
Neurosymbolic Artificial Intelligence 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithmic ersatz for VSA: Towards
macroscopic simulation of Vector Symbolic
Architecture
Chloé Mercier a,* and Thierry Viéville a,**

a Mnemosyne Team, Inria Bordeaux, U. Bordeaux, LaBRI and IMN, France
E-mails: chloe.mercier@inria.fr, thierry.vieville@inria.fr

Submitted to Neurosymbolic Artificial Intelligence

Abstract.
Spiking neuronal networks are biologically plausible implementations of brain-circuit computations, meaning that they can

manipulate symbols represented as numeric vectors that carry semantic information. More precisely, the Neural Engineering
Framework (NEF), relying on a vector symbolic architecture (VSA) formalism, bridges the gap between tightly interleaved
numerical and symbolic (including formal) computations. Determining how the brain can implement such processing is an
important issue.

In the present work, following this track, we consider a VSA-based formalism and propose an implementation at a macroscopic
scale, i.e., at a higher order of magnitude than typical mesoscopic implementations. We also aim to provide a more natural
representation of typical human symbolic operations by implementing modal logic.

Beyond the usual VSA data structures, such as associative memories, we introduce the notion of “relational maps” correspond-
ing to relational memories, as observed in the brain.

An experimental open-source implementation is provided, along with a benchmark and experimental observations of the
method’s performance and limitations.

Keywords: Vector Symbolic Architecture, Semantic Pointer Architecture, Modal Logic, Neuro-symbolism

1. Introduction

1.1. Biologically plausible neurosymbolic representations

As a possible entry point for considering a biologically plausible implementation at a symbolic level, vector
symbolic architectures (VSAs) were introduced to manipulate symbolic information represented as numeric vectors
(see, e.g., [27] for an introduction). VSAs have been proven to help model high-level cognition and account for
multiple biological features [16, 19]. More specifically, the semantic pointer architecture (SPA) [16] instantiates
so-called semantic pointers (i.e., vectors that carry semantic information) and enables their manipulation within
spiking-neuron networks. This approach represents a significant step toward unifying symbolic and sub-symbolic

*Supported by https://team.inria.fr/mnemosyne/en/aide.E-mails: chloe.mercier@inria.fr, thierry.vieville@inria.fr.
**Corresponding author. E-mail: thierry.vieville@inria.fr.

2949-8732/$35.00 © 0 – IOS Press. All rights reserved.

mailto:chloe.mercier@inria.fr
mailto:thierry.vieville@inria.fr
https://neurosymbolic-ai-journal.com/content/about-neurosymbolic-artificial-intelligence
mailto:chloe.mercier@inria.fr
mailto:thierry.vieville@inria.fr
mailto:thierry.vieville@inria.fr

2 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

processing, providing a means to translate the former into the latter. Consequently, complex knowledge represen-
tations in the form of compositional structures that are traditionally restricted to symbolic approaches can now be
distilled into numerical and neural1 forms systems [9].

How can we represent a symbol in a neuronal assembly? A localist representation (one neuron or neuron group
represented by a symbol) does not correspond to what is observed in the brain, and the basic idea is that a symbol
corresponds to a pattern of activity distributed over the whole assembly. Let us consider a spiking-neuron network
and quantify its activity, e.g., using neuron rates or higher-order statistics (see, e.g., [6] for a discussion). As de-
veloped by [17], this includes timing codes and population codes (i.e., relative timing codes between neurons). In
the Neural Engineering Framework (NEF) [17], this high-dimensional set of bounded quantitative values can be
collected and normalized, as a unitary stochastic vector in a high-dimensional space (with more than hundred of
thousand dimensions for a biological neuronal map and often a few hundred dimensions at the simulation level),
thus defining a SPA (building upon a particular case of VSA). The NEF provides a set of principles for implementing
such an architecture through synaptic connections, including a time representation in spiking neuron systems (rather
than, e.g., other representations based on synchrony within the neural assembly; see [17] for technical details). This
framework is a somewhat scalable alternative for a biologically plausible implementation of VSA and has already
been implemented in the simulator Nengo [1].

In the present study, we treat these developments as prerequisites and assume that a high-dimensional, stochastic
unary vector represents neural assembly activity. We also need to specify transformations and define them at this
level of abstract algebra. Mainly, following [30], we will consider the auto-association mechanism, as developed in
[43], and functional transformations, as detailed in [17].

1.2. What is this paper about?

We first revisit how to encode symbols within the VSA approach, based on the framework introduced in [16], at
the macroscopic level of modeling. We describe how to generalize symbol encoding to account for a related degree
of belief, beyond binary information. Following [30], we explain the semantic interest of this generalization. We
consider the Vector-Derived Transformation Binding (VTB) operator [20], for which we recall and complete its
algebraic properties in Appendix C.

We then consider hierarchical knowledge structures, in the sense of, e.g., [15], as a complement to associative
and sequential memorization, and revisit how to implement such a memory structure within the VSA formalism. To
this end, we review VSA data structures and demonstrate that they are related to cognitive memory classification,
as defined in [15]. To better understand their computational properties, we also compare these data structures with
programming-language containers in Appendix B. We introduce a new data structure that implements “relational
maps” to express semantic knowledge [34]. This data structure is essential for a class of symbolic derivations and
exemplifies the benefits of our macroscopic implementation.

We then illustrate the proposed mechanism by comparing a standard mesoscopic simulation with a macroscopic
simulation. We show that such computations can, up to a certain point, be approximated without explicitly perform-
ing mesoscopic computations at the vector-component level; instead, an algorithmic ersatz can be used.

We finally discuss the applications and limitations of this alternative approach.

Notations and Layout. We write vectors and matrices in bold letters (bold capital letters for matrices), and scalars
in italic. The dual quantity of a vector x is represented as its transpose xT . The dot product between two vectors x · y
can thus also be written xT y. Components of vectors and matrices are represented here using subscripts.

We use, for a property P , the Kronecker notation δP
def
=

{
1 if P is true
0 if P is false

In this paper, we consider normal distributions N (0, σ), i.e., the Gaussian distribution with a null mean and a
standard deviation σ, and we write the related random variable ν(σ).

1The term “neural” refers to any nerve cell, whereas “neuronal” is specifically related to neurons.

Mercier and Viéville / Algorithmic ersatz for VSA 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Notice: To make the paper easily readable, we provide verbal evidence in the text, while demonstrations of
statements are given in footnotes, and non-straightforward derivations are done within a symbolic computing en-
vironment (our open-source program is available at https://gitlab.inria.fr/line/aide-group/macrovsa). All links are
clickable.

2. Symbolic information encoding

Let us first revisit how VSA approaches symbolic computation, providing complementary details for the macro-
scopic simulation of mesoscopic mechanisms.

