs, with the goal of improving the theoretical framework and metrics for
factuality evaluation.
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Appendix A. Angell’s logic of analytic containment AC

Below we summarize the definitions of the object language, truth functions, and interpre-
tations for the version of AC presented in greater detail in Ferguson (2021b).

A.1. Object language

Definition 12 Let £ be a first-order language built from a countable set C of constants, a
countable set of variables V, a countable set R of relation symbols, the Boolean connectives
=, A, and V, restricted universal and existential quantifiers V and 3, and round parentheses
(as used in complex formulas) and square brackets (as used in quantified formulas) as auz-
iliary symbols. If R € R and ¢y, ..., ¢y € C, then R(c1,...,cp) s an atomic formula. Let
Lar be the set of atomic formulas. The formulas of L are the elements of Lar, together
with the following, where @, ¢ € L and x € V:

el (@ AD) [ (o V)| Vee(@)ly(e) | Bre(x)]y(z)

A.2. Truth functions
Definition 13 The weak Kleene truth tables over the set of truth values Vs = {t,¢,f} are:

| A v

t
t
¢
f

—n & —h|—h
-~ O ) e+

e e f
¢ e t
e e e
e e f

-~ o —h

t t t
4 e e
f f f

The weak Kleene truth tables for conjunction and disjunction induce the truth functions
A and V, respectively.

28



SOUND AND COMPLETE NEUROSYMBOLIC REASONING WITH LLM-GROUNDED INTERPRETATIONS

Definition 14 The restricted Kleene quantifier functions V and 3 are mappings from sets
of truth values to truth values such that:

t if (Lt eXx
IX)=<e ifforall (u, v), either u=-¢ orv=c
foif (t,t) ¢ X and for some (u,v) € X, u#e¢ andv #e
t if (4,f), (t,e) € X and for some (u, v) € X,u #e¢ andv # ¢
V(X) =S¢ ifforall (u,v) € X, eitheru=c orv=c¢
foaf {(t1), (t, )} N X #0 and for some (u,v) € X, either u =¢ orv=-c

A.3. Interpretations

Definition 15 An AC interpretation Z is a pair <CI,RI> where CT is a domain of
individuals and RT is a set of functions where T assigns:

o every constant ¢ € C an individual c& € C
o cvery n-ary predicate R a function RT : (CT)" — V3 x V3

Definition 16 An AC interpretation Z induces a map L : L — V3 X V3 as follows, where

Ty and Iy project the first and second coordinates respectively:

o For atomic formulas R(ci,...,c,) € Lar, Z(p) = RE(cE, ... ck)
« I(=¢) = {Ti(p), Zolp))

« Z(e AY) = (Zo(p) AZo(v), Ta () Vi (¥))

« I V) = (Zo(p) VIo(¢), Ta(9) ALi(¥)) .

o I([vep(x)p(z)) = (V({Zo(p(c), Zo(y(e) | ¢ € C}), FI{Zo(p(e)), Lr(¥(c)) | ¢ € C}))
o I([Fzp(x)p(z) = B({Zo(e(0), Zo(¥(c)) | ¢ € C}),Y({Zo(p(c), Tr(¥(c)) | ¢ € C}))

Definition 17 Given an AC interpretation I, validity with respect to T is defined as truth
preservation, i.e.

T 1 ¢ if for all instances of T such that Vi € T' Iy () = t, Zp(p) = t.

Appendix B. Prompts

B.1. Direct verification template

Determine whether the following answer to the given question is correct.
Conclude with a single line containing ONLY one of these two phrases:
VERIFIED

CANNOT VERIFY

Question: {question}
Proposed answer: {answer}

B.2. Direct refutation template

Determine whether the following answer to the given question can be refuted.
Conclude with a single line containing ONLY one of these two phrases:
REFUTED

CANNOT REFUTE

Question: {question}
Proposed answer: {answer}
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B.3. Zero-shot verification template

I’11 provide you with a question and its proposed answer.
Your task is to verify whether this answer is correct by following these steps:

1. Analyze the exact meaning of both the question and answer,

identifying any key terms that need clarification.

2. Establish specific conditions that would make this answer true for this question.
3. Provide direct evidence supporting the answer, including specific facts, examples,
or authoritative references that confirm its accuracy.

4. Test if the answer remains valid across all contexts where the question applies,
noting any limitations or exceptioms.

5. Check for consistency with established knowledge in the relevant domain.

Based on your analysis, determine whether the answer is verified and explain
your reasoning with specific supporting evidence.

Your goal is not to find fault but to determine if positive

evidence exists to confirm the answer.

After your complete analysis, conclude with a single line containing
ONLY one of these two phrases:

VERIFIED

CANNOT VERIFY

Question: {question}
Proposed answer: {answer}

B.4. Zero-shot refutation template

I’11 provide you with a question and its proposed answer.
Your task is to determine if this answer can be refuted by following these steps:

1. Analyze the exact meaning of both the question and the proposed answer.

2. Identify what specific conditions would need to be true for this answer to be false
(not merely the absence of evidence).

3. Search for direct counterexamples or contradicting evidence that

actively demonstrates why the answer is incorrect.

4. Construct specific scenarios where the answer fails to hold true,

even if the question’s premises are accepted.

5. Identify any logical inconsistencies, factual errors, or category mistakes

within the answer.

Focus on building an affirmative case for why the answer is incorrect,
rather than simply noting a lack of supporting evidence.

Provide specific counterevidence and explain precisely

how it contradicts the proposed answer.

