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Abstract. Within the context of cognitive computational neuroscience modeling and neurosymbolic artificial intelligence, using
both symbolic and numerical approaches, we propose a method for relating explicit, readable data structures to biologically
plausible numerical operations. We consider a parameterized edit distance between two hierarchical symbolic data instances,
thereby embedding the data in a metric space and enabling the definition of a geodesic between two data points. We also define
in this symbolic space the notion of data region, here equivalent to data type or concept, and provide a projection onto such a
region, so that very generic machine learning algorithms can now be applied simultaneously at both the symbolic and numerical
levels. This theoretical work may be of interest to researchers in computational neuroscience, model simulation, and artificial
intelligence who aim to design explainable, explicit, ill-defined problem-solving mechanisms. The advantage is that it provides a
straightforward data representation on which generic numerical planning or learning algorithms can be applied directly, once the
data-structure distances are adequately parameterized for the given application domain. The proposed specification is not only
formally developed but also implemented in detail at the programming level, with experimental illustrations that demonstrate
feasibility and enable evaluation and use of the proposed approach.

Keywords: Symbolic specification, Edit distance, Problem solving, Metric space

1. Introduction

Within the context of cognitive computational neuroscience modeling and neurosymbolic artificial intelligence,
using both symbolic and numerical approaches, we propose a method for relating explicit, readable data structures
to biologically plausible numerical operations. To this end, a set of symbolic data structures is equipped with an edit
distance, yielding a functional metric space on which powerful numerical algorithms can be applied directly.

What is a symbol? The vanilla definition is that a symbol is a mark or label that indicates or is considered as
representing a subject or object, its properties, or relationships between them. Symbols are also used to go beyond
what is known or perceived by creating linkages between concepts or experiences.

This notion is the foundation of human knowledge. At first glance, at the syntactic level, a symbol is an “atom
of knowledge”, and is no more than the label (or identifier) of an object in the broad sense. Furthermore, it has
a “meaning” when it is semantically grounded, in the sense discussed by [35]. The link between such a label
and the object to which it refers has been examined and debated in [62], which situates this notion within more
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2 Palaude et al. / Metrizable symbolic data structure

recent cognitive studies. This is the “symbol grounding problem”, understood as the process of embedding symbolic
computations onto sensorimotor features of real-life objects and behavior. This provides a semantic interpretation
of the symbolic system, or model (in the sense of a model as a set of logical assertions), which involves the capacity
to select referents for concepts and yields the notion of consciousness, as discussed in [6]. As noted by these three
references, this includes affordance, which is not only a real object feature but also the capability to interact with it
to attain an objective and receive an outcome.

At the Artificial Intelligence (Al) level, unless embodied in a robot with as much experience as our brain, which
is through the phylogenetic evolution in interaction with the external environment for millions of years, symbols
are not grounded in the real world, even if they adequately model some aspects of reality. Furthermore, if only
prediction or generative performances are targeted regarding an Al system that processes symbols such as words,
as in LLM frameworks, there is no need to manually define a link between symbolic input and output and numeric
representations in the underlying artificial neural networks and related mechanisms: big data machine learning
mechanisms make the job. However, as reviewed recently by [28] regarding neurosymbolic mechanisms, it could
also be necessary to construct the relation between a symbolic data structure and its numeric anchoring explicitly.
This occurs for explainable AI [16]. This also occurs when a priori explicit knowledge is required to constrain very
general Al mechanisms to a specific field of inference and to control and avoid biases. Moreover, for parsimonious
Al it is interesting to introduce as much well-known a priori knowledge as possible rather than estimating it from
large datasets.

The main issue addressed here is thus to propose an explicit, parameterizable, therefore adaptable, link between
symbolic representation of knowledge and its numerical anchoring to be either used within usual Al numerical
algorithms or as a way to model cognitive representations.

Organization of the paper. To explain the pertinence and originality of our proposal, we situate it in the next
section in relation to existing neurosymbolic approaches. Then, the problem-solving issue is taken as a significant
example. We also situate this work on brain modeling at the symbolic level, both with respect to the paradigm and
to knowledge representation.

Given these prerequisites, we detail a modeling approach that instantiates the previously stated general princi-
ples, thereby motivating the specification developed in this paper. We describe, at the computational level, how the
previous data structure ingredients can be formalized, including at the programming level, thereby allowing us to
consider generic numeric algorithms directly on the symbolic data structures. This includes embedding symbolic
data structures in a metric space and enjoying a notion of geodesics. This also includes defining a concept corre-
sponding to a region of the state space, equipped with a projector that maps a data point to that region. We also
introduce the notion of a bound in this metric space to enable exploration beyond the given data structures.

At a further step, the development of a metrizable symbolic data structure embedded in a metric space for use in
general machine learning mechanisms also requires specifying a scalar field, along with interpolation and barycenter
mechanisms. All of this is then illustrated by presenting a few toy demonstrations and by reporting a realistic
experiment.

As a final step, we discuss how generic machine learning algorithms can be applied within this formalization,
particularly for open-ended or ill-defined complex problem-solving. We finally discuss the perspectives of this work
before a brief conclusion.

2. Context and related work
2.1. Neurosymbolic approaches

The numerical machine learning approach is primarily based on statistical inference, including Bayesian methods,
and has achieved outstanding performance. On the other hand, when manipulating knowledge, an explicit symbolic
machine learning mechanism, thus reasoning, is much more efficient to infer knowledge from known facts, and
hybrid mechanisms seem mandatory for complex tasks where non-trivial a priori knowledge is to be introduced. It
also has significant advantages when interpretability (by experts) and explainability (by end users) are key features,
as discussed in [16], and it develops these dual aspects by proposing criteria for evaluating both. These features
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are essential if such learning mechanisms are used to model cognitive functions. In addition, formal reasoning is
less computationally expensive than billions of operations in deep network computation, as studied by [22], who
compare the computational costs of the two approaches, focusing on academic use by typical research teams. They
also raise ecological and ethical issues that pose a significant challenge in the context of the artificial intelligence
boom.

Coupling both approaches should bring the required computational power to solve complex problems or model
complex brain functions, in an explainable way, and with parsimonious resource consumption, and neural-symbolic
computing brings together robust learning in neural networks with reasoning and explainability via symbolic repre-
sentations as recently reviewed in details in [28], who also introduced a taxonomy of numeric and symbolic coupling
in algorithms. The present work aims to examine the coupling levels at which symbolic knowledge and rules are
compiled in distributed computation, either via local symbol mapping or through more complex embeddings of
symbolic rules; in both cases, symbolic knowledge is translated into the network architecture and parameters.

One motivation for such an approach is thus explainability, as reviewed by [14] in the domain of supervised
learning, with both the capability to interpret both results and reasoning path, but also, as mentioned by the authors,
to be able to introduce high-level explicit a priory knowledge which allows to better constraint the system, thus
provide more efficient results, taking the “free-lunch” principle into account: the more general the algorithm, the
less efficient on a specific problem. This may be another interest of the present approach: to introduce symbolic a
priori information into numerical computations.

The interest in working at both the numeric and symbolic levels, consistent with the problem-solving focus
here, is well illustrated by [65], which discusses a logic-based explanation mechanism for planning, dedicated to
controlled hybrid systems in human interaction. The authors’ efficient approach places the symbolic layer “outside”
the corresponding numeric representation. In contrast, at a more integrated level, such a plan is represented by the
notion of an abstract path, as developed in this paper. This work is also in line with ontology-related reasoning, as,
for instance, [36] shows how symbols can be optimally encoded in the network’s numeric variables before applying
numerical-level reasoning mechanisms. In contrast, we present a dual approach: symbolic data are equipped with a
metric, enabling direct application of numerical tools to them.

A step ahead, computational neuroscience models are primarily based on numerical mechanisms, except for the
Vector Symbolic Architecture (VSA) [25], which is grounded in the Semantic Pointer Architecture (SPA). This
approach introduces an intermediate algebraic abstraction of spiking neural network architectures, as in [17], to
develop biologically plausible cognitive functionalities and human knowledge representations. This also recently
includes a high-level symbolic representation, enabling reasoning in the preliminary work of [44] regarding not only
deductive but also inductive and abductive reasoning, as developed in [39]. Using Vector Symbolic Architecture,
implemented at the neural spiking assembly level via the Neural Engineering Framework [25], cognitive symbolic
data structures can be realized as a biologically plausible memories [39].

As a complementary approach to these previous works, we are not going to study how to embed a symbolic
representation onto a given numeric space, but how to equip the symbolic data structure directly with the numeric
ingredients needed to apply numeric algorithms, and show how general algorithms can be used directly on the
symbolic data structure by this means. To this end, in the next section, let us precisely state what a “symbolic
representation” is, to make explicit our design choices to represent cognitive symbolic information. The targeted
approach applies to both the system state and its related metadata, at the neurosymbolic level.

2.2. Problem-solving and planning problems

A typical class of problems discussed above concerns planning. Since [46] work, problem-solving and planning
have been formalized as a trajectory problem from an initial state to a goal state, in a state space. This means avoiding
“obstacle”, in other words, being compliant with respect to trajectory constraints, while reducing the distance to the
goal. This problem statement has recently been generalized by [3] to complex open problems with multiple possible
goals, while the state space is only partially known.

Solutions often use a distance, such as an edit distance, between two state-space points, for instance, in heuristics
that generate step-by-step plans. In an early work [29], obstacle avoidance is expressed in terms of distances between
potentially colliding parts and the goal (s), leading to the formulation of path planning problems as an optimal
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4 Palaude et al. / Metrizable symbolic data structure

control problem with variational-numerical solutions. In [66], generic path planning problems have been related
to a parametric harmonic potential, which is tractable in high dimensions, reducing path planning to this potential
optimization while yielding a biologically plausible solution to hippocampal navigation, in either concrete locations
or abstract state space. In brief, the potential is repulsive around obstacles and attractive toward goals. Using a
harmonic potential avoids local minima, whereas using a parametric potential avoids the curse of dimensionality, a
standard limitation of potential methods: the need to sample the vast state space. As noted in [29], and as shown in
[11], such harmonic control is a particular case of optimal control. A relatively efficient algorithm has been proposed
in [66], which avoids the curse of dimensionality by designing a parametric potential whose parameters increase
with trajectory length rather than with state-space dimension.

With respect to such approaches, the present development will provide a framework for directly considering this
mechanism using symbolic data, without the non-negligible overhead of embedding and the somewhat arbitrary
choice of a sampling method.

Unknown space to be explored

Path constraints *
e Goal states

f."operator

Initial state
Path constraints

Fig. 1. Problem-solving as trajectory generation, from [39].

2.3. Brain modeling at a symbolic level

Studying the brain is conducted at different temporal and spatial scales, at different topological network scales, as
reviewed in [8], and at different “modeling” scales, in the sense of Marr, as reviewed and questioned in [34]. At the
difference of Marr’s original three implementations, algorithmic and computational levels, modern vision, which is
presented for instance in [31] in a comprehensive review, considers (i) the implementation level, more precisely a
biophysical representation in the broad sense, and considers (iii) as the highest level the cognitive behavior, while
(ii) the computational middle layer includes algorithmic aspects. This also clarifies that the numerical aspects pertain
primarily to the biophysical side, whereas the symbolic representation relates mainly to the behavioral stage. This is
not exclusive, but more a progression. The key point is that computational representation must intrinsically be able
to manage both representations conjointly, as illustrated in Figure 2. This corresponds to the development proposed
here.

Usually, the symbolic aspects of brain activity modeling are discussed at a phenomenological level, in a human-
readable form. The formalization is often represented as block diagrams that show the relationships among model
entities, with each entity defined by a keyword, a human-readable comment, properties, and relationships with other
entities. This is essentially an informal ontology. The next step of formalization is thus to apply an effective ontology
modeling.