2.1. Symbol encoding

At the numerical level, each symbol is implemented as a randomly drawn fixed unit d-dimensional vector x ∈ Rd.
Typically, d ≃ 102 · · · 106, and we expect to manipulate k ≃ 102 · · · 104 symbols at the simulation level.In a cortical
or brain map, the order of magnitude is higher since the vector corresponds to the neuronal map activity (close to
105···7) and the number of encoded symbols depends on which map is considered, but could be relatively high (about
103···5).

A similarity measure is introduced to compare two vectors semantically. Classically, the cosine similarity (i.e.,
normalized dot product, denoted ·) is used to compute the semantic similarity between two unit vectors2:

x · y def
= x⊤y = cos (x̂, y) ,

where x⊤ denotes the transpose of x. This measure also corresponds to the angular distance between the vectors.
The key property is that, provided that the space dimension d is large enough, two randomly chosen different

vectors will be approximately orthogonal. More precisely3,
xT y ≃ δx=y + ν(1/d),

i.e., it is almost 1 if equal and 0 otherwise, plus centered normal noise [39]. At the numerical level, using basic
mean and standard-deviation calculi reported in Table 9 of Appendix A, we have verified for d ≃ 102 · · · 105
that unary vectors are generated with a relative precision on the magnitude below 0.1%, while the related noise
standard-deviation is below the 1/

√
d with an accuracy below 0.1%. In contrast, orthogonality is verified with a

relative precision below 0.1% while the related noise standard deviation is very close to 1/
√

d with an accuracy
below 0.1%.

This allows us to define a hypothesis to decide whether the H0 hypothesis x · y = 0 can be rejected, as detailed
in Appendix A.

2.2. Modality encoding

2.2.1. The notion of belief
Most VSA approaches consider that two vectors x and y contain equivalent information when the similarity τ

equals 1. There are different ways to interpret this result in terms of information. Here, we enrich the notion of
something being either false or true using a numeric representation of, e.g., partial knowledge, as illustrated in
Fig. 1. The true value corresponds to 1 (entirely possible and fully necessary), the false value to -1 (neither possible

2Let us consider two vectors v1 = u + w1 and v2 = u + w2, carrying the same semantic information encoded in u, plus some additional
information w1 and w2 independent from u and from each other. Since independent vectors are orthogonal, vT

1v2 = uT u = 1: this is the meaning
of semantic similarity.

3It is known that the product of these two zero-mean random variables of standard-deviation 1/
√

d is a random variable of standard-deviation
1/
√

d
2

.
The product of these two normal random variables is not a normal variable but a linear combination of two independent Chi-square random
variables. Still, we approximate them by a normal distribution, which is a conservative choice as detailed in Appendix A.
The dot-product can be considered as the d times the average value of this chi-square combination distribution over d samples, thus of the same
variance, since an average value over d samples divides the variance by d, which is multiplied by d in this case.

https://gitlab.inria.fr/line/aide-group/macrovsa

4 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

nor necessary, i.e., impossible), and the unknown value to 0, which corresponds to an entirely possible but not
necessary value.

Fig. 1. Representation of partial truth τ ∈ [−1, 1] in relation to necessity and possibility, as defined in the possibility theory. The interpretation
is that something partially possible but not necessary is unlikely, whereas what is likely is entirely possible but only partially necessary. Such a
formulation qualitatively corresponds to the human appreciation of the degree of belief, as proposed, e.g., in [41].

Our representation is in one-to-one correspondence with the representations of necessity and possibility in stan-
dard possibility theory [12]. Information is always related to a certain degree of what is called “belief” in this
formalism. While much of the partially known information concerns probability, Piaget proposed that the human
“level of truth” is subtler and concerns possibility and necessity [41], as formalized in modal logic. These notions
are further developed in the possibility theory discussed in [12] and [13].

In other words, possibility theory concerns modeling incomplete information, specifically an observer’s belief
about a potential event and the degree of surprise after its occurrence. This is considered representative of what is
modeled in educational science and philosophy [38]. Furthermore, in symbolic artificial intelligence, i.e., knowledge
representation and logical inference, a link has been drawn between this necessity/possibility dual representation
and ontology [45]. This must be understood as a deterministic theory, in the sense that partial knowledge is not
represented by randomness4. This modal notion of partial belief has several semantic interpretations depending on
the context [18] (i.e., not only epistemic5 or doxastic6 but also deontic7 and so on). This representation has also been
designed to be compatible with the ternary Kleene logic, in addition to being coherent with respect to the possibility
theory, as discussed in detail in [49], where this deterministic representation of partial knowledge is generalized to
include a probabilistic representation (using a 2D representation).

2.2.2. Implementing partial similarity knowledge
We now propose a design choice for applying this quantification to VSA symbols. A symbol representing a piece

of information with a partial degree of belief τ ∈ [−1, 1] could be defined as:

x̂ def
= τ x,

where x corresponds to the numerical grounding of a symbol, and x̂ corresponds to the numerical grounding of a
symbol, given its degree of belief τ.

Interestingly, this representation is consistent with the semantic similarity in the sense of whether two vectors
contain similar information. Considering x · y, if this value is close to 1, then it is considered true, and the modal
representation and semantic similarity are coherent. If it is almost equal to 0, then the modal representation is not
true. Since our design choice is to consider an open world in which everything that is not true is not necessarily
false, but cannot be claimed to be true, we say it is unknown. To take this a step further, if this value is negative
(down to−1), the modal representation considers that it is false, i.e., that the contrary is true, which is coherent with

4This deterministic representation of partial knowledge can be generalized also to include a representation of the randomness belief. In the
vanilla possibility theory, the possibility can be seen as an upper probability: Any possibility distribution defines a set of admissible probability
distributions, i.e., a consonant plausibility measure in the Dempster–Shafer theory of evidence [2]. In [47, 49], it is proposed to bound the
approximate probability, reconsidering the original notion of necessity, in order also to consider a lower bound of probability. This could be an
interesting extension of the present work.

5Epistemic modal logic is concerned with reasoning about knowledge.
6Doxastic logic is a type of logic involved with reasoning about beliefs.
7Deontic logic is the field of logic that is concerned with obligation, permission, and related concepts.

Mercier and Viéville / Algorithmic ersatz for VSA 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

the semantic similarity. However, negative values are not explicitly used in the literature cited in this paper, to the
best of our knowledge.

Given these atomic ingredients, we now examine how they can be stored and manipulated within different data
structures.

3. Knowledge structure encoding

3.1. Using bundling and binding to store information

As detailed in Appendix B and summarized in Table 1, the VSA formalism defines data structures for different
memory architectures, as formalized in [15]. This corresponds to different programming containers. Further details
on a scalable biologically plausible knowledge representation can be found in [9]. A key point of the present work
is to verify that these VSA mechanisms generalize to modal symbol encoding (see Appendix B for a detailed
development, following [30], who introduced this design choice).

