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Abstract

Neurosymbolic (NeSy) frameworks combine neural representations and learning with sym-
bolic representations and reasoning. Combining the reasoning capacities, explainability,
and interpretability of symbolic processing with the flexibility and power of neural com-
puting allows us to solve complex problems with more reliability while being data-efficient.
However, this recently growing topic poses a challenge to developers with its learning curve,
lack of user-friendly tools, libraries, and unifying frameworks. In this paper, we character-
ize the technical facets of existing NeSy frameworks, such as the symbolic representation
language, integration with neural models, and the underlying algorithms. A majority of the
NeSy research focuses on algorithms instead of providing generic frameworks for declarative
problem specification to leverage problem solving. To highlight the key aspects of Neu-
rosymbolic modeling, we showcase three generic NeSy frameworks - DeepProbLog, Scallop,
and DomiKnowS. We identify the challenges within each facet that lay the foundation for
identifying the expressivity of each framework in solving a variety of problems. Building
on this foundation, we aim to drive transformative action and encourage the community
to rethink this problem in novel ways.

Keywords: Neurosymbolic, Comparing NeSy frameworks, DomiKnowS, DeepProbLog,
Scallop, Combining learning and reasoning

1. Introduction

Symbolic or good old-fashioned Al focused on creating rule-based reasoning sys-
tems (Hayes-Roth, 1985) exemplified by early works such as the Physical Symbol Sys-
tem (Augusto, 2021; Newell, 1980) and ELIZA (Weizenbaum, 1966). However, drawbacks
such as limited scalability due to the need to explicitly define domain predicates and rules
for each task, lack of robustness in handling messy real-world data, and low computational
efficiency led to a decline in the popularity of this paradigm, shifting the focus toward neural
computing and deep learning. Deep Learning (LeCun et al., 2015; Ahmad et al., 2019)
revolutionized Al, as nuanced relationships in data could be learned by backpropagation
through multiple layers of processing and creating abstract representations of data. How-
ever, it led to a loss of explainability (Li et al., 2023a), dependence on large amounts of data,
lack of generalizability for unobserved situations, and rising concerns about its environmen-
tal sustainability (Bender et al., 2021). Neurosymbolic AI (Hitzler and Sarker, 2022;
Bhuyan et al., 2024), a combination of symbolic Al and reasoning with neural networks,
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attempts to incorporate the capabilities of both worlds and create systems that are data and
time efficient, generalizable, and explainable. Neurosymbolic models have been applied to
several real-world applications (Bouneffouf and Aggarwal, 2022) in safety-critical areas (Lu
et al., 2024) such as healthcare (Hossain and Chen, 2025) and autonomous driving (Sun
et al., 2021). Several techniques have been proposed for this integration (Kautz, 2022;
Jayasingha et al., 2025), trying to combine the advantages and mitigate the disadvantages
from both symbolic and neural methods. However, due to the lack of unified libraries to
facilitate this research and the focus on specific algorithms rather than generic frameworks,
this research becomes less impactful. Moreover, the few generic frameworks tend to vary in
problem formulation, implementation, algorithms, and flexibility of use. This poses a chal-
lenge in being able to compare their performance uniformly or identify a research direction
that improves on previous work. To alleviate this issue, we provide a comparative study
with the following key contributions, a) Identifying the main components of existing NeSy
frameworks, b) Comparison of frameworks across the identified facets, ¢) Highlighting the
requirements for the next generation of NeSy frameworks, building upon the drawbacks of
the current systems and the possible interplays between the neural and symbolic compo-
nents. We plan to expand this study to cover more frameworks, while the three selected ones
are used to explain the aspects of our characterization. These frameworks are demonstrated
with four example tasks detailed in this paper tying the comparative facets concretely with
a technical implementation.’

2. Neurosymbolic Frameworks

A NeSy framework should provide flexibility for modeling both neural and symbolic com-
ponents and their interplay in a unified declarative framework, going beyond specific un-
derlying algorithms and techniques (Kordjamshidi et al., 2016, 2015). On the symbolic
side, a generic framework should support a symbolic representation language that can be
seamlessly connected to neural components and cover various underlying symbolic reasoning
mechanisms. On the neural side, we need to have the flexibility of connecting to various ar-
chitectures, including various loss functions, sources of supervision, and training paradigms.
More importantly, a NeSy framework should provide a modeling language for seamless in-
tegration of these two paradigms in building pipelines, joint decision-making models and,
in general, for arbitrary configurations of multiple models. Such a NeSy framework should
support neuro-symbolic training and inference beyond specific integration algorithms. We
distinguish between NeSy techniques and NeSy frameworks. By techniques, we mean when
problem-specific algorithms are provided (Lample and Charton, 2020; Burattini et al., 2002).
For example, AlphaGo (Silver et al., 2016) introduced a reinforcement learning solution
to Go, using Monte Carlo Tree Search as a symbolic component inside a neural network.
Another example is NS-CL (Mao et al., 2019) (Neuro-Symbolic Concept Learner) that inte-
grates neural perception with symbolic reasoning to learn visual concepts and compositional
language grounding for VQA tasks. Many other techniques and algorithms are proposed
for the interplay between the two paradigms (Badreddine et al., 2022; Cohen et al., 2017;
Smolensky et al., 2016; Lima et al., 2005; Sathasivam, 2011; Serafini and d’Avila Garcez,
2016; Lamb et al., 2021; Zhang et al., 2024) some of which are employed in the generic
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frameworks, such as Inference Masked Loss (Guo et al., 2020), Semantic Loss (Xu et al.,
2018), Primal-Dual (Nandwani et al., 2019). NeSy techniques often lack the generality of
frameworks, which are designed as broader tools intended for practical use and extensibility
with new integration algorithms and with the capability of programming and configuring
the two parts and their interplay.

Interplay
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Figure 1: An overview of various components of a NeuroSymbolic Al framework. Neu-
roSymbolic Al is at the intersection of symbolic reasoning and neural learning, depicted in
green and purple respectively. The interplay techniques can be classified into 6 types, shown
in the middle. Arrows indicate the connections between components (not the computation
flow).

In this work, we illustrate these components by focusing on a selection of representative,
generic NeSy frameworks. These frameworks are chosen for their contribution to advancing
the development of general-purpose approaches. DeepProbLog (Manhaeve et al., 2021)
is a probabilistic logic programming language that incorporates neural predicates in logic
programming with an underlying differentiable translation of logical reasoning. The prob-
abilistic logic programming component is built on top of ProbLog (De Raedt et al., 2007).
DomiKnowS (Rajaby Faghihi et al., 2021; Faghihi et al., 2023, 2024) is a declarative
learning-based programming framework (Kordjamshidi et al., 2019) that integrates sym-
bolic domain knowledge into deep learning. It is a Python framework that facilitates the
incorporation of logical constraints that represent domain knowledge with neural learning in
PyTorch. Scallop (Huang et al., 2021; Li et al., 2023b, 2024) is a framework that includes
a flexible symbolic representation based on relational data modeling, using declarative logic
programming similar to DeepProbLog while it is based on Datalog (Abiteboul et al., 1995)
instead of Prolog. We also point to less general frameworks such as LEFT (Hsu et al.,
2023) that is designed for grounding language in visual modality and compositional rea-
soning over concepts. The framework consists of an LLM interpreter that converts natural
language to logical programs. The generated programs are directed to a differentiable,
domain-independent, and soft first-order logic-based executor. LEFT is limited to tasks
requiring grounding language in vision such as visual question answering (Johnson et al.,
2017; Yi et al., 2018; Liu et al., 2019). Building on this foundation, NeSyCoCo, (Ka-
mali et al., 2025) has been introduced to address the limitations of LEFT, particularly the



SINHA PREMSRI KAMALI KORDJAMSHIDI

challenge of lexical variety of natural language and alleviating the issue of non-canoical
predicate logic representations for handling unseen concepts. NeSyCoCo extends LEFT’s
approach by using distributed word representations to connect a wide variety of linguisti-
cally motivated predicates to neural modules, thus alleviating the reliance on a predefined
predicate vocabulary. PyReason (Aditya et al., 2023) is a library built to support rea-
soning on top of outputs from neural networks. The neural component produces outputs
such as labels or concept scores, while the symbolic component does graph-based reasoning
with logical rules declared in a graph structure. It can produce an explanation trace for
inference and has a memory-efficient implementation. PLoT (Wong et al., 2023) (Proba-
bilistic Language of Thought) is a proposed framework leveraging neural and probabilistic
modeling for generative world modeling. It models thinking with probabilistic programs
and meaning construction with neural programs. The goal is to provide a language-driven
unified thinking interface. CCN+ (Giunchiglia et al., 2024) is a framework that modifies
the output layer of a neural network to make results compliant with requirements that can
be expressed in propositional logic. A requirement neural layer, ReqL, is built on top of the
neural network. The standard cross-entropy loss is adapted into a ReqlLoss to learn from
the constraints in the ReqL layer. While CCN+ is a general framework, the underlying
neurosymbolic technique follows similar ideas that integrate logic in the architecture in (Li
and Srikumar, 2019). DeepLog (Derkinderen et al., 2025) is another proposed neurosym-
bolic Al framework that unifies logic and neural computation using a declarative paradigm.
It introduces the DeepLog language, an annotated neural extension of grounded first-order
logic that can abstract over various logics and apply them either within the model archi-
tecture or in the loss function. It employs computational algebraic circuits implemented on
GPUs, forming a neurosymbolic abstract machine. DeepLog allows efficient specification
and execution of diverse neurosymbolic models and inference tasks in a declarative fashion.

Symbolic Model Interpla;

Framework Lang Kngwledge Rep Dec Algorithmp > Eff LLM

CCN+ None  Propositional Logic X Learning from X X
constraints

DomiKnowS None Concepts & Relations v Learning from X  Faghihi

graph, FOL constraints et al. (2024)

DeepProbLog ProbLog FOL X Deductive X X
Reasoning

LEFT None FOL X Differentiable soft X Hsu et al.
logic (2023)

PyReason None FOL X Graph Reasoning v* X

Scallop DatalLog FOL X Deductive v’ Liet al
Reasoning (2024)

Table 1: Comparison of frameworks and key factors. Lang: External language required,
Knowledge Rep: Knowledge Representation, Model Dec: Model Declaration flexibility,
Algorithm: Supported algorithm(s) for learning and inference, Eff: Computational efficiency
considerations, LLM: Use of Large Language Models, FOL: First Order Logic.

In this paper, we characterize the more generic NeSy frameworks based on: a) Symbolic
knowledge representation language, b) Representation and flexibility of Neural Modeling,
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c) Model Declaration, d) Interplay between symbolic and sub-symbolic systems, and e) The
usage of LLMs. Figure 1 shows the connection between these aspects. The neural represen-
tations and the symbolic representations are the two main components of a neurosymbolic
framework. The neural representation guides learning and obtains supervision from the
data, while the symbolic representations leverage symbolic reasoning and exploit symbolic
knowledge during training or inference. Table 1 shows an overview of the frameworks
across selected factors. In the next sections, we focus on DomiKnowS, DeepProbLog,
and Scallop to provide a deeper investigation of the challenges in each component. De-
pending on the framework, certain tasks are easier to implement, while others require more
effort. The chosen frameworks enable us to solve the same task in multiple frameworks.

3. Symbolic Knowledge Representation

Generic Neuro-Symbolic (NeSy) systems and frameworks use symbolic knowledge represen-
tation languages to encode constraints, facts, probabilities, and rules. Frameworks vary in
how they represent and integrate this symbolic knowledge. Many employ classical formal
logic, grounded in well-defined syntax and semantics, and adapt these representations and
reasoning mechanisms within a unified integration framework. Some frameworks build on
established formalisms such as logic programming or constraint satisfaction. In contrast,
others take an entirely new hybrid semantics, while preserving conventional symbolic syn-
tax. Table 2 compares the implementation of symbolic knowledge (concepts or facts) for
the MNIST Sum task. In general, the domain knowledge consists of the two concepts of
digits and the sum.

As can be seen, DomiKnowS represents a part of symbolic domain knowledge as a graph
G(V, E), where the nodes are the concepts in the domain and the edges are the relation-
ships between them. Each node can have properties. More complex knowledge beyond
entities and relations is expressed with a pseudo first-order logical language with quantifiers
designed in Python. DomiKnowS mostly interprets the symbolic knowledge as logical con-
straints, such as the implementation of sum_combinations in the given example. Unlike the
other frameworks, DomiKnowS does not build on predefined formal semantics. It follows a
FOL-like syntax for symbolic logical representations, making it independent of the formal
semantics of an underlying formal language and allows more flexibility of representations
and adaptation to underlying algorithms in the framework. DeepProbLog, on the other
hand, utilizes logical predicates that are originally a part of the probabilistic logic pro-
grams (Ng and Subrahmanian, 1992) of ProbLog (De Raedt et al., 2007), for its symbolic
representation. These neural predicates obtain their probability distributions from the un-
derlying neural models. Probabilistic facts, neural facts, and neural annotated disjunctions
(nAD) whose probabilities are supplied by the neural component of the program can be
added. Here, digit is a neural predicate as indicated by the use of nn(. ..). DeepProbLog
follows the formal semantics of Prolog (Clocksin and Mellish, 2003), followed by ProbLog,
its probabilistic extension. Finally, Scallop adopts a relational data model for symbolic
knowledge representation (Kolaitis and Vardi, 1990). Scallop is built on top of the syntax
and formal semantics of Datalog and its probabilistic extensions, relaxing the exact seman-
tics of ProbLog. It allows for the expression of common reasoning, such as aggregation,
negation, and recursion. Similar to DeepProbLog, some of these predicates in the sym-
bolic part obtain their probability distribution from neural models, such as digit_1 and



N

¥

SINHA PREMSRI KAMALI KORDJAMSHIDI

DomiKnowS
image = Concept(name= )
digit = image(name= , ConceptClass=EnumConcept, values=digits)
image_pair = Concept(name= )
pair_dO, pair_dl = image_pair.has_a(digitO=image, digitl=image)
s = image_pair(name= , ConceptClass=EnumConcept, values=summations)
# ...
sum_combinations.append(andL(getattr(digit, dO_nm) (path=( , pair_d0)),
getattr(digit, di_nm) (path=( , pair_di1))))
DeepProbLog

nn(mnist_net, [X],Y,[0,1,2,3,4,5,6,7,8,9]) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,X2), digit(Y,¥2), Z is X2+Y2.

Scallop
self.scl_ctx = scallopy.ScallopContext (provenance=provenance, k=k)
self.scl_ctx.add_relation( , int, input_mapping=list(range(10)))
self.scl_ctx.add_relation( , int, input_mapping=list(range(10)))
self.scl_ctx.add_rule( )

Table 2: Comparison of Symbolic Representation across frameworks.

digit_2. Additionally, while ProbLog requires exhaustive search for computations, Datalog
can use top-k results and exploit database optimizations, making Scallop algorithmically
more time-efficient than DeepProbLog.

4. Neural Models Representations

The other core component of a NeSy system is the neural modeling that is integrated
with the symbolic knowledge discussed above. The neural models are mostly wrapped
up under the logical predicate names in most of the frameworks that have an explicit
logical knowledge representation language. To best leverage the reasoning capabilities of the
symbolic system available and the ability of neural models to learn abstract representations
from data, the neural models are used as abstract concept learners for the concepts defined as
logical predicates in the symbolic representation. The neural model representation is often
used to predict probability distributions for the symbolic concepts based on raw sensory
inputs. Given that neurosymbolic frameworks are explicit about the symbolic concepts and
relations, reading data into the symbolic representation requires special considerations for
processing raw data, putting data into structure and Data Modeling. The aspect of data
modeling is often ignored in current Nesy frameworks and it is done by the programmers in
an ad-hoc pre-processing step. The neural modeling is often written using standard deep
learning libraries, such as PyTorch (Paszke et al., 2019).
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DomiKnowS
class Net():
# Neural Network
image_batch[ , image_contains.reversed] = JointSensor(image[ 1,
forward=make_batch)
image [ ] = ModulelLearner( , module=Net())
# ...
DeepProbLog
class MNIST_Net():
# Neural Network
network = MNIST_Net()
net = Network(network, , batching=True)
net.optimizer = torch.optim.Adam(network.parameters(), lr=1e-3)
model = Model( , [mnet])
# ...
Scallop

class MNISTSum2Net (nn.Module) :
def __init__(self, provenance, k):
# Neural Network
self .mnist_net = MNISTNet()
# Scallop Context
self.scl_ctx = scallopy.ScallopContext(provenance=provenance, k=k)
# ...
class Trainer():
def __init__(self, train_loader, test_loader, model_dir, learning_rate,
loss, k, provenance):
self.model_dir = model_dir
self .network = MNISTSum2Net (provenance, k)
self.optimizer = optim.Adam(self.network.parameters(), lr=learning_rate)

Table 3: For neural integration, DomiKnowS utilizes sensors and readers for reading in
data, while a learner connects to a network. DeepProbLog connects the neural network to
the ProbLog file, requiring data handling to construct the terms and queries from the raw
data. Scallop has an additional layer on top of the standard network that adds the symbolic
context.

Table 3 shows snippets of neural modeling expressions across frameworks, highlighting
differences in implementation. Scallop utilizes relatively standard neural modeling using
PyTorch, while needing an added context of symbolic rules. Although integrated into
Python, the context relation and rule setup are verbatim from Datal.og and only passed
as a parameter to a function, which requires familiarity with DataLog and its semantics.




SINHA PREMSRI KAMALI KORDJAMSHIDI

DeepProbLog, on the other hand, needs manual configuration of the raw data and processing
into queries built for ProbLog, on top of other standard neural components. This processed
data is passed into the neural network which is then connected to a ProbLog program,
such as addition.pl in the figure. DomiKnowS’s neural component is built in PyTorch.
Unlike other frameworks, DomiKnowS has built-in components called Readers, Sensors
and Module learners for a more transparent data modeling, making the connection to neural
components and feeding data into them explicitly in the program. This provides more
flexibility in connecting the concepts to deterministic or probabilistic functions that can
interact with other symbolic concepts. The module learner can also use custom models.
This makes the interaction with raw data structured, transparent, and controllable.

5. Model Declaration

Most frameworks utilize neural components as abstract concept learners and use a sym-
bolic component to reason over the learned concepts. Each learner is a model and model
declaration refers to the flexibility of modularizing and connecting different learners. Each
learner can receive supervision independently. In most neurosymbolic frameworks, the su-
pervision from data is usually provided based on the final output of the end-to-end model.
For example, in an MNIST Sum task used throughout and detailed in Section 8, the neural
and symbolic components are trained based on the final output of the sum, without access
to individual digit labels in a semi-supervised setting. The task loss, e.g., a Cross-Entropy
Loss, is computed, and errors are backpropagated through the differentiable operations that
led to the output generation. For example, in DeepProblog, we can declare a single loss
function associated with the entire neural component. Gradient computations differ across
frameworks depending on whether losses are defined individually for each neural output or
specified as a single global loss function. However, there remains a need for models capable
of incorporating supervision at multiple levels of their symbolic representations. In Domi-
KnowS, loss computation can be defined for each symbol. Since each concept is linked to
both learning modules and ground-truth labels, their losses can be integrated seamlessly.
This enables joint training of all concepts alongside the target task, allowing each concept
to be optimized more effectively—leveraging available data without relying solely on the
target task’s output. In other words, it provides the flexibility of building pipelines of
decision making, obtaining distant supervision in addition to joint training and inference.
Model declaration is very well manifested in modern tools and libraries for building agentic
frameworks, where multiple agents are structured into pipelines or graphs to make com-
municative decisions by passing the output of one agent as input to another (Plaat et al.,
2025).

6. Interplay between Symbolic and Sub-symbolic

Kautz (2022) provides a characterization of the possible interplays between symbolic and
sub-symbolic components. This interplay of neurosymbolic can be explained by the concept
of System 1 and System 2 thinking described in Kahneman (2011). Research in this field
aims to create an ideal integration that seamlessly supports ”thinking fast and slow” (Booch
et al., 2021; Fabiano et al., 2023). Here, System 1 refers to the fast neural processing, while
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System 2 corresponds to the slower, more deliberate symbolic reasoning. Different meth-
ods for the integration of symbolic reasoning and neural programming have been explored
such as employing logical constraint satisfaction, integer linear programming, differentiable
reasoning, probabilistic logic programming. In this section, we will discuss a system-level
algorithmic comparison of the different frameworks.

DomiKnowS models the inference as an integer linear programming problem to en-
force the model to follow constraints expressed in first-order logical form (Van Hentenryck
et al., 1992). The objective of the program is guided by the neural components, and the
framework supports multiple training algorithms for learning from constraints. The Primal-
Dual formulation (Nandwani et al., 2019) converts the constrained optimization problem
into a min-max optimization with Lagrangian multipliers for each constraint, augmenting
the original loss with a soft logic surrogate to minimize constraint violations. Sampling-
Loss (Ahmed et al., 2022), inspired by semantic loss (Xu et al., 2018)and samples a set of
assignments for each variable based on the probability distribution of the neural modules’
output. Integer Linear Programming (ILP)(Cropper and Dumanci¢, 2022) formulates an
optimization objective based on Inference-Masked Loss(Guo et al., 2020) to constrain the
model during training. The training goal is to adjust the neural models to produce legit-
imate outputs that adhere to the given constraints. At prediction time, ILP can also be
applied to enforce final predictions that comply with given constraints. DomiKnowS relies
on the off-the-shelf optimization solver Gurobi (Gurobi Optimization, LLC, 2024) Deep-
ProbLog models each problem as a probabilistic logical program that consists of neural
facts, probabilistic facts, neural predicates, and a set of logical rules. A joint optimiza-
tion of the parameters of the logic program is done alongside the parameters of the neural
component. Neural network training is done using learning from entailment (Frazier and
Pitt, 1993) while in ProbLog, gradient-based optimization is performed on the underlying
generated Arithmetic Circuits (Shpilka et al., 2010), which is a differentiable structure. The
Arithmetic Circuits are transformed from a Sentential Decision Diagram (Darwiche, 2011)
generated by ProbLog. Algebraic ProbLog (Kimmig et al., 2011) is used to compute the
gradient alongside probabilities using semirings (Eisner, 2002). Scallop is similar in its
setup to DeepProbLog where it creates an end-to-end differentiable framework combining
a symbolic reasoning component with a neural modeling component. They aim to relax
the formal semantics required by the use of ProbLog in DeepProbLog and instead rely
on a symbolic reasoning language extending Datalog, built into their framework. They
have a customizable provenance semiring framework (Green et al., 2007), where different
provenance semirings, such as extended max-min semiring and top-k proofs semiring, allow
learning using different types of heuristics for gradient calculations. Table 4 compares the
computational efficiency of these models at training and inference time on a single train-
ing/testing example. As theoretically suggested, Scallop is expected to outperform other
frameworks in inference and training speed, owing to its memory and time-efficient imple-
mentation in Rust. The results in Table 4 support this expectation, with Scallop achieving
the fastest inference time, on par with DomiKnowS. In practice, DeepProbLog achieves
slightly faster training performance than Scallop. This discrepancy may be due to overhead
unrelated to the core algorithmic complexity. DomiKnowS exhibits slower training due to
the overhead of uploading the entire graph of data into memory.

9
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7. Role of Large Language Models

Large foundation models hold significant promise for overcoming the bottleneck of acquiring
symbolic representations, which are essential for symbolic reasoning and consequently in
neurosymbolic frameworks.

Source of Symbolic Knowledge: The symbolic knowledge in neuro-symbolic sys-
tems, which is integrated with the neural component, can originate from several distinct
sources. While most systems require explicit, hand-crafted symbolic knowledge, earlier clas-
sical logic-based learning research can be used for automatically learning rules from data
by using inductive logic programming (Nienhuys-Cheng and de Wolf, 1997; Bratko and
Muggleton, 1995) or mining constraints. Nowadays, even LLMs can be utilized to generate
symbolic knowledge (Pan et al., 2023a; Mirzaee and Kordjamshidi, 2023; Acharya et al.,
2024; Xu et al., 2024a). Several neurosymbolic frameworks and systems have tried utilizing
large foundation models to generate the symbolic knowledge, based on the task or query, to
overcome the labor-intensive nature of hand-crafting rules for every single task and the time
required in the automatic learning of symbolic knowledge from data (Ishay et al., 2023; Xu
et al., 2024a; Yang et al., 2024). Extraction of symbolic representations from Foundation
Models has become possible given the vast implicit knowledge stored within these models,
such as LLMs and multimodal models, which are trained on massive and diverse corpora (Li
et al., 2024; Petroni et al., 2019). These models can generate symbolic content (e.g., can-
didate rules, knowledge graph triples, or logic statements), perform reasoning that mimics
symbolic inference, or act as components alongside symbolic modules (Fang and Yu, 2024).
For example, LLMs can be prompted to extract facts from unstructured text, effectively
populating a symbolic knowledge graph (Yao et al., 2025). Techniques like Symbolic Chain-
of-Thought inject formal logic into the LLM’s reasoning process, improving accuracy and
explainability on logical reasoning tasks (Xu et al., 2024b). However, foundation models
are prone to hallucinations and lack the strict logical guarantees of traditional symbolic
systems (Zheng et al., 2024). Therefore, integrating foundation models often requires care-
ful prompting, verification steps to ensure reliability (Xu et al., 2024b). Generation of
inputs to symbolic engines: LLMs have also been used to generate translations from
raw inputs, specially natural language, to symbolic language that is then fed into a symbolic
reasoner. In examples such as Logic-LM (Pan et al., 2023b), LLMs are leveraged to convert
a natural language query into symbolic language that is then solved by a symbolic reasoner.
This method improves the performance of unfinetuned LLMs on logical reasoning-based
tasks. DomiKnowS (Faghihi et al., 2024) takes this a step further by enabling users to
describe problems in natural language which LLMs then use to generate relevant concepts
and relationships. Through a user-interactive process, these concepts and relationships are
refined iteratively. Finally, the LLM translates the user-defined constraints from natural
language into first-order logic representations before converting them into DomiKnowS syn-
tax. Some systems use LLMs in multiple capacities. In VIERA (Li et al., 2024), which is
built on top of Scallop, 12 foundation models can be used as plugins. These models are
treated as stateless functions with relational inputs and outputs. These foundation models
can be either language models like GPT (OpenAl et al., 2024) and LLaMA (Touvron et al.,
2023), vision models such as OWL-ViT (Minderer et al., 2022) and SAM (Kirillov et al.,
2023), or multimodal models such as CLIP (Radford et al., 2021). These models can be

10
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used to extract facts, assign probabilities, or for classification, and are treated as ”foreign
predicates” in their interface. An older version, DSR-LM (Zhang et al., 2023) of this uti-
lized BERT-based language models for perception and relation extraction, combined with
a symbolic reasoner for question answering. LEFT, on the other hand, uses LLMs both for
the generation of the concepts that are used for grounding and as an interpreter to generate
the first-order logic program corresponding to a natural language query, that is solved by
the symbolic executor.

8. Example Tasks

NeSy frameworks formulate problems in various ways based on their implementation and
symbolic interpretation. In DomiKnowS, the symbolic reasoning part is formulated as a
logical constraint solving problem. The domain is represented as a graph G(V, E), where
the nodes are the concepts in the domain and the edges are the relationships between them.
Each node can have properties. The final logical constraints apply to the graph concepts.
In DeepProbLog, the symbolic reasoning problem is interpreted as probabilistic logic
programs in ProbLog. In Scallop, similarly, the problem is viewed as a combination of
the neural and the symbolic components where the symbolic part is a probabilistic logical
program similar to DeepProblog with further optimized inference. In LEFT, the problem is
limited to the application of concept learning and grounding language into visual modality.
Here, the neural model is composed of feature extractors, object and relation classifiers
(concept learners), and a first-order logic program generator for a given question. In this
section, we will compare the problem formulations in each of these frameworks for a set
of tasks. Note that we only include LEFT for the visual question answering task due
to the domain-specific nature of the framework. All code associated with these tasks and
referenced in this section is maintained publicly on GitHub. 2

8.1. MNIST Sum

The MNIST Sum task is an extension of the classic MNIST handwritten digit recognition
task (Lecun et al., 1998) where given two images of digits, the task is to output their sum
that is a whole number. The training examples consist of the two images of the digits and
the ground-truth label of their sum. The individual labels of the digits are not available for
training.

8.1.1. DoMiIKNOWS

Problem Specification. DomiKnowS formulates the problem using graph representations
of concepts, relations, and logic. For performing the MNIST Sum task in DomiKnowS, the
first concept defined is image concept representing visual information. The digit concept,
a subclass of image, is introduced to represent the output class, ranging from 0 to 9. To
establish relationships between digit images, the image pair concept is defined as an edge
connecting two digit concepts. The sum concept is then introduced under image pair to
represent the summation of the two digit concepts and the ground-truth output of the
program. For this task, three constraints are defined. The first two constraints utilize

2. https://github.com/HLR/nesy-examples
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MNIST Sum Toy-NER

Framework | Training Testing Memory Training Testing Memory

Time (ms) Time (ms) (MB) Time (ms) Time (ms) (MB)
DomiKnowS |37.72 2.34 573.80 14.86 14.29 576.82
DeepProbLog | 5.84 3.24 739.72 20.74 20.47 3767.08
Scallop 6.50 2.35 581.36 1.50 1.05 297.1

Math-Inference Simple VQA

Framework | Training Testing Memory Training Testing Memory

Time (ms) Time (ms) (MB) Time (ms) Time (ms) (MB)
DomiKnowS |77.46 69.58 1039.30 81.02 60.52 1413.44
DeepProbLog | 5.54 5.07 1588.30 755.13 363.81 1346.23
Scallop 0.948 0.223 345.48 13.17 22.66 768.4
LEFT N/A N/A N/A 6.19 3.44 755.1

Table 4: Time and Space efficiency for each framework across 4 tasks. Time and memory
records are averaged over 5 runs. Times are in milliseconds per sample. Memory utilization
is in megabytes and indicates the overall memory for training.

exactL to ensure that the predicted digit and sum values belong to only one valid class.
Another constraint enforces that the expected sum value matches the sum of the two digit
predictions. This is implemented using ifL constraints, which verify whether the predicted
digits form one of the possible solutions for a valid sum. If multiple solutions exist, the orL
constraint ensures that at least one of the answers corresponds to the predicted digits.
Neural Modeling. The model declaration comprises standard neural modeling compo-
nents, including data loading, pre-processing, neural network definition, and loss function
specification. The process begins with the ReaderSensor, which reads the input image.
Next, a relation concept is defined using another sensor, JointSensor, to establish connec-
tions between images. The module learner is then employed to generate an initial prediction
for the digit concept, which is subsequently passed to another sensor, FunctionalSensor, to
compute the sum of two images.

8.1.2. DEePPRrROBLOG

Problem Specification. DeepProbLog formulates a problem regarding probabilistic facts,
neural facts, and neural annotated disjunctions (nAD). In the MNIST Sum task, the fact
X is defined to represent the input image. A neural network function is then introduced
to map X to its corresponding digit, denoted as digit(X,Y’). To enforce constraints about
the summation and the ground-truth sum, a function is defined to compute the sum of two
digits.

Neural Modeling. The neural modeling follows a standard neural network setup, such
as a CNN-based classifier. It is preceded by data loading and pre-processing, which are
performed separately from the ProbLog program. Thus, the neural model used in Deep-
ProbLog can be initialized independently of the DeepProbLog model. Once the neural
model is initialized, the framework passes it along with a probabilistic program as input.
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8.1.3. SCALLOP

Problem Specification. Scallop formulates the problem in terms of relations, values, and
(Horn) rules derived from Datalog. As discussed earlier, the concepts and constraints defined
in this framework are similar to those in DeepProbLog. However, these rules can be directly
embedded into a Scallop program through its API. The process begins by establishing the
concepts digit] and digit2 to represent the digit values of two given images. Based on the
summation of these two values, it must be equal to the sum_2 logical reasoning module,
which serves as the ground truth for this task.

Neural Modeling. Unlike DeepProbLog, the neural modeling is integrated with Scallop’s
relation and rule declaration. The neural modeling remains a standard neural network.

8.2. Shapes

The Shapes dataset is a synthetic VQA benchmark designed to evaluate elementary spa-
tial reasoning. Each sample consists of a 128 x 128 pixel image where the task is to answer
the fixed question: “Is there a red shape above a blue circle?”. The primary rationale
for using a synthetic dataset is to create a controlled experimental environment. This ap-
proach allows us to isolate specific reasoning skills—such as attribute binding and relational
understanding—ifrom the perceptual complexities and spurious correlations.

Positive examples are generated by programmatically placing a red object (circle, square,
or triangle) above a blue circle. In negative examples, this specific spatial configuration is
absent. To increase task complexity, every image also contains one to three randomly placed,
non-overlapping distractor objects with varying shapes and colors. The dataset comprises
2,000 images, divided into perfectly balanced training and testing sets of 1,000 samples
each. Examples of this benchmark are shown in Figure 2.

A () ®
@e
@

True example: A red triangle is above a blue False example: No red shape is above a blue
circle. circle.

Figure 2: Examples from the Shapes dataset for the question “Is there a red shape above a
blue circle?”

8.2.1. COMMON PERCEPTION—REASONING INTERFACE

We decompose the system into: (i) a neural perception unit producing distributions over
object attributes and pairwise relations; and (ii) a symbolic reasoning unit that consumes
these as soft facts over the object domain and evaluates a single existential rule encoding
the query. Supervision is a binary yes/no label optimized via a cross-entropy loss on the
final answer distribution.
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8.2.2. DoMiIKNOWS

Problem Specification. DomiKnowS formulates the problem as a graph representation.
It first declares the image concept to represent the visual input. The objects concept is then
defined to represent the individual objects contained within the image. An explicit con-
nection declaration is established in the framework between images and objects, indicating
that each image may contain multiple objects. Under the image concept, two additional
concepts—color and shape—are introduced to represent the attributes of each object for
each shape and color considered. These two concepts serve as the outputs of the neural
modeling component. Next, DomiKnowS defines a relation concept between pairs of objects
to capture their relational structure within the same image. Finally, symbolic reasoning is
expressed using existsL, which denotes the existence of a particular combination of queries.
The inference takes the following form:

existsL(is_red(X), is_blue(Y), is_circle(Y), relation(Rel))

where the X and Y represent the first object and second object, Rel represent the relation
of X and Y.

Neural Modeling. DomiKnowS uses a class of functions called ReaderSensors to process
the raw input data. A ModuleLearner is then employed to query the object-centric en-
coder, producing representations of the objects within the image. These representations are
subsequently passed to three ModuleLearner to predict the color (red and blue) and shape
(circle) attributes of the objects. A CompositionCandidateSensor is used to connect pairs
of objects within the image, providing the information needed to compute their relations.
Finally, the framework aggregates all information through predefined logical expressions,
which are used to infer the final output.

8.2.3. DEepPPrOBLOG

Problem Specification. We use a ProbLog program with neural annotated disjunctions
for color(Image,0,C), shape(Image,0,S), and relation(Image,01,02,R). The decision
rule is:

answer (Image, yes) :- obj(01), obj(02),
01 /= 02,
color(Image,01,red),
color (Image,02,blue),
shape (Image,02,circle),
relation(Image,01,02,R).
A complementary answer (Image, no) ensures a normalized binary outcome. The ob-
ject domain obj/1 is declared up to npax derived from annotations. Batched queries are
issued as answer (tensor(batch(I)), Y) and solved with an exact engine.

Neural Modeling. An object-centric encoder crops and embeds objects; heads output
categorical distributions for color and shape per object and for relation per ordered object
pair. These heads are wrapped as DeepProblLog networks and bound to the program’s
neural predicates, enabling end-to-end training from the answer predicate.
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8.2.4. SCALLOP

Problem Specification. We declare unary predicates over object indices for attributes
(red(i), blue(j), circle(j)) and a binary predicate for the chosen spatial relation R(i, j).
The query is encoded as a Horn rule:

ans() :- red(i), blue(j), circle(j), above(i, j).

Scallop maps soft facts to weighted relations under a differentiable provenance and produces
a normalized {yes,no} answer.

Neural Modeling. Per-object (color, shape) and per-pair (relation) distributions from
the encoder are converted to Scallop facts, respecting masks for padded objects and pairs.
The Scallop context composes these facts with the rule to yield the answer distribution,
providing gradients to the neural unit.

8.2.5. LEFT

Problem Specification. We express the query in first-order logic executed by LEFT’s
generalized FOL executor:

exists(Object, lambda x: exists(Object, lambda y:
above(y, x) and red(x) and circle(y) and blue(y)))

The executor grounds over the object domain and evaluates the formula using attribute
predicates for unary properties and a binary predicate for the relation, returning a scalar
decision consistent with the query.

Neural Modeling. The object-centric encoder yields per-object attribute scores (for col-
or/shape) and per-pair relation scores. These tensors parameterize the executor’s predi-
cates, forming a differentiable perception—reasoning pipeline trained on the binary supervi-
sion.

8.3. Toy NER

For a simplified, toy version of the Named-Entity Recognition task (Tjong Kim Sang and
De Meulder, 2003), we create a dataset of randomly generated embeddings representing
persons and locations. The objective is to learn the concepts of ”works_in”, i.e., whether a
person works in a location, and ”is_real_person”, i.e., whether a given embedding is a person
or not. These concepts are learned using indirect supervision on two queries, that compose
the atomic concepts.
constraintl = is_real person(P1) AND works_in(P1,L1) AND is_real _person(P2)
AND works_in(P2,L2)
constraint2 = is_real person(P2) AND works_in(P2,L2) OR is_real_person(P3)
AND works_in(P3,L3)
Here, P1,P2,P3,L1,L2,L3 are input embeddings with Ps representing persons and Ls
representing locations. Thus, the final task is to predict the output of these two constraints
(true or false), given 6 embeddings corresponding to 3 persons and 3 locations.
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8.3.1. DoMiIKNOWS

Problem Specification. To perform the Toy NER task, DomiKnowS begins by construct-
ing a graph representation of the problem. It first defines the person and location concepts
to represent the entity types of interest. Under the person concept, three sub-concepts
are declared to represent three individual persons, and under the location concept, three
sub-concepts are introduced to represent distinct locations. A pair relation is then defined
to connect a person and a location. This relation is used to create three separate work_infi/
concepts, each representing the output relation between person ¢ and location . Finally,
the inference queries are expressed in a form-based manner, using andL to represent logical
conjunctions (AND) between concepts and orL to represent logical disjunctions (OR) in the
desired queries above.

Neural Modeling. The model declaration follows the standard pipeline of neural com-
ponents. It begins with a ReaderSensor to process the raw input data. A ModuleLearner
is then invoked, using the embeddings of either person or location to generate predictions
based on the given representations. A JointSensor is subsequently employed to connect the
person and location concepts in order to form the work_infi/ relation specified in the prob-
lem definition. Finally, model inference is carried out based on predefined queries, yielding
the final output.

8.3.2. DEEPPROBLOG

Problem Specification. DeepProbLog declares 6 concepts, is_real_personfi] for each per-
son i and works_infi] for each location i. These concepts are used to formulate the two
constraints with the final query, check, being the conjunction of the two. Note that, Deep-
ProbLog does not support multiple simultaneous queries and hence, the two constraints
cannot be trained with individual supervision for labels of each.

Neural Modeling. DeepProbLog uses the two neural networks for classification of the
two concepts. The main challenge is the creation of the dataloader that reads from the raw
data and converts it into the format necessary to send queries with the appropriate value
substitutions for variables. This integration with ProbLog needs to be done by the user
from scratch.

8.3.3. SCALLOP

Problem Specification. Scallop utilizes 6 concepts similar to DeepProbLog. The value of
the two constraints is merged using a final module check(P1* P2 * W1 * W2 + P3 * W3).
Here, the results of concepts is_real_personfi] (P1, P2, P3) and works_infi] (W1, W2, W3)
are passed instead of the embeddings themselves. This context is passed through python
itself, instead of a separate Datalog file.

Neural Modeling. The neural modeling component is standard with flexible loss declara-
tions. To adapt from the raw data, an embedding generator NERDataset is created which
is the same as the JSONDataset utilized in the DeepProbLog solution. However, there is
no need to manually adapt the data to generate queries to the datalog component, as the
forward function of the neural network is the final query and only requires the outputs of
the neural networks passed to it.
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8.4. Math Equation Inference

The Math Equation Inference task is designed to evaluate whether a neural network can
learn local mathematical concepts from global supervision. The input to this task consists
of two lists, each containing six real numbers sampled uniformly from the range [—1,1]. The
objective is to determine whether the model can learn from a global condition that encom-
passes the properties of the first list, the properties of the second list, and the relationship
between them. We consider two properties, that is, Z?:o xz; > 0 and Z?:o |z;| > 0.5. For
relations between the two lists, we examine two cases: (i) whether the first elements of the
lists have the same sign, and (ii) whether their last elements have opposite signs. These
concepts are learned through indirect supervision using global queries that compose the
atomic concepts, expressed as follows:
property1(L1) AND property2(L2) AND relation(L1l, L2)

where L1, L2 are randomly generated lists of six real numbers, propertyl and property?2 are
drawn from the set of considered properties, and relation is drawn from the set of considered
relations.

8.4.1. DoMIKNOWS

Problem Specification. For implementing this task in DomiKnowS, the first concept
defined is the problem concept, which represents the overall mathematical inference prob-
lem. Next, the Ist concept is introduced to represent a list of considered numbers. Under
this Ist concept, all possible condition concepts—is_cond! and is_cond2—are defined to
represent the output class of each list. Subsequently, two relation concepts, is_relationl
and is_relation2, are introduced between pairs of Ist instances to capture the two relational
conditions described in the problem statement. Importantly, all possible conditions and
relations must be defined, even if some are not ultimately used in the final inference. To
define the inference query, the logical operator andL is employed to combine the three rele-
vant concepts. For example: andL(is_cond1(L1), is_relationl (L1, L2), is_.cond2(L2)). This
query corresponds to the case where the sum of L1 is greater than 0 (is_condl), the first
elements of L1 and L2 share the same sign (is_relation!), and the sum of the absolute values
of L2 is greater than 0.5 (is_cond?2).

Neural Modeling. DomiKnowS begins with a ReaderSensor to process the two input
lists of numbers. Then, CompositionCandidateSensor is employed to connect the two lists,
forming the intermediate representation required for relation prediction in later stages.
Four neural networks are instantiated using ModuleLearner—two dedicated to property
concepts and two to relation concepts. These networks are trained to predict the respective
properties and relations. The predicted concepts are subsequently integrated into the final
query, which specifies the target relation for the given problem and serves as the prediction
label during training and evaluation. It is important to note that DomiKnowS requires all
possible inference queries to be explicitly represented in the graph. Each query is set as
either active or inactive to obtain the correct prediction during inference.

8.4.2. DEEPPROBLOG

Problem Specification. In this task, DeepProbLog defines four neural predicates: two for
the considered properties (is_property/i]-nn for object property i), and two for the considered
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relations (is_relationfi/-nn for relation i). These four neural predicates are then combined to
define the final query concept, inference. One inference concept is created for each possible
combination of the condition of L1 (2 possibilities), the condition of L2 (2 possibilities),
and the relation between L1 and L2 (2 possibilities). In total, eight inference concepts
are formulated. During evaluation, only the relevant concept corresponding to the input
configuration is activated and used to produce the final prediction for the problem.
Neural Modeling. DeepProbLog employs four neural networks, corresponding to the de-
fined concepts: two for property concepts and two for relation concepts. The pipeline then
proceeds with data loading, where all possible candidate lists of numbers are read sepa-
rately and pre-processed to obtain the required model inputs. This also includes manually
connecting the list of numbers within the same problem. Then, all defined neural networks
are called to obtain all possible relations and properties output. Lastly, the query must be
constructed in the exact predefined pattern to ensure that the system produces the correct
output aligned with the desired inference condition.

8.4.3. SCALLOP

Problem Specification. Similar to DomiKnowS and DeepProbLog on this task, Scallop
begins with the declaration of four concepts, that is, two property concepts and two relation
concepts. However, Scallop only defines the one final module, inference(P1 * P2 * R), that
accumulates the probability based on the output of the properties of L1 and L2, and the
relation between L1 and L2. The output is defined in the neural modeling part to get the
connection between the final module and the defined concept.

Neural Modeling. The neural modeling component in Scallop follows the standard
pipeline. However, Scallop requires a manually defined connection between the model out-
put and the declared final module. This requirement arises because the final module is
specified in a general form, rather than being tied to a particular combination of inference
concepts. In contrast, other frameworks explicitly define every possible query corresponding
to a combination of properties and relations and refer only to those queries during inference.

9. Discussion and Future Direction

Table 1 summarizes the comparative aspects of existing frameworks and outlines future
directions for optimizing, as we observe many columns marked with 'X’, implying most
frameworks present challenges that hinder the application and flexibility of the frameworks.
While current frameworks are functional, future developments should take a more holis-
tic approach that considers all aspects from an end-user perspective, aiming to improve
usability as general-purpose libraries and foster wider adoption of neurosymbolic methods.
Symbolic Representation. The generic neurosymbolic frameworks provide a formal
knowledge representation language of their choice. The selected languages often are based
on pure logical formalisms with established formal semantics, for example, Datalog or Pro-
log. However, we argue that knowledge representation for neurosymbolic frameworks needs
to be an innovative language designed for this integration purpose with adaptable semantics
with learning as the pivotal concept (Kordjamshidi et al., 2019). Restricting these frame-
works to classical Al formalisms and formal semantics limits the level of extension that can
be made and restricts the support of various algorithms and types of integration.
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Neural Modeling. Most of the examined frameworks leave neural modeling and the task
of connecting the symbolic and sub-symbolic components, up to the user. This connection
usually requires low-level data pre-processing, which is time consuming to implement. A
lack of user-friendly libraries discourages developers from using neurosymbolic methods to
solve downstream tasks. There is a need for abstractions in these frameworks (Kordjamshidi
et al., 2022) that improve user experience and remove the need for users to implement such
data processing from scratch.

Model Declaration. There is a need to be explicit about the low-level components of
the neural architecture, enabling us to design interactions between neural and symbolic
components and connect them as intended. The goal is to provide flexibility in designing
arbitrary loss functions and connecting them to data for supervising concepts at various
neural layers, which will allow any symbol to be learnable.

Types of Interplay. Considering Kautz (2022)’s classification, current frameworks are
limited in supporting one or two ways of interactions. DeepProbLog and Scallop utilize one
form of implementation, while DomiKnowS has multiple settings as detailed in Section 6.
One of the key challenges is determining the appropriate level of abstraction in a neural
model after which reasoning should occur. The classification types demonstrate how a neural
model can identify the relevant symbolic representations and suggest that neurosymbolic
frameworks could leverage these models to learn and route inputs to the corresponding
symbolic reasoning system. However, it remains unclear what level of abstraction is most
effective for solving the end task in practice.

LLM. Drawbacks often associated with employing symbolic Al into neural computing, such
as creation of the symbolic knowledge for integration, can be mediated with the use of LLMs
and foundation models. LLMs have the potential to alleviate the classical issues in symbolic
processing. Their vast knowledge can also be utilized to reduce the need for rebuilding neural
components, allowing for flexible connections with different symbolic components.

10. Conclusion

Neurosymbolic Al presents a promising path forward in addressing the limitations of purely
symbolic or neural approaches to Al. By integrating symbolic reasoning with neural learn-
ing, NeSy frameworks offer a balance between interpretability, data usage, time efficiency,
and generalization. In this paper, we characterize the core components of NeSy frameworks
and provide an analysis of some existing ones - DeepProbLog, Scallop, and DomiKnowS,
illustrating their comparative facets. We identified a number of facets such as symbolic
knowledge and data representation, neural modeling, model declaration, their method of
integrating the symbolic and sub-symbolic systems, and LLMs integration. We identify
key challenges in each facet that can guide us toward building the next generation of neu-
rosymbolic frameworks. Unifying ideas in the field and building flexible frameworks by
incorporating strengths in every facet will ease the learning curve associated with NeSy
systems and improves their application. Future NeSy frameworks should aim to provide
user-friendly interfaces, scalability, algorithm coverage and seamless integrations with foun-
dation models. Recent advances in large language models (LLMs) and vision-language
models (VLMs) provides promising solutions to longstanding knowledge engineering chal-
lenges, fostering more effective and scalable integration of symbolic representations, and
advancing research in neurosymbolic Al.
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