After your complete analysis, conclude with a single line containing
ONLY one of these two phrases:

REFUTED

CANNOT REFUTE

Question: {question}
Proposed answer: {answer}
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B.5. Few-shot verification template

I’11 provide you with a question and its proposed answer.
Your task is to verify whether this answer is correct by following these steps:

1. Analyze the exact meaning of both the question and answer, identifying any key terms that need clarification.

2. Establish specific conditions that would make this answer true for this question.

3. Provide direct evidence supporting the answer, including specific facts, examples, or authoritative references that confirm
its accuracy.

4. Test if the answer remains valid across all contexts where the question applies, noting any limitations or exceptionms.

5. Check for consistency with established knowledge in the relevant domain.

Based on your analysis, determine whether the answer is verified and explain your reasoning with specific supporting evidence.
Your goal is not to find fault but to determine if positive evidence exists to confirm the answer.

Here are some examples of how to approach verification:

Example 1:

Question: Who was the first man to walk on the Moon?

Proposed answer: Neil Armstrong

Let’s verify this answer systematically:

Key Terms Analysis:

"First man to walk on the Moon" requires precise historical verification
Specific date and mission details are crucial

Conditions for Verification:

Must be the first human to physically step onto lunar surface

Must have documented evidence of this historic moment

Must be part of a specific NASA mission

Direct Evidence:

Neil Armstrong stepped onto the Moon’s surface on July 20, 1969

During Apollo 11 mission

Famous quote: "That’s one small step for man, one giant leap for mankind"
Extensive NASA documentation confirms this

Broadcast live on global television

Verified by multiple independent sources including NASA, scientific records, and historical archives
Context and Limitations:

Specifically refers to first human, not first spacecraft

Specifically lunar surface, not orbital passage

Confirmed during Cold War space race

Part of NASA’s Apollo program

Consistency Check:

Matches scientific and historical consensus

No credible alternative claims exist

Extensively documented in multiple international records

This answer meets all verification criteria with robust, multi-source evidence.
VERIFIED

Example 2:

Question: Chocolate is made from material

Proposed answer: Sugar

Let’s analyze this systematically:

Key Term Analysis:

"Chocolate" refers to a food product derived from cacao/cocoa beans
"Material" suggests the fundamental ingredient or component

"Sugar" is a sweetener, not the primary material of chocolate
Conditions for Accuracy:

Sugar is an ingredient in chocolate

But sugar is NOT the primary material of chocolate

Chocolate’s primary material is cocoa/cacao solids

Direct Evidence:

Chocolate is primarily made from cocoa beans processed into cocoa solids
Cocoa solids come from cacao tree seeds/beans

Sugar is added as a sweetener, not the base material

Chocolate composition typically includes:

Cocoa solids (primary material)
Cocoa butter

Sugar (secondary ingredient)
Milk (in milk chocolate)

Context Testing:

In all chocolate production processes, cocoa is the fundamental material

Sugar is always a supplementary ingredient, not the base material

Domain Consistency:

Culinary and food science consistently define cocoa/cacao as chocolate’s primary material
Based on comprehensive analysis, the proposed answer is incorrect.

CANNOT VERIFY

After your complete analysis, conclude with a single line containing ONLY one of these two phrases:
VERIFIED
CANNOT VERIFY

Question: {question}
Proposed answer: {answer}
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B.6. Few-shot refutation template

I’11 provide you with a question and its proposed answer.
Your task is to determine if this answer can be refuted by following these steps:

. Analyze the exact meaning of both the question and the proposed answer.

Identify what specific conditions would need to be true for this answer to be false (not merely the absence of evidence).
Search for direct counterexamples or contradicting evidence that actively demonstrates why the answer is incorrect.
Construct specific scenarios where the answer fails to hold true, even if the question’s premises are accepted.

Identify any logical inconsistencies, factual errors, or category mistakes within the answer.

SIS

Focus on building an affirmative case for why the answer is incorrect, rather than simply noting a lack of supporting evidence.
Provide specific counterevidence and explain precisely how it contradicts the proposed answer.

Here are some examples of how to approach refutation:

Example 1:

Question: Are penguins birds?

Proposed answer: No

Let’s analyze this systematically:

Meaning Analysis:

Question asks about the taxonomic classification of penguins
Proposed answer claims penguins are NOT birds

Conditions for Falsity:

Penguins must meet standard biological criteria for birds
Must share key avian characteristics

Counterevidence:

Penguins have ALL classic bird characteristics:

Feathered body

Lay eggs

Warm-blooded

Have beaks

Descended from dinosaur lineage

Classified in scientific taxonomy under Class Aves

Specifically, penguins belong to the order Sphenisciformes, which is a recognized bird order
Biological and genetic evidence conclusively places penguins within bird classification

Specific Scenarios Contradicting Answer:

Penguins have wing-like flippers adapted for swimming

They have respiratory and skeletal structures identical to other bird species

Genetic sequencing confirms their bird lineage

Logical Inconsistencies:

Rejecting penguins as birds would require rejecting fundamental biological classification systems
No scientific basis exists for excluding penguins from bird category

REFUTED

Example 2:

Question: Who was the first man to walk on the Moon?