All data structures rely only on the two following operations:

– The bundling operation combines N symbolic vectors si into a composite one. It corresponds to a simple
addition s def

=
∑N

k=1 si of the symbols. The cosine similarity operator allows one to detect if the symbol related
to s j belongs to the bundling s:

s · s j =

{
∥s j∥2 if s j is in the bundling
0 + noise otherwise

– The binding operation of a symbol s1 with another symbol s2 writes s def
= Bs1 s2. The key point is that the

corresponding unbinding operator Bs∼1 allows to retrieve s2:
Bs∼1 s = s2 + noise

The internal mechanism of this operation corresponds to the fact that Bs1 and Bs∼1 are approximate inverse
operations up to an additive noise. As developed rigorously in Appendix C, for the binding operator used here,
these linear operations have matrix representations, and one matrix is an approximate inverse of the other.

A reader not familiar with the related VSA formalism will find in Appendix B a didactic introduction. The present
choice of the binding operator from among several available binding operators [39] is discussed in Appendix C. For
this section to be self-contained, one may consider that binding makes it possible to create a key-value symbol pair,
while the unbinding operation makes it possible to retrieve the value from the key.

3.2. Relational maps

From early artificial intelligence knowledge representation to modern web semantic data structures, one8. The
basic idea of symbolic representation is to express knowledge through relationships, i.e., triple statements of the

8Of course, other expressive frameworks, such as logical representations, frame-based semantics, and hyper-graphs, offer alternative models,
which could be richer and more nuanced than the ontology framework targeted here:
- On one hand, the link between the ontology framework and logical representations, namely description logic, is well established and developed,
the key point being to propose a more expressive framework than propositional logic, but less expressive than first-order logic, to guarantee that
the core reasoning problems for description logic are (as much as possible) decidable. Several levels of specification allow the underlying de-
scription logic features of an ontology language level to exhibit different balances between expressive power and reasoning complexity. See, for
instance [21] for a development.
- On the other hand, frame-based semantics is an exciting alternative to ontology frameworks to ease data and reasoning specifications. At the
same time, it directly maps onto ontology frameworks, as discussed for instance in [26]. This mapping does not render the approach useless;
instead, it provides an alternative way to express knowledge. However, at the implementation level, we can consider that mapping such a repre-
sentation to an ontology would enable us to extend the present work to this class of representations.
- A step further, hyper-graph representations intrinsically offer a richer representation than the previous ones, standing on labeled graph repre-
sentations. Even though there is a trivial one-to-one mapping for a hypergraph onto a bipartite graph, more precisely a Levy graph, it appears of
interest to discuss a specific adapted VSA implementation, beyond the scope of this work. This is briefly discussed in the conclusion.

https://en.wikipedia.org/wiki/Hypergraph

6 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Container VSA mechanism Cognitive usage Main available operations

Set Bundling or superposition Self-associative memory
+ Element insertion/modification
+ Membership check
- No enumeration∗.

Map or dictionary Binding superposition
Auto-associative and hetero-
associative memory∗∗

+ Element insertion/modification
+ Value·s check from key
+ Key·s check from value
+ Symbol check from approximate input
- No enumeration∗.

Indexed and chained list
Ordinal binding superposi-
tion

Sequential memory
+ Element insertion/modification
+ Value enumeration.

Relational map (see next subsection) Hierarchical memory
+ Element insertion/modification
- No enumeration∗.

(∗) Through, when implemented in imperative programming, such data structures do have enumeration capabilities, for VSA implementations, symbol enumeration is also easily implementable,

but using an external mechanism.

(∗∗) It is worth noticing that, for instance, associative maps are not necessarily defined combining bundling/binding operations, but we choose to restrict here to such an algebraic definition to

have a homogeneous setup to specify it at the macroscopic level.
Table 1

Biologically plausible data containers, using usual VSA implementations; see Appendix B for details..

form ($subject, $predicate, $object), as schematized in Fig. 2, [5, 25]. We present this structure to
demonstrate that, beyond existing VSA-based data structures, we can readily define more complex structures at a
macroscopic level.

Here, we aim to present this structure to demonstrate that it extends beyond existing VSA-based data structures.
We propose9 to call this a “relational map”.

Fig. 2. Atomic representation of knowledge: To express some knowledge regarding a symbol, the subject, we define a feature with a predicate
that has an object as an attribute (i.e., a quantitative data value or a qualitative symbol).

3.2.1. VSA implementation
Such information can be implemented through a distributed representation using bundling and binding opera-

tions, i.e., associative maps. Following and generalizing [30], we propose starting with an architecture of combined
associative memories, as shown in Fig. 3. Each associative map stands for a predicate, as proposed and developed
by, e.g., [42]. It integrates a demultiplexer, which is another associative map, allowing indexing of the previous
subject → object associative maps. At the algebraic level, this writes:

tpso
def
=

∑
i Bpi tpi , with tpi

def
=

∑
j,pi=p j

Bs j o j,

where:

– si, pi, oi are vectors encoding the subject, predicate and object symbols;
– each By x is a binding which corresponds to a key-value pair (the key is y, and the value is x);

9The choice of the term “relational-map” is closely related to relational data models, which is precisely the idea of an ontology. Furthermore,
“relational mapping” allows one to map an object model to a relational data model, typically a database, though not exclusively. Conversely,
“object–relational mapping” enables the conversion of data between relational databases and object-oriented data structures. It represents the
connections among different entities (e.g., friendships among people) across diverse contexts. Finally, “relational maps” is a mathematical term
that defines maps from, to or between relations.

Mercier and Viéville / Algorithmic ersatz for VSA 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– combining these with bundling (i.e., a simple sum) in tpi allows to define an associative map, whose unbinding
operation allows us to retrieve the object of a given subject and predicate:

Bs∼i tp j ≃ oi j + unknown;
where “unknown” stands for an almost orthogonal vector, thus not similar, to any other vectors, as made ex-
plicit in Appendix B.

– selecting the associative map, given a predicate, is also done through the tpso, implementing the demultiplexer:

Bp∼
i

tpso = tpi + unknown.

To obtain such properties, the choice of a non-commutative binding operator from among several available bind-
ing operators [39] is essential, in order not to mix predicates, subjects, and objects.

Fig. 3. A relational map as a row of associative memory. For each predicate, an associative memory stores the hetero-associations between
subject and object. An input associative memory acts as a demultiplexer, allowing one to select, for a given predicate, which associative memory
to use. At the algebraic level, this corresponds to a simple combination of bundling and binding operations.

Given a triple (s0,p0, o0.), it is straightforward to verify to what extent it is stored in the relational map through
unbinding:

(Bs∼o Bp∼
o

tpso · o0).

This obviously generalizes to a triple multiplied by a modal τ value, while the related τ value is simply the product
of the element’s τ value.

We can also further obtain all objects of a given subject for a given property,

tp j,s j

def
=

∑
p j=pi,s j=si

oi ≃ Bs∼j Bp∼
j

tpso + unknown,
using the notation of Appendix C. We can also easily define:

tp j,o j

def
=

∑
p j=pi,o j=oi

si ≃ Bs∼j B↔ Bp∼
j

tpso + unknown.

However, such a construction, up to the best of our knowledge, cannot allow us to retrieve, for instance, each
predicate of a given subject. More precisely, there is no operation to recover ts j or ts j,o j from tpso, and no operation

to recover tp j or tp j,o j from tspo. nevertheless, to this end, a dual construction, tspo
def
=

∑
i Bsi Bpi oi, with similar

8 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

decoding formulae makes it possible to access further the properties of a given subject ts j

def
=

∑
i,s j=si

Bpi oi or the

properties of a given subject-object couple ts j,o j

def
=

∑
i,s j=si,o j=oi

pi using similar formulae. We thus shave now two
relational maps tpso and tspo. This is an important constraint, and it would be interesting to verify whether it is
observed at the level of the brain’s semantic memory.

Again, to enumerate the different elements of these maps t•, we need the corresponding indexing mechanisms
discussed previously. If the basic operation is to enumerate all triples subject to order constraints, then the choice of
storage architecture is not crucial; this will be the case later in this paper.

To take this a step further, we can also consider an additional symbol “something,” and each time a triplet
(si,pi, oi.) is added, we can also add (σ,pI , oi.), (si, σ, oi.), and (si,pI , σ.). This makes it possible to retrieve the
fact that there is a link between the predicate and object, subject and object, and subject and predicate, without
requiring the enumeration of the different elements10.

At the cognitive level, this corresponds to cognitive maps interacting with one another and proposes a formaliza-
tion of the notion of hierarchical memory organization, as discussed, e.g., in [15].

At the computer programming level, this corresponds to a “triple store” used in ontology reasoners and is in
fact a distributed representation of an oriented graph, in the form of an adjacency set for tspo construction and a
hierarchical edge set for tpso construction.

However, compared to existing development in the literature, defining and manipulating such relational maps,
especially when considering rather large data ensembles, might become intractable to simulate at the microscopic
level, or even at the mesoscopic level. It may be helpful for large-scale applications to assess the extent to which
this can also be implemented at the macroscopic level, as currently developed.

3.2.2. Implementation performances
Since relational maps are built on associative maps, as extensively studied in the literature [42, 43, 50], and

reviewed in appendix B, we can easily deduce both calculation performances and robustness performances (such as
false-positive rates) from what is already known for associative maps.

At the mesoscopic level, as detailed previously, given a relational map, information is retrieved in two binding
operations: selecting the associative map and then retrieving its information. It is thus like using two associative
maps in sequence. When exploring this data structure in previous study [30], we have observed the importance, in
terms of performances, to build an architecture in terms of row of associative maps, instead of storing all information
in a single vector, as algebraically possible, but with the obviously occurrence of false positives, as discussed in
details in [39].

At the macroscopic level, as developed in the sequel, we will use a non-sorted programmatic associative map,
i.e., a hash table, with well-known performance characteristics.

More precisely, at both levels:
- storing a value requires two predicate/subject associative-map accesses (or creation if the predicate or/and the
subject is used for the 1st time), and then two bindings followed by bundling additions;
- retrieving a value requires one of the two predicate associative-map access and one unbinding.

A step further, and this is a limitation of our work, we will simulate at the macroscopic level, “perfect” associative
maps, thus relational maps, without simulating or taking into account any false positive [39] or any other limits of
such data structure capability. This robustness is directly related to the unbinding-robustness operation, as studied
in detail by [39] for several standard binding operators.

4. Implementation at the macroscopic scale

The VSA, when implemented using the NEF, enables microscopic simulation of neuronal processes at the level
of spiking neuronal networks for memorization and processing operations. At a larger scale, when the VSA is
implemented as described in Appendix C using linear algebra and permutation operations, we are at the mesoscopic

10This has been proposed by Gabriel Doriath Döhler (unpublished research report).

Mercier and Viéville / Algorithmic ersatz for VSA 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

scale, allowing us to perform the same operations without explicitly representing the neuronal state value and its
evolution, relying instead on random vectors in linear algebra. This is one significant advantage of this class of
approaches.

To take this a step further, at a larger macroscopic scale, we could directly consider the previous operations and
predict the results of the various algebraic operations without explicitly working at the vector component level. Let
us describe how this approach can be designed and implemented using what could be called an “algorithmic ersatz”.

It is crucial to describe the implementation up to the choice of data structures, to precisely explain what is taken
into account and what is not.

4.1. Symbol indexing and specification

In the VSA, each symbol of the vocabulary is associated with a d-dimensional random vector. At the macroscopic
scale, we only need to register each unary vector uk using an integer number k, incremented for each new symbol. At
the input/output level, the human-readable string (sk) representation of the symbol is utilized, but it is not considered
further here.

Weighted symbols of index i, correspond to a unary vector number ki, with also a “belief” value τi ∈ [−1, 1], as
discussed in subsection 2.2, that is equal to 1 by default. They are also estimated up to a certain normal centered
additive noise ν(σ) of standard deviation σi ⩾ 0, which is equal to 0 by default when no approximate operation has
been applied to the symbol.

Two symbols may thus have the same unary vector number but different belief levels or different noise levels.
The associative table of symbols is thus a simple associative array data structure of (ki, τi, σi), corresponding to

xki = τi uki + ν(σi),

as illustrated in a more programmatic format in Fig. 4.
For comparison with mesoscopic computation, the unary vector value with ∥uki∥ = 1 is added to the data struc-

ture. Therefore, two symbols x and x′ are approximately colinear if and only if they have the same unary vector
index.

Then, two colinear symbols x and x′ are indistinguishable if their difference magnitude is negligible with respect
to the level of noise. More precisely:

x− x′ = (τ− τ′)uk + ν(σ+ σ′), ∥x− x′∥ = |τ− τ′|+ noise,
so, considering the z-test developed in Appendix A, we can consider, up to a given probability of error p < 0.01,
that the two values are different if |τ − τ′| ⩽ 2 (σ + σ′), and indistinguishable otherwise. This does not mean that
we can state that x and x′ are equal, but either equal or that their difference is not statistically significant.

Finally, an obvious derivation leads to the fact that, up to the first order, the similarity between two symbols x and
x′ writes:

xT x′ ≃ τ τ′ δk=k′ + ν(σ+ σ′),

Symbol : {
unsigned int key; // index
double tau; // belief level
double sigma; // noise level
enum type; // symbol type
string name; // human readable name
double mesoscopic_value[dimension]; // optional vector

}

Fig. 4. Programmatic implementation of a symbol at the macroscopic scale, adding an optional mesoscopic numeric vectorial value, to compare
macroscopic and mesoscopic calculations.
The symbol type can be atomic, i.e., scalar; such a symbol is only defined by its name, without including binding or bundling, or either bundling
or binding with a complementary data structure, as developed below.

10 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

4.2. Symbolic derivation of compounded symbols

Given atomic symbols that are randomly drawn, using the enumerating operations given in Appendix C, we have
to compute compounded symbols composed through bundling and binding (while unbinding is a simple binding
with the dual symbol, thus taken into account with binding). In contrast, to compute entailment rules, we need to be
able to calculate the similarity between any of these compounded symbols.

At the macroscopic level, it is straightforward to define an “oracle” that can calculate the result of all operations
as follows:

Bundling canonical representation. A symbol corresponding to the bundling of other symbols is entirely defined
by the symbol set and their corresponding τ and σ values. The key point is to have chosen an implementation that
allows the maintenance of a normalized representation of the bundling elements, as follows.

The programmatic implementation of a bundling is an associative map:
symbol-id −→ Symbol

the Symbol data structure being defined in Fig.4.
- When a new symbol is added,
if the symbol index is already present in the bundling, the τ and σ values are updated,
otherwise a new map entry is created, making use of commutativity to group all symbols with the same index.

- If the added symbol is itself a bundling, its components are directly expanded, making use of associativity, i.e., the
fact that a bundling of bundling is a bundling.
- Deleting a symbol is not explicitly defined in the usual VSA implementation. At the mesoscopic level, this corre-
sponds to subtracting a vector from the bundling, i.e., adding it with a negative τ value. In contrast, the σ value is
updated to take into account the fact that this numeric operation is performed with some additive noise.

Usual operations over a bundling (e.g., binding or computing similarity) typically apply the operation to each
element.

The representation is canonical in the sense that, if equality is well-defined on their components, two bundlings
are semantically equal, if and only if they are syntactically equal, i.e., if they have the same symbol map. Each
corresponding symbol is equal, more precisely indistinguishable, when considering noise.

Associative map canonical representation. A symbol corresponding to an associative map is a binding of bundling,
thus implementable using the two other mechanisms. However, to achieve optimal performance, we use a canonical
data structure corresponding to an associative multi-map, i.e., a map that maps a key symbol to a set of symbol
values. We use:

symbol-id −→ (Symbol, (symbol-id −→ Symbol))
in words, a map mapping key IDs (i) to the related symbol and (ii) to the map of all symbol values.

The symbol addition mechanism is entirely similar to the bundling mechanism, since we reuse the symbol-id
−→ Symbol representation here. Conversion to the binding of bundling form is obvious to implement.

Binding canonical representation. A symbol corresponding to the binding of one symbol onto another is entirely
defined by the pair of symbols and yields either a reduction if it is the corresponding unbinding operation or a
binding combination.

Then, to reduce such an expression, we thus have to recursively11:
+ Expands By x binding on the y argument if it is a bundling.

11More formally, we consider the following rules:

ey : B∑
k yk

x →
∑

k Byk x
ex : By

∑
k xk →

∑
k By xk

r1 : By By∼ x → x
r2 : By∼ By x → x

where
- ey and ex correspond to bundling expansion over binding;
- r1 and r2 correspond to the binding/unbinding reductions.

Applying recursively ey and ex guaranty that there is no bundling in the y and x arguments of the binding, thus yields to an expression of the
form

Mercier and Viéville / Algorithmic ersatz for VSA 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

+ Expands By x binding on the x argument if it is a bundling.
+ Reduces dual By By∼ x or By∼ By x binding/unbinding operation, on elementary or compounded symbols.

Let us call “atomic binding case”, when for every By, y is an atomic symbol. When considering all binding
operations regarding used data structures, as discussed in detail in Appendix B, or literature quoted in this paper,
we are in this atomic binding case. In such a case, the iterative application of these three operations allows one to
obtain all expressions in a canonical form, written:∑

k

∏lk
l=1 Bykl xk

where xk and ykl are atomic symbols and ykl ̸= y∼k(l+1), while we may have lk = 0 thus omitting the binding
operation.

At the programmatic level, binding and unbinding are defined by the same operator, with a flag to specify binding
or unbinding.

To obtain a canonical representation with respect to (τ, σ) values, we use the first-order relation discussed in the
sequel, which is directly obtained from the linearity of the binding operator:

Bτ y+ν(σ) (τ
′ x + ν(σ′)) = By (τ τ

′ x + ν(τσ′ + τ′ σ) + O(σσ′)

where O(σσ′) contains second-order terms with respect to the first-order noises. As a consequence, the y operator
of a binding is always defined with τ = 1 and σ = 0.

For the sake of generality, let us also discuss canonical forms beyond the “atomic binding case”. Interestingly
enough, there are no more reductions in terms of a flatter or reduced expression in this general case12. In other
words, we still derive a canonical form of an expression with binding.

A step further, the notion of approximate colinearity or equality (i.e., indistinguishability) between two binding
symbols is easily defined, as it is induced by the same notion on the two left and right symbols.

Limit of the implementation. This symbolic derivation assumes that no symbol with two different names has a
hidden similarity, i.e.:

∀x, y, x · y ≃ 0 and x · y∼ ≃ 0.

∑
k
∏

l Bykl xk

where xk are scalar symbols. This corresponds to a symbolic expansion of an expression, and it is well established (see, e.g., [3]) that the recursive
application leads to a fixed point, and a canonical form, as for the expansion of, e.g., a polynomial.

Note that ykl is either a scalar symbol or a compounded symbol of the form
∏

h Byhkl xkl, because the binding is associative with respect to the
x argument, since it corresponds to a matrix multiplication, but not with respect to the y argument, as further discussed in the sequel.

Reducible binding couples are of the form By By∼ or By∼ By, where y is either a scalar or a compounded symbol involving bindings, as
made explicit with rules r1 and r2. These rules allow the reduction of such binding-unbinding couples. After such an application, there is no
guarantee that reducible binding couples will not remain. Therefore, we have to apply r1 and r2 recursively on the resulting expression until no
more reducible binding couples are left. This again leads to a fixed point, since, for instance, the expression positive size decreases at each step.

12Let us consider the idempotent mirroring matrix B↔ and the associated dual operator ∼, both defined and detailed in Appendix C.:

B↔ x = x∼ and B↔ By x = Bx y

We now have to consider expressions where the binding left parameter is also binding, i.e., of the form BBy z x. Due to the dual operator, it
expands as:

eb BBy z x → B↔ Bx By z = [Bx By z]∼ .

However, as discussed in Appendix C, beyond idempotence, the dual operator ∼ neither expands nor simplifies over binding operations. It
only expands over bundling. This means that we can not further reduce or normalize binding expressions for which the left argument, named y
here, is not atomic.

In other words, the three forms on the left-hand and right-hand sides of eb are equivalent and do not lead to further derivation, except trivial,
useless ones (e.g., adding a zero). Therefore, up to our best understanding, no other expression with x, y, and z, can be semantically equal to one
of the three equivalent expressions.

It means that two expressions for which the rightward parameter is in canonical form as discussed previously, and the left parameter is a
binding itself in canonical form, are semantically equal if and only if they are syntactically equal.

12 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

These symbolic derivation rules are in fact nothing but a subset of usual algebraic normalization rules, where the
bundling stands for the sum, what it is here, and the bundling is a non-commutative product, with a left-inversion
mechanism. We refer to the symbolic computation textbook for further details (see, e.g., [3]).

4.3. Symbol noise derivation

At the mesoscopic scale, calculations are performed at the floating-point machine precision, which is not ac-
counted for here. The operations rely on the fact that we consider random vectors in a high-dimensional space, and
thus they are approximately orthogonal up to the first order, up to a normal-centered additive noise. The primary
operations are the dot product used to calculate the similarity, as detailed in subsection 2.1, and the approximation
of the matrix inverse using its transpose for unbinding, as detailed in Appendix C.

We must thus consider a noise level for each symbol and update it after each calculation; up to first order, this
noise can still be represented by a centered normal distribution. This cannot be neglected, because we also introduce
a belief value that can be small and thus is not negligible relative to the noise level. We denote by σ•

def
= O(1/d) the

order of magnitude added by an approximate operation, as discussed previously in this paper.
On the one hand, considering the similarity operation between two symbols, we obtain13 for the dot product

(τi uki + ν(σi)) · (τ j uk j + ν(σ j)) = τi τ j δki=k j + ν(σi j), σi j < σi + σ j + σ•,

up to the first order, considering that the noise is independent of the vector values up to the first order. We can thus
perform this operation without explicitly computing the dot product.

Here, we present a conservative approach by proposing an upper bound on the noise, while the exact first-order
value of σi j can also be used and is implemented. This design choice is also conservative relative to a mesoscopic
implementation, because it increases noise at each operation, whereas at the mesoscopic level, each numerical
random vector is drawn only once; thus, depending on the sequence of operations, the noise may not increase.
We consider that noise must be added at each step and ask whether this is more realistic than a fixed noise value.
However, it would have been possible (though computationally expensive) to freeze noise values and cache them in
tables.

13The derivation is written as follows:
((τi uki + ν(σi)) · (τ j uk j + ν(σ j)) =

τi τ j uki · uk j + τi uki · ν(σ j) + τ j uk j · ν(σ j) + ν(σi)) · ν(σ j).

If ki ̸= k j, then uki · uk j = ν(σ•) since these random vectors are approximately orthogonal up to normal noise with a standard deviation with an
order of magnitude of σ• [50], whereas if ki = k j, then uki · uk j = 1 since these are unary vectors.
Then, uki · ν(σ j) is the dot product. It is a random variable of mean E

[
uki · ν(σ j)

]
= 0, since vectors are assumed to be independent of other

sources of noise up to the first order, and variance E
[

uT
ki
ν(σ j) ν(σ j)T uki

]
= σ2j since the covariance ν(σ j) · ν(σ j)T = σ2j I because the noise

is isotropic; meanwhile, uT
ki

uki = 1 since it is a unary vector. Note that here, uki is not a random variable; it stands for the mean of the random
vector drawn.
The derivation for uk j · ν(σi) is identical.
Assuming that ν(σi) and ν(σ j) are independent and of zero mean, as hypothesized, their related variance is known to be σ2i σ

2
j . The product

of these two normal distributions is not a normal distribution; instead, it is a linear combination of chi-square distributions in the general case.
However, here, as it is a second-order term, with respect to the expected small values of σi and σ j, it is negligible. Collecting these results, we
obtain that up to the first order,

(τi uki + ν(σi)) · (τ j uk j + ν(σ j)) = τi τ j δki=k j + ν

|τ j|σi + |τi|σ j + |τi τ j|σ•︸ ︷︷ ︸
def
=σi j

 ,
yielding the expected result.

Mercier and Viéville / Algorithmic ersatz for VSA 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

On the other hand, considering a symbol of index j, binding by a symbol of index i and unbindind by a symbol
of index i′ so that k = ki = ki′ , to ensure a valid binding/unbinding operation, we obtain, up to the first order14,

B(τi ui+ν(σi)) (τ j u j + ν(σ j)) = τi τ j ūi j + ν(σ
′
i j), σ

′
i j ⩽ (1 + σi + σ j)σ

1
4
• ,

where ūi j
def
= E [Bui u j] is a new vector orthogonal to ui and u j, while the noise related to the binding operation is

integrated into σ′i j.
Since an unbinding operation is simply a binding operation with a dual vector, the noise calculation is the same.
Finally, since bundling is a simple summation, the additive noise standard deviations add. The tricky point is the

approximation of τ, as summarized here15:∑I
i=1 xi = τ• u• + ν(

∑
i σi), τ•

def
=

√∑
k(
∑

i,ki=k τi)2,

where u• is a new unary vector approximately orthogonal to the others, while τ• is the related magnitude. We thus
use τ• as an approximate measure of bundling belief, which is somewhat arbitrary at this stage but can be refined.

4.4. Other possible features

Similar considerations would easily allow us to implement the same approach at a macroscopic level for the dual
operator ∼, related to the commutator operator B↔ and the composition operator ⊘ given in Appendix C. However,
as discussed in the previous section, unless they are used to define expressions, they are not helpful in our case. This
is also the case for the i identity element.

Interestingly enough, deriving a macroscopic ersatz of complex instead of real VSA specification seems straight-
forward, since algebraic relations easily generalize to this case, as reviewed in Appendix C.

Furthermore, we consider binding/unbinding operations using the VTB algebra; the same reasoning applies to
other binding/unbinding operations, including, in particular, heavily calculated operators, yielding additional reduc-
tion rules.

This is another argument to consider macroscopic algorithmic ersatz. While VTB-algebra or almost one order
of magnitude heavier than, for instance, convolution operators (O(d3/2) instead of O(d log(d))), and this is also
the case for other non-commutative binding operations (see Appendix C), the macroscopic simulation of both have
similar computational costs.

14As made explicit in Appendix C, the binding of two independent vectors y and x is a random vector and we can write

B(τi ui+ν(σi)) (τ j u j + ν(σ j)) =

τi τ j Bui u j + τi Bui ν(σ j) + τ j Bν(σi) u j + Bν(σi) ν(σ j) =

τi τ j E [Bui u j] + τi τ j ν(1/d1/4) + τi σ j ν(1/d1/4) + τ j σi ν(1/d1/4) + σ j σi ν(1/d1/4) ≃
τi τ j ūi j + (τi τ j + τ j σi + σ j σi) ν(1/d1/4) ≃

τi τ j ūi j + ν

(|σi σ j|+ |τi|σ j + |τ j|σi)σ
1/4
•︸ ︷︷ ︸

σ′i j

 ,
up to the first order, since ν(σ) is a random vector of magnitude σ, while

E [Bui ν(σ j)] = E
[
Bν(σi) u j

]
= E

[
Bν(σi) ν(σ j)

]
= 0,

because these random vectors correspond to centered random vectors.
15 ∑

i xi =
∑

i τi uki + ν(σi)

=
∑

k τk uk + ν(
∑

i σi) τk
def
=

∑
i,ki=k τi

= τ• u• + ν(
∑

i σi)

with:

τ• ≃
√∑

k τ
2
k , ∥u•∥ = 1,

since uk are approximately orthogonal.

14 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

4.5. Available implementation

We are thus in a position to propose an algorithmic ersatz of the usual VSA mesoscopic linear algebra calculations
involving high-dimensional random vectors. This has been implemented and made available as public documented
open-source code16. For the generation of a symbol, at a given level of belief τ and for a given level of first-order
random normal noise with a standard deviation σ, the usual similarity, bundling, and binding operations are made
available. The data structures made explicit here17.

5. Experimental results

5.1. Calibrating macroscopic simulation

Symbolic expression syntax. To input or output expression we use the usual JSON18 syntax in a weak form19,
namely:
- Bundlings are represented by lists:

[symbol_1 ...].
- Bindings are represented by the construct:

{b y: symbol x: symbol },
where b stands for binding and is replaced by u for unbinding.
- Atomic symbols are represented by the construct:

{ name: symbol-name tau: tau-value sigma: tau-value },
tau and sigma being optional, while atomic symbols with tau=1 and sigma=0 are also represented by strings.
At the implementation level, this requires no more than a few lines of code.

Symbolic derivation examples. In Table 2, four illustrative examples of symbolic reduction are given:
-The first one illustrates the canonical representation of bundling, where, in this case, [a, b] and [b, a] have the exact
internal representation. In contrast, expansion of binding over bundling occurs in the reduced form.
-The second one illustrates that bundling of bundling is flattened while empty bundling or singleton bundling is
reduced; it also shows an example of tau and sigma computation.
-The third and 4th ones illustrate binding/unbinding reduction and related belief computation, including in complex
expressions.

Binding magnitude verification In Table 3, we have verified another aspect of our formal developments: The
VTB binding magnitudes. This is important: contrary to previous studies, we introduce the notion of belief via
the magnitude parameter τ. As formally derived ∥By x∥ ≃ 1 and ∥By y∥ ≃

√
2, while other magnitudes have

not been derived a-priory only observed numerically. If the simulation is run at the mesoscopic level, these values
are relevant, and the computations must be renormalized. If the simulation is run at the macroscopic level, the
normalization assumption is always considered.

Numerical noise estimation. In Table 4, the comparison between mesoscopic similarity measures of elementary
expressions and the related macroscopic prediction is reported. Noise of order of magnitude O(1/d) for similarities
and O(1/d1/4) for binding has been considered. We observe that, in our simple first-order, conservative derivations,
noise is overestimated at the macroscopic level, and this overestimation increases with dimensionality.

This overestimation increases almost logarithmically with the number of dimensions and may be partially com-
pensated for by a simple rule of thumb that could be refined in the future. This is especially important because
macroscopic simulation is most useful as the spatial dimension increases.

After numerical adjustment, it appears that an experimental rule of thumb of:

16https://line.gitlabpages.inria.fr/aide-group/macrovsa.html.
17Additional mechanisms of rule derivation are present beyond the scope of this work.
18See https://www.json.org.
19See https://line.gitlabpages.inria.fr/aide-group/wjson.

https://line.gitlabpages.inria.fr/aide-group/macrovsa.html
https://www.json.org
https://line.gitlabpages.inria.fr/aide-group/wjson

Mercier and Viéville / Algorithmic ersatz for VSA 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[I]: [{b y: c x: [a b]} {b y: c x: [b a]}]

[P]: [B_(c)([a b]_<1.4±0>)_<1.4±0.044> B_(c)([a b]_<1.4±0>)_<1.4±0.044>]_<2±0.088>

[R]: [B_(c)(a)_<2±0.062> B_(c)(b)_<2±0.062>]_<2.8±0.12>

[I]: [[{name: a tau: 0.5 sigma: 0.1} []] {name: a tau: 0.5 sigma: 0.1}]

[P]: [a_<1±0.2>]_<1±0.2>

[R]: a_<1±0.2>

[I]: {b y: a x: {u y: a x: [{name: c tau: 2 sigma: 0.1}]}

[P]: B_(a)(B_(a∼)([c_<2±0.1>]_<2±0.1>)_<2±0.066>)_<2±0.065>

[R]: c_<8±0.23>

[I]: {b y: c x: {b y: c x: {b y: c x: {u y: c x: {u y: c x: {u y: c x: a}}}}}}

[P]: B_(c)(B_(c)(B_(c)(B_(c∼)(B_(c∼)(B_(c∼)(a)_<1±0.031>)
<1±0.032>)<1±0.032>)_<1±0.032>)_<1±0.032>)_<1±0.032>

[R]: a_<1±0.19>
Table 2

Four symbolic reduction examples.
- The [I] line corresponds to the Input of the symbolic expression in weak JSON syntax.
- The [P] line corresponds to the Parsed expression.
- The [R] line corresponds to the Reduced expression.
Bundlings are represented as a list between [], Binding using the usual syntax. In contrast, the < τ±σ > construct allows to specify the belief
value, when not equal to the default < 1± 0 > value.

Dimension: 100 400 1024 2500 4096 10000

∥Byx∥2 1±0.14 1±0.073 1±0.043 1±0.027 1±0.023 1±0.014

∥By∼Byx∥2 2.1±0.51 2±0.25 2±0.15 2±0.095 2±0.081 2±0.049

∥Byy∥2 2.1±0.2 2±0.1 2±0.059 2±0.039 2±0.033 2±0.02

∥By∼Byy∥2 5.3±1.2 5.2±0.64 5.1±0.36 5.1±0.25 5.1±0.2 5.1±0.13
Table 3

Mesoscopic computation of VTB binding magnitudes, over N = 1000 samples: mean ± standard-deviation is shown. This allows to verify what
has been derived in Appendix C, regarding this aspect.

σ• = O(1/d) ≃ 1

1024 d︸ ︷︷ ︸
σ0•

≃ 1

1024 (6 log10(d)− 11) d︸ ︷︷ ︸
σ1•

leads to reasonable results: using σ0• allows one to maintain the standard-deviation over-estimation above almost 1
and below 5, for d < 105, while using rule of the thumb defined by σ1• allows one to maintain the standard-deviation
over-estimation 0.75 and below 2, for d < 105, which corresponds to the result in Table. 4. This simulation has been
conducted by, on the one hand, randomly drawing N = 100 d-dimensional vectors and computing the dot products
explicitly, and, on the other hand, by outputting the macroscopic mechanism’s inference for the same data set.
Beyond that, the noise level is even more overestimated, and the simplest and most efficient solution is to calibrate
it using a chosen dimension, as done here.

These numbers indicate that, for a relatively simple first-order estimate of mesoscopic noise, predicting it at
the macroscopic level conservatively yields an overestimation that increases with the number of spatial dimensions.
Obtaining such an overestimation is a conservative choice, in the sense that some deductions may be missed, whereas
false deductions will be avoided, as discussed in Appendix A.

We have run this comparison up to a dimension of 107···8, which corresponds to the order of magnitude of one of
the most essential neural maps in the human brain, the whole hippocampus [40].

A step further, we investigated the extent to which the standard approximation, in this work and in the literature,
of the chi-square distribution by a normal distribution for the dot-product similarity operation is appropriate. This
is shown in Fig. 5. The main result is that this difference is below 1 bit (i.e., we miss less than 1 bit of information,

16 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Dimension: 100 400 1024 2500 4096 10000 1000000 25000000
Mesoscopic estimation over 100 samples
Byx · x 0.0052±0.11 0.0039±0.052 -0.002±0.029 3.2e-05±0.023 -0.00026±0.017 0.0013±0.011 3.6e-05±0.00096 -2.7e-05±0.0002
By∼ Byx · x -0.03±0.21 -0.0071±0.12 0.00023±0.074 0.0023±0.045 -0.0014±0.038 0.0016±0.023 -0.00013±0.0024 4.4e-05±0.00042
Byy · y 0.022±0.14 -0.0022±0.074 0.0041±0.045 -0.0018±0.029 0.0011±0.022 -0.00021±0.014 -1.8e-05±0.0013 3.8e-05±0.00027
By∼ Byy · y -0.03±0.21 -0.0071±0.12 0.00023±0.074 0.0023±0.045 -0.0014±0.038 0.0016±0.023 -0.00013±0.0024 4.4e-05±0.00042
Macroscopic bias and standard-deviation
Byx · x 0±0.11 0±0.054 0±0.038 0±0.029 0±0.024 0±0.019 0±0.005 0±0.0021
By∼ Byx · x 0±0.34 0±0.16 0±0.12 0±0.086 0±0.073 0±0.056 0±0.015 0±0.0062
Byy · y 0±0.11 0±0.054 0±0.038 0±0.029 0±0.024 0±0.019 0±0.005 0±0.0021
By∼ Byy · y 0±0.34 0±0.16 0±0.12 0±0.086 0±0.073 0±0.056 0±0.015 0±0.0062
Standard-deviation macroscopic/microscopic ratio
Byx · x 0.99 1 1.3 1.3 1.5 1.7 5.2 11
By∼ Byx · x 1.6 1.3 1.5 1.9 1.9 2.5 6.2 15
Byy · y 0.82 0.73 0.86 0.97 1.1 1.3 3.9 7.6
By∼ Byy · y 1.6 1.3 1.5 1.9 1.9 2.5 6.2 15

Table 4
Mesoscopic numerical estimation versus macroscopic noise prediction of :
- The first block corresponds to mesoscopic bias and standard deviation estimation over 100 samples, at different vector space dimensions.
- The second block corresponds to the macroscopic prediction of the bias and standard deviation estimation, as developed in this paper.
- The third block shows the ratio between macroscopic/mesoscopic standard deviations, showing the overestimation, while the order of magnitude
is preserved.

namely about half a bit, by treating it as a normal distribution rather than a combination of chi-square distributions).
This might decrease with dimensionality, although the result remains unclear.

Fig. 5. Average divergence in bits (i.e., using log2 in the formula) between the observed mesoscopic noise distribution and a normal distribution
with the same standard deviation, as a function of the space dimension.

Another interesting aspect is that our macroscopic model is consistent with that of [39], which obtains the fol-
lowing (from Fig. 4 of that paper) for the VTB representation:

d ⪆ 32 (s + 0.575),

represents the minimal dimension d needed to obtain a 99% accuracy with a bundling of size s, using a similarity
calculation to extract vectors from the bundling. Our model does not take the negligible bias 0.575 into account but
allows us to calibrate the level of noise to σ ≃ 0.016

d , to perform a simple z-score test under the usual hypothesis

τ > 2σ

to decide if the related τ value of the similarity is distinguishable from the noise. On the other hand, we do not con-
sider two vectors similar if the similarity is below the standard deviation of the noise, adopting a more conservative
threshold.

Mercier and Viéville / Algorithmic ersatz for VSA 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

To take this a step further, we also implemented the (1/d1/4) dependence of noise on unbinding, with the identical
calibration.

At the mesoscopic level, the numerical precision of unbinding on associative maps has, to the best of our knowl-
edge, not been addressed in the papers cited herein.

5.2. Benchmarking macroscopic simulation

To benchmark this implementation beyond simple tests, let us consider the [51] King John Bible (KJB) data set20:
about 106 input tokens for about 104 terms and about 103 documents. We thus consider a relatively large dataset
here.

Our goal here is not to reproduce the entire experiment, but to benchmark our storage and retrieval implementation
on a relatively large-scale dataset. Numerical results are not expected to be similar, since the [51] KJB data set
preprocessing differs from the present one, and since the [35] considers a different data set.

The practical experiment remains preliminary but validates the expected finding that the proposed macrosopic
implementation is clearly usable with realistic datasets.

Document and word similarity
The [51] experiment makes use of a search engine that needs to be able to assess similarity between terms and

documents.
Regarding document similarity, thanks to the introduction of the τ parameter, now used in an extended manner

and representing a level of activity, one implementation is to consider simply each document a weighted binding
and compute similarities as the binding vectors’ similarity:

vdocument =
∑

words τword count sword

This is obviously implemented by adding each word of the document sequence to the document vector vdocument,
and this precisely corresponds to the [51] weight function, namely the column marginal value of the term-document
matrix. The term-document matrix could also be represented with VSA mechanisms considering an associative-
network, as reviewed in subsection B.3, but there is no need at the present stage.

Regarding word similarity, the dual obvious mechanism:

vword =
∑

documents τcount in document sdocument

namely, the row marginal value of the term-document matrix. Then [51] proposes the following algorithmic ersatz:
“term vectors can be compared with one another, and the space can be searched for the nearest neighbors of any
given term”. It is an “ersatz” in the sense that VSA structures and connections do not implement it. However, there
is a biologically plausible mechanism at the microscopic level, as reviewed in section B.1.2, that is implemented in
our system. Formally, we obtain:

vword neighborhood =
∑

words(v
T
word vword)Bνi sword,

where νi is a known ordinal symbol, this indexed list being sorted in decreasing (vT
word vother word) values.

Then, given a word, e.g., fire or water as calculated in Table 2 of [51], we can compute its neighborhood and
obtain, in our case, the results reported in Table 5. Normalized values are presented that are readily at a biologically
plausible level in neural network computations, for instance, via gain control, such as impedance adaptation [31].

This result differs from Table 2 of [51] because different “non-significant” words have been eliminated during
pre-processing. We, however, find expected associations such as fire - burn or water - wash.

20We have considered from https://www.kingjamesbibleonