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Abstract

We present a method for finding hierarchy-aware embeddings of knowledge graphs
(KGs) using graph neural networks (GNNs) enriched with a semantic loss derived from
underlying ontologies. This method yields embeddings that better reflect domain knowl-
edge. To demonstrate their utility, we predict and interpret the effects of gene deletions in
the yeast Saccharomyces cerevisiae and learn box embeddings for KGs in the absence of a
prediction task. We further show how box embeddings can serve as the basis for evaluating
KG revisions.

Our yeast KG is constructed from community databases and ontology terms. Low-
dimensional box embeddings combined with GNNs are used to predict cell growth for
double gene knockouts. Over 10-fold cross validation, these predictions have a mean
R2 score of 0.360, significantly higher than baseline comparisons, demonstrating that high-
level qualitative knowledge is informative about experimental outcomes. Incorporating
semantic loss terms in the training of the models improves their predictive performance
(R2=0.377) by aligning embeddings with ontology structure. This shows that class hierar-
chies from ontologies can be exploited for quantitative prediction. We also test the trained
models on triple gene knockouts, showing they generalise to data beyond those seen in
training.

Additionally, by identifying co-occurring relations in the yeast KG important for the
cell-growth predictions, we construct hypotheses about interacting traits in yeast. A bi-
ological experiment validates one such finding, revealing an association between inositol
utilisation and osmotic stress resistance, highlighting the model’s potential to guide bio-
logical discovery.

†. This is an extended version of the paper “Ontology-based box embeddings and knowledge graphs for
predicting phenotypic traits in Saccharomyces cerevisiae” (Kronström et al., 2025), presented at NeSy
2025.

© 2025 F. Kronström, A.H. Gower, D. Brunns̊aker, I.A. Tiukova & R.D. King.
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1. Introduction

Knowledge graphs (KGs) are widely used to represent structured knowledge as sets of triples
of the form (subject, predicate, object). In many domains, including the life sciences, KGs
are enriched with ontological information, where formally defined vocabularies describe
classes of entities and relations between them. In particular, hierarchical1 class information
expressed through the ‘subClassOf’ relation is prevalent, as domain experts can organise
concepts, without requiring formal expertise in logic or ontology engineering. As a result,
such hierarchies constitute a pragmatic and high-impact source of background knowledge
for representation learning.

Representation learning enables the transformation of KGs into a form that works as
an input to a program class that does not accept the KG itself as an input. A form of
representation learning that has proven useful for downstream tasks, such as link prediction
and property prediction, is embedding KGs into an n-dimensional vector space. Many KG
embedding (KGE) methods are trained primarily on observed triples, using the relational
structure of the graph as the main learning signal. However, when ontological knowledge is
present, an embedding should ideally reflect not only the connectivity of the graph but also
background semantic constraints. Rewarding compatibility between learned representations
and known domain structure can provide additional inductive bias during training, improve
generalisation beyond observed data, and support more interpretable predictions (Gutiérrez-
Basulto and Schockaert, 2018).

Incorporating semantic constraints into continuous representations raises the question
of how ontological concepts should be represented geometrically. Hierarchical relations im-
pose inclusion constraints, which can be captured using point embeddings in non-Euclidean
spaces, such as hyperbolic embeddings (Nickel and Kiela, 2017). However, when the goal
is to explicitly encode class inclusion and concept-level constraints, volumetric represen-
tations provide a natural alternative. In this paradigm, concepts are modelled as subsets
of a latent space using geometric objects, such as hyperspheres (Kulmanov et al., 2019),
hypercones (Ganea et al., 2018), or hyperrectangles (boxes) (Vilnis et al., 2018; Peng et al.,
2022; Xiong et al., 2022; Jackermeier et al., 2024; Yang et al., 2025), enabling hierarchical
relations to be expressed directly through geometric containment.

While volumetric representations are well suited for capturing ontological structure, it
is challenging to integrate them with complex heterogeneous graphs, and to train them
end-to-end for task-specific prediction. Many real-world KGs are large, heterogeneous, and
feature-rich. This motivates the use of graph neural networks (GNNs) as a framework for
representation learning through aggregation of information from local neighbourhoods and
node attributes (Kipf and Welling, 2017; Hamilton et al., 2017). GNN-based approaches
have been successfully applied to KGs and relational data for tasks such as node classifica-
tion, link prediction, and property prediction (Schlichtkrull et al., 2018; Ye et al., 2022).

However, standard GNN architectures do not explicitly enforce global semantic con-
straints derived from ontologies, and may therefore learn representations that violate known
hierarchical relationships, even when such information is available as background knowl-
edge. This motivates approaches that combine data-driven representation learning with

1. Section 5.1 provides a detailed definition of what is meant by the terms hierarchy and heirarchical in
this work.

2



explicit semantic constraints derived from ontologies. We also hypothesise that, particu-
larly in settings with low-dimensional or scarce data, that the inductive bias introduced
by using ontology constraints during representation learning will improve performance on
downstream prediction tasks.

In this paper, we address this limitation by combining GNN-based KG embeddings with
box-based representations of ontological concepts by introducing Hierarchy-aware GNNs.
Our methodological contribution is a framework in which box embeddings are used to encode
hierarchical background knowledge, while GNNs are used to learn features from the graph
structure.

We evaluate this approach in the context of biological knowledge about the yeast Sac-
charomyces cerevisiae. Yeast is among the most extensively studied model organisms and
plays a central role in both basic research and industrial applications (Parapouli et al.,
2020). Decades of experimental work have produced large amounts of structured data,
available through curated databases such as the Saccharomyces Genome Database (Engel
et al., 2024). These resources integrate experimental observations with ontological annota-
tions describing biological processes, phenotypes, chemical compounds, and interactions.

Despite the depth of scientific research on yeast, our understanding of its biology remains
incomplete: many genes are poorly annotated, and current models fail to predict many
phenotypic outcomes of complex genetic interactions (Wood et al., 2019; Costanzo et al.,
2019). Experimental investigation is therefore essential for advancing biological knowledge.
However, biological experimentation is costly, and the space of possible experiments is vast.
As a result, computational methods that support hypothesis generation at scale are of high
value (King et al., 2004; Brunns̊aker et al., 2025).

We construct an ontology-enriched KG describing yeast biology and apply our embed-
ding framework to predict gene fitness and to generate hypotheses about interactive prop-
erties. This application serves both as a realistic use case and as an empirical evaluation
of whether incorporating hierarchical semantic constraints into KG embeddings improves
predictive performance and supports biologically meaningful knowledge discovery.

The remainder of the paper is structured as follows. Section 2 presents related work
relevant for this paper. Sections 3 and 4 introduce background, and define terms and losses
used throughout the paper. In Section 5 we present Hierarchy-aware GNNs, a Saccha-
romyces cerevisiae KG, and applications of the Hierarchy-aware GNNs on this KG. These
results are presented in Section 6, and discussion and future work can be found in Section 7.

2. Related work

Knowledge graph embedding methods aim to represent entities and relations in a continuous
vector space such that observed facts are preserved geometrically. In their most simple
formulation, KGs are treated as collections of triples of the form (subject, predicate, object)
or (head, relation, tail), and embeddings are learned by optimising a scoring function over
such triples.

One approach is to model relations using bilinear interactions between entity embed-
dings. RESCAL (Nickel et al., 2011) represents each relation as a full matrix, enabling
expressive modelling of many-to-many relations but incurring high computational cost.
DistMult (Yang et al., 2015) simplifies this formulation by restricting relation matrices to
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be diagonal, yielding a model that performs well for symmetric relations but cannot capture
asymmetry. ComplEx (Trouillon et al., 2016) extends DistMult to a complex-valued space,
allowing asymmetric relations to be modelled while retaining computational efficiency.

Another prominent family of approaches models relations as transformations applied to
entity embeddings. TransE (Bordes et al., 2013) represents relations as translations between
entity vectors such that s+p ≈ o, offering simplicity and interpretability, but struggling with
complex relations. RotatE (Sun et al., 2019) generalises this idea by interpreting relations
as rotations in the complex plane, enabling the modelling of symmetry, antisymmetry,
inversion, and composition while achieving strong empirical performance.

Incorporating heirarchical information. Despite differences in formulation and ex-
pressivity, the models mentioned so far share a common focus on instance-level relational
structure derived from observed triples. While they can capture relational patterns and
implicit structural regularities, ontological constraints such as class subsumption or dis-
jointness are typically not enforced explicitly. This has motivated extensions of KGE meth-
ods that seek to incorporate hierarchical information while preserving the efficiency and
scalability of triple-based learning.

One such approach is HAKE (Zhang et al., 2020), which augments standard KG embed-
dings with hierarchy awareness. It introduces a polar coordinate representation in which
hierarchical depth and lateral similarity are modelled separately, enabling improved link
prediction in graphs with pronounced hierarchical structure. Conceptually, HAKE shares
similarities with hyperbolic and Poincaré embedding approaches in how it captures hierar-
chical structure, despite operating in a Euclidean space. While these approaches capture
hierarchical patterns through geometry, they do not explicitly represent ontological concepts
or logical axioms.

A semantics-driven line of work focuses on embedding ontologies formulated in descrip-
tion logics by constructing geometric representations that approximate model-theoretic in-
terpretations. ELEm (Kulmanov et al., 2019) introduces a volumetric embedding approach
in which classes and nominals are represented as hyperspheres, and relations are modelled
using TransE-style translations. Subsumption and existential restrictions are enforced via
geometric containment, demonstrating that EL++ axioms can be satisfied approximately in
a continuous space.

ELBE (Peng et al., 2022) builds directly on earlier volumetric ontology embeddings by
replacing spherical concept regions with axis-aligned hyperrectangles (boxes), ensuring clo-
sure under intersection. This geometric choice enables a more faithful encoding of EL++

axioms while retaining a volumetric interpretation of concepts. Subsequent work further ex-
tends box-based ontology embeddings within EL++: BoxEL (Xiong et al., 2022) represents
concepts as boxes and roles as affine transformations, providing soundness guarantees with
respect to EL++-semantics; Box2EL (Jackermeier et al., 2024) represents both concepts and
roles as boxes to support many-to-many relations; and TransBox (Yang et al., 2025) provides
an EL++-closed construction that enables compositional modelling of complex concepts and
many-to-many roles through box-based sets of translations.