In this direction, the brain processes can also be modeled using such a well-established framework, as explained
in [30]. Brain anatomy has been formalized for a long time, as reviewed in [23]. At the same time, macroscopic
cognitive models correspond to work in progress: problem-solving tasks have been addressed by [26], and focusing
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Fig. 2. A revised view of the Marr paradigm, considering modern development in computational neuroscience.

recently on computational thinking, [43] made a preliminary work on the subject, considering a subject engaged in
a creative open problem-solving activity as reported in [42].

This includes both quantitative and qualitative data. Please refer to [15] for a general introduction on ontology and
to [47] for a practical approach, at the modeling level. Modeling the brain explicitly using symbolic representations
contrasts with the use of very general deep-learning “black-box” tools, which is really questionable, as argued by
[57], raising a “free-lunch” principle at the modeling level. What predicts everything, predicts anything. The targeted
approach thus addresses both the information encoded in neuronal ensembles and the modeling knowledge, thereby
enabling us to explain and interpret it.

Notations and Layout. We write vectors and matrices in bold letters (bold capital letters for matrices), and scalars
. . ¢ [ 1 if P is true T f
in italic. We use the Kronecker notation 6p & 0 if P is false We make the distinction between & and = the

former being a definition, the latter the result of a derivation.

Notices:

— To make the paper easily readable, we provide verbal evidence in the text. At the same time, demonstrations
of statements are given in footnotes with a title, and only straightforward derivations are required here.

— We also provide (which is uncommon in scientific papers) a large set of links to help readers from different
domains understand unfamiliar terms, primarily via Wikipedia. This is only for reading help.

3. Symbolic data specification

3.1. A “natural” usual way to represent cognitive knowledge

Given the previous considerations regarding the context and motivation of this symbolic approach, we now present
the types of representations targeted here, following [39]. The aim is to manipulate the internal symbolic represen-
tation of knowledge of the form shown in Figure 3, as introduced in [39]. Concepts are represented as a hierarchical
data structure, in the sense of [24], which distinguishes among associative, sequential, and hierarchical cognitive
memories. In our context, associative and sequential memorization structures are particular cases of hierarchical data
structures: they correspond, respectively, to “map” (also called “dictionary”) and “list” at the level of programming
data structures.

In Figure 3 examples, concepts are anchored in an input/output, that is, stimulus/response. They form a sensori-
motor feature space (colored regions) corresponding, for example, to different sensor modalities. Inherited features
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6 Palaude et al. / Metrizable symbolic data structure

(e.g., here, the penguin “is-a” bird and thus inherits the features of a bird) are shown with dotted lines, while red
lines represent overwritten values (e.g., here, a penguin cannot fly). Green arrows point toward concepts that are
themselves attributes of other concept features, accounting for inter-concept relationships. Values are derived from
meta-information, not explicitly manipulated by the agent, but are used for process specification or interpretation
(e.g., here, the weight unit and bounds).

kilogram
unit

s
Fish S0

can

Vertebrate
. can
isA
can

//

isA

Fig. 3. Hierarchical data structure representing concepts. From [39].

This corresponds to the [32] approach, which also proposed the simple idea that an individual can be defined by
“feature dimensions” (termed “quality” in the paper), corresponding to attributes with typed values. For instance, a
bird’s knowledge could correspond to what is represented in Fig 4. This general approach of semantic knowledge
representation using a hierarchical taxonomy is instantiated considering (is—a) relations, with capability features
(can), including those related to other resources, extrinsic features (has), and intrinsic features (is, as proposed by
[38]). This is a typical framework, sufficiently general to encompass a broad range of domains in cognitive research.
The illustrative example in Figure 4 is sufficient to allow us to detail the main characteristics of our representation.
The textual representation here, and at the implementation level, is a weak form of the universal JSON syntax. Some
features are properties, and others are relations. A property can be qualitative, e.g., the is—-covered-by property
takes a value in an enumeration (e.g., here, { sing, £1y}), or quantitative (e.g., here, the weight). The features
can be hierarchical, either because the value is an enumeration (e.g., here, can) or because the value has some
features (e.g., here, weight).

Such a data structure defines a “concept” in the sense of [32] (e.g., here, “a bird”") quoted before. It is a convex
region of the state space (e.g., here, the area of all birds) in compliance with the formalism proposal [32]. This means
that “between” to birds all intermediate element are also birds. This notion will be correctly formalized in the sequel.
Each feature has also a default value, which defines the notion of “prototype” (e.g., here, a typical prototypical bird).
Such hierarchical representation corresponds to the third cognitive memory architecture, as proposed by [24]. At
the programming level, it will be implemented as a “type”. At the geometric level, data values correspond to points,
and concepts to “regions”’; however, the data structure also encodes the prototype of a region.

When defining such a data structure, several design choices arise. On one hand, it is always better to decom-
pose the information as much as possible into atomic irreducible elements (e.g., here, family_name: Smith
first_names: [John Adam] instead of name: ’Smith, John Adam’) for algorithmic processing. On
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Palaude et al. / Metrizable symbolic data structure 7

bird: {
is_a: vertebrate
can: { sing fly eat: { worm fish } }
has: { feather beak }
is: { weight: { min: 0.010 max: 50 unit: kilogram } }

with some exceptions like penguins:

penguin: {
is_a: bird
can: { fly: false walk }

Fig. 4. An example object defined via its features.

the other hand, it is preferable to organize features into substructures rather than present flattened information (e.g.,
here, create a substructure for the name, birth date, and related fields) to maximize modularity. We already men-
tioned the importance of providing as many default values as possible, and this is a design requirement at several
levels; see, for instance, appendix A.2 for a discussion at the level of numeric data representation. When appropri-
ate, defining bounds is also a precious meta-element. We also note, at the level of concrete implementation, that
it is always preferable to use explicit, standard feature names that align with established terminology; thus, avoid
acronyms or abbreviations and use the most common term for the feature.

3.2. Structuring the state space with data type

Given the previous computational objective, the first step is to generate a metrizable symbolic data-structure
embedding (e.g., a “symboling”). In the resulting metric space, the lever is the notion of editing distance. As a result,
a symbolic data value is step by step modified to equal another value, as detailed in the following subsection. Each
elementary editing operation incurs an additive cost, yielding a well-defined distance and a minimal-distance path
from the initial value to the target value. The key point is that such distance depends on the data type. For instance,
given a numeric value, it will depend on the chosen bounds, scale, and precision, as developed in appendix A.2.

Moreover, given a data type, this specification requires defining a projection of data values in the neighborhood
of the data type’s region onto the data type. To precisely define these operations at the programming level, we base
their implementation on the usual notion of type.

On one hand, atomic types correspond to string, numeric, or modal (a generalization of Boolean) values, as in
any usual language, but here enriched meta-values, as shown in Table 1.

string This data type specifies a subset of strings.

This data type specifies a level of truth between -1 (false), O (unknown), and T (true), see ap-
modal .

pendix A.3.

. This data type specifies a numeric value with its related metadata (bounds, precision, unit, ...), see

numeric .

appendix A.2.

Table 1

Basic data types.

On the other hand, compound types correspond to usual (i) enumeration, (ii) ordered lists, (iii) unordered sets,
or (iv) records, as shown in Table 2. Records are sometimes called named tuples, or “object” in JSON syntax,
“dictionary” in Python, “map” with a string key in other programming languages, and even “associative map” in
different contexts, thus being a universal construct. Specification details and type parameterization are provided in
Appendix A, along with a description of the related methods using standard algorithms.
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8 Palaude et al. / Metrizable symbolic data structure

enumeration | This data type specifies an enumeration of other values.

list-of-* This data type specifies an ordered list of values.

set-of-* This data type specifies an unordered set of values.

record This data type specifies a record of values.

value This data type is the root data type that corresponds to any value.
Table 2

Compound data types.

The present preliminary implementation only considers the basic atomic type, but it would be very easy to in-
clude all usual data types, used for instance in OWL. This includes structured data types such as (i) date, time and
duration, (ii) IRI including URI, thus URL, (iii) geolocation, (iv) human language tags and locale, while (v) specific
numeric data types with a given precision or sign, or (vi) numeric type extensions such as complex numbers or fixed
dimensional vector or matrix. These types are structured data types. A string representation is also always defined
with a given syntax, and we have observed that such syntax is always characterized by a regular expression, for the
types enumerated in this paragraph. This means that there is a one-to-one mapping between such a string and the
data record items. In our implementation:

— The RecordType implementation provides such a parsing mechanism to and from string representations.
— New types can be defined combining these ingredients, given specific parameters or deriving new types.

Based on this design choice, we consider a data structure to be the iterative combination of scalar and compound
data types, and we will define editing distance and projection for such data structures.

3.3. Defining an editing distance

The editing distance is defined in terms of editing operations, each with a positive cost: insertion, deletion, or
modification of an element. Each cost can be parameterized, allowing user-defined costs to model the data space
and account for a priori application knowledge; we can weigh such costs to quantify the importance of a given
feature. For instance, this means (I+) adding, (I-) deleting, or (1#) changing an element in a list, or (t+) introducing,
(t-) deleting, or (t#) changing a value in a record, each of these operations having a user-defined positive cost. The
distance is well-defined as the sequence of editing operations with a minimal cost, as shown in [1], for instance,
where several alternatives are also proposed and compared:

— The distance of an element to itself is 0, because no editing operation is required.

— It is obviously symmetric, because each editing operation has an inverse: deletion versus insertion, or reverse
change.

— The triangular inequality is also obvious because if you edit A to obtain B and then edit B to obtain C, you
must not use fewer operations than to relate A directly to C.

This sequence of editing operations defined a (non-unique) editing path, with intermediate data structures at each
step, making explicit which node has been added, deleted, or changed. Therefore, this mechanism not only defines
a distance between two inputs but also provides a list of intermediate data structures between them. To the best of
our knowledge, this is new with respect to editing distances.

Another critical point is that an editing sequence can be represented as a data structure, namely, an ordered list of
editing actions.

At the data representation level, a complete data structure is a “forest”: A set of disjoint trees. Furthermore, the
features of a given data structure are semi-ordered. This means that some are comparable, but not all. This is a
significant property at the algorithmic complexity level, ensuring that the edit distance between two data structures
has polynomial rather than exponential complexity, as developed and demonstrated in [49]. We also require that
editing preserve the data structure type (e.g., a list cannot be converted to a set). This preserves the tree filiation,
which makes it computable in polynomial time, as shown in [49], and we propose a variant of this approach here.
If two data sets are of different, non-intersecting types, complete deletion followed by a complete insertion is the
only admissible solution. Contrary to our design choices, in general, considering the editing distance in a tree as a
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Palaude et al. / Metrizable symbolic data structure 9

general graph, such as an ontology portion, is NP-hard, thus intractable [9], and sub-optimal techniques must always
be considered [10].
Furthermore, the fact that we preserve data type makes the distance computation implementable using standard

algorithms, as detailed in appendix A, for each data type, and listed now, considering Figure 5 as an illustration:
— For the record, each named value is linearly treated one by one, thus with a O(N) complexity, since it corre-

sponds to distinct type values.
In the shown example, the name; is unchanged, thus at a zero distance; the names value is to be deleted,
which is equivalent to be changed to correspond to an empty value; the names value is to inserted, changed
from an empty value to the expected value; the name; and name, values are edited since the corresponding
set and list are to be changed.

— For the ordered list, the well-known Levenshtein quadratic algorithm is used, thus with a O(N?) complexity,
as described in [45].
In the shown example, an insertion, the second items, and a modification of itemg to items, allows to transform
one list to another. Furthermore, two insertions of items and items, and a deletion of items, constitute a second
solution; the solution of lower cost is selected.

— For the unordered set, the well-known Hungarian cubic algorithm is used, described in [12], with a 0(N3)
cubic complexity.
In the shown example, the deletion of element; makes the job.

element ,
element
element M element
element; 7 ' element

Fig. 5. The notion of edit distance, on an example including the main structured data types as illustration.