Proposed answer: Neil Armstrong

Let’s analyze this systematically:

Meaning Analysis:

Question seeks the definitive first human male to set foot on lunar surface

Proposed answer: Neil Armstrong (Apollo 11 mission, July 20, 1969)

Potential Conditions for Falsity:

Documented evidence of another person walking on Moon before Armstrong

Proof that Armstrong was not actually the first

Historical record showing a different individual preceded him

Counterevidence Search:

No credible historical evidence exists contradicting Armstrong’s first Moon walk
NASA records and global documentation consistently confirm Armstrong as first
Extensive photographic and video evidence supports this claim

Scenario Testing:

No alternative scenarios emerge that could plausibly replace Armstrong’s achievement
Extensive verification by multiple nations and independent researchers confirms his primacy
Logical Consistency Check:

Armstrong’s Moon walk is extensively documented

Multiple witnesses and technological records corroborate the event

No logical inconsistencies detected in the claim

The proposed answer is completely accurate and supported by overwhelming historical evidence.
CANNOT REFUTE

After your complete analysis, conclude with a single line containing ONLY one of these two phrases:
REFUTED
CANNOT REFUTE

Question: {question}
Proposed answer: {answer}
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B.7. Prompt template for generating negative examples for SimpleQA-derived
benchmark

You are an expert synthetic data generator. Your task is to generate three plausible but
incorrect answers to a given question that will serve as challenging distractors.

Guidelines for generating high-quality wrong answers:

1. Each answer must be factually incorrect but highly plausible within the context
- Draw from the same domain/topic as the correct answer
- Use answers that could reasonably be mistaken for the truth
- Avoid obviously wrong or nonsensical options

2. Strictly match the answer type and format
- For dates: Use the same date format and plausible timeframe
- For people: Match profession, era, and relevance
- For numbers: Stay within reasonable orders of magnitude
- For places: Use locations of similar type/scale

3. Ensure clear differentiation
- Make each wrong answer distinct from the correct answer
- Avoid overlap between wrong answers
- Space out numerical answers appropriately

4. Maintain consistent specificity
- Match the level of detail in the correct answer
- If the answer is detailed, provide equally detailed wrong options
- If the answer is brief, keep wrong answers similarly concise

5. Optimize for realism and difficulty
- Wrong answers should feel natural, not contrived
- Target common misconceptions when possible
- Make the options challenging enough to test real knowledge
- Avoid answers that are too obviously incorrect

Example 1:

Question: Who was the first president of the United States?
Answer: George Washington

Wrong Answers:

- John Adams

- Thomas Jefferson

- Benjamin Franklin

Reason: All are founding fathers but not the first president

Example 2:

Question: What is the largest planet in our solar system?
Answer: Jupiter

Wrong Answers:

- Saturn

- Neptune

- Uranus

Reason: All are gas giant planets, but smaller than Jupiter

Example 3:

Question: Who wrote Romeo and Juliet?

Answer: William Shakespeare

Wrong Answers:

- Christopher Marlowe

- Ben Jonson

- John Webster

Reason: All are prominent Elizabethan playwrights

Return only three wrong answers as a list in JSON format with the following requirements:
- Each wrong answer should be a string

- The output should be a single JSON object with key '"negative_answers"

- The value should be an array of exactly 3 wrong answers

- No explanations or additional text should be included

- The answers should maintain consistent formatting with the correct answer

Example format:
St

"negative_answers": ["Wrong Answer 1", "Wrong Answer 2", "Wrong Answer 3"]

123
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B.8. Direct prompt template for unilateral factuality evaluation

Determine whether the following answer to the given question is TRUE or FALSE.

Conclude with a single line containing ONLY one of these two words:
TRUE
FALSE

Question: {question}
Proposed answer: {answer}

B.9. Zero-shot prompt template for unilateral factuality evaluation

I’11 provide you with a question and its proposed answer.
Your task is to evaluate whether this answer is correct by following these steps:

1. Analyze the exact meaning of both the question and answer, identifying any key terms that need clarification.

2. Establish specific conditions that would make this answer true for this question.

3. Provide direct evidence supporting the answer, including specific facts, examples, or

authoritative references that confirm its accuracy.

. Test if the answer remains valid across all contexts where the question applies, noting any limitations or exceptions.
Check for consistency with established knowledge in the relevant domain.

Search for direct counterexamples or contradicting evidence that actively demonstrates why the answer is incorrect.
Construct specific scenarios where the answer fails to hold true, even if the question’s premises are accepted.
Identify any logical inconsistencies, factual errors, or category mistakes within the answer.

0~ oo

After analyzing the question and answer, provide a single line containing ONLY one of these two words:
TRUE
FALSE

Question: {question}
Proposed answer: {answer}
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B.10. Few-shot prompt template for unilateral factuality evaluation

I’11 provide you with a question and its proposed answer.
Your task is to evaluate whether this answer is correct by following these steps:

1. Analyze the exact meaning of both the question and answer, identifying any key terms that need clarification.

2. Establish specific conditions that would make this answer true for this question.

3. Provide direct evidence supporting the answer, including specific facts, examples, or

authoritative references that confirm its accuracy.

. Test if the answer remains valid across all contexts where the question applies, noting any limitations or exceptionms.

. Check for consistency with established knowledge in the relevant domain.

. Search for direct counterexamples or contradicting evidence that actively demonstrates why the answer is incorrect.

. Construct specific scenarios where the answer fails to hold true, even if the question’s premises are accepted.
Identify any logical inconsistencies, factual errors, or category mistakes within the answer.

0~ oo

Here are examples of how to approach evaluation:

Example 1:

Question: Who was the first man to walk on the Moon?

Proposed answer: Neil Armstrong

Analyze the question and answer:

Question: "Who was the first man to walk on the Moon?" This is a straightforward factual question seeking the identity of
the first human to set foot on the lunar surface.

Proposed answer: "Neil Armstrong" This is a name, presumably offered as the answer to the question.

Establish conditions for truth:

The answer is true if Neil Armstrong was indeed the first human to walk on the Moon.

Provide supporting evidence:

Historical records, NASA documentation, and countless reliable sources confirm that Neil Armstrong was the first person to
walk on the Moon on July 20, 1969, during the Apollo 11 mission.

Test validity across contexts:

The answer holds true in all historical contexts related to the first Moon landing.

Check for consistency with established knowledge:

The answer aligns perfectly with established historical and scientific knowledge.

Search for counterexamples:

There are no credible counterexamples. No other individual is historically recognized as the first person to walk on the Moon.
Construct failure scenarios:

There are no scenarios where the answer fails, assuming the question refers to the generally accepted historical event.
Identify logical inconsistencies:

There are no logical inconsistencies or factual errors.

TRUE

Example 2:

Question: What is the main ingredient in chocolate?
Proposed answer: Sugar

Analyze the question and answer:

Question: "Chocolate is made from material" - This is an incomplete sentence. The question is implicitly asking "What material is
chocolate made from?" or "What is a key material used to make chocolate?".
Proposed answer: "Sugar" - This suggests that sugar is the material chocolate is made from.

Establish conditions for truth:

The answer would be true if sugar was the only ingredient in chocolate, or

if the question was interpreted as "Is sugar a material used to make chocolate?".
Provide supporting evidence:

Sugar is a common and significant ingredient in most chocolate recipes.

Test validity across contexts:

This answer fails in many contexts. Chocolate is not only made from sugar.

Check for consistency with established knowledge:

Chocolate is made from cacao beans, sugar, and often other ingredients like milk solids, cocoa butter, lecithin, and flavorings.
Search for counterexamples:

Dark chocolate often contains a higher percentage of cacao and less sugar.
Sugar-free chocolate exists, using artificial sweeteners instead.

Cacao beans are essential for chocolate, and chocolate cannot be made without them.
Construct failure scenarios:

Imagine a recipe for 100} cacao chocolate. It would contain no sugar.

Imagine a sugar-free chocolate bar. It would contain no sugar.

Identify logical inconsistencies:

The answer implies sugar is the only ingredient, which is false.

FALSE

Question: {question}
Proposed answer: {answer}

Appendix C. Example

To illustrate bilateral evaluation, we present an example with statements about penguins
in the context of a knowledge base with a universally quantified statement that all birds
can fly:

1. C = {penguin, eagle, sparrow, ...}
2. @o = [V bird(x) ] flies(z)
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¢1 = bird(penguin)

o = flies(penguin)

$3 = P2

d(¢1) = [Penguins are birds]

Pt(6(p1)) = [...Penguins are scientifically classified as birds. They belong to

the family Spheniscidae. .. Conclusion: VERIFIED]

8. P7(d(¢1)) = [...All evolutionary biologists classify penguins as birds. This is
supported by molecular evidence, fossil records, and anatomical features.
There is no reasonable alternative classification. Conclusion: CANNOT REFUTE]

9. C(‘Pl) = <t7 f)

10. 6(p2) = [Penguins fly]|

11. PT(6(p2)) = [... While penguins have wings, they cannot achieve aerial flight.
Their wings are adapted for swimming rather than flying. They flap their
wings underwater to “fly” through water. From a strict biological perspective,
penguins do not fly through air. Conclusion: CANNOT VERIFY]

12. P7(6(p2)) = |...Penguins are flightless birds. Their wings have evolved into
flippers for aquatic propulsion rather than aerial flight. This is well-established
in ornithology. Conclusion: REFUTED]

13. Clpa) = (1) |

14. Z(po) = (V({Zo(bird(c)), Zo(flies(c)) | ¢ € C}), I({Zo(bird(c)), Z;i (flies(c)) | ¢ € C}))
= <f7 t>

15. Z(p3) = (Z1(p2), Zo(w2)) = (L, f)

This bilateral evaluation reveals the inconsistency. The universal statement ¢g evaluates to
false when considering penguins, and 3 evaluates to true, but both statements can coexist
in AC without causing explosion. This demonstrates how the system handles the classic
penguin problem through paraconsistent reasoning.

N oUW

Appendix D. Experiments

D.1. Datasets

We used the short-form factuality benchmarks GPQA (Rein et al., 2023) and SimpleQA
(Wei et al., 2024) to create the benchmarks for our experiments. GPQA consists of 448
multiple-choice questions, written by domain experts in biology, physics, and chemistry.
SimpleQA consists of 4,326 question/answer pairs addressing a range of general topic ar-
eas, including history, science and technology, art, geography, TV shows, and video games.
From these two benchmarks we created a balanced set of positive and negative examples.
From SimpleQA, we sampled without replacement 200 question/answer pairs to be positive
examples, and 200 questions to be negative examples, where we substituted false answers
synthetically generated using GPT-40 Mini using the prompt shown in Appendix B.7. From
GPQA, we sampled 200 existing question/answer pairs as positive examples, and 200 ques-
tions paired with the first incorrect answer for that question provided as part of the dataset.

D.2. Experimental setup

Following Wei et al. (2024), we evaluated our implementation of ¢ on a selective classification
with a binary abstention task (El-Yaniv and Wiener, 2010) using the above two datasets,
measuring an LLM judge’s grading of a given question/answer pair. The standard pattern
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in LLM judges in factuality evaluation is to prompt the LLM judge to evaluate the answer
to the question as either correct, incorrect, or not attempted. This, again, has a natural
mapping to the values of Vs; to derive a single truth value v € V5 for the evaluation, we use
the following projection p : V3 x V3 — V3 such that for a pair (u,v):

t if (u,v) = (t,§)
p((u,v)) =qf if <U7U> = <f7 t>

¢ otherwise

Calls to the public inference APIs for the models used a temperature of 0.1. Re-
peated sampling (N=3) with majority vote was used in both the verification and refutation
processes. Statistical significance was assessed using paired t-tests (ttest_rel from the
scipy.stats Python package) to compare performance metrics between different model
and prompt combinations. The experiments were conducted in the first half of May 2025
using calls to the public inference APIs for each of the models.

D.3. Performance metrics

Judge Model Prompt Macro F1 Coverage Time (s) Tokens
Claude 3.5 Sonnet  direct 0.712 (0.023) 0.748 (0.02) 34.22 (6.08) 2914.80 (778.99)
ZEero 0.738 (0.029) 0.542 (0.024) 53.91 (6.41) 4863.48 (731.27)
few 0.716 (0.028) 0.54 (0.023) 52.92 (6.41) 8079.40 (745.71)
Claude 3.5 Haiku direct 0.578 (0.027) 0.778 (0.02) 30.52 (4.09) 2641.07 (704.48)
Zero 0.648 (0.034) 0.412 (0.023) 43.12 (3.60) 4221.73 (685.85)
few 0.604 (0.034) 0.438 (0.024) 47.44 (4.69) 7673.44 (700.47)
Llama 4 Maverick  direct 0.774 (0.021) 0.852 (0.016) 65.91 (52.53) 6225.19 (1526.74)
Zero 0.765 (0.025) 0.618 (0.022) 75.95 (44.90)  7492.54 (1357.27)
few 0.751 (0.023) 0.805 (0.018) 65.08 (41.43)  9945.70 (1444.02)
Llama 4 Scout direct 0.702 (0.025) 0.712 (0.021) 63.24 (28.92) 5403.00 (1833.85)
Z€ero 0.712 (0.031) 0.46 (0.024) 93.43 (51.27)  7062.05 (1430.96)
few 0.694 (0.027) 0.642 (0.022) 69.27 (37.27)  9540.89 (1362.86)
GPT-40 direct 0.592 (0.027) 0.705 (0.021) 5.61 (8.41) 1133.92 (556.51)
Z€ero 0.603 (0.035) 0.48 (0.022) 36.29 (9.44) 6041.24 (1256.13)
few 0.69 (0.031) 0.518 (0.023) 42.01 (18.48) 8662.78 (1398.93)
GPT-40 Mini direct 0.536 (0.028) 0.69 (0.022) 16.25 (12.91) 2863.86 (1716.43)
Zero 0.4 (0.025) 0.438 (0.023) 32.88 (7.54) 5851.67 (959.41)
few 0.428 (0.028) 0.488 (0.023) 47.99 (15.90) 8787.62 (1120.93)

Table 8: Performance metrics for ¢ using different judge models and evaluation prompts on
GPQA question/answer pairs (N=400).
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Judge Model Prompt Macro F1 Coverage Time (s) Tokens
Claude 3.5 Sonnet  direct 0.667 (0.021) 1.0 (0.0) 14.52 (2.92) 1360.21 (386.44)
Z€ero 0.664 (0.022) (0.0) 19.29 (2.80) 2161.70 (369.97)
few 0.66 (0.022) 0 (0.0) 23.64 (2.85) 5055.46 (382.93)
Claude 3.5 Haiku direct 0.533 (0.023) (0.0) 14.25 (2.23) 1346.54 (377.10)
Z€ro 0.556 (0.024) 1.0 (0.0) 19.70 (2.44) 2070.33 (328.06)
few 0.577 (0.023) 0.998 (0.002) 19.48 (1.55) 4829.19 (327.03)
Llama 4 Maverick  direct 0.722 (0.021) 1.0 (0.0) 26.83 (21.83) 2919.78 (825.91)
Z€ero 0.694 (0.02) 0.998 (0.002) 25.20 (10.44) 3462.93 (665.47)
few 0.717 (0.021) 0.99 (0.005) 24.49 (11.06) 5756.76 (602.70)
Llama 4 Scout direct 0.636 (0.023) 1.0 (0.0) 30.07 (19.93)  2467.57 (1096.58)
Z€ero 0.577 (0.024) 0.998 (0.002) 24.74 (18.10) 2689.86 (1180.22)
few 0.568 (0.023) 1.0 (0.0) 24.38 (18.08)  4955.30 (1124.60)
GPT-40 direct 0.572 (0.023) 1.0 (0.0) 2.92 (7.85) 546.73 (276.40)
Z€ero 0.497 (0.024) 1.0 (0.0) 3.89 (4.92) 1059.73 (276.40)
few 0.484 (0.024) 1.0 (0.0) 8.00 (8.50) 3446.44 (343.78)
GPT-40 Mini direct 0.543 (0.023) 1.0 (0.0) 9.52 (6.61) 1543.24 (848.31)
Z€ero 0.444 (0.021) 1.0 (0.0) 6.60 (6.96) 1722.51 (945.13)
few 0.538 (0.024) 1.0 (0.0) 11.41 (2.60) 4949.93 (477.92)

Table 9: Performance metrics for unilateral factuality evaluation using different judge mod-

els and evaluation prompts on GPQA question/answer pairs (N=400).

Judge Model Prompt Macro F1 Coverage Time (s) Tokens
Claude 3.5 Sonnet  direct 0.81 (0.025) 0.502 (0.024) 19.22 (4.49) 1190.43 (174.00)
zero 0.733 (0.027)  0.615 (0.022) 43.35 (6.44) 3444.22 (171.12)
few 0.654 (0.031)  0.65 (0.022) 43.19 (5.45) 6704.68 (161.86)
Claude 3.5 Haiku  direct 0.667 (0.033)  0.458 (0.024) 15.81 (3.07) 1014.98 (149.24)
zero 0.673 (0.036)  0.385 (0.022) 38.92 (3.14) 3095.57 (131.72)
few 0.653 (0.033)  0.45 (0.023) 40.01 (4.09) 6435.11 (158.40)
Llama 4 Maverick  direct 0.673 (0.026)  0.768 (0.02) 21.84 (13.56) 2008.57 (754.99)
Zero 0.746 (0.029)  0.528 (0.024) 36.17 (10.85) 4421.40 (448.00)
few 0.692 (0.026)  0.715 (0.021) 41.29 (31.55) 6665.58 (512.60)
Llama 4 Scout direct 0.58 (0.031) 0.572 (0.023) 17.02 (9.05) 1392.07 (434.73)
Z€ro 0.677 (0.038)  0.358 (0.022) 43.41 (16.12)  4049.26 (380.54)
few 0.558 (0.031)  0.632 (0.023) 36.90 (27.20) 6267.85 (437.70)
GPT-40 direct 0.67 (0.026)  0.74 (0.021)  5.11 (5.49) 477.22 (60.34)
Z€ero 0.738 (0.032)  0.44 (0.024) 22.18 (3.49) 3720.07 (314.42)
few 0.833 (0.026) 0.482 (0.024) 21.00 (4.86) 6079.94 (292.95)
GPT-40 Mini direct 0.604 (0.027)  0.718 (0.021) 2.53 (0.72) 483.86 (68.15)
Z€ero 0.525 (0.038)  0.378 (0.023) 23.75 (10.23)  3812.08 (829.15)
few 0.586 (0.034)  0.472 (0.023) 30.69 (16.02) 6298.49 (254.71)

Table 10: Performance metrics for ¢ using different judge models and evaluation prompts

on SimpleQA question/answer pairs (N=400).
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Judge Model Prompt Macro F1 Coverage Time (s) Tokens
Claude 3.5 Sonnet  direct 0.705 (0.022) 1.0 (0.0) 6.34 (1.59) 453.53 (80.98)
Zero 0.682 (0.022) 1.0 (0.0) 16.28 (5.05) 1499.60 (112.18)
few 0.661 (0.023) 1.0 (0.0) 16.82 (1.99)  4331.51 (89.63)
Claude 3.5 Haiku  direct 0.595 (0.023) 1.0 (0.0) 6.69 (1.60)  489.73 (91.76)
ze1o 0.55 (0.025) 1.0 (0.0) 16.29 (3.87)  1505.90 (93.60)
few 0.523 (0.024) 1.0 (0.0) 17.02 (1.55)  4332.01 (63.46)
Llama 4 Maverick  direct 0.643 (0.023) 1.0 (0.0) 6.71 (4.20) 814.69 (350.94)
zeto 0.663 (0.023)  0.992 (0.004) 14.88 (8.78)  2097.99 (230.58)
few 0.648 (0.023)  0.992 (0.004) 16.97 (10.19) 4524.26 (265.16)
Llama 4 Scout direct 0.578 (0.023) 1.0 (0.0) 5.73 (4.96) 511.43 (286.82)
zero 0.559 (0.025) 1.0 (0.0) 8.62 (8.44)  1192.79 (516.58)
few 0.552 (0.024) 1.0 (0.0) 5.08 (6.68)  3306.05 (376.05)
GPT-4o direct 0.62 (0.023) 1.0 (0.0) 2.55 (5.42)  220.40 (30.07)
zero 0.614 (0.024) 1.0 (0.0) 3.49 (3.70)  733.39 (30.07)
few 0.632 (0.023) 1.0 (0.0) 7.38 (9.60)  3088.39 (30.07)
GPT-40 Mini direct 0.587 (0.023) 1.0 (0.0) 1.08 (0.19)  220.58 (30.79)
zero 0.528 (0.023) 1.0 (0.0) 1.56 (1.52)  788.69 (185.84)
few 0.572 (0.022) 1.0 (0.0) 6.75 (2.37)  3923.80 (318.41)

Table 11: Performance metrics for unilateral factuality evaluation using different judge

models and evaluation prompts on SimpleQA question/answer pairs (N=400).
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D.4. Truth value distributions

Judge Model  Prompt (5, ) ) ()
Claude 3.5 Sonnet  direct 0.202 (0.018)  0.392 (0.022) 0.355 (0.022) 0.05 (0.011)
zero 0.435 (0.023) 0.218 (0.02)  0.325 (0.021)  0.022 (0.007)
few 0.448 (0.023) 0.18 (0.018)  0.36 (0.022)  0.012 (0.005)
Claude 3.5 Haiku  direct 0.11 (0.015)  0.53 (0.023)  0.248 (0.02)  0.112 (0.015)
zero 0.53 (0.023)  0.208 (0.019)  0.205 (0.019) 0.058 (0.011)
few 0.502 (0.024) 0.212 (0.02)  0.225 (0.02)  0.06 (0.011)
Llama 4 Maverick  direct 0.04 (0.009) 0.442 (0.023)  0.41 (0.023)  0.108 (0.015)
zero 0.37 (0.022)  0.245 (0.02)  0.372 (0.023) 0.012 (0.005)
few 0.155 (0.017)  0.438 (0.023) 0.368 (0.022)  0.04 (0.009)
Llama 4 Scout direct 0.072 (0.013)  0.368 (0.023) 0.345 (0.022) 0.215 (0.019)
ze10 0.525 (0.024)  0.245 (0.021) 0.215 (0.019)  0.015 (0.006)
few 0.33 (0.022)  0.385 (0.024) 0.258 (0.02)  0.028 (0.007)
GPT-40 direct 0.082 (0.013) 0.358 (0.022) 0.348 (0.023) 0.212 (0.018)
ze10 0.502 (0.023)  0.108 (0.015) 0.372 (0.022)  0.018 (0.006)
few 0.468 (0.024) 0.155 (0.017)  0.362 (0.022) 0.015 (0.006)
GPT-40 Mini direct  0.172 (0.018)  0.145 (0.017) 0.545 (0.023) 0.138 (0.016)
zero 0.555 (0.023)  0.018 (0.006) 0.42 (0.023)  0.008 (0.004)
few 0.51 (0.023) 0.028 (0.007)  0.46 (0.022) 0.002 (0.002)

Table 12: Truth value probabilities for ¢ using different judge models and evaluation

prompts for GPQA.
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Judge Model Prompt (t,t) 1) (f, t) )
Claude 3.5 Sonnet  direct 0.052 (0.01)  0.218 (0.02)  0.285 (0.021) 0.445 (0.024)
Z€ero 0.245 (0.02) 0.152 (0.016) 0.462 (0.022) 0.14 (0.016)
few 0.278 (0.021)  0.118 (0.014)  0.532 (0.023)  0.072 (0.012)
Claude 3.5 Haiku  direct  0.035 (0.008) 0.282 (0.022) 0.175 (0.018) 0.507 (0.024)
zero 0.148 (0.016) 0.145 (0.016) 0.24 (0.02)  0.468 (0.023)
few 0.132 (0.016) 0.162 (0.017)  0.288 (0.021) 0.418 (0.023)
Llama 4 Maverick  direct 0.088 (0.013) 0.588 (0.022) 0.18 (0.018)  0.145 (0.016)
ze10 0.438 (0.024)  0.35 (0.022)  0.178 (0.018)  0.032 (0.008)
few 0.218 (0.019) 0.525 (0.023)  0.19 (0.019) 0.068 (0.012)
Llama 4 Scout direct 0.125 (0.015) 0.368 (0.022) 0.205 (0.018) 0.302 (0.021)
zero 0.62 (0.022)  0.245 (0.02)  0.112 (0.015) 0.022 (0.007)
few 0.232 (0.02)  0.53 (0.023)  0.102 (0.014)  0.132 (0.016)
GPT-4o direct 0.058 (0.011)  0.462 (0.023) 0.278 (0.022) 0.202 (0.019)
zero 0.56 (0.024)  0.105 (0.014)  0.335 (0.023) 0.0 (0.0)
few 0.51 (0.024)  0.205 (0.018)  0.278 (0.021)  0.008 (0.004)
GPT-40 Mini direct 0.145 (0.017)  0.228 (0.019)  0.49 (0.023) 0.138 (0.016)
ze10 0.62 (0.023)  0.055 (0.01)  0.322 (0.022)  0.002 (0.002)
few 0.488 (0.022) 0.272 (0.02) 0.2 (0.018)  0.038 (0.009)

Table 13: Truth value probabilities for ¢ using different judge models and evaluation

prompts for SimpleQA.
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ALLEN CHHIKARA FERGUSON ILIEVSKI GROTH

Topic Model (t, ) (F, ) (t, 1) (7, 1)
Art GPT-40 0.127 (0.039)  0.327 (0.056)  0.545 (0.059)  0.000 (0.000)
GPT-40-mini 0.036 (0.022)  0.291 (0.054)  0.673 (0.056)  0.000 (0.000)
Claude 3.5 Sonnet  0.182 (0.045)  0.509 (0.059)  0.182 (0.045)  0.127 (0.039)
Claude 3.5 Haiku 0.200 (0.047) 0.218 (0.048) 0.109 (0.037) 0.473 (0.060)
Llama 4 Maverick 0.345 (0.055) 0.145 (0.041) 0.491 (0.058) 0.018 (0.016)
Llama 4 Scout 0.273 (0.051) 0.055 (0.026) 0.655 (0.054) 0.018 (0.016)
Geography ~ GPT-do 0.114 (0.042)  0.409 (0.063)  0.477 (0.067)  0.000 (0.000)
GPT-4o-mini 0.114 (0.042)  0.273 (0.058)  0.614 (0.064)  0.000 (0.000)
Claude 3.5 Sonnet 0.159 (0.047) 0.500 (0.065) 0.273 (0.060) 0.068 (0.032)
Claude 3.5 Haiku  0.182 (0.049)  0.318 (0.059)  0.159 (0.049)  0.341 (0.061)
Llama 4 Maverick  0.386 (0.062)  0.182 (0.050)  0.409 (0.064)  0.023 (0.019)
Llama 4 Scout 0.295 (0.059)  0.091 (0.037)  0.614 (0.063)  0.000 (0.000)
History GPT-40 0.143 (0.076)  0.357 (0.108)  0.500 (0.109)  0.000 (0.000)
GPT-40-mini 0.071 (0.056)  0.500 (0.111)  0.429 (0.112)  0.000 (0.000)
Claude 3.5 Sonnet  0.214 (0.091)  0.357 (0.108)  0.214 (0.094)  0.214 (0.088)
Claude 3.5 Haiku  0.214 (0.090)  0.214 (0.094)  0.143 (0.080)  0.429 (0.108)
Llama 4 Maverick  0.429 (0.111)  0.214 (0.093)  0.357 (0.108)  0.000 (0.000)
Llama 4 Scout 0.357 (0.107)  0.143 (0.079)  0.500 (0.109)  0.000 (0.000)
Music GPT-40 0.000 (0.000)  0.361 (0.069)  0.639 (0.069)  0.000 (0.000)
GPT-40-mini 0.028 (0.023)  0.278 (0.066)  0.694 (0.068)  0.000 (0.000)
Claude 3.5 Sonnet  0.056 (0.033)  0.611 (0.068)  0.194 (0.056)  0.139 (0.049)
Claude 3.5 Haiku  0.111 (0.044)  0.278 (0.065)  0.083 (0.039)  0.528 (0.072)
Llama 4 Maverick  0.278 (0.065)  0.167 (0.054)  0.556 (0.072)  0.000 (0.000)
Llama 4 Scout 0.194 (0.056) 0.167 (0.054) 0.611 (0.072) 0.028 (0.023)
Other GPT-40 0.136 (0.044)  0.341 (0.062)  0.523 (0.065)  0.000 (0.000)
GPT-40-mini 0.068 (0.032)  0.455 (0.065)  0.477 (0.067)  0.000 (0.000)
Claude 3.5 Sonnet 0.136 (0.045) 0.455 (0.064) 0.205 (0.052) 0.205 (0.052)
Claude 3.5 Haiku 0.091 (0.038) 0.227 (0.055) 0.136 (0.045) 0.545 (0.067)
Llama 4 Maverick 0.295 (0.060) 0.114 (0.041) 0.523 (0.064) 0.068 (0.033)
Llama 4 Scout 0.295 (0.060)  0.136 (0.044)  0.455 (0.064)  0.114 (0.041)
Politics GPT-40 0.131 (0.038) 0.344 (0.052) 0.525 (0.053) 0.000 (0.000)
GPT-40-mini 0.066 (0.028) 0.295 (0.051) 0.623 (0.055) 0.016 (0.014)
Claude 3.5 Sonnet 0.180 (0.043) 0.443 (0.054) 0.197 (0.044) 0.180 (0.042)
Claude 3.5 Haiku 0.164 (0.041) 0.246 (0.048) 0.148 (0.041) 0.443 (0.055)
Llama 4 Maverick 0.410 (0.055) 0.262 (0.050) 0.295 (0.052) 0.033 (0.020)
Llama 4 Scout 0.246 (0.048) 0.148 (0.039) 0.574 (0.055) 0.033 (0.020)
Sci/Tech GPT-40 0.101 (0.031)  0.304 (0.047)  0.595 (0.050)  0.000 (0.000)
GPT-40-mini 0.038 (0.018)  0.291 (0.046)  0.671 (0.048)  0.000 (0.000)
Claude 3.5 Sonnet 0.228 (0.043) 0.329 (0.047) 0.367 (0.050) 0.076 (0.026)
Claude 3.5 Haiku 0.152 (0.036) 0.114 (0.032) 0.228 (0.042) 0.506 (0.049)
Llama 4 Maverick 0.456 (0.049) 0.203 (0.039) 0.329 (0.047) 0.013 (0.011)
Llama 4 Scout 0.253 (0.043) 0.127 (0.033) 0.620 (0.049) 0.000 (0.000)
Sports GPT-40 0.161 (0.059) 0.258 (0.068) 0.581 (0.078) 0.000 (0.000)
GPT-40-mini 0.065 (0.038) 0.387 (0.073) 0.548 (0.073) 0.000 (0.000)
Claude 3.5 Sonnet 0.065 (0.038) 0.452 (0.081) 0.290 (0.071) 0.194 (0.062)
Claude 3.5 Haiku  0.129 (0.051)  0.226 (0.066)  0.194 (0.062)  0.452 (0.075)
Llama 4 Maverick  0.290 (0.071)  0.161 (0.056)  0.452 (0.078)  0.065 (0.036)
Llama 4 Scout 0.129 (0.051)  0.097 (0.045)  0.774 (0.063)  0.000 (0.000)
TV GPT-40 0.040 (0.033)  0.400 (0.082)  0.560 (0.082)  0.000 (0.000)
GPT-40-mini 0.000 (0.000)  0.400 (0.084)  0.600 (0.084)  0.000 (0.000)
Claude 3.5 Sonnet  0.080 (0.047)  0.640 (0.082)  0.080 (0.045)  0.200 (0.069)
Claude 3.5 Haiku  0.000 (0.000)  0.520 (0.086)  0.040 (0.033)  0.440 (0.086)
Llama 4 Maverick  0.120 (0.054)  0.160 (0.063)  0.600 (0.081)  0.120 (0.056)
Llama 4 Scout 0.160 (0.061)  0.080 (0.047)  0.760 (0.073)  0.000 (0.000)
Games GPT-40 0.000 (0.000)  0.182 (0.096)  0.818 (0.096)  0.000 (0.000)
GPT-40-mini 0.091 (0.073)  0.091 (0.072)  0.818 (0.094)  0.000 (0.000)
Claude 3.5 Sonnet  0.000 (0.000)  0.455 (0.122)  0.455 (0.125)  0.091 (0.073)
Claude 3.5 Haiku  0.182 (0.098)  0.273 (0.116)  0.091 (0.071)  0.455 (0.128)
Llama 4 Maverick  0.182 (0.097)  0.000 (0.000)  0.818 (0.097)  0.000 (0.000)
Llama 4 Scout 0.182 (0.095) 0.000 (0.000) 0.818 (0.095) 0.000 (0.000)

Table 14: Truth value probablities by model and SimpleQA topic with zero-shot prompting.

Values show proportions (SE) for each of the following epistemic states:

{t, f)

(verified, not refuted), (f,t) (not verified, refuted), (¢,t) (contradictory), (f, f)

(uncertain).

1994).

42

Standard errors estimated via subsampling (Politis and Romano,
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