To address issues of noise and uncertainty, probabalistic approaches to KG embeddings
have also been developed, where embedding parameters are modelled as random variables.
Vilnis et al. (2018) introduces probabilistic box representations to model uncertainty and in-
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clusion relationships, while Dasgupta et al. (2020) addresses optimisation and identifiability
issues arising in such models.

Graph neural network approaches. While the approaches above focus on how enti-
ties, relations, or concepts are represented geometrically, they typically learn embeddings
either in isolation or directly from triples or axioms. In contrast, many real-world knowledge
graphs are large and heterogeneous, motivating methods that explicitly aggregate informa-
tion from local graph structure. Graph neural networks (GNNs) provide such a framework
by learning node representations through iterative message passing over graph neighbour-
hoods, naturally supporting end-to-end optimisation for specific downstream prediction
tasks.

Relational Graph Convolutional Networks (R-GCNs) (Schlichtkrull et al., 2018) were de-
veloped specifically with knowledge graphs in mind and have been applied to tasks such as
link prediction and node classification. R-GCNs extend standard GCNs to multi-relational
settings by introducing relation-specific message transformations, an idea that can be com-
bined with a wide range of message-passing architectures.

More generally, the integration of symbolic knowledge into neural models has been
explored through semantic loss functions, which penalise predictions that violate logical
constraints during training (Xu et al., 2018). While originally proposed for feed-forward
neural networks, this idea provides a general mechanism for incorporating prior knowledge
into end-to-end learning.

Box embeddings have also been combined with GNNs in specific application settings.
BoxGNN (Lin et al., 2024) integrates box-based representations into a GNN architecture for
recommendation tasks by redefining message passing and aggregation operations directly
in box space, using geometric operations such as intersection and union. In this setting,
boxes serve as the primary representation for users, items, and attributes. This approach is
tailored to recommendation and does not aim to enforce semantic constraints in knowledge
graph embeddings.

Knowledge graph embeddings in the natural sciences. KGs have been widely
adopted in the biomedical domain as a means of integrating heterogeneous experimen-
tal and curated data into a unified representation. For example BioKG (Walsh et al., 2020)
and SPOKE (Morris et al., 2023) combine information from different databases to create
one large heterogeneous graph with information about, for example, genes and drugs. There
are also graphs describing more narrow phenomena such as the protein-protein associations
and the drug-drug interactions in the Open Graph Benchmark (Hu et al., 2020).

Memariani et al. (2025) propose a box-embedding framework for extending the ChEBI
chemical ontology from molecular data. In their model, chemical classes are represented
as boxes, and molecules, encoded from SMILES strings using an ELECTRA-based en-
coder (Clark et al., 2019), are represented as points. Molecules are trained to lie inside the
boxes of their annotated classes (including all superclasses), so that box containment and
overlap reflect subsumption and disjointness relations between classes. This enables eval-
uation not only of molecular classification, but also of how well the learned box geometry
recovers the class taxonomy.

Predicting biological properties from structured background knowledge can be ap-
proached in several ways. Ma et al. (2018) encode GO-annotations together with the GO
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hierarchy in a neural network to predict cellular growth in S. cerevisiae. By mining patterns
from a Datalog knowledge base containing facts from databases, Brunns̊aker et al. (2024)
connect qualitative biological concepts to quantitative intracellular protein abundance mea-
surements. Gualdi et al. (2024) predict gene-disease associations using embeddings derived
from a protein interaction knowledge graph, evaluating a range of methods including trans-
lational KG embeddings (e.g. TransE and RotatE), random-walk-based approaches, and
GNN-based models. In their approach, embeddings are learned independently of the predic-
tion task and subsequently used as features for supervised classifiers such as support vector
machines and tree-based models, resulting in a two-stage pipeline rather than end-to-end
training.

3. Background

Graph neural networks

Graph neural networks (GNNs) are neural network models that take graphs as inputs, and
learn vector representations of nodes. In a GNN, the structure of the graph informs the
architecture, with information being passed from the neighbourhood of each node. At each
message passing layer of the GNN, information is aggregated from a node’s neighbourhood
to update its representation.

Each message passing layer therefore propagates information from the immediate neigh-
bourhood of a node, so by increasing the number of message passing layers we increase the
distance in the graph that information propagates—this is referred to as the receptive field
of the GNN. Message passing layers are often interspersed with pooling layers to increase the
receptive field. An example of a message aggregation scheme is a convolutional layer, the
basic component of a graph convolutional network (GCN). In a GCN layer, updates to node
embeddings at each layer are calculated by multiplying the embeddings from the previous
layer by a scaled adjacency matrix (including self-adjacency) and a weight matrix (Kipf and
Welling, 2017).

While a very powerful tool, particularly when learning representations for homogeneous
graphs, GCNs do not use information about edge type when learning on heterogeneous
graphs, which most KGs are. R-GCNs apply the same ideas as GCNs, but instead allow
for separate weight matrices depending on edge type, and therefore are much better suited
to representation learning on heterogeneous KGs than GCNs (Schlichtkrull et al., 2018).

GraphSAGE

GraphSAGE (Hamilton et al., 2017) is an alternative GNN framework for learning node
embeddings that, instead of directly learning embeddings for nodes in a static graph, learns
a function that can generate embeddings. As a result, GraphSAGE is able to generate
embeddings for new nodes that were not in the graph the model was trained on, provided
these new nodes share the same attribute schema as the original graph. GraphSAGE uses
an aggregator to collect information from the neighbourhood of a given node; concatenates
this aggregated information with the current embedding state of the node; and then passes
this through a weighted function to propagate the information. The aggregator can be
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directly encoded, for example a simple mean, or it could be learned during training. The
receptive field of the network can be increased by adding more layers.

Description logics

Description logics (DLs) are fragments of first-order logic that allow only for constants (in-
dividuals), unary predicates (concepts), and binary predicates (roles). The symbol ⊑ is
used to represent concept inclusion, and ≡ is used for equivalence. We use DL to express
axioms to describe a domain, resulting in a knowledge graph. These axioms are generally
split into terminological axioms (TBox)—regarding general knowledge about concepts and
roles in the domain—and assertional axioms (ABox)—which make statements about indi-
viduals (Baader et al.). For example, we can represent TBox axioms for the statements: (1)
“proteins are molecules”; (2) “carbohydrates are molecules”; (3) “carbohydrates are disjoint
from proteins”; and (4) “enzymes are molecules that catalyze a biochemical reaction” in
DL:

Protein ⊑ Molecule (1)

Carbohydrate ⊑ Molecule (2)

Carbohydrate ⊓ Protein ⊑ ⊥ (3)

Enzymes ≡ Molecule ⊓ ∃Catalyzes.Reaction (4)

Two examples of ABox axioms are:

Protein(hexokinase).

Catalyzes(hexokinase,glucose phosphorylation).

From the TBox and ABox, we could deduce that hexokinase is an enzyme, because it
catalyzes the phosphorylation of glucose.

Individuals, concepts, and roles in DLs can be represented in Web Ontology Language
(OWL) using individual, class, and property statements.
EL++ is a lightweight DL designed for efficient reasoning over large ontologies, allowing

conjunctions, existential restrictions, and role hierarchies while ensuring polynomial-time
reasoning (Baader et al.). It underpins the OWL 2 EL profile and is widely used in biomed-
ical ontologies, including the ones introduced below.

Ontologies and data

Decades of research on Saccharomyces cerevisiae have resulted in extensive knowledge that
is available both in the scientific literature and in curated biological databases. The Saccha-
romyces Genome Database (SGD) (Engel et al., 2024) provides a central resource aggregat-
ing curated information about S. cerevisiae genes, including Gene Ontology annotations,
experimentally observed phenotypes, and regulatory as well as genetic interaction data.
Complementary information about biochemical reactions, events in which substrates are
transformed into products, and pathways, sets of interconnected reactions driving cellular
functions, is available in pathway-oriented resources such as BioCyc (Karp et al., 2019).

The contents of these databases are represented using ontologies and controlled vocab-
ularies to ensure consistency and interoperability. The Gene Ontology (GO) (Ashburner
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et al., 2000) defines classes describing molecular functions, biological processes, and cellular
components. Phenotypic information in SGD is formalised using the Ascomycete Pheno-
type Ontology (APO) (Costanzo et al., 2009), which captures observable characteristics
arising from interactions between genotype and environment, such as growth defects or
resistance to chemical perturbations. Chemical compounds are described using Chemical
Entities of Biological Interest (ChEBI) (Hastings et al., 2016). Genetic, physical, and regu-
latory interactions are modelled using the Interaction Network Ontology (INO) (Hur et al.,
2015) and Molecular Interactions (MI) (Hermjakob et al., 2004). Commonly used relations
shared across ontologies are defined in the Relations Ontology (RO) (Mungall et al., 2020).
Among these resources, only GO and ChEBI define relations between classes, whereas the
remaining ontologies provide taxonomies of domain-specific entities.

4. Preliminaries

Box embeddings

Axis-aligned hyperrectangles, or “boxes” as they often are referred to, are defined as the
Cartesian product of closed intervals,

Box =

n∏
i=1

[zi, Zi], (5)

where zi and Zi correspond to the lower and upper coordinate along dimension i. To
fulfil the criteria that the upper coordinate should be greater than or equal to the lower
coordinate, Zi ≥ zi, we create boxes from latent variables, θ, using the MinDeltaBoxTensors
constructor introduced by Chheda et al. (2021). The upper and lower box coordinates are
defined as follows:

zi(θi) = θzi , Zi(θi) = zi + softplus(θZi ). (6)

The equation for transforming latent variables, θ into box representations is therefore:

Box(θ) =

n∏
i=1

[zi(θi), Zi(θi)] (7)

Boxes can also be represented by their centre-point, ci, and offset, oi, along dimension i,
found from z and Z as follows:

ci =
zi + Zi

2
, oi = Zi − ci (8)

A knowledge graph (KG) can be represented using box embeddings by embedding classes
and individuals (nodes) as axis-aligned boxes in a low-dimensional space. As discussed in
Section 2, this idea has been explored in several forms, with its popularity largely driven
by a favourable trade-off between expressivity and computational efficiency. Central to box
embeddings is the modelling of transitive relations through geometric containment, where
the box of a head entity is constrained to lie within the box of a tail entity. In this work,
we use box embeddings to represent ‘subClassOf’ relationships between classes, rewarding
containment of each subclass box within its corresponding superclass box.
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Semantic losses

To learn box embeddings we consider two different types of loss functions for concept in-
clusions of the form C ⊑ D. The first loss, here called Ldistance, has previously been used
by, for example, Peng et al. (2022) and Jackermeier et al. (2024). Using the nomenclature
presented above it is calculated by first finding the element-wise distance between the two
boxes,

d(Ci, Di) = |cCi − cDi | − oCi − oDi (9)

In the loss function, this quantifies how far a subclass box is from being completely contained
within the superclass box,

Ldistance(C,D) =
∣∣∣∣∣∣(max(0, d(Ci, Di) + 2oCi )

)n

i=1

∣∣∣∣∣∣ (10)

Note here that Jackermeier et al. (2024) used the loss in (10) in the case D ̸= ∅, and a
separate loss if D = ∅. In this work, we don’t consider that it is reasonable to assume
that any of the concepts included in the knowledge graph is empty. Mostly, this is because
the concepts in the knowledge graphs used here come directly from scientific ontologies,
where their inclusion implicitly represents a belief of their existence, but also relies on an
open world assumption. It could be that the loss as defined in Jackermeier et al. (2024)
is necessary for complex or compound concepts in other applications, where the empty set
is a possibility for concept D. We also omit the margin parameter from Jackermeier et al.
(2024) as we want the loss to be zero when the subclass axiom is satisfied in the embedding
space. To keep disjoint classes, C ⊓D ⊑ ⊥, apart we penalise overlap of the boxes by the
following loss (where I is the indicator function):

L−distance(C,D) =
∣∣∣∣∣∣(max(0,−d(Ci, Di))

)n

i=1

∣∣∣∣∣∣ · n∏
i=1

I
[
d(Ci, Di) < 0

]
(11)

The second loss type considers the overlap between boxes and for the subsumption
C ⊑ D it is calculated as

Loverlap = − log
(Vol(Box(C) ∩ Box(D))

Vol(Box(C))

)
(12)

For disjoint classes we instead use the following loss:

L−overlap = − log
(
1− Vol(Box(C) ∩ Box(D))

min(Vol(Box(C)),Vol(Box(D)))

)
(13)

To avoid large flat regions in the loss landscape, for example when two boxes are com-
pletely disjoint, Dasgupta et al. (2020) proposed that boxes and intersections of boxes are
interpreted as Gumbel random variables. They showed that the volume of such boxes and
intersections are determined by Bessel functions which can be reasonably approximated
by softplus functions. In practice, this produces smooth intersections between boxes and
ensures non-zero gradients, also in cases such as disjoint boxes.

Throughout this work we use L⊑ and L−⊑ as placeholders for either of the inclusion and
disjointness losses introduced above. To learn box embeddings the positive and negative
losses are simply added together, possibly weighted differently. We present ways of doing
this in more detail in Sections 5.3 and 5.5.
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Regularisation losses

Patel et al. (2020) proposes to regularise the volume of boxes when training box embeddings,
we use the implementation by Chheda et al. (2021) which does this by applying the L2-norm
to all sides of the box,

R =

n∑
i

∥Zi − zi∥2 (14)

We also found that regularising excessively small boxes can be beneficial in certain cases.
This was implemented as

Rsmall =
n∑
i

max
(
0,

1

∥Zi − zi∥
− l0

)
, (15)

with l0 being a threshold determining below what size the box is penalised.

5. Material and methods

In this section, we begin by introducing the hierarchy-aware GNN framework used through-
out this work. We then describe the construction of the S. cerevisiae KG and detail how the
hierarchy-aware GNN is applied to predict gene deletion fitness using this graph. Next, we
present a KG embedding approach based on the same hierarchy-aware GNN architecture,
trained without an explicit prediction task, to study its representational properties. Finally,
we introduce a link evaluation method based on the resulting embeddings, which is used to
assess the impact of adding or modifying links in the KG.

5.1. Hierarchy-aware GNN

The losses presented in Section 4 have primarily been used for training shallow embeddings
of class hierarchies, but they can also be applied to GNNs whose outputs parameterise
box embeddings. In this work, we represent KGs as TBox-style axioms by encoding class
assertions, C(a), as subsumption axioms, {a} ⊑ C, and role assertions, r(a, b), as existential
restrictions, {a} ⊑ ∃r.{b}. The resulting graph consists only of class- and nominal-level
axioms of the form

A ⊑ B (16)

A ⊓B ⊑ ⊥ (17)

A ⊑ ∃r.B. (18)

We refer to axioms of the form (16) and (17) as the class hierarchy. The existential restric-
tions in (18) define all edges of the graph, meaning that relations between individuals and
relations between classes are represented in a uniform way within the graph.

This TBox-style graph is then used as the computational graph for the GNN: nodes
correspond to classes and nominals, while directed edges correspond to axioms of the form
in (18). Message passing therefore propagates information along logical relations in the KG,
while the hierarchy axioms will provide geometric constraints on the embeddings.
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Each layer, l ∈ {1, . . . , L}, of a GNN learns weights wl that parameterise a function,
Bl : Rnl−1 −→ Rnl . Treating the output of each layer in a GNN, θl = Bl(θl−1;wl), as
the latent representation of a class or nominal, box embeddings are generated via the
transformation in (7) and optimised using the loss functions in (10-13). An illustration of
this architecture is shown in Figure 1.

For heterogeneous knowledge graphs spanning multiple domains whose class hierarchies
can be embedded independently, we can use separate embedding spaces and hierarchy losses
for each domain.
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Figure 1: Overview of the Hierarchy-aware GNN. a shows how the output of each message
passing layer, which aggregates information between neighbours in the KG, is
treated as a latent variable that is converted into boxes through the box trans-
formation in (6). The boxes are trained to fulfil specified class hierarchies using
the losses in (10-13), which can also be applied to the prior node embedding.
The output of the GNN can be fed to some prediction head, trained by jointly
minimising a task-specific loss. b illustrates how a box embedding is transformed
throughout the GNN. Note that the relation, r, is drawn as an arrow in this
embedding, but in the model it is represented as a message passing edge.

The taxonomy loss for a multilayer, possibly multidomain, GNN is calculated as the
sum of the individual losses,

L =
L∑
l=0

D∑
d=0

∑
(A,B)∈Sd

L⊑(Box(θAl ),Box(θBl )), (19)

with Sd being the set of subclass axioms for domain d:

Sd = {(A,B) : A ⊑ B ∈ H(d)} (20)
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and where l specifies the layers of the GNN and d the node domains, and H(d) is the class
hierarchy from the ontologies describing domain d. L⊑ corresponds to the loss in (10) or
(12). Likewise, a negative loss can be computed to prevent the embeddings from collapsing
into identical boxes for all classes. The loss is obtained either from disjointness information
in the taxonomy or from randomly sampled negative examples, following the formulations
in (11) or (13).

The approach is flexible in the sense that it is architecture agnostic and can be used
either on its own for box embeddings of KGs using GNNs, or as a semantic loss together with
another loss term, for example, when training prediction models. The rationale behind this
approach is that class hierarchies often contain information that is not necessarily modelled
in the graph edges, and can be especially useful to improve the representation of poorly
connected nodes in the graph.

Training prediction models end-to-end with semantic losses, rather than first finding
a separate semantic embedding of the ontology or KG, allows for extraction of the edges
important for the task at hand while still adhering to the class taxonomy. The flexibility of
neural networks enables this to be used for various prediction tasks, including edge, node,
and graph level predictions. Depending on the prediction head it can be used for both
classification and regression.

The loss function for such a model would simply combine the task specific and semantic
loss, possibly along with regularisation of the parameters as

L = LTASK(y, ŷ) + α(L⊑ + βL−⊑) + λ ∥w∥2 , (21)

where α weights the semantic loss, β determines the impact of negative examples in the
semantic loss, and λ controls the regularisation of the network parameters.

In Section 5.3, we illustrate this approach on an edge-weight prediction (link regression)
task, where the GNN output is fed into an neural network (NN) prediction head. The
same architecture naturally extends to other edge-level tasks, as well as node- and graph-
level tasks; the only difference lies in how the appropriate representations are selected and
supplied to the NN.

To represent boxes and implement box-related operations, such as intersection and vol-
ume calculations, we use the box-embeddings Python package (v0.1.0) (Chheda et al.,
2021).

5.2. Knowledge graph

We have created a heterogeneous knowledge graph describing genes in the yeast Saccha-
romyces cerevisiae by combining facts expressed in classes and relations from multiple
ontologies. We represent the graph using TBox axioms, as discussed in Section 5.1, by
rewriting class assertions, C(a), as {a} ⊑ C and role assertions, r(a, b), as {a} ⊑ ∃r.{b}.
In this way, we get the same representation of asserted facts from databases as we have for
terminological statements from ontologies, like GO or ChEBI. This simplifies the interface
between KG, box embeddings, and GNNs.

The knowledge graph is created from data in SGD, where the information is defined using
terms from several different ontologies. A high level overview of the graph, showing how
different node types are connected, can be seen in Figure 2a. Figure 2b shows examples of
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the hierarchies classes instantiating these nodes are represented in. Characteristics of these
hierarchies are shown in Table 1.
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Figure 2: An overview of the different types of classes and how they are connected in the
knowledge graph is shown in a. The colour of the nodes specifies where the
classes are defined. b shows examples from the hierarchies defining classes in the
domains introduced in Section 5.3.

Table 1: Characteristics for the hierarchies representing the different domains in the KG.
The “Origin” column indicates in which ontology or taxonomy the hierarchy is
defined, ⋆ indicates we have defined it, or parts of it.

Domain
Number of
classes

Maximum
depth

Number of
leaf nodes

Median leaf
node depth

Origin

Material entities 217,381 24 200,368 10 ChEBI

Biological processes 28,337 16 14,949 6 GO

Phenotypes 3,949 9 3,731 4 APO

Molecular functions 11,201 12 9,181 5 GO

Regulation 20,563 7 20,536 5 INO, ⋆
Reactions 3,101 8 2,734 4 BioCyc

Cellular components 4,184 11 3,225 4 GO

Genes 7,383 7 7,322 3 ⋆
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The GO-annotations in SGD are naturally described by classes in the Gene Ontology and
relations from the OBO Relations Ontology, which are specified in the database. Phenotypes
are described using terms from APO where a phenotype is represented by an ‘observable’,
for example ‘heat sensitivity’, and possibly a ‘qualifier’, for example ‘increased’. We
represent the phenotype as the subclass of the intersection of these two types of classes, and
phenotypes are linked to genes using the RO relation ‘has phenotype’. Some phenotypes
describe observables related to specific chemicals, in such cases the chemical class in ChEBI
is linked with a custom relation, ‘aboutChemical’. To form a closer connection between
genes and chemicals related to phenotypes, which proved useful for downstream tasks (see
Section 5.3), a link specific to the type of observable was added between the gene and the
chemical. An example of how this is implemented in description logic can be seen in (26)
in Appendix A.

Gene regulation in SGD is a directed relationship between two genes that can be positive,
negative, or unspecified, and of different types, for example, regulation of protein activity
or expression. In some instances, a biological process from GO specifies under which condi-
tions the regulation occurs. We introduce custom relations describing regulation type and
direction, which we use to link the two genes in the graph. When a biological process is
specified we also link the genes to a gene-specific subclass of the ‘regulation’ class from
INO, which in turn is linked to the GO-term. The description logic implementation of such
a regulation can be seen in (27) in Appendix A.

Interactions between genes are represented as undirected relationships, as the available
interaction data captures symmetric associations rather than directional or causal effects
between genes. These interactions may also be associated with a phenotype observed along-
side the interaction. Similarly to regulation this is modelled as a link between the involved
genes and a gene specific subclass of either a ‘protein-protein interaction’ from INO
or a ‘genetic interaction’ from MI, which is linked to the phenotype.

Beyond the data from SGD we have also included information about reactions and
pathways from BioCyc, which uses its own controlled vocabulary. In the graph, reactions
are linked to their input and output chemicals, as well as, when specified, genes they are
catalysed by and locations in the cell where they take place. We link pathways to their
involved reactions, as well as to the compounds that are consumed and produced.

5.3. Predicting gene deletion fitness

To demonstrate the usefulness of our KG, and how the method described in Section 5.1
can be used in practice, we trained GNNs to predict phenotypic traits in S. cerevisiae. We
use data from Costanzo et al. (2016) where cell growth is measured when pairs of genes
are deleted (digenic deletions) from the genome. By comparing this growth to that of cells
with no gene deletions, a fitness score could be determined that describes the impact of
deleting the two genes. A subset of this data, grown under the same standard experimental
conditions (30◦C), is used to train our model. This results in a dataset with 10,085,183
examples of deleted gene pairs and a corresponding fitness. Note that the genetic interaction
relation from SGD describes similar phenomena, often derived from the same dataset. These
relations are thus removed from the graph before training to avoid data leakage.
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The prediction task can be formulated as estimating positive real-valued weights on
undirected edges between gene nodes. Given a knowledge graph, G = (V, E ,R), and the set
of genes Vg ⊂ V we aim to learn a symmetric function,

fG : Vg × Vg → R≥0, (22)

where fG(i, j) = fG(j, i) predicts the fitness of the double-gene deletion (i, j) based on the
information encoded in G.

We divided the classes in the KG into the eight domains in Figure 2b and Table 1.
This split was beneficial for performance and for stability in training (see Table 12 in
Appendix C). These splits were done manually, but generally they align well with the
ontologies the classes are from, or disjoint branches in the same ontology. The reasoning
behind this is that these domains represent non-overlapping concepts, so not much is gained
by representing them in the same embedding space. Doing this also allows us to reduce the
dimensionality of the embedding space and vary it depending on the number of classes in
the domain, thereby reducing the overall computational complexity.

After adding reverse links to enable message passing in both directions and removing
infrequent edges (fewer than 1,000 occurrences), the resulting graph contains 72 distinct
link types2 and nodes from eight different domains used for prediction. Ignoring infrequent
edges was found to increase predictive performance, likely by reducing overfitting, which
can be seen in Table 9 in Appendix C.

Prior shallow node embeddings were trained using the overlap losses in (12) and (13),
representing the classes as Gumbel boxes. Large boxes were penalised using the regularisa-
tion in (14) and negative examples are generated by drawing random classes, p̄, that are not
in {p|c ⊑∗ p}, where ⊑∗ refers to chains of the ‘subClassOf’ relation, i.e., negative examples
are not in the set of all ancestors to c. Parameters used to train the box embeddings and
the dimensions of the different domains are reported in Appendix B.1.

For predicting the gene-pair fitness we use a heterogeneous GNN together with a fully
connected neural network; an overview of the architecture can be seen in Figure 3a. The
GNN used is based on the max-aggregated GraphSAGE embedding algorithm (Hamilton
et al., 2017) briefly introduced by in Section 4. In our heterogeneous setting, each source-
edge-target type has its own SAGEConv-module as proposed by Schlichtkrull et al. (2018),
whose outputs are combined using mean aggregation to create the node embeddings from
each layer. We found it beneficial to adjust the dimensionality of the message-passing mod-
ules based on the type of source-edge-target triple. Domains with a high degree of incoming
connectivity, such as ‘Material entities’ or ‘Genes’, are assigned higher dimensional feature
spaces. This can be interpreted as increasing the expressivity for domains with high degree
connectivity and the performance gain can be observed observed in Table 11 in Appendix C.
The resulting class embeddings, generated by the GNN, capture aggregated neighbourhood
information. By applying box-losses as introduced in Section 5.1, the training will also
aim to represent the class hierarchy as box embeddings. Figure 3b illustrates how infor-
mation is propagated from the initial box embeddings across different domains to the gene
embeddings.

2. Filtering out links with fewer than 1,000 examples removes 160 edge types, of which 118 have fewer than
100 examples and 68 have fewer than 10.
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Figure 3: An overview of the system predicting the fitness when deleting pairs of genes is
shown in a. A GNN using GraphSAGE message passing layers, acting on the KG
from Section 5.2, generates node embeddings. The embeddings of pairs of genes
are combined through element-wise multiplication and fed to a NN predicting
the fitness of the gene deletion. b shows how classes in the different domains
are represented by boxes and how information is aggregated in the GNN, as well
as how the node embeddings throughout the network are interpreted as boxes
using the box transformation in (6). These boxes are optimised to represent
the class hierarchies from the underlying ontologies. Arrows represent learnable
GraphSAGE modules, different for each source domain-edge-target domain

type.

Table 2: Node feature combinations for edge-level prediction task.
Formulation Symmetric Learnable

Product x1 ⊙ x2 ✓
Bilinear x1 ⊙Wx2 + x2 ⊙Wx1 ✓ ✓
Intersection Box(x1) ∩ Box(x2) ✓
Concatenation concat(x1, x2)

Because the task operates at the edge level, the embeddings of the deleted genes must
be combined prior to being fed into the regressor network. This can be done in a number of
ways, in this work we have considered four ways of doing this: element-wise product, vector-
valued bilinear symmetric transformation, box intersection, and concatenation, defined in
Table 2. Among these, the product, bilinear, and intersection methods are symmetric, and
the bilinear transformation is the only learnable combination method. As can be seen in
Table 10 in Appendix C, we found the element-wise product to perform the best. The
node-pair representation is fed to a fully connected neural network outputting a real valued
prediction.
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We train the model by minimising, using the Adam optimiser, the following loss function,

L = LMSE(y, ŷ) + α(L⊑ + βL−⊑) + λ ∥w∥2 (23)

LMSE denotes the mean squared errors of the fitness predictions and L⊑ and L−⊑ are defined
in (19). α and β are weights determining the impact of the semantic loss, measuring how
well the box embeddings represents the class hierarchies. λ controls regularisation of the
parameters in the network.

The models are trained and evaluated using 10-fold cross validation where the data
split is based on the genes. Any gene pairs that include genes from both the training and
validation sets are discarded. This ensures that no pairs involving validation-set genes are
seen during training, so the learned representations of genes in the training set do not
influence the predictions being evaluated.

Hyperparameters, including learning rate, regularisation (λ), the depth and width of the
fully connected neural network, the depth of the GNN, and embedding dimensions through-
out the GNN, are tuned using Bayesian optimisation. Tuning is performed on a separate
data split from the one evaluated in Section 6.1. This tuning is done for a model using box
embeddings as prior node representations, but without semantic loss during training, the
same parameters are then used for all evaluated models. The used hyperparameters are
reported in Appendix B.2.

5.4. Hypothesis generation

Because the predictions are derived from a knowledge graph in which each edge encodes
domain-relevant semantics, they can be exploited to identify patterns among the most
informative relationships in the graph. Furthermore, because the predicted measures can
be interpreted as arising from interactions between the two deleted genes, we examine which
gene-associated traits are jointly influential in driving the model’s predictions.

The procedure for identifying such interactions is given in Algorithm 1. Using gradient-
based post-hoc interpretability methods, we assign importance scores to all nodes connected
to the genes involved in each deletion. For each pair of gene-associated nodes, we compute
an interaction score as the product of their individual importance values, and then aggregate
these scores across deletions to obtain a set of globally important interacting traits. Note
that this method does not rely on hierarchy-aware GNN embeddings.
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Algorithm 1: Edge pair importance attribution algorithm

Model # trained prediction model
Explainer(Model) # importance attribution algorithm
importances ← {}
foreach {g1, g2} ∈ {Deleted genes} do

(links g1, links g2) ← Explainer(g1, g2) # importance scores for (s, p) pairs from
triples where the object is g1 and g2 respectively

foreach l1 ∈ links g1 do
foreach l2 ∈ links g2 do

importances[l1l2] ← importances[l1l2] + l1 ∗ l2
end

end

end

We used the input × gradient method (Shrikumar et al., 2017) to assign importance
scores, implemented in Captum (Kokhlikyan et al., 2020), but this approach is not specific
to any attribution method.

5.5. Learning GNN box embeddings without a prediction task

To study the effect that semantic losses have on embedding representations, and to demon-
strate how they can be used to train box embeddings in the absence of a prediction task,
we use the same KG as above with some modifications. Following the same methodology
as Section 5.2 we rewrite role and class assertions as TBox axioms. ‘subClassOf’ relations
are used as the positive examples for L⊑, and negative examples for L−⊑ are taken from
disjointness axioms from two sources. Firstly, we create additional TBox statements for
disjointness between the three subclasses in the molecular function domain, and between
each of these classes and the subclasses of the other two. Secondly, for randomly drawn
pairs to distinguish between individual classes in the graph.

In the same way as the models described in Section 5.3, the GNN is constructed from
SAGEConv modules for each edge type. For the purposes of demonstration, we learn
embeddings in two dimensions so they can easily be visualised. We simultaneously train
initial box embeddings (randomly initialised) and a GNN by minimising, again using the
Adam optimiser, the loss function:

L = L⊑ + βL−⊑ + λsRsmall + λ ∥w∥2 , (24)

where R is the regularisation loss from (15), penalising small boxes with an l0 of 1, and
β, λ and λs are weights determining the impact of the negative semantic loss, weight
regularisation loss, and small box regularisation loss respectively. Note the absence of the
mean squared error term present in the prediction task above. The regularisation term
was included as disjointness tended to make boxes extremely small along one or more
dimensions during training rather than move position in the space. The negative semantic
loss is decomposed into

L−⊑ = L−⊑data + γL−⊑random, (25)
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which enables us to tune the contribution of the randomly selected disjointness axioms. For
each loss type (distance or overlap) we separately tuned the hyperparameters, and the used
values are reported in Table 6 in Appendix B.3.

5.6. Link evaluation

A potential application for the semantic losses defined above, in addition to the training of
box embedding models for quantitative prediction tasks, is to rank proposed revisions to a
knowledge graph based on the resultant changes to embeddings and losses. Distance based
approaches to link prediction have been attempted before, for example with HAKE (Zhang
et al., 2020) where they replaced either subject or object in existing triples. But the use
of a GNN in our method means we can theoretically assess completely unseen additions to
the graph by evaluating their global effect. We test this by adding single edges to the graph
according to the following scheme.

Say that for a given ontology we construct a graph G = (V,E), where each edge vertex
v ∈ V is a class in the ontology and each edge e ∈ E represents a role assertion. Following
the methodology outlined above, we use G as the basis for a GNN, and train box embeddings
and the weights of the GNN using the semantic loss. Introducing new role assertions to the
graph results in graph G̃, and passing the prior box embeddings through the GNN using
these additional edges will change the final box embeddings. We calculate the distance
between the original learned box embeddings and those after the changes to the graph,
giving us a measure of the change to the embeddings from the graph revision. This process
is described in Algorithm 2.

Algorithm 2: Link evaluation algorithm

Train embedding parameters θl on Gtrain
δ ← ∅
foreach e ∈ Etest do

G̃ ← Gtrain ∪ {e}
B ← Box(GNNθ(Gtrain))
B̃ ← Box(GNNθ(G̃))
δ ← δ ∪ (e, ⟨B, B̃⟩) # distance between the generated box embeddings

end
Sort δ to get ranked revisions

To evaluate this proposed method, we split the edges in the KG into training and test
data using a 80:20 training and test split, stratified by relation type. This results in a
training graph Gtrain = (V,Etrain) and a test graph Gtest = (V,Etest). The embeddings and
GNN are trained as per Section 5.5. We run Algorithm 2, going through each edge in the
test data. We also perform the same steps with randomly generated edges with source and
target drawn from the same classes as the test edge, and with completely randomly drawn
source and target nodes. The distance metric used is defined in (9).
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6. Results

6.1. Gene deletion fitness prediction

In Table 3 we present the coefficient of determination (R2) for different versions of the
model described in Section 5.3. We evaluate a model without any information from class
hierarchies, a model with the prior node embeddings in box form, and models using both
prior node embeddings and the semantic loss in (23). Both the overlap and distance version
of the losses are evaluated. The model not using any hierarchy information (c in Table 3)
learns shallow embeddings specifically for this task to represent the nodes in the KG. For
the model only using prior box embeddings (d in Table 3), these are not modified during
training. For the two models with the semantic loss (e and f), we apply it to all domains
except the one embedding the genes. The gene hierarchy builds on a rudimentary SGD
gene categorisation, offering very little information, with over 90% of genes falling into the
same category. Hence we deem the hierarchy in this domain uninformative.

The GNN-based models are compared to Light Gradient Boosting Machines (Light-
GBMs) (Ke et al., 2017). We considered the instantiation of the phenotype information
from the KG as gene representation. The phenotypes describe observable characteristics of
the genes and are the part of the KG we expect to be most informative for this task (further
support for this is seen when considering feature importances for the GNN, mentioned in
Section 6.2, which are dominated by phenotypes). The instantiation of the phenotypes is
sparse, with 2680 features.

We also considered a ComplEx (Trouillon et al., 2016) embedding (64 dimensions) of
the KG as an alternative gene representation. In contrast to the phenotype instantiation,
which relies on a hand-selected subset of biologically relevant relations, ComplEx provides
a dense, low-dimensional embedding learned from the full multi-relational structure of the
KG. This allows LightGBM to exploit global relational patterns that are not explicitly
encoded in the phenotype feature vectors. We also evaluated ComplEx embedding with an
MLP prediction head, as well as a Box2EL-based predictor. They did not achieve the same
predictive performance, and are reported in Table 8 in Appendix C.

From the results it is clear that the GNN generates gene embeddings which can be
used for predicting this fitness to a reasonable degree, given the amount of noise typically
present in biological measurements (Li et al., 2021). Using the box embeddings to represent
classes rather than learning them from scratch results in a significant (p<0.05, paired t-
test) improvement. Enforcing the hierarchical class structure through the semantic loss
throughout the model improves the results further, the model trained with the distance-
loss performs significantly (p<0.05, paired t-test) better than the models not using the
semantic loss. The instantiated phenotype information seems to be somewhat useful for
prediction, but is not as informative as the full KG. We also see that the ComplEx KG
embedding captures information useful for this task, however not as informative as the task
specific embedding found by the GNNs.

The parity plots for the predictions are shown in Figure 4(a) and 4(c). From this we can
see that most double gene deletions do not have major impact on the fitness. We can also
see a clear shrinkage effect where the model mispredicts extreme values, especially deletions
with low fitness are overestimated. Comparing the predictions from the model trained with
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Table 3: Results from 10-fold cross-validation of digenic deletion fitness. The GNN without
box embeddings (c) learns task-specific shallow embeddings as the prior node rep-
resentations. The other three GNNs (d-f) uses pre-trained box embeddings and
the semantic loss in (23) is applied to two of them (e and f). All GNN models
share the same architecture. The instantiation model (a) uses a sparse feature ma-
trix with non-zero entries for phenotype annotations from the KG. The ComplEx
based model (b) first embeds the KG in 64 dimensions and predicts the growth
from this. Significant pairwise differences are indicated by ↑ and ↓ (p<0.05, paired,
one-sided t-test).

Description Mean R2 SD a b c d e f

a ComplEx + LightGBM 0.191 0.039 - ↓ ↓ ↓ ↓
b Instantiations + LightGBM 0.211 0.022 - ↓ ↓ ↓ ↓
c GNN without box embeddings 0.348 0.050 ↑ ↑ - ↓ ↓
d GNN with prior box embeddings 0.360 0.043 ↑ ↑ - ↓
e GNN + Loverlap 0.368 0.038 ↑ ↑ ↑ -

f GNN + Ldistance 0.377 0.046 ↑ ↑ ↑ ↑ -

the semantic loss we can see that they in general are rather similar, but that the semantic
loss model seems to have fewer large underestimations.

Figure 5 show the semantic losses in the different domains, introduced in Figure 2b and
Table 1, for the best performing model, using Ldistance. A similar pattern is observed for
all domains where both the positive loss for the first layer (the pretrained box embeddings)
and the negative loss for the second layer is low and fairly constant. The positive losses
for the second layers decreases across all domains throughout training, while the negative
loss for the first layer does not change much and is substantially higher than the others.
This suggests that, even though they result in a significant improvement in prediction
performance, the initial box embeddings have a lot of overlap between classes. On the
other hand, the embeddings generated by the GNN discriminate very well between classes,
already at the first epoch and the hierarchical structure is learnt throughout training.

To evaluate our model on a slightly modified version of the original task we used data
from Kuzmin et al. (2018), who performed a study similar to the one used for training
our models, but focused on trigenic deletion fitness. This dataset comprises a total of
15,095 triple deletion datapoints. For this we use one model trained on the full dataset
from Costanzo et al. (2016), but instead perform the element-wise product between the
three involved genes. Notably we achieve an R2 of 0.380 for a model using box embeddings
as prior node representations, and 0.415 for a model using the same prior node embed-
dings, but trained with the distance-based semantic loss. These values are slightly higher
than the average performance observed in the cross-validation of digenic deletions. Fig-
ure 4(b) and 4(d), shows parity plots for these predictions. Again, the prediction patterns
for the two models look similar, but the model trained with the semantic loss does not
predict as high fitness. An important note on this experiment is that, unlike the double
deletion experiment, the individual genes making up the triple deletions are now seen as
parts of double deletion examples in training.
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(a) Double deletion, R2 = 0.360
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(b) Triple deletion, R2 = 0.380
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(c) Double deletion with semantic loss,
R2 = 0.377
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(d) Triple deletion with semantic loss,
R2 = 0.415

Figure 4: Parity plots for double, (a) and (c), and triple, (b) and (d), gene deletions. (a)
and (b) shows the parity plot for the model using box embeddings as prior node
representations only, while (c) and (d) shows the predictions from a model also
trained with the distance-based semantic losses, Ldistance. For the double dele-
tion, the predictions from all validation sets in the cross validation are shown.

6.2. Hypothesis generation and experimental evaluation

In this section, we present a case study evaluating the interaction-discovery procedure de-
scribed in Section 5.4, identifying candidate trait interactions for experimental testing. To
focus on patterns corresponding to viable experiments for our laboratory setup, we filtered
for edges related to nutrient utilisation phenotypes. A more detailed description of the
filtering process can be found in Appendix D.1. The top ten most important edge pairs
are shown in Figure 6(a) and detailed in Table 13 and 14 in Appendix D.2. The highest-
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Figure 5: Average Ldistance and L−distance losses per class for the different domains in the
KG, during training of the best performing model (f) in Table 3. The line is
the average loss across the 10 folds and the shaded area shows ± one standard
deviation. Note that this loss is not applied to the gene-domain, since its class
hierarchy is not deemed to be informative.

weighted, safely testable pair was selected and highlighted in red in Figure 6(a), linking
one of the involved genes to inositol (vitamin B8) utilisation and the other to NaCl stress
resistance, suggesting a potential interaction between these traits.

To experimentally test this hypothesis, a perturbation experiment was performed in an
automated laboratory cell (Williams et al., 2015), in which inositol and NaCl was supplied
in a range of concentrations, details about the experimental design and cultivation methods
can be found in Appendix D.3. An ∆ino1 mutant (INOsitol requiring) was used for all
subsequent experiments, as it is unable to synthesise inositol on its own, ensuring that
any intracellular accumulation was acquired only through transport from the media. The
growth dynamics of the cells in the different experimental conditions were summarised with
the area under curve (AUC) of the growth curves, providing a single-valued measure of the
biomass accumulation over the course of the experiment. The full growth dynamics can
be seen in Figure 9 in Appendix D.4 and summarising boxplots are shown in Figure 6(b).
Statistical testing for interaction effects was done with a Gaussian generalised linear model
(GLM), further details can be found in Appendix D.4.

These empirical results, seen in Figure 6(b) and Table 18 in Appendix D.4, indicate a
significant interaction between inositol supplementation and induced NaCl stress, verifying
that the proposed edge-interactions are consistent with experimental data. Specifically,
supplementing with inositol rescued cells from NaCl-induced stress, indicating that inositol
availability enhances their ability to withstand salt stress. Inositol has previously been
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Figure 6: An overview of the selection and results of the experiment we performed. (a)
shows the highest ranked importances of edge-pairs and the pair selected for
the experiment, nutrient utilisation of inositol and stress resistance to NaCl, is
highlighted in red. f0 and f1, which have a higher assigned weight, are discarded
due to safety and lab constraints as it involves the chemical bleomycin. (b) Box
plot showing the distribution of AUC for all of the experimental conditions tested.
Inositol supplementation significantly impacts growth dynamics in high doses (p
< 0.05). NaCl stress changes the impact of inositol in a dose dependent manner,
suggesting an interactive effect (p < 0.05).

implicated in biosynthesis and integrity of cell membranes (Culbertson and Henry, 1975).
Since NaCl can disrupt osmotic balance, enhanced membrane stability is likely to have a
protective effect for the cells.

6.3. Demonstration of embeddings for the molecular function domain

For the knowledge graph constructed according to the method in Section 5.5, after the
hyperparameter search for distance-loss and overlap-loss, we constructed final box embed-
dings in two dimensions using a GNN with one message passing layer. In Figure 7 we plot
box embeddings for each loss, before input into the GNN and then the final embeddings,
for a subset of classes in the molecular function domain. We see clearly that the GNN is
performing a transformation of the prior embeddings. Furthermore, both losses result in
learned embeddings that begin to capture semantic concepts from the KG, in particular
that ‘structural molecule activity’ and ‘molecular function regulator activity’
are disjoint, and that each of these is disjoint from ‘small molecule sensor activity’.
Both losses also responded to the randomly drawn negative loss contributions (L−⊑random)
in attempting to separate individuals, though this is more evident with the overlap-loss.
These semantic constraints are more evidently respected in the embeddings before the mes-
sage passing in the GNN. This is perhaps understandable, as the message passing includes
no additional information about the hierarchy of the ontology, but does include information
from the relations in the graph. Also, in this KG, the concepts in the molecular function
domain have relations only to concepts in the gene domain (see Figure 2). The hierarchy
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in the gene domain, constructed from the gene categorisation in SGD, is fairly flat. The
majority of concepts in this domain are immediate subclasses of ‘ORF’.

Aside from this observation, comparing Figures 7(a) and 7(b), we see that prior to be-
ing passed through the GNN, the boxes corresponding to different ‘structural molecule

activity’, ‘molecular function regulator activity’, and ‘small molecule sensor

activity’ subclasses are of quite varied shape and size, and somewhat spread through
the embedding space. Some clustering is apparent, which corresponds to structure in the
heirarchy. The loss from randomly drawn disjointness axioms keeps them somewhat sepa-
rated. Having passed through the GNN, the boxes take on dramatically different shapes and
relative positions. The semantic loss of these embeddings is low on average, but subclasses of
the same superclass have now very similar embeddings, and there are some clear violations
of the hierarchy. By contrast, comparing Figures 7(c) and 7(d), we see that the shapes of
the boxes trained with overlap losses are often longer and thinner, minimising the volume
of each intersection. And the final embeddings do not differ from the prior embeddings to
the same extent as with distance loss. The overall position of the parent classes is broadly
the same, with some minor translations. With both losses, the box volume increased after
passing through the GNN, and the difference between height and width decreased.

6.4. Evaluation of graph revisions

The median distances and loss changes for individual edge revisions to the graph were
small, and these measures overall had very large variance. However there were signs in
these data which suggest that using these values could be used to rank candidate re-
visions to a knowledge base. For the majority of the relations, when constraining the
random draw to appropriate classes, the distance rank distribution of these randomly
drawn edges was significantly different to the rank distribution of the test edges (p <0.05,
two-sided Mann–Whitney U test). Figure 8 shows a subset of the relation types in
the graph. For some relation types, as is the case for ‘hasChemStressResistance’ and
hasChemStressResistance Increased, there is no appreciable difference in the embed-
dings after the new edges are added. Summary statistics for these distance evaluations are
provided in Table 19 in Appendix E.

7. Discussion

In this work we have presented a method generating KG embeddings using GNNs, taking
hierarchical class information as well as graph structure into account. We do this by in-
troducing a semantic loss term to the training acting on box transformations of the node
embeddings. We have seen that it can be used on its own to generate KG embeddings
adhering to subsumptions defined in ontologies to some degree, but more importantly this
method shows promise when used together with another, task-specific prediction loss.

The main advantage of our approach is that signals from semantic information encoded
in class heirarchies, and signals from predictive tasks can jointly be used to train graph
neural networks.

We demonstrated the power of using both these signals together by predicting digenic
deletion fitness from a KG describing S. cerevisiae genes which we constructed. While
the predictive R2 of 0.377 may seem low, biological data is inherently noisy, and even
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Figure 7: Learned box embeddings in two dimensions for the molecular function domain.
7(a) and 7(b) box embeddings prior to input into GNN; 7(b) and 7(d) show final
embeddings for distance and overlap loss respectively.

replicating experiments is challenging (Roper et al., 2022). Moreover, our model predicts
quantitative outcomes from high-level qualitative information. What is more interesting is
how the prediction performance was improved by introducing more hierarchical information
to the models. One explanation we envision for the improved performance is that enforcing
the class hierarchies has a regularising effect, while also providing semantic grounding for
the modelled concepts. A weakness of the ontologies used, for example ChEBI and GO,
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Figure 8: Distribution of distances of box embeddings learned from revised graphs G̃ to the
original embeddings learned from Gtrain, shown by relation type, for a subset of
the relation types in the graph. (The method for calculating these differences is
described in 5.6). For most relations, the distance ranks of randomly drawn edges
(constrained to the appropriate class) were significantly different to the ranks of
the test edges (p <0.05, two-sided Mann–Whitney U test). Embeddings were
learned with inclusion losses.

is that they do not contain axioms for disjointness between concepts (such as those we
introduced in Section 5.5). This is possibly a consequence of them having been designed
primarily for constructing databases, rather than for automated reasoning. Despite this,
the improved performance on the prediction task also suggests that the ontologies used are,
at least somewhat, good models of the domains.

KG embeddings that, at least to some extent, adhere to their underlying ontologies can
potentially be used for several tasks, even if they were trained with a particular problem
in mind. Our trigenic gene deletion experiments are one example of applying the model
slightly outside its original domain. The increased performance in this task compared to
the digenic deletion is likely, at least partly, due to the individual genes involved no longer
being unseen during training. The fitness will depend heavily on the traits of the individual
genes, which will be better represented for genes in the training data. The embeddings
could potentially be applied to a broader range of tasks, such as GO annotation of genes,
which is typically addressed by integrating multiple knowledge sources (Merino et al., 2022).

We have not utilised any sequence information for our fitness predictions, despite it being
the most informative data about genes and fully available for S. cerevisiae. Representing
the initial gene embeddings as some encoding of their sequence would provide richer and
more meaningful gene embeddings and most likely result in better predictions. However,
our current setup will put more emphasis on using the information in the KG as the basis
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of the predictions. In this way this helps demonstrate both the knowledge in the KG and
the usefulness of our embedding method.