To illustrate such editing distance in a concrete, compelling case, let us consider in Figure 6 a creative open
problem-solving experiment observation, using a pedagogic robotic activity, called “CreaCube” and presented in
[53]. A temporal sequence of such states defines the activity representation as a trajectory from the subject’s initial
state to a final success or give-up state. Clearly, a suitable editing distance between states of resolution allows the
representation of the subject’s progression. More details are given in [39].

3.4. Local structuring of the metric space

We are in a metric space by virtue of the edit distance. This space is also equipped with a geodesic between
two data structures, thanks to the nature of the editing distance. This path between two data structures s; and so
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Fig. 6. An example of editing distance in a creative open problem solving experiment observation, from [39].

is a discrete sequence of intermediate data structures obtained by applying a minimal-cost sequence of editing
operations to transform bfs, into bfs,. The key point is that for any data structure s, on this path, by construction
of the editing distance':

d(Sl, Sk) + d(Sk, 52) = d(Sl, SQ),
which is the reason we call it a geodesic. A key point is that the path is not unique. To select one, in our case, at the
implementation level, we have made the following default choices:

— For lists, including sequences, at equal cost we prefer edition to deletion, and deletion to insertion, so that we
maintain or reduce the list length rather than increase it.

— For sets, corresponding to an unordered list, we first consider the association of maximal cost before the
association of lower costs. Furthermore, we need to introduce a syntactic order among values with equal cost,
as detailed below.

— For records, we consider the transformation of the item order, starting with the first item. This is consistent
with the fact that, at the semantic level, item order is taken into account.

!Intermediate editing configurations form a geodesic: Let us consider between s; and s an intermediate data structure s; defined by a

sub-sequence of editing operations that has been used to calculate d(s1,s2).
-1- By construction, the cost ¢(s1, s ) of the sub-sequence of operation from s1 to s plus the cost c¢(sg, s2) of the sub-sequence of operation from
sy to s2 is equal to d(s1,S2).
-2-The cost c(s1, ¢) can not be lower than the distance d(s1, si), because d(s1,sx) corresponds to the cost of the lower sequence of operation
from s; to s, by definition.
-3- This also the case from sy to s2: we also have c(sg, s2) > d(s, s2).
Given -1-, -2-, and -3-, and we obtain:

C(Sl, Sk) + C(Sk, 52) = d(Sl, 52)

c(s1,8¢) = d(s1,8k) = d(s1,82) > d(s1,sr) + d(sk.S2),

C(Sk, Sz) > d(sk, 82)
while from the triangular inequality we also have d(s1,s2) < d(s1,Sk) + d(sk, s2), so that we only must conclude about the equality.
Another argument is that this cost c(s1, S¢) can not be higher that the distance d(s1, S ), otherwise it means that there is a “better” sub-sequence
of operation from s; to sy, which, without changing the sub-sequence of operation from s; to so, will lower d(s1, s2), which is a contradiction.
We thus must have c(s1,s;) = d(s1, k), with the same result for c(sg, $2), so that we re-derive the equality again.
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Palaude et al. / Metrizable symbolic data structure 11

Such choices seem reasonable but are somehow arbitrary. At the semantic level, such decisions may have an
impact, but they are easy to adapt to align with the intended meaning. A more efficient, but exponentially costly
design choice, would have been to generate all possible paths of minimal distance between two data structures,
implementing such a mechanism is easy but rapidly intractable when the data structure size increases.

A step ahead, it is easy to verify that for each data structure on such a geodesic, we have the minimal distance
to both extremities, and the sub-geodesic segment corresponds to a geodesic of minimal length between the inter-
mediate data structure and each extremity. We also readily verify that our design choice of a minimal geodesic is
stable, in the sense that, in the three cases (list, set, and record), the geodesic segment corresponds to a geodesic that
satisfies the corresponding uniqueness requirement.

A step further, this path is computed to obtain the minimum distance between two path elements. This is inter-
esting because weighting the distance to satisfy application-dependent requirements allows us to select the geodesic
among all possible choices. It is important to note that the type of a list or set must include the empty value when
deleting or inserting, and this empty, undefined value is simply the default type value, its prototype.

With this notion of distance and geodesic, the symbolic data space is a kind of “non-differentiable manifold” (in
an informal sense). Contrary to a usual abstract or embedded manifold, there is neither a local Euclidean tangent
space nor any other kind of dense continuum defined in a neighborhood of a point, but only geodesic paths between
points. As a consequence, a gradient of a scalar field is only defined in sparse directions, without any notion of
opposite direction. This will have significant impacts in the sequel. Beyond its lack of utility for our developments,
the theoretical study of such a metric structure would be of further interest.

3.5. Using data type to specify concepts

To structure the data, the basic construction is the notion of Type, as defined in computer science. The set of
values of a given type defines a metric subspace, a region of the state space at the geometric level, equipped with
— (i) a distance between two values of the same type, as detailed before, and
— (ii) a projector from a neighborhood of this subspace onto it, as discussed in this subsection.

As a consequence, lists and sets must be lists or sets of the given type. This is not an obstacle: If, say, a list must
contain elements of a finite set of types, then a super type including these types is to be defined. At the geometric
level, this means a region including all kinds of areas. In this way, two points of different, disconnected types are
always at a finite distance, by simply deleting the former and inserting the latter. The super region is thus connected,
imposing that the empty value must belong to all data types, as mentioned above. It is easy to verify that, given this
condition, such a union of regions is convex. This is an extreme case; if two types intersect, the geodesic between
two points of different intersecting types need not include the empty value. A step ahead, all data values belong to
a trivial super-type “value” with no further information, so that two values are at “zero” distance, yielding an empty
geodesic, and they project to the “empty” value with no information. In practice, a derived data type is built from
compound data types, with the specification of the type’s parameters, for instance, numerical bounds and precision,
or list minimal length, etc. It is itself a data structure, for which a vocabulary is defined, allowing to manipulate it a
meta-level.

At the modeling level, this corresponds to a concept, as defined earlier and introduced by [32], and to the imple-
mentation design choices, detailed in appendix A. As expected by [32], a region is convex in the sense that along a
geodesic between two values of a path, all values are of the same type. More precisely:

— By construction, scalar types, string, numeric value, or modal value form a convex region, because the inter-
mediate values between two strings are obviously strings, and it is indeed also the case for numeric or modal
values.

— Regarding compound type, since by construction of the editing distance, values are only related to values of
the same type, convexity is also guaranteed.

— For user-defined types, thus defined by constraints on the previous types, the related distance must, by con-
tract, only consider intermediate values of the same kind. For instance, intermediate values between two
positive numbers are positive; intermediate values between two strings constrained by a regular expression
must also be strings that verify this regular expression; and the same holds for derived compound types.
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12 Palaude et al. / Metrizable symbolic data structure

We thus see that type region convexity is a verified property for fundamental scalar and compound types, but a
design requirement for derived types. It is also straightforward to verify that a region is a compact, complete, and
path-connected metric space, owing to its convexity.

Furthermore, given two data structures, the editing distance is bounded, since transforming one into the other
can always be achieved by deleting all features of the former and inserting all features of the latter. If the minimal
editing distance equals this maximal bound, it means that both data structures have nothing in common. They
are semantically disconnected, which also means that the empty data structure is on the shortest editing path. By
introducing reasonable assumptions about the editing distance, this semantic connectedness defines a partition of
the data structure space. Generally, we consider that modifying a value is less costly than deleting and inserting it,
because deletion or insertion entails modifying the value to or from the empty value, which likely requires more
operations than modifying a subset of the data elements.

The proposed representation can also borrow from the usual data-structure representation, namely, the notion of
schema. A schema defines a set of data structures that verify constraints, for instance, whether a feature must be
defined and, if so, which data type it has. This corresponds to well-established XML-Schema, or JSON-Schema. If
a given data structure is compliant, its distance to the defined set is zero.

In our context, the notion is stronger. It not only defines a function whose value is actual if and only if it is
compliant with the schema, but also a projector: a schema only defines a region of compliant data structures. If
a given data structure is compliant, its distance to the defined region is zero. Otherwise, we propose defining a
projector that maps a non-compliant data structure to the closest compliant data structure with respect to the editing
distance, and also provides the corresponding editing sequence. More precisely, each required feature must have a
default value, so that if missing, an insert operation can add it. Moreover, if a numerical value is out of bounds,
projecting it onto the nearest bound provides a straightforward solution. Lists and sets can be empty by default or
initialized to their default values.

Such a projection is a fundamental tool for manipulating these symbolic data structures at the geometric level. It
is not apparent that such a projector can be implemented at the algorithmic level, and it must be specified for each
data type. However, it appears that we can properly define it for all basic data types under consideration here, thanks
to the notion of geodesic introduced previously and further detailed in appendix A.

3.6. Semantic and syntactic type regions

The projection of a value onto a given region is not necessarily defined everywhere in the data space; there are
likely values that are unrelated to the data type. For such values, projecting is meaningless. By default, in such a
case, projecting means deleting it and replacing it with the region prototype, which is defined solely by the default
value. We thus consider:

— The syntactic super region of a type, where data values can be projected onto a valid value.
— The semantic region of a type, where data values are valid.

The key point is that, to compute a projection in a neighborhood of the semantic type region onto it, the value
must satisfy certain syntactic constraints for the calculation to be well-defined. For instance, considering the type of
positive integer, a value is syntactically valid if the string representation parses to a numeric value, and is semanti-
cally valid if this value is a positive integer. If the string parses to a numeric value, it is easy to define how to project
such a real number onto a positive integer. Another simple example is that if a numerical value is out of bounds,
projecting it onto the nearest bound provides a straightforward solution. As a counterexample, if a string can not be
parsed as a number, then any numeric operation will be undefined. Moreover, if a feature is of the wrong type, the
only solution is to delete the value and insert a default value instead.

A step further, the syntactic neighborhood may correspond to a more general super-type, where syntactically
valid expressions are semantically valid concerning this super-type. As a result, the distance from a value to the
type region can be computed using the super-type metric, provided that the projection corresponds to the shortest
distance.

We also observe that, to obtain a unique path between two sets, all values of a given type must be ordered.
Therefore, we also add this requirement, which may be merely syntactic or correspond to a semantic meaning.
Strings are alphabetically ordered, numeric (including modal) values are obviously ordered, the element order orders
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Syntactic
projection

Type syntactic space

Type semantic space

Editing
geodesic

Semantic
projection

Any value
- Correct syntactic value

- Another semantically valid value - Correct semantic value

Fig. 7. Illustrating the notion of syntactic and semantic type.

lists, record name/value items are ordered, preserving by default the insertion order of the record keys, or sorted by
any application-related importance of the record items. This allows to sort sets in their element order, and obtain an
order for all basic and compound elements, while by derived type either use the default inherited order, or define a
more suitable one.

3.7. Computing extrapolation away from a neighborhood value

Another issue is extrapolating the path from a value, away to another. Given a value sg, instead of finding a path
towards a reference value sy, as given by the geodesic path, we aim at creating a path “away” from this value. This
is to be used, for instance, for exploration when learning a behavior, or to avoid an obstacle or a forbidden state
when generating a plan or a trajectory. More generally, it is an interesting feature relative to finding “exploring” or
“creative” solutions (in the broad sense).

The caveat is that we do not have a priori such a mechanism. Let us consider, as an example, the standard Leven-
shtein editing distance. It has no well-defined “inverse." If we consider the distance between mama and mamie, we
easily obtain mama — mame — mamie in two steps. Defining a string edition mama that is “away from” mamie
is ill-defined; we could insert, delete, or change any letter. Furthermore, considering the trivial example of words,
there is a tiny chance that when inserting, deleting, or changing any letter, we draw a syntactically correct word, and
even less chance to generate a semantically valuable word. More generally, for complex symbolic data structures,
simply generating unconstrained random values around a current value via a simple random draw yields almost no
chance of producing a useful or even meaningful value.

3.7.1. Using the data type bounds

We thus have to design this new functionality, given the existing ingredients. We explore the problem of choosing
an interpolation from a data structure to a data-space bound, selecting the path that maximizes the distance to the
corresponding data structure. Since, by construction, the data space is bounded as soon as it is sufficiently specified,
as illustrated in Table 3, we can rely on these bounds.

Regarding regular expressions, of course, the accepted strings are not necessarily bounded. However, as soon as
quantifiers are bounded (for instance s * ,max, in words: s 0 to up to max times), the regular expression accepted
strings are bounded. It is important to note that, given a hierarchical data structure, the number of bounds increases
exponentially. A list or a set with length elements of a given type with count bounds, count > 1, will have count'*"s
possible bounds so that a list or set with length € {minLength, maxLength} elements will have

maxLength length __ coung"exensii—1 _ ¢ oy Mintensth
Zlength:minLength count - count—1
bounds. A record with length items of type which bounds counts are count; - countjengs, will have
length
11,2 count;

bounds.
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14 Palaude et al. / Metrizable symbolic data structure

Bounded if defined by either an enumeration or by a bounded regular expression or a maxLenth meta-

string
value bound
modal Bounded in [—1, 1].
numeric Bounded as soon as the min and max meta-value are defined.

enumeration | Bounded by construction.

list-of-* Bounded as soon as a maxLength meta-value is defined.
set-of-* Bounded as soon as a maxLength meta-value is defined.
record Bounded as soon as the record items to take into account are explicitly enumerated.
value Bounded by the fact that it is only the undefined value as an explicit value.
Table 3

Basic and compound data bounds.

However, the goal is only to explore the space “away” for a given point. Because it is a search in an unknown
part of the data space, it is not strictly defined. Therefore, to consider a manageable number of bounds, we may only
draw a random subset of bounds.

3.7.2. Geodesic prolongation mechanism

It means that we have by construction bounds that can be used as escape values to be found on geodesics from
the current value towards such bounds and away from the reference value, which is to be extrapolated, as illustrated
in Figure 8. Choosing the best extrapolation path is an under-determined problem. Let us discuss how to specify it
better.

S
Tk Sy
St S

S 3 SO* *S 1

*

Fig. 8. Describing the extrapolation issue of a data s;,i > 0 through sg, given a bound S, suitable for S; extrapolation, while less adapted to
So and Sg3 extrapolation.

An interesting criterion, at the geometric level, is that geodesic from s; to sy includes sq, so that s is an interpo-
lation between s; and sy, justifying the term of extrapolation, as a dual notion. This means, in terms of distances:

Vio(st) def d(si,so) + d(so,st) — d(si,s4) ~ 0.
The quantity v,o(s4) has the dimension of a distance, as a linear combination of distances. Obviously the problem
of finding an extrapolation s; of s;,i > 0 through s in the direction of sy is meaningful only if distances between
each of these two points are higher than 0.
In the general case, vjo(s;) > 0, due to the distance triangular inequality. We thus have some advantage to
minimize v;o(st ), to be as close as possible to the geodesic case. In fact 2 v(s;) increases with the distance d(so, st)
to sg, while obviously limg, s, v(st) = 0.

2Triangular inequality increases with extrapolation distance: Let us consider two close st and remote s/ extrapolation points on the sg to
sy geodesic, thus with:

d(so,st) +d(st,84/) = d(so,54/).
A few algebra yields:
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Palaude et al. / Metrizable symbolic data structure 15

But we also want the extrapolation to be as “away” as possible, which means that d(sg,s;) must be as high as
possible; we thus have to balance both requirements and propose to maximize:

d(so,st),  vio(st) < &

among all escape geodesic paths towards the chosen bounds sy. We thus introduce a meta-parameter, €, that bounds
the acceptable value of the geodesic triangle inequality.

3.7.3. Actual available implementation

The actual available implementation is based on bounds indexing:
- Only string explicit bounds enumeration is implemented at this stage, thus with obvious indexing, while numeric
or modal have two bounds by construction.
- Given a hierarchical type (list, set, or record) of a given element type, an index is calculated modulo the number
of element type bounds and indexing the position of the element in the hierarchical data structure.
We thus can directly return a bound by recursively decomposing this index for each element of the data structure.
When randomly selecting a subset of bounds, thus a subset of indexes, we can
- either shuffle all indexes and select only the first ones,
- or draw indexes and check in a cache data structure that there is no repetition, the former method being more
efficient if we select a large subset of indexes, the latter method being more efficient if we select a small subset.

3.7.4. Complementary specification of the extrapolation

A step further, to attempt to specify better what “away” could mean, and for a data structure s; on the geodesic
between sy and s; we propose, as a perspective of this work, two other criteria.

On a first hand, on the distance, selecting only target s; with:

d(st.sy) > d(s.0),
that is closer to the current data structure than the reference data structure.
On the other hand, on a generalization of the orientation, selecting only target s+ with*:
d(s,80)% +d(s0.85)* < d(st, )%,
e.g., S1 or sy but not s3 in Figure 8, thus which a locally an obtuse angle and not an acute angle.

These distance- and orientation-complementary constraints help verify the coherence of the proposed solution or
reduce the search along geodesics.

vio(s4) — vio(sy) = d(si,s0) + d(so,st) + d(s,s47) —d(si,s4/) — d(si,S0) — d(s0,8¢) + d(si,s)
[ S ——

d(so,sﬂv)
= d(S,’,ST) +d(ST’ST’) — d(S;,ST/) = ViT(ST’) >0

3Extrapolation in the Euclidean case: In the Euclidean case, for any point v &ef @vg + (1 — @) vi,a € [0,1] on the geodesic between vg

and v; which a rectilinear segment, if d(vy, vy) < d(vo, v4) we easily obtain:
d(vi,vg) = ad(vo,vy) + (1 — @) d(vi,vg) < ad(vo,vy) + (1 — @) d(vo, vy) = d(vo, vy),

thus we cannot obtain a extrapolation with d(vy,vy) > d(vo, vy), but if d(v+, v4) > d(vo,vy) any @ < 1 allows to find an extrapolation. The
assumption is that, in our case, for v; close to vo, the data structure metric space is regular enough for this property to be approximately verified.
However, the metric space does not enjoy an explicit property of “Ist order Euclidean space”, as for manifolds.

4Orientation in the Euclidean case: From the triangle cosine law:
Vu, Vi

def — ——
= Vo oV,

d(v¢,vy)? = d(vo,v4)? + d(v4,v0)% — 2d(vo, vz) d(v+,v0) cos (y),y
and d(vy, vy) is minimal, if y = 7, while obvious geometric properties of the triangle show that:
d(vi,vy) > d(vo,vy) & ¥ > 5 & cos(y) <0
which can be written only in terms of distance, in the case where d(vo, Vﬁ) and d(vi, vp) do not vanish:
d(vi,v0)? + d(vo, vy)? < d(vy, vy)2,

while we still consider that this property could be locally reused in our case.
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4. Defining Scalar fields of symbolic data structures
4.1. Position of the problem

When considering standard algorithms, such as variational approaches in supervised learning or clustering in
unsupervised learning, we need to assign a numerical value to data structures, typically referred to as a cost or

weight. Scalar fields allows to define several tools, such as:
— A cost function to optimize as used in many variational algorithms.

— A reward used in reinforcement algorithms.
— A trajectory potential used by some planning algorithms, as mentioned in the introduction.

Given a symbolic data structure s € S, where S stands for a set of data structures, finite but huge and thus
intractable to enumerate, a scalar field f is a real-valued function:
f:S—=R
S —r

while, in our context, we define the function by setting some values:

f(s1) <= r1, f(s2) <12,
and would like to infer values for data structures in a neighborhood of these predefined values.

4.2. Neighborhood interpolation

Given a data structure sy for which the scalar value has not been defined, we need to interpolate this value given
known values in a neighborhood. Given the fact that we only have a metric space equipped with a distance, we

define such a neighborhood with two parameters:
— Its cardinality K: we consider at most the K closets data structures.

— A maximal distance dp,.x: We consider data structures whose distance is lower than d,, ..

This is a very standard way of defining neighborhoods, for instance, when considering operations on manifolds,
as developed in [13], or in the context of dimensional reduction or graph manipulation, as used by [50] in the context
of graph clustering, quoting here two very different examples to illustrate the use of such a neighborhood definition.

Given such a neighborhood, three cases are considered:
— If K = 0 the value is undefined.

— If K = 1, we can only approximate the data structure scalar value by considering the closest known predefined
value, which is the unique data structure in this neighborhood singleton.

- If K > 1, we propose to iteratively reduce the neighborhood to a singleton, with K = 1. We consider,
in the initial neighborhood, the two data structures whose relative distance is minimal and replace the two
data structures with a data structure on their geodesic which is as close as possible to sy, thus reducing the
neighborhood size by 1, as explained in Figure 9.

Sl* 53*
/U 54

S.. ra *

Fig. 9. As graphically represented here, s1 and sx are replaced by the value on their geodesic as closed as possible to sg, which is then related to
s3 by a geodesic, making the same choice again, which finally is related to s4, yielding to a close approximation to the unknown sq value.

Given this mechanism for two data structures s; and s; and choosing as best location for the approximation, the
data structure s, on the geodesic which distance to sy is minimal, we can interpolate the corresponding scalar value
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re by a linear interpolation:

d(si,Se) ri+d(s;Se) ri
d(si,se)+d(s;.Se)

This value is well defined as soon as the three points (s;, s, S,) are not equal, while:

si #8; = 0<d(s;,s;) <d(s;,Se) + d(s;,Se).

Ve <

Choosing to merge the closest data structures and replace them with an intermediate structure that approximates
their values is a reasonable approach in this context and yields a linear-time algorithm. At this stage, our method is
suboptimal because it considers only one geodesic rather than all possible geodesics. At the cost of a combinatory
explosion, we could also have considered all possible geodesics between all pairs of data structures and all possible
sub-geodesics between the data structures on each geodesic, to attempt to obtain a data structure as close as possible
to sg, but this would not have been a tractable design choice. Of course, these remarks also apply to extrapolation,
since it is nothing more than interpolation with respect to bounds.

We cannot explicitly assume that the data structures live on an abstract manifold, a space that is locally Euclidean
up to first order. However, let us propose a method inspired by such formalism. This method may be compared with
a straightforward linear approximation:

K | v(d(sos) ri
T0 4 SR o)

d:ax . The advantage of

the former method is that it is more local: we perform linear approximation only between pairs of data structures that

. . . . . def __d
where v(d) is some decreasing function of the distance, for instance: v(d) = ¢~ dmax ~ 1 —

are as close as possible, and we consider only geodesics entirely contained within the region under consideration.
The latter method relies on an arbitrary kernel v(d), considers points that may be farther from the point to be
interpolated, thereby introducing greater bias, and does not guarantee that the point is included in the region under
consideration.

Another interesting point is that the same iterative algorithm can be adapted to approximate a barycenter between
data structures.

4.3. Computing the barycenter of values

Given a set or subset of weighted data structures {(s1, w1), (S2,w2), - - } we would like to approximate a data
structure s, such that®:

. def ;
Sp ~ arg min [, [ = Zlel w;d(s0,8;)% e > 0,Vi,w; >0
which corresponds to a generalization of a barycenter, as it is required for instance in clustering algorithms, such as

K-means clustering.
Let us again consider three cases:

- If K = 1, obviously, sg = s; is the solution since we have a minimum when d(sg,s;) = 0.

— If K = 2, it is a reasonable choice to minimize, for a given exponent e, on the geodesic between s; and s»:

e>0, le =W d(So,Sl)e + wo d(So,SQ)e.

SBarycenter in the Euclidean case: In the Euclidean case, d(vo, ;) &ef lvo — v;|| and with e = 2, we easily obtain for such a convex
quadratic criterion by derivation of the normal equations:
def Z/K:I Wi Vi
- Z,Kzl wi
obtaining the usual formula of a barycenter, or weighted centroids of the case with data structures, where we can only consider distances.

Vo
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On one hand © there is a unique minimum /,, found scanning from s;,i = arg min,w;, to the other geodesic
end, to find the 1st local minimum of /., while if e < 1, the minimum is at one extremity of the geodesic,
which is not an interesting balanced estimation.

On the other hand ”, the global minimum is on the geodesic.

— For K > 2, as before we can only work on geodesics and we propose to consider the two data structures s;
and s; with the smallest distance, calculate on their geodesic the barycenter s, with weight we = w; + w;,
replacing the two former data structures by the latter, thus decreasing the set of data structure cardinal by 1,
this being iterated until K = 2.

This is again only a suboptimal strategy, since we consider only a linear number of geodesics rather than all
possible ones. Still, it provides an approximate estimate using only local operations.

5. Illustrative examples
At this preliminary stage of development, we are not yet able to report large-scale experimentation. Still, we

would like to share several illustrative toy experiments that already allow us to evaluate and illustrate the proposed
mechanisms.

SMinimum as a function of the exponent: Let us consider:

_ def .
S0 = arg ming w1 d(so,s1)¢ + wa d(so,s2)¢

= arg ming w1 d(S0,81)° + w2 (d(s1,52) — d(s0,51))” because on a geodesic

. .. def .
= arg min,, w1 dg; + w2 (di2 — do1)® writing d;; = d(so,s1) for convenience.

def
=l (do1)

Since sg is on the geodesic from s1 to s2, we have do1 € [0, d12]. In fact, doy takes discrete values along the geodesic, but we begin by studying
le(do1) as a real-valued function. We also assume, without loss of generality, w1 < wa.
- If e < 1: the minimum is on one geodesic extremity, because:

le(d()1)| =wq d(s1,52)e

w1 [d(s1,80) + d(so,s2)]° because on a geodesic

w1 d(s1,80)¢ + w1 d(So,s2)¢ because d — d°, e < 1 is convex
w1 d(s1,80)¢ + wa d(so,s2)¢ because wi < wa

le(do1)

S =82

(Al

showing that o = s2 in this case.
-1f e > 1, since ,(-) is derivable with 2 (do1) = e (w1 (do1)¢~! — wa (d12 — do1)~1) we must have at an extremum:

lé(tjm) =0
& w1 (07101)671 = W21 (d12 —do1)*™ !
= WF do1 = w? (d12 — do1)
& pdor = di2 — do1 writing o def <%) =1
ad dor = %
This means that there is only one extremum. It is easy to verify that it is a minimum on 7 (-), since /2(0) = —w2(d12)°~! < 0 and I(d12) =

w1 (dlg)e*1 > 0 with one change of sign at do1, only. It thus decreases and then increases. Furthermore, we easily verify, for a given e > 1, that
p €]0, 1], the left bound corresponding to w1 — 0 and the right bound to wi = wa so that we obtain:

d _
=2 <do1 <di2.
This means that the extremum can not be at So = s (otherwise we would have dy1 = d12). We also verify that
lime—1 p = 0 = lime—1 do1 = di2 = lime—150 = s2,

in words: the minimum gets closer and closer to the geodesic bound, when e — 1.
7Minimizing on the geodesic is optimal: Let us consider a general data structure s, with a fixed distance di = d(s,s1) to s1, and e > 0.
Then:

Il =wid§ 4wz (di +d(s1,82) — v12(s))°

def . . . . .
where v12(s) = d(s,s1) + d(s,s2) — d(s1,s2) as already used previously. Obviously / is minimal when v12(s) = 0, that is when s is on the
geodesic. In other words, for any data structure, there is a better solution on the geodesic, as expected.
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5.1. Morphing experiments

Given two symbolic data structures, computing the editing distance between them and the related geodesic path,
very naturally generates what is called a morphing in image processing. This is particularly interesting, as it allows
us to visualize geodesic paths in some examples, as reported in [7].

5.1.1. Visual morphing demo

A image morphing demo, using the SVG symbolic description of a drawing, allows one to reproduce pixelic
image morphing, for some vectorial drawing, as shown in Figure 10. At the validation level, the present formalism
can also be applied to realistic open standards, such as SVG. What the geodesic path explicitly represents is one
(or several) optimal sequence of drawing-editing operations that transforms the former drawing into the latter. The
subset of the SVG standard in use in this demo is defined as a symboling type. Given this, vectorial drawings are
manipulated in the same way as other data structures. Please refer to the demo link for a detailed observation of
the produced image sequence. This preliminary result shows that the symbolic data structure defining the drawing
elements changes primarily from top to bottom, reflecting the record-item ordering, which is an arbitrary choice
induced by the geodesic selection among all possible geodesics. As mentioned previously, the fact that user-defined
parameters weight the editing distance, and that the geodesic path is defined by a local change of minimal editing
cost, will readily allow a user to tune the geodesic choice. The intermediate color shows that the color space is also
related to a distance in the SVG specification. The editing distance cost is 1965, with each elementary operation
counted as 1, which appears high relative to the editing operations, such as changing or moving a drawing element.
This is however reasonable because each editing gesture at “human” level corresponds in fact to a rather large set of
change in the data structure elements. It also shows that, for realistic data sets, the number of elementary operations
may become very large.

Fig. 10. A subset of the morphing between the “titi” drawing on the left and the “toto” drawing on the right: two intermediate images on the
geodesic path defined by the SVG drawing representation are shown.

5.1.2. Audio morphing demo

A step further, the same collaborators have used our software to explore what could be a “musical morphing” at
the symbolic level. Considering the first bars of two very popular kid songs (at least in France :) ...), and based
on the MIDI standard, also translated as a symboling type for the standard subset used here, they have reproduced
the same calculation, as shown in Figure 11, while a complete demo result is available on the demo link. Since the
former song uses tied notes, while the latter uses dotted notes, it easy to see which part of the scores turns from the
latter to the former, along the chosen path: it definitely shows that the default choice is reasonable but arbitrary (here,
from the beginning to the end) while it could have been other way round, or something else. The editing distance
cost is 37220, with each elementary operation counted as 1, yielding an average of about 450 operations between
two consecutive elements on the path. Again, this may seem dizzying, but this is at the scale of this not-so-trivial
data set.
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Fig. 11. A subset of the morphing between the “au clair de la lune” and the “frére jacques” early parts of the songs: two intermediate scores on
the geodesic path defined by the MIDI music representation are shown.

5.2. A symbolic problem solving setup

Beyond simply observing the path between two data structures, we have also considered stating a problem-solving
setup. At the demonstration level, the idea was to model a “climbing problem solving”: how to choose the next hold
when climbing a wall? At our validation level, the goal is to assess the feasibility of modeling both the climbing wall
and the climber, subject to constraints on limb length and posture. The result is shown in Figure 12. The complete
experimentation available online allows the toy setup to be connected to an external trajectory-resolution algorithm,
here using a standard Python genetic algorithm. This, in turn, shows that the middleware developed in C/C++ is
readily usable from JavaScript at the web interface level and from Python at the algorithmic and data analysis
levels. Although still preliminary, this illustrates how we can address problem-solving issues at the symbolic level.

X=21925Y =127
checkState Error:

hr, | hright below lright
state:
{
"limbs": {
X =224Y =308 "hleft": {
"x": 163,
3 "y 289,
6 "h": 3
+
. .7 "hright": {
"x": 289,
"y 473,
"h": null
+
3 .2 "1left": {
. "x": 167,
"y": 405,
"h": 1
+
"lright": {
"x": 283,
"y'": 441,
.1 "h": @
}
o’ ),
"body": {
"x": 225.5,
"y": 402

Fig. 12. The climbing experiment on a wall. Left: the avatar in some intermediate state. Middle: a possible final position. Right: The climber state
in JSON syntax, with a detection of a rejected previous tentative of posture error (the right hand can not be below the right foot in this setup).
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5.3. Reinforcement learning in a survival experiment

Here, we consider the application of standard machine learning algorithms, such as reinforcement symbolic learn-
ing mechanisms, as introduced in [41]. Reinforcement learning is a subfield of machine learning concerned with
how agents learn to make decisions in an environment to maximize a notion of reward. It has shown great promise
in a variety of domains, but it often struggles with generalization and interpretability due to its reliance on black-box
models. One approach to address this issue is to incorporate knowledge representation into reinforcement learning,
which is a key advantage of such a symbolic approach.

In [52], reviewed here, the authors explore the benefits of using symbolic representation in reinforcement learning
and present preliminary results on its performance compared to standard reinforcement learning techniques. The
agent chooses an action among a discrete set (e.g., eat, attack), and the agent’s parameters are updated accordingly.
The overall goal of the agent in this tiny reinforcement learning example is to survive. The add-on of this work is to
consider a simple but formal ontology, as represented in Figure 13, and, as far as the symbolic description of food is
concerned, in Figure 14. The agent feels internally its mood, health level, and hunger, each with a value ranging from
negative (e.g., sadness) to positive (e.g., joy). It involves the senses of sight, taste, touch, and smell, and is defined
by qualitative values. The external environment influences internal states as a function of the encountered entities.
The key point is that, even in such a simple setup, each sensory cue is not a simple enumeration of values; rather,
it is a relation among them and with external objects, necessitating the model’s implementation as a hierarchically
structured information. The ontology structures all entities, states, and actions within a class taxonomy, enabling the
reuse of learned knowledge for related elements within a given neighborhood. There are 256x25x9 = 57600 possible
values (number of internal states x number of entities x number of actions). This does not correspond to a standard
benchmark in the literature, but it would be an interesting perspective on this work to consider such a case and
compare the results with state-of-the-art techniques. The implementation is available as documented open-source
software, and the software interface is textual, using prompts.

An a priory analysis yields that:
— It should take more than 103~ steps for a classical standard reinforcement learning algorithm to visit thus

evaluate at least once each possible values to learn the expected reward and thus generate a correct strategy,
whereas

— The symbolic approach should have better generalization capabilities and need far fewer steps in the environ-
ment to obtain a good reward, because the information can be shared between related elements.

In this work, the authors consider the widely used Q-learning algorithm at the level of numerical implementation
using the well-established AT Gym, now Gymnasium middleware. They have implemented the [41] symbolic Q-
Learning algorithm, which computes the editing distance, as developed here, to evaluate the reward at a point as an
exponentially weighted sum of known rewards in the neighborhood, thereby leveraging the state-space metric. The
key meta-parameter for symbolic learning is the neighborhood radius p, which controls the exponential decay.

The results shown in Figure 15 show that the use of symbolic representation can significantly improve the gener-

alization capabilities of reinforcement learning agents, provided that the neighborhood size is well adjusted:
— If too small (e.g., 0.01), the related information is not correctly taken into account.

— If too large (e.g., 0.06), too general information is taken into account, and the estimation is biased.
— An appropriate radius (e.g., 0.04) yields a significantly better performance, this quickly (after about 2000
steps, in comparison to the standard approach that has not started to converge after 10000 steps).

However, as the authors conclude, the p hyperparameter, which scales the editing distance, is highly sensitive,
leading to substantial changes in performance. Therefore, exploring ways to dynamically adjust the radius parameter
over time to learn the optimal radius value is warranted. In fact, the issue is more general: algorithms using the
current approach are highly dependent on the design of the edit distance metric.

6. Discussion
6.1. On the computational efficiency of the method

The data structure is implemented in C/C++ using a data object model based on the std: :unordered_map
associative container, with a std: :vector for record keys. We obtain performance comparable to that of N.
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Fig. 13. The ontology used to describe a simplified external and internal environment in which an agent survives, from [52].

Lohmann C++ native library written in modern C++, as shown in Table 4. The test has been conducted on three
Milo Yip benchmark sets: twitter a 13913 attributes structured JSON structure, canada a 167178 attributes
multi-dimensional numeric array, and cimp a 37777 attributes database JSON structure. The present implementa-
tion is for some operations a bit slower because the record item insertion order is maintained, for semantic reasons
detailed in this paper. However, this overload is negligible relative to the editing distance computation presented
next. Both middlewares are less performant than speed-optimized libraries such as jsoncpp, which provide minimal
functionality. The CPU computation times are evaluated on a standard mid-range laptop with Intel@Core’™
15-8265U CPU @ 1.6GHz x 8 with 16 GBiB memory and no GPU usage.

twitter canada citm

read | write | copy | read | write | copy | read | write | copy

lohmann 78 25 3 361 60 15 144 24 7
wjson 44 23 9 357 126 124 75 39 24
Table 4

Comparing CPU computation time, in milliseconds, between the Lohmann and our data structure operations, for three representative benchmarks.

Beyond data read and write access, geodesic path computation after distance estimation accounts for the majority
of computational time. For the morphing demos, we obtain the results shown in Table 5.

Edition distance computation scales superlinearly with the involved data structures; linearly with respect to
records; and with quadratic and cubic increases for lists and sets, respectively, whereas path computation scales
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Fig. 14. A detail of the ontology regarding the symbolic description of food, from [52].
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Fig. 15. Comparison between a Q-Learning and a symbolic Q-Learning cumulative rewards, considering several neighborhood sizes for the

latter, from [52].
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path element path distance msec ratio path msec ratio
length | attribute count | attribute count | computation time | —%¢- | computation time | —f=—
visual
morphing demo 28 97 2724 330 3 473 173
musical
morphing demo 80 170 14176 423 2 3293 232

Table 5
Path and distance CPU computation times, in two cases.

linearly with its length and the data structure attribute count. The small experimental observation confirms that
adding the computation of the geodesic path to the standard edit distance computation yields only a 5% to 10%
overhead.

Regarding memory consumption, using an associative map and an index vector scales linearly with the number
of attributes. The element overhead of such an associative map, coupled with an index vector, is two memory slots
per attribute and a few memory slots for the related record overhead. In the current implementation, the caveat is
that strings are managed by copying rather than by reference, using a string dictionary. This would be a noticeable
improvement, and it is a close perspective of this work.

These numbers have no “absolute” meaning. They show that the proposed computations have an order of mag-
nitude comparable to what can be performed on a modern laptop, without requiring large computer clusters or
dedicated hardware. This also provides a rule of thumb for estimating the computational cost of problems at higher
scales.

6.2. Advantages and disadvantages of such metric space embedding

Some comparisons between the advantages and disadvantages of the proposed metric space and other grounding
approaches have already been sketched throughout the paper. Let us synthesize the main elements.

Currently, symbolic data, such as text, are embedded in parametric vector spaces using statistical measures, and
the resulting data are processed by black-box artificial neural networks with architectures such as generative deep
neural networks, including variational transformers. This enables the attainment of unprecedented information-
processing capabilities, but at substantial financial and environmental costs, raising several concerns (tech giant
domination, intellectual property, ...).

The proposed approach avoids the initial embedding of symbolic data in a large-dimensional vectorial space.
Conversely, it directly equips the symbolic set with the required numerical tools (metric, path, projector, ...) to
apply standard machine learning algorithms, such as clustering or trajectory generation, as illustrated previously. We
thus expect such an approach to be more parsimonious, yielding results that are easily interpretable and explainable,
in the sense of [16]. We also noted that it would be more explanatory when applied to brain modeling, as discussed
by [57].

Another practical aspect is ergonomic. Our experience in multidisciplinary research (here, learning science, neu-

roscience, and computer science), such as during the AIDE exploratory action, allowed us to verify that:
— The notions of state data point, distance between two points, step by step minimal distance path (the geodesic),

data space regions organized in a hierarchy (the types), attaching a cost to each point (the scalar field), are
easy to share when technical aspects are cleaned up.

— The extensive use of JSON syntax, especially if made more flexible with the wJISON dialect, makes specifi-
cation easily readable and editable, without any need for deep practice.

In addition, the present effort to develop open, multi-platform, multi-language middleware should also help.
However, in practical applications, the proposed distance depends on numerous somewhat arbitrary parameters
that are likely to influence the algorithm’s performance. This has been experimented with in subsection 5.3 for the
global distance scale p. More generally, the modeling choices and the number and quality of properties associated
with each data type are crucial for deriving a pertinent specification. This questions the applicability of the proposed
metric space.
What has been done in subsection 5.3 may help solve this caveat, and leads to a kind of recipes:
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— Following, for instance, the tutorial presentation of [47], one may start modeling and designing the problem
description, enjoying the quality and richness of the ontology approach, restricting as much as possible to the
RDFS level of description of class and property hierarchies, for both simplicity and efficiency.

— From such a distributed specification, the next step is to study to what extent this could be structured in a
hierarchical way with record, list, and set, noticing that such structuring is fully available at the ontology
level.

— For each quantitative parameter, one should account for all relevant metadata, such as bounds and precision,
as developed in appendix A.2; this will normalize all numerical elements when computing the edit distance.

— Ideally, by default, each data type assigns equal weights to its elements, and a default editing distance can be
computed without having to preset each parameter. Then, if some a priori knowledge allows one to modify
this default choice, that could be easily done, preferably with parsimony.

Following such a track may help in designing and parameterizing the data structure. As an alternative to the
ontology approach, object-oriented approaches could also be considered. In any case, this approach complements
ontology or object-oriented approaches.

Another disadvantage of the approach relative to standard numerical embedding is that, for list and set elements,
the distance computation time is quadratic or cubic rather than linear, as in a Euclidean distance computation after
a numerical embedding. However, standard numerical embedding requires a high-dimensional space, whereas in
the present setup, we remain in low dimensions. In this context, distance computation using the Levenshtein or
Hungarian algorithms is inherently challenging to parallelize, and specialized processors such as GPUs appear
unable to accelerate these non-trivial computations.

6.3. Relation with inner brain and semiotics representation of symbols

Natural language is neither the single factor that explains the cognitive singularity, nor the more plausible vehicle
for inner brain symbol manipulation [19], while the languages of thought hypothesis [5], is pertinent for instance
to encounter for the mental representation of geometric shapes [56]. In contrast, [19] proposes that “humans pos-
sess multiple internal languages of thought to encode structures in various domains, and show that such symbolic
representations rely on cortical circuits distinct from classical language areas”. In various tasks of elementary shape
or sequence perception, minimum description length in the proposed inner brain languages captures human be-
havior and brain activity, whereas simpler non-symbolic models capture non-human primate data. The formalism
developed in this paper could be a candidate for implementing such languages of thought, with a direct numerical
anchoring of inner-brain symbolic representations based on the proposed metric.

At a more abstract level, the semiotic approach, as reviewed in [18], may help structure such languages of thought
by considering a notion of “sign” that elucidates the emergence of symbolic representation within a biological
system interacting with its environment. This means that we attempt to consider internal cognitive representations,
rather than the “external” symbols typically considered in the usual semiotics. Furthermore, in semiotics, there is
no notion of hierarchy. In contrast, the fact that a sign is an Icon and Index, or a Symbol, depends on the type of
representational relation such a sign bears to its object, or more precisely, to its ground [61]. We also introduce the
idea that it could be organized in a hierarchy:

— An Icon has a physical resemblance to the thing being represented. Within the brain, we could consider that
such a sign is directly constructed from sensorimotor features, with features such as color or smell providing
an element of likeness to the described object.

— An Index meaning is built on a link between what is represented and concrete sensorimotor attributes. When
looking at the proposed examples (e.g., a weathercock indexing the wind direction and strength), it appears
that the concrete sensorimotor attributes correspond to an Icon (a weathercock Icon in the given example).
‘We thus propose that an Index be built on concrete relationships among Icons representing described objects.

— A Symbol has no resemblance between the signifier and what is signified (here available through sensory-
motor cues), and it must be learned (culturally learned, considering usual semiotics instantiating). They are
thus built on abstract general relationships between concrete concepts, Index, or sensorimotor features, Icons,
with a qualitative break-up regarding concrete object features.
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Such an emergence of more abstract signs from sensorimotor icons, as pointed out by [51], who details such a
process, is the dual concept of grounding and is coined as “ungrounding”, and is well accepted in many modeling
works and bio-inspired artificial cognitive architectures, as recently reviewed by [39]. The research question here is
whether such an emergence could correspond to different types of signs as studied in semiotics. Again, the proposed
formalism could be a candidate for representing internal signs in such languages of thought and for exploring how
to process them.

A step further, at the computational neuroscience level, [2] describes the systemic functional aspect of the brain

processes as interactions between three kinds of memories:
— sensorimotor distributed, in a nutshell, in the parietal and medial cortex,

— episodic memory in relation to the hippocampus, and
— semantic memory in the prefrontal and frontal cortex.

One key aspect is that, on the one hand, the hippocampus does not store object features but instead indexes senso-
rimotor areas that represent those features, i.e., icons, in semiotic terms. It also stores temporal and spatial infor-
mation and the relations among features, and it feeds into semantic memory, which might correspond to an Index.
The brain’s semantic memory is also described by the author, like in semiotics, as abstract general relationships,
including action rules. It also corresponds to algorithmic cognitive architectures, such as the [48] architecture for
creative open-ended problem solving. Her architecture includes a feature level, as other frameworks presented pre-
viously. At the same time, ungrounding is organized in two layers: the lower layer concerns the relation between
allowing the emergence of concepts, and the upper layer is more “structural” and comprises problem-solving rules,
as attributed to the brain’s semantic memory. However, beyond the need for a two-layer hierarchy above the sen-
sorimotor layer and similar representational properties, the mapping is not obviously one-to-one; it varies with the
modeling aspects and the target application architecture. To what extent could these brain architecture map onto
such semiotics inspired taxonomy could be an interesting issue, and using the proposed formalism a way to very it
a falsifiable level.
We summarize these putative ideas in Figure 3 and propose applying our formalism to address these questions.

A legisign

Rule / Law
ﬂ Semantic (rules) is-a //’ General idea

- generalization, /
contextualization

i adaptation - is actisign
Episodic (examples) || ™~
v - replay, \ can Action / Reaction

combination, \ Singular object
prediction \

\ qualisign

Sensorimotor
- sampling,
feature extraction, U

Sensorimotor features
- =

INTERNAL BODY

\
\, Quality / Feeling
Feature

Fig. 16. Summarizing a few multi-disciplinary assumptions that may enlighten what is actually considered regarding inner-brain symbolic
representation.

6.4. On the biological plausibility of the proposed knowledge representation

Although beyond the scope of this paper, it is worth noting that the biologically plausible nature of such knowl-
edge has been considered in other studies. Symbolic reasoning occurring in the cortical-thematic loops via the basal
ganglia has been successfully modeled using spiking neurons within Vector Symbolic Approaches (VSA), as intro-
duced by [60]. In contrast, [44] has recently described how ontology representation can be encoded in such a way
that reasoning entailment rules correspond to standard biological neuronal processing. Furthermore, in [17], it is
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shown that such a Semantic Pointer Architecture scales appropriately to address large-scale problems and enables
encoding of data structures as defined here. These developments include creativity tests simulation, as studied by
[37], who have proposed a spiking network model to account for the Remote Associates Test simulation, storing the
employed representations and reproducing human prediction, or well-posed problem solving, such as the Tower of
Hanoi task simulated by [59].

Such biologically plausible numerical grounding of this data structure is fundamentally different from the pre-
viously proposed sub-symbolic numerical grounding, because VSA approaches operate on a high-dimensional,
compact (typically hyperspherical) space of randomly drawn vectors. In contrast, basic symbolic operations are
represented by abstract algebraic operators, implemented as distributed operators simulated in biological networks.
A precise development of VSA along the lines proposed here constitutes a research project in its own right. Still,
the basic ingredients are present, and recent work has described how all data structures used in the present develop-
ments can be implemented in VSA [40]. Thanks to this ongoing work, we have all the ingredients for a biologically
plausible implementation of what we call here “symboling” mechanisms.

6.5. Perspectives

To extend this preliminary work, at the concrete programming level, we have introduced several functionalities,
for web interface, procedural interface, knowledge graphs, and ontology reasoners, explicitized in appendix B. This
is presented to provide an overview of potential tools that could be employed to extend the present work, as well as
their feasibility of implementation. It also includes theoretical remarks on the relationship to other formalisms.

We now discuss additional perspectives across several application domains.

6.5.1. Application to complex problem solving

We have defined problem-solving tasks at a geometric level, considering a state-space location and a final (unique
or alternative) state, and finding a path from the former to the latter while satisfying path constraints. This definition
is computationally efficient, even for a complex symbolic state space, because we have developed a fully formalized
problem-solving algorithm in which each element is precisely defined at a metaphorical level. This may be applied
in several computational domains, including robotic trajectory generation and optimization, transportation theory,
and operations research. We are interested in ill-posed problems, which means that estimating the initial state,
selecting final goal parameters, identifying the relevant region of the state space, and generating the trajectory must
be addressed during the problem-solving task and are integral to it. This means that the conceptual representation
must be adapted during task execution, thereby being completed and corrected, as previously explored in [52].

6.5.2. Application to creative problem solving

Creative problem solving requires divergent thinking as analyzed in [54] and formalized in [4]. In brief, divergent
thinking requires not only interpolation but also extrapolation of new data structures from existing ones. Let us
illustrate these opportunities by considering three non-exclusive examples, as illustrated in Fig 17:

— Projective divergent extrapolation: Given a present state represented as a data structure, we may wish to
extrapolate another state, only constrained by some requirement. For instance, we may want to invent a "pen-
guinemu" (a penguin morphing towards an emu) for which the only constraint is that it diverges from the usual
emu’s features. Building on the notion of schema proposed above, used here to specify the target requirements,
and the notion of a projector, we have an effective mechanism to generate an extrapolated, unprecedented data
structure by projecting the prototype onto the target schema constraints.

— Sequential extrapolation: Let us consider two data structures and the editing sequence defining a path from
the former to the latter, for instance, the yesterday state and the today state, whatever this means, re-applying
the editing sequence on the today state allows us to extrapolate what could be the tomorrow state, under the
assumption that the evolution will be the same. We could also add randomness to explore alternatives or, as
in the previous example, introduce constraints to conform to any requirement.

— Reasoning by analogy: Following the definition of analogy reasoning proposed by [33], a reasoning of the
form “Robin is to Batman what Sancho is to Don Quixote” can be formalized using the editing sequence from
Robin to Batman in the source context and reapplying for Sancho in the target context in order to generate
by analogy features that could apply to Don Quixote. The mapping from Robin to Sancho, from the source
to the target domain, forms a commutative diagram with the source and target relations. This mechanism is
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iterative, as shown in [33], which considers the ontology. Here, we propose implementing it at the geometric

level.
. _ _
Search mechanisms \ sl s i A
Source
T Interpolated values . T — R
- a .
u1<u<2 Extrapolation ; ~— Tb
SR . Transfer
. =T R
Torget T
argel —
|\ ?
. y AN /

Fig. 17. A schematic representation of two kinds of generative processes. Left: search, by extrapolation in the mirror of an interpolation between
two structures. Right: reasoning by analogy, as formalized in [33].

6.5.3. Application to higher-level resources specification

These mechanisms also allow us to define not only "objects" but also higher-level resources such as rules, as
schematized in Figure 18, where the pre-condition of application corresponds to the fact the current state is compli-
ant with respect to a given type, as defined in this contribution, while the post-condition corresponds to an editing
sequence of the current state. A step further, we can not only define positively defined knowledge but also add a
property to defined uncertain, approximate knowledge, with a particular belief level, regarding what is stated, as
formalized in appendix A.3.

Precondition

Postcondition

Action

Current state estimation

C_Next state constrai

my-rule: {

pre_condition: schema
post_condition: editing-sequence
action: ../..

}

Fig. 18. An example of higher-level specification, to formalize rule-based behavior, as discussed in [2].

7. Conclusion

We thus have been able to directly define on symbolic data structures, thanks to a parameterized editing distance,
and several numerical tools, allowing us to apply potent algorithms, as summarized in Figure 19, showing what
is to be defined at the design level (Figure 19.A) and what is derived thanks to this (Figure 19.B). Moreover, as
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schematized in Figure 19, region inclusion yields a class taxonomy. At the same time, state value attributes and state
value properties can be interpreted as a scalar-field on their domain x range on their Cartesian product: not addressed
here, this is an interesting perspective of this work, since it allows to link, thanks to the geometric embedding, these
symbols to basic ontology concepts, as discussed for instance in [39].

A State regions implemented as type:
X (represents concepts as convex regions)
(corresponds to ontology classes)

Editing 4
distance |

/

VRegion bounds

Class taxonomy N

o

Scalar field
Domain -> Range
property

Real
values

Fig. 19. Summarizing the different “symboling” tools:

A: Tools defined at the design level: the notion of a region corresponding to a type or concept, equipped with a projector, and equipped with a
metric using an editing distance between the different state values, while bounds are to be specified.

B: Tools derived thanks to the previous specifications: geodesic paths, value’s interpolation and extrapolation, barycenter computation, and
scalar-field allowing to manage numeric criterion, reward function, or trajectory potential.

C: The notion of region is in one-to-one correspondence with class taxonomy, using the inclusion relation, and state value attributes and state
value properties can be defined within this formalism.

Altogether, our design choice is to consider that any data structure is defined by a simple data structure with
stated, calculated, and deduced features, and mapped onto a multi-dimensional parametric space, on which we can
determine distance and geodesic between data structures, projection onto a data structure subset, and manipulation
via a coordinate system. Nothing "new" here: we voluntarily sit on existing well-established formalism, thus directly
benefiting from sophisticated specification paradigms and entailment algorithms. Our add-on is at the design choices
level, making explicit how these different aspects of the chosen tools can interface and inter-operate, including in
learning algorithms, as developed in [41] for a preliminary version of the present framework.
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Appendix A. Symbolic data implementation

In this section, we recapitulate for each implemented data type the different required ingredients: syntactic and
semantic projections, distance and geodesic path, and default comparison.

A.l. StringType specification

— Syntactic projection
- If the value is not a string but a structured value, its string representation is taken into account.
- If the string syntax is incorrect concerning a lexical constraint or if the string length is not in the optional
length bounds, a message is issued, but the string is unchanged.
— Semantic projection
- Any value has a string representation.
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- Distance value
- The distance is computed as a usual edit distance on the char list of the string.
— Geodesic path
- If considered as an atomic value, the geodesic is of length 1 if the string is equal, and 2 otherwise.
- If not atomic, the geodesic is computed from the edit distance, as for a ListType.
— Comparison
- Returns 0 if each character pair compares equal and both strings have the same length.
- Returns <0 if either the value of the first char that does not match is lower in the left-hand side string, or all
compared chars match but the left-hand side string is shorter.
- Returns >0 if either the value of the first char that does not match is greater in the left-hand side string, or
all compared chars match but the left-hand side string is longer.

A.2. NumericType specification

— Syntactic projection
- Returns NaN (i.e. the “Not a Number” meta-value) if not a parsable number.
- Returns the zero default value if an empty value.
— Semantic projection
- If the value is higher than the maximal value or lower than the minimal value, it is projected on the related
bound.
- If the precision is defined, the value is projected to the closest min + k precision value, k being an integer.
— Distance value
-The distance between two values is calculated as a weighted value d(lhs, rhs) = |lhs — rhs|/step.
- Itis INFINITY if not both objects are numeric.
— Geodesic path
-The geodesic is assumed to be atomic: of length 1 if values are equal and 2 if different.
— Comparison
- Returns either lhs — rhs or 0 if the precision is defined and [lhs-rhsl is below the precision.

Numerical quantity related to a sensory input or an algorithm numerical value, corresponds to a bounded value
(between minimal and maximal bounds), up to a given precision threshold (above which two values may differs and
below which two values are indistinguishable, being equal or not), an approximate neighborhood sampling size or
“step” (below which two distinct values are in the same local area), a default value (used in initialization, or to avoid
undefined value), expressed in a given unit (for instance, second, meter, etc), if any, as schematized in Figure 20.

name
| precision | default unit
o I L T | ‘b
minimum stop > maximum

Fig. 20. Specification of a numerical value. Metadata includes a name, a unit, a default value, bounds (minimum and maximum), a precision
under which two values are not distinguishable, and a step value corresponding to a neighborhood size used to cover the value range.

Such specification is essential for the proper manipulation of quantitative information. In particular, the values
can be normalized, meaning mapped to the [—1, 1] interval or to a finite set of relevant values. One consequence is
that algorithmic precision thresholds can be deduced (often using first-order approximations), spurious values can
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be detected, and numerical conditioning of algorithms is enhanced, as proposed and applied in [68], which discusses
this specification. At the computational specification level, these parameters define a subtype of the usual numerical
types, thereby providing a more precise definition of the related code.

This concerns both external numerical sensory data and internal quantitative data, having always bounds and
precision. It is evident that any quantitative measure is bounded; for instance, physical velocity magnitude stands
between 0, for a still object, and the speed of light. It is also always given with a specified precision; for instance,
a localization in an image is shown to within one pixel, or a school ruler to within 1 mm. The key point is that it
is helpful to make this obvious fact explicit at the specification level, rather than using it implicitly when required,
to enable its general use in algorithms. For instance, an iterative estimation algorithm, thanks to this specification,
can be easily tuned to achieve the required precision. A step further, symbolically coded data can be sampled
continuously. For instance, a vector font drawn on a canvas is sampled at pixel precision.

The positive sampling step, used to define a local neighborhood size, is employed to weight distance calculations
and to adequately sample the data space. The underlying idea is that the state space is locally convex, so that in a
given neighborhood, local search for an optimum yields the optimal local value. This idea has been implemented in
the stepsolver variational solver, including optimizer and controller.

This specification induces a pseudo-metric:

d(x, x/) _ |x—x|

step

x — x| > precision = x # X/,

in words, the distance is weighted by the step, which is the neighborhood’s approximate size. At the same time, if
two values differ by a quantity below the precision threshold, they are indistinguishable (thus either equal or not),
so that we can decide if two values are different but not decide about their equality, as usual in such cases. This a
deterministic counterpart of statistic hypothesis test, with H; versus H hypothesizes.

A.3. ModalType specification

— Syntactic projection
- Returns NaN if not a parsable number or a predefined string.
- Returns 0 if an empty value.
- The values “true” (numerically 1), “false” (numerically -1), and “unknown” or ’?’ (numerically 0) are un-
derstood in case-insensitive mode.
— Semantic projection
- If the value is higher than 1, it is set to true.
- If the value is lower than -1, it is set to false.
- If the precision is defined, the value is projected to the closest min + k precision value, k being an integer.
- If in trinary mode, values are projected onto the closest {-1, 0, 1} value.
- If in binary mode, values are projected onto the closest {-1, 1} value.
— Distance value, Geodesic path, Comparison
- These calculations are delegated to the NumericType since ModalType is a subtype of it.

The Boolean notion of being either false or true is generalized here as a numeric representation of partial knowl-
edge, considering a value 7 € [—1, 1], as illustrated in Figure 21. The interpretation is that what is “not so false” is
partially possible but not necessary, and what is “partially true” is entirely possible but partially necessary. Such a
formulation qualitatively corresponds to human appreciation of the degree of belief in a fact.

The true value corresponds to 1 (entirely possible and fully necessary), the false value to -1 (neither possible nor
necessary, thus impossible), and the unknown value to 0, which corresponds to an entirely possible but absolutely
not necessary value. In between, negative values correspond to partially possible events and positive values to
partially necessary events. This representation has been designed to be compatible with the ternary Kleene logic,
and is in one-to-one correspondence with respect to the possibility theory. Possibility theory is devoted to modeling
incomplete information, particularly an observer’s belief about a potential event and surprise after its occurrence.
Please refer to [20] for a general introduction. While almost all partially known information concerns probability,
human “level of truth” is subtler and concerns possibility and necessity, as formalized in possibility theory. This is
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unknown

false‘ partially possible | partially necessary

| |-
-1 not necessary 6 fully possible '1 T

Fig. 21. Specification of a modal value of belief, this about necessity and possibility, as defined in the possibility theory.

introduced and discussed in [20] and [21]. This is linked to modal logic, modeling something as true in a “given
context,” as developed by [27]. Interestingly, this is also considered representative of what is modeled in educational
science and philosophy, as reviewed by [55], because it corresponds to commonsense reasoning in Piaget’s sense
[58], taking exceptions into account, thereby involving non-monotonic reasoning. Furthermore, in symbolic artificial
intelligence, specifically with respect to knowledge representation via ontology, a link has been established between
the necessity/possibility dual representation and ontology [63]. This must be understood as a deterministic theory,
in the sense that partial knowledge is not represented by randomness. An extension that accounts for randomness is
proposed in [64, 67].

Boolean true/false values and Kleene three-value logic true/unknown/false values conjunction (and), disjunc-
tion (or), exclusive disjunction (xor), and element set difference generalizations correspond to min, max, and
polynomial operators.

A.4. RecordType specification

— Syntactic projection
- If a required field is missing, its definition is forced using a default, or if none, an empty value.
- If a forbidden field is present, its definition is erased.
- Each record item is syntactically projected.
— Semantic projection
- Each record item is semantically projected.
— Distance value
- The distance is computed as the weighted sum of each record item. The corresponding algorithm is thus
obviously linear in complexity.
- The distance is computed against the default or, if none, an empty value if one record item is missing.
— Geodesic path
- The path is constructed in the record item order, scanning both record item lists simultaneously.
— Comparison
- The comparison is performed in the record item order, scanning both record item lists simultaneously.
- Returns 0 if each element pair compares equally and both lists have the same length.
- Returns <O if either the value of the first item that does not match is lower in the left-hand side list, or all
compared items match but the left-hand side list is shorter.
- Returns >0 if either the value of the first item that does not match is greater in the left-hand side list, or all
compared items match, but the left-hand side list is longer.

A.5. EnumType specification

This type specifies an explicit enumeration of items of a given type.

— Syntactic projection
- The syntactic projection is delegated to the item’s type.
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— Semantic projection
- The semantic projection corresponds to choosing the value of minimal distance concerning the item type.

- Distance value
- The minimal distance computation is delegated to the item type and applied to each value of the value set,
selecting the minimal distance.
- The complexity order of magnitude is thus linear with respect to the enumeration length, considering the
item type complexity as a basic operation.

— Geodesic path and Comparison
- These calculations are delegated to the item type.

A.6. ListType specification

— Syntactic projection
- If the value is empty, it corresponds to an empty list.
- If the value is not a list, it is encapsulated in a singleton list.
- If the list length is not within the optional range, the list is neither truncated nor extended.
- Each list item is syntactically projected.

— Semantic projection
- Each list item is semantically projected.

— Distance value
- The minimal distance is computed using the Levenshtein distance calculation applied on the list element
and delegating the edition cost to the item type distance computation [45].
- The algorithmic complexity order of magnitude is quadratic with respect to the list length, considering the
item type complexity as a basic operation.
- The editing distance can be either parameterized, defining fixed deletion, insertion, and editing costs, or
parameterized by re-deriving a cost function.

— Geodesic path
- The geodesic path corresponds to the Wagner-Fischer algorithm shortest path in the matrix distance, yielding
the minimal distance computation.

— Comparison
- Returns 0 if each element pair compares equally and both lists have the same length.
- Returns <0 if either the value of the first unmatched item is lower in the left-hand side list, or all items match
but the left-hand side list is shorter.
- Returns >0 if either the value of the first unmatched item is greater in the left-hand side list, or all items
match but the left-hand side list is longer.

A.7. SetType specification

— Syntactic projection
- If the value is empty, it corresponds to an empty set.
- If the value is not a set, it is encapsulated in a {value} singleton.
- If the set length is not optional, the set is neither truncated nor extended.
- Each set item is syntactically projected.
- To be comparable, the set is put in a canonical form:
- Set elements are sorted according to the item type comparison.
- Redundant elements that compare to 0 with respect to another are erased.
— Semantic projection
- Each set element is semantically projected.
- Distance value
- The minimal distance is computed using the Cong Ma implementation of the matrix version of the Hungarian
algorithm, after [12].
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- The algorithmic complexity order of magnitude is cubic with respect to the set size, considering the item
type as a basic operation.
- The editing distance can be either parameterized, defining fixed deletion, insertion, and editing costs, or
parameterized by re-deriving a cost function.

— Geodesic path
- The geodesic path is based on the Hungarian algorithm assignment map, which is scanned in the assignment
list order, considering the minimal cost operation of deletion, insertion, or replacement.

— Comparison
- The comparison is applied to the set canonical form.
- Returns 0 if each element pair compares equally and both lists have the same length.
- Returns <O if either the value of the first item that does not match is lower in the left-hand side list, or all
compared items match but the left-hand side list is shorter.
- Returns >0 if either the value of the first item that does not match is greater in the left-hand side list, or all
compared items match, but the left-hand side list is longer.

Appendix B. Data value interfacing

To extend this preliminary work, at the concrete programming level, we have introduced several functionalities
for the web interface, procedural interface, knowledge graphs, and ontology reasoners. This is presented to provide
an overview of potential tools that could be employed in extending the present work. At this stage, we have assessed
the feasibility of the implementation.

B.1. Interfacing with the wJSON data object model

It is straightforward to notice that our scalar values map one-to-one to a JSON data structure. More precisely, at

the implementation level, the data object model (DOM) is a Value which is either:
— (i) an atomic string (including a string parsable as a numeric or a boolean value) or

— (ii) a record, which is an unordered set of elements accessed by label, including list and set, because an array
of syntax [a b ...] isequivalenttoarecord { 0: a 1: b ...} indexed by consecutive non negative
integer, and aset {a b ...} isequivalent to a record of the form {a: true b:true ...}.

This corresponds to a variant of JSON syntax in which a list is merely syntactic sugar. It is also a weak syntax,
in the sense that, given an input, the parser attempts to construct the best data structure, without complaining about
lexical or syntactic errors, inferring punctuation like quotes or commas, and so on. This significantly reduces editing
time and allows people unfamiliar with structured syntax to write symbolic data without difficulty. This is indeed
dangerous, as it may generate a spurious data structure. Still, over time, we have experimented with it, and it is pretty
visible when rereading the data in a beautified format. The normalized string format is also more concise than the
JSON counterpart format. Finally, any wISON data is in one-to-one correspondence with the corresponding JSON
format, thereby avoiding yet another non-standard, abstruse patch while making JSON writing easier.

This is also a semantic variant called wJSON, for which record items are sorted in insertion order by default. With
this condition, all values are in one-to-one correspondence with their normalized string representation. In addition,
two values are equal if and only if record items are inserted in the same order, and their string representation are
equal. This also offers a pertinent absolute syntactic order between two values.

All these features are provided to facilitate web services or distributed computing, enabling data exchange in
JSON or wJSON.

B.2. Interfacing with calculated or deduced feature values.

Value can not only be input as data but can also be computed, as illustrated in Figure 22. To avoid semantic
ambiguity, these are treated as external mechanisms, and the resulting values are treated as new feature inputs.

In Figure 22 example, a relation relates a data structure to another (using a verb like is—a-prey-for) or
allows to define some class (using the is-a construct). In our construction, such a feature corresponds to an
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Y F R :
< Symbolic data structure) Knowledge graph view (RDF)
state: { .
where: @location ! J
when: { >L $subject Spredicate $object
time: @time _ T
duration: - {} —
A Sy g h
} + deduced Logical inferences C
what: { values — —
A —
} _
why: { —
final-goal: ../.. — T —
mood: ... T — ——
} + calculated % 1 ‘j{/ - N
how: { values < L B _~~__ Procedural computations . e
ongoing-action: " — "{_7—7 7_7 - 7_'
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@ Value | - - -

Fig. 22. Extended mechanism to compute calculated values using an external algorithmic function and deduced values using an external inference
mechanism.

implicit definition of other features: The is—a feature implies that all features of the parent are inherited unless
it is overwritten (has—capability in the example). In other words, some feature values, say “FValue”, are
calculated by algorithmic functions hooked to the data structure, and generate calculated features. Depending on
the application needs, further calculated features, calculating some numerical values using a formula, could be
implemented. In particular, a procedural method could interface with an external sensor or effector, for robotic
applications in the broad sense. At the programming level, we have to associate a method to a data feature, which is
often called a “getter” when reading and a “setter” when writing.

More precisely, we consider non-recursive imperative code constructs without side-effect, thus without global
variables, made of elementary functions, sequences, and tests, and enumerators of feature set, which allows us to
obtain good computational properties and a relatively simple operational semantics. One key point is that such a
straight-line piece of code does not generate infinite loops and has a relatively small polynomial calculation time
that can be numerically bounded. This corresponds to a common organization of code, in which straight-line code
is separated from unpredictable loops or recursive sections.

Another key point is that such representation is in one-to-one correspondence with what could be specified using
an ontology approach. Please refer to [43] for an introduction in this context. Very simply, individuals have a data
property corresponding to a qualitative or quantitative feature property and an object property corresponding to a
relation. More precisely, this corresponds to some A-box of a knowledge graph.

Thanks to this, we can add some ontology predicates, using preferentially RDFS level description, if sufficiently
powerful, to define a T-box which will generate deduced features, say “LValue”, as illustrated in Figure 23. This
requires a one-to-one transformation between a hierarchical structure and a flat relational graph. One solution, called
“Turtoise”, is apparent and already developed, and is available here. Beyond RDFS, the OWL description language
or some related derivation rules using SWRL could be added to the T-box, with the double risk of worst computation
performances, and less interoperability with people not familiar with complex ontology specification.

In our actual setup, the inference rules in the T-box are defined directly in the ontology language and are not part
of the data system.

When implementing LValue using existing ontology reasoners’ APIs in Java or C/C++, we encountered several
limitations: complex specifications, performance degradation in the interface, and, worst of all, opaque behavior.
This is indeed because we attempt to use them without sufficient expertise in the tool’s use. We then had the
opportunity to use a helpful tool: We installed the Protégé ontology editor. This widely used ontology development
environment is primarily used via a manual user interface. Using it enables us to consider a wide range of factors,
obtain comprehensive feedback on the loaded items, and more. The program starts itself and uses xdotool, which
simulates keyboard input and mouse activity and enables window movement and resizing, thereby replacing manual
gestures with a script. The drawback is that we must run the LValue mechanism on a desktop, but given that we are
still at a preliminary experimental stage, this is acceptable. This trick may have other uses.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


https://line.gitlabpages.inria.fr/aide-group/wjson//FValue.html
https://en.wikipedia.org/wiki/Abox
https://en.wikipedia.org/wiki/RDF_Schema
https://en.wikipedia.org/wiki/Tbox
https://line.gitlabpages.inria.fr/aide-group/wjson/turtoise.pdf
https://www.w3.org/TR/owl2-primer
https://www.w3.org/Submission/SWRL
https://line.gitlabpages.inria.fr/aide-group/wjson/LValue.html
https://protege.stanford.edu/
https://github.com/jordansissel/xdotool/blob/master/README.md

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Palaude et al. / Metrizable symbolic data structure

(9 Symbolic data structure)

state: {
where: @location
when: {
time: @time
duration:
e

what: {
o

}

why: {
final-goal: ...
mood: ../..

}

how: {
ongoing-action:

fl

: Abox
S$subject $predicate $object
Thox
Assertions and rules
— Reasoner

39

Fig. 23. Interface between the symbolic data management system and an ontology reasoner to derive feature values from inference. The input
data corresponds to the A-box: the facts. The inference rules are in the T-box.
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