The capability of making predictions from qualitative facts enabled interpretability tech-
niques to guide experiment selection, underscoring the value of structured data represen-
tation and computational methods in accelerating research. Our edge filtering for viable
experiments introduces biases regarding the type of hypotheses generated. Leveraging large
language models could be one approach to automatically refine this selection and reveal
overlooked experiments.

We suggested two different loss functions for learning box embeddings. The first is based
on the volume of overlap between boxes, rewarding overlap for subclasses, and penalising
overlaps in the case of disjointness. The second was based on the distance from the boxes
fulfilling the subsumption axioms. Studying the 2-dimensional embeddings of in Figure 7,
the embedding learnt through the overlap loss seems to have slightly better captured the
semantics of the ontology. Boxes for subclasses of ‘structural molecule activity’ and
‘molecular function regulator activity’ are mostly contained within their respective
superclass, but there were some inconsistencies with the heirarchical structure of the ontol-
ogy, especially after the message passing of the GNN. The embedding learnt through the
distance-based loss instead places the boxes for each class along a diagonal.

Another property of the embeddings learned in this example is the variation in position
among instances, which is better for the overlap-loss. Figure 7(b) also shows some vari-
ation, primarily among instances of ‘small molecule sensor activity’, but there are
some large disagreements with the semantics of the ontology. It is probably the case that a
2-dimensional embedding is not sufficient to capture the complexity of this domain.

Interestingly, when class hierarchies were enforced in the gene deletion fitness predic-
tions, the distance-based loss yielded better predictive performance. One potential expla-
nation for this finding is that the distance-based loss may be particularly well suited as a
semantic loss to complement a task-specific loss. By introducing a semantic loss component
to our total loss, we of course want to capture how faithfully a given embedding adheres
to the semantics of the source ontology. But to have smooth training, a desirable feature
of a semantic loss measure is that its gradients are informative when the constraints are
not fulfilled. This is exactly what Ldistance does. To obtain useful gradients with Loverlap,
one could for example use Gumbel boxes as in Dasgupta et al. (2020), but a result of the
introduced smoothing is that losses can remain nonzero even when the semantic constraints
are fulfilled. With another loss term primarily guiding the training, in this case LMSE, the
issue of Ldistance not discriminating between classes that we observed in Section 6.3 is not
as pressing, as the primary loss will likely also push towards being able to discriminate.

Our proposed method for evaluating link revisions to a KG can be seen as an interesting
application and direction for future research. Evaluating only the distance in the generated
embeddings is, in this setting, not enough to discriminate between true and random edges.
It could possibly work better for a more heterogeneous graph, with a richer class hierarchy.
A measure of distance, combined with the semantic losses, could represent a measure of
surprise. In a scientific discovery context, surprise can be used as part of an active learning
algorithm, where a learning agent selects hypotheses that are expected to generate the
highest amount of information. This opens up opportunities to create and evaluate scientific
hypotheses based on the effect they have on KG embeddings in the domain.
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Future work

We identify several directions for future work based on this paper. First, the hierarchy-
aware GNN approach should be evaluated on a broader range of problems, for example
tasks from the Open Graph Benchmark. While the results presented here indicate promise
for a specific link-level prediction task on a particular KG, we do not assess how well the
approach generalises to other settings. We expect that its effectiveness will depend on the
availability and informativeness of class hierarchies, as well as on the extent to which they
provide information not already encoded in the graph structure.

Representing all graph elements as TBox axioms constitutes a simplification of the
underlying semantics. For example, modelling individuals as boxes allows intersections
between instances, which lack a clear semantic interpretation. In contrast, instances in
knowledge graph embedding models are more commonly represented as points. Similarly,
existential restrictions between classes are currently modelled in the same manner as rela-
tions between instances, whereas such restrictions could potentially be handled more directly
within the semantic loss formulation.

The box representation could also be more tightly integrated into the message-passing
process through box-level message aggregation, as in Lin et al. (2024), where messages are
propagated via geometric composition of boxes. For hierarchy-aware GNNs on knowledge
graphs, this could enable message passing that preserves class hierarchies and ontologi-
cal constraints directly in the embedding space, rather than enforcing them only through
auxiliary loss terms.

We present a method for generating scientific hypotheses and demonstrate its potential
through the successful experimental validation of one such hypothesis. Although promising,
this constitutes only an initial proof of concept, and substantially more extensive evaluation
is required to assess the reliability and broader applicability of the approach. In addition
to experimental correctness, future work should evaluate generated hypotheses according
to their scientific interest, novelty, and relevance as perceived by domain experts.

Finally, the link evaluation method introduced in Section 5.6, while rudimentary in the
context of link prediction, may provide an alternative mechanism for hypothesis evaluation.
By evaluating sets of added links jointly, hypotheses can be assessed not only in isolation
but also in terms of their global impact on the learned representation. Changes in the
embedding space can be interpreted as a measure of surprise, while corresponding changes
in the semantic loss provide a quantitative signal of consistency with existing knowledge.
Together, these signals offer a principled basis for evaluating hypotheses with respect to
both novelty and plausibility.

8. Conclusion

In this work we have presented a method generating KG embeddings using GNNs, taking
hierarchical class information as well as graph structure into account. We show that en-
forcing the class hierarchies as semantic losses throughout the model can help predictive
performance while also producing internal representations which better correspond to our
knowledge of the domain. This is demonstrated on a KG we have created from publicly
available data about the yeast S. cerevisiae. Based on this KG we can, not only predict
biological measurements, but also use interpretability tools to form a hypothesis about
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phenotype interactions. One such hypothesis was tested and supported by performing a bi-
ological experiment, uncovering an association between inositol utilisation and NaCl stress.
This illustrates how models with semantic grounding can help in scientific discovery.

The code and data for this project are available at https://github.com/filipkro/

kg-box-emb.
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Appendix A. Examples of description logic in KG

A description logic example of how a phenotype with a qualifier and chemical are specified
in the KG. This example is about decreased (APO 0000003) utilisation of carbon source
(APO 0000096) of lactate (CHEBI 16004), observed for the gene ‘YBL030C’. The gene is
linked to the phenotype by the has phenotype relation (RO 0002200) and to lactate with
hasChemNutrientUtilization Decreased.

APO 0000098-APO 0000003-CHEBI 16004 ⊑ APO 0000098 ⊓ APO 0000003

APO 0000098-APO 0000003-CHEBI 16004 ⊑ ∃aboutChemical.CHEBI 16004

YBL030C ⊑ ∃RO 0002200.APO 0000098-APO 0000003-CHEBI 16004

YBL030C ⊑ ∃hasChemNutrientUtilization Decreased.CHEBI 16004.

(26)

A description logic example of how a gene (YCR073C) is positively regulating the pro-
tein activity (INO 0000104) of another gene (YLR113W). This regulation happens during
(RO 0002092) cellular response to heat (GO 0034605).

YCR073C-YLR113W-protein activity-positive ⊑ INO 0000104

YCR073C ⊑ ∃positive regulator of.YCR073C-YLR113W-protein activity-positive

positive regulator of.YCR073C-YLR113W-protein activity-positive

⊑ ∃regulated gene.YLR113W

positive regulator of.YCR073C-YLR113W-protein activity-positive

⊑ ∃RO 0002092.GO 0034605

YCR073C ⊑ ∃positively regulating.YLR113W.

(27)

39



Kronström Gower Brunns̊aker Tiukova King

Appendix B. Hyperparameters

B.1. Box embedding parameters

Table 4: Parameters used for the box embeddings of the different domains

Domain Dimensions Epochs Lr Regularisation Gumbel
temperature

Neg. ex.
ratio

Material
entity

10 1,000 1e-2 1e-3 0.25 2.0

Genes 8 1,000 1e-2 1e-3 0.25 4.0

Regulations 5 800 1e-2 1e-3 0.25 2.0

Molecular
functions

5 800 1e-2 1e-3 0.25 2.0

Biological
processes

5 800 1e-2 1e-3 0.25 2.0

Phenotypes 5 800 1e-2 1e-3 0.25 2.0

Reactions &
Pathways

5 800 1e-2 1e-3 0.25 2.0

Cellular
components

5 800 1e-2 1e-3 0.25 2.0

B.2. Prediction models

The best performing model was trained for 160 epochs, with a learning rate of 1e-4, and L2
regularisation weight of 0.1. The depth of the GNN was 2 and the embedding dimensions
for the domains are listed in Table 5 and are the same throughout the GNN. The fully
connected neural network predicting the interaction from the embeddings is of depth 2 with
64, and 1 neurons respectively. For models trained with the semantic loss in (23) we used
α = 0.1 and β = 0.05.

Table 5: Embedding dimensions for the different domains throughout the GNN.

Embedding
dimensions

32 64 128

Domains Cellular components
Molecular functions

Reactions
Regulations

Biological processes
Phenotypes

Material entities
Genes
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B.3. Box embeddings for training without prediction task

Table 6: The embedding models, trained with both Ldistance and Loverlap used the same
hyperparameters. The learning rate was after each epoch multiplied with (1 −
Lr decay) and the regularisation used is presented in (15), penalising small boxes,
with l0 = 1. λs, λ, β, and γ refer to weights in the losses in (24) and (25).

Epochs Initial lr Lr decay Regular-
isation, λ

Small Box
Regular-
isation, λs

Negative
weight, β

Negative
weight, γ

500 0.1 0.001 0.001 0.01 0.5 1.0
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Appendix C. Prediction model comparisons

Table 7: The architecture described in Section 5.3 with different levels of hierarchy inte-
gration. These results are also presented in Table 3. Results from 10-fold cross-
validation of digenic deletion fitness.

Description Mean R2 SD

c GNN without box embeddings 0.348 0.050

d GNN with prior box embeddings 0.360 0.043

e GNN with prior box embeddings + Loverlap 0.368 0.038

f GNN with prior box embeddings + Ldistance 0.377 0.046

Table 8: Baseline performance. Results from 10-fold cross-validation of digenic deletion
fitness.

Description Mean R2 SD

a ComplEx + LightGBM 0.191 0.039

b Instantiations + LightGBM 0.211 0.022

g ComplEx + MLP 0.165 0.032

h Box2EL + LightGBM 0.016 0.007

Table 9: Impact on predictive performance when ignoring rare edges in the graph. Results
from 10-fold cross-validation of digenic deletion fitness.

Description Mean R2 SD

i Ignoring edges with fewer than 100 examples 0.333 0.043

j Ignoring edges with fewer than 500 examples 0.365 0.045

f Ignoring edges with fewer than 1,000 examples 0.377 0.046

k Ignoring edges with fewer than 5,000 examples 0.368 0.045
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Table 10: Impact on predictive performance when combining gene embeddings using the
methods presented in Table 2. Results from 10-fold cross-validation of digenic
deletion fitness.

Description Mean R2 SD

f Element-wise product 0.377 0.046

l Bilinear 0.363 0.042

m Concatenation 0.349 0.062

n Intersection 0.347 0.039

Table 11: Impact on predictive performance when varying the dimensionalities of the em-
beddings of the model. Varying initial dimensions means the box embeddings
in Table 4 are used. For the same initial dimensions, box embeddings in 10 di-
mensions are used, found with the hyperparameters in Table 4. Varying GNN
dimensions refers to the parameters in Table 5. For the same GNN dimensions
all embeddings are in 128 dimensions. Results from 10-fold cross-validation of
digenic deletion fitness.

Description Mean R2 SD

f Varying initial dimensions, varying GNN dimensions 0.377 0.046

o Varying initial dimensions, same GNN dimensions (128) 0.361 0.046

p Same initial dimension (10), same GNN dimensions (128) 0.372 0.053

q Same initial dimensions (10), varying GNN dimensions 0.368 0.046

Table 12: Comparison of different model architectures. Model f refers to the architecture
presented in Section 5.3, r uses a Transformer based GNN, and s uses the same
architecture as f , but do not split the graph into distinct domains which are
embedded separately. Results from 10-fold cross-validation of digenic deletion
fitness.

Description Mean R2 SD

f GraphSAGE, NN prediction head, split domains 0.377 0.046

r Transformer based GNN, NN prediction head, split domains 0.253 0.030

s GraphSAGE, NN prediction head, one domain 0.128 0.184
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Appendix D. Model-driven experiment

D.1. Edge filtering

Table 13: We filter for co-occurring edge pairs in which at least one edge connects a gene to
a node that is a subclass of one of the following APO classes, related to nutrient
utilisation.

APO Class Description

APO 0000096 General nutrient utilisation

APO 0000097 Auxotrophy

APO 0000099 Utilisation of nitrogen source

APO 0000100 Nutrient uptake

APO 0000125 Utilisation of phosphorous source

APO 0000219 Utilisation of sulfur source

Table 14: We also allow edge pairs where at least one of the edges links a gene to a chemical
through any of the following relations.

hasChemNutrientUtilization

hasChemNutrientUtilization Increased

hasChemNutrientUtilization Decreased

D.2. Top edge pairs
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Table 15: The 10 edge pairs with the highest importance weight after filtering for the
criteria specified in Appendix D.1. The edge pair selected for the experiment
is highlighted. Ch.Nutr.Util. is short for ‘hasChemNutrientUtilization’,
Ch.Nutr.Util.Dec. is short for hasChemNutrientUtilization Decreased, and
Ch.StressRes. is short for ‘hasChemStressResistance’. Clarifications of terms
can be found in Table 16.

Importance Relation1 Class1 Relation2 Class2

0.003471 Ch.Nutr.Util. CHEBI 17268 Ch.StressRes. CHEBI 22907

0.002002 Ch.StressRes. CHEBI 22907 has phenotype

APO 0000099-

APO 0000245-

CHEBI 14321

0.001985 Ch.Nutr.Util. CHEBI 17268 Ch.StressRes. CHEBI 26710

0.001705 Ch.Nutr.Util.Dec. CHEBI 23414 Ch.StressRes. CHEBI 22907

0.001679 hasChemCellMorph CHEBI 26710 has phenotype

APO 0000099-

APO 0000245-

CHEBI 14321

0.001580 Ch.Nutr.Util. CHEBI 17268 Ch.StressRes. CHEBI 50145

0.001541 Ch.Nutr.Util.Dec. CHEBI 77995 Ch.StressRes. CHEBI 49470

0.001537 Ch.StressRes. CHEBI 22907 has phenotype

APO 0000099-

APO 0000245-

CHEBI 26271

0.001500 Ch.Nutr.Util. CHEBI 17268 has phenotype

APO 0000059-

APO 0000002-

CHEBI 26710

0.001477 Ch.Nutr.Util.Dec. CHEBI 16236 Ch.StressRes. CHEBI 22907

Table 16: Clarifications for terms in the Table 15.
Identifier Label

CHEBI 17268 Myo-inositol

CHEBI 22907 Bleomycin

APO 0000099 Util. of nitrogen source

APO 0000245 Decreased

CHEBI 14321 Glutamate

CHEBI 26710 Sodium chloride

CHEBI 23414 Cpper sulfate

CHEBI 50145 Fenpropimorph

CHEBI 77995 Diphenyl, phenanthroline

CHEBI 26271 Proline

APO 0000059 Vacuolar morphology

APO 0000002 Abnormal

CHEBI 16236 Ethanol
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D.3. Cultivation method

The ∆ino1 deletion mutant was taken from the EUROSCARF deletion collection, with the
strain background being BY4741, genotype: MATa, his3∆1, leu2∆0, met15∆0, ura3∆0
(Y01272).

The ∆ino1 mutant was pre-cultured overnight in minimally buffered delft media contain-
ing the following: 5g/L (NH4)2SO4, 3g/L KH2PO4, 0.5g/L MGSO4. 7H2O, and 1mL/L
trace metal and vitamin solutions as described by Verduyn et al. (1992), 25 mg/L myo-
inositol and 2% glucose (w/v) in 30◦C, and 220rpm. The pre-culture was adjusted to 0.5
OD600, and robotically dispensed with a 1:20 dilution into a 96-well microculture plate
using a Hamilton Microlab Star liquid handling robot. A negative control was also in-
cluded to assess the baseline growth of the ∆ino1 mutant without any supplementation of
myo-inositol. Additionally, myo-inositol-free media with 0.25% (w/v) glucose, myo-inositol
(Sigma aldrich 57570-100G), Sodium chloride (Merck 1064041000) and MilliQ-water was
robotically dispensed, resulting in a total volume of 250µL and the concentrations defined
in Table 17.

Table 17: The concentrations of inositol and NaCl used for the experiment.

Inositol NaCl

0.00 mMolar 0.0 Molar

0.01 mMolar 0.0 Molar

0.01 mMolar 0.3 Molar

0.01 mMolar 0.6 Molar

0.05 mMolar 0.0 Molar

0.05 mMolar 0.3 Molar

0.05 mMolar 0.6 Molar

0.25 mMolar 0.0 Molar

0.25 mMolar 0.3 Molar

0.25 mMolar 0.6 Molar

A robust plate layout was generated with PLAID (Francisco Rodŕıguez et al., 2023). The
processed plate was cultivated in the automated laboratory cell Eve. The plate was trans-
ferred from an automated incubator (30◦C) to a Teleshaker Magnetic Shaking System, where
it was shaken for 30s at 800 rpm, divided evenly between clockwise and counter-clockwise
double-orbital shaking. After shaking, the plate was transferred to a BMG Polarstar plate
reader, where it underwent optical density measurements at 600 nM (the temperature in
the plate reader was kept at a constant 30◦C). After measuring, the plate was returned to
the incubator. The protocol was automatically repeated every 20 min for up to 24 h.

D.4. Growth data processing and statistical testing

Outliers in the growth curves (measured through optical density at 600nm) were identified
and filtered using the interquartile range (IQR), where any data points outside the range
of [Q1-1.5 IQR, Q3+1.5 IQR] were excluded from the dataset. The filtered curves were
then subsequently smoothed using a rolling mean of window size 3. The resulting averaged
growth curves can be seen in Figure 9. Area under curve was calculated using numpy.trapz
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(v1.26.4). To assess the effects of inositol and NaCl on AUC, a generalised linear model
was employed (statsmodels v0.14.4). The model was fitted using a Gaussian family
distribution. Choice α-value was set at 0.05. We modelled all factors as categorical to avoid
imposing any assumptions on linearity. The model is specified as follows:

AUC ∽ C(Inositol)× C(NaCl). (28)

Table 18: Estimated parameters from the GLM examining the effects of myo-Inositol-
supplementation and NaCl treatment on growth dynamics. The table presents
coefficient estimates, p-values and confidence intervals for the main effects and
interaction terms. Significant interactions indicate that the effect of myo-inositol
supplementation changes depending on treatment levels. The two highlighted
rows indicate the significant interaction effect.

Coefficient
(×103)

Confidence
interval (×103) p-value

Intercept 97.29 [88.20, 106] 0.000

Medium inositol -11.84 [-24.7, 1.02] 0.071

High inositol -14.56 [-27.9, -1.24] 0.032

Low NaCl -9.50 [-22.4, 3.37] 0.148

High NaCl -30.61 [-43.5, -17.8] 0.000

Medium inositol × Low NaCl 13.11 [-5.40, 31.6] 0.165

High inositol × Low NaCl 13.38 [-5.45, 32.2] 0.164

Medium inositol × High NaCl 20.92 [2.41, 39.4] 0.027

High inositol × High NaCl 22.64 [3.40, 41.9] 0.021
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Figure 9: Growth curves showing the mean optical densities of the 6-8 repetitions for the
different experimental groups. Optical density (at 600nM) is a unitless measure-
ment typically used as an indirect measure of cell density and biomass.
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Appendix E. Link evaluation results per edge type

Table 19: Link evaluation results per edge type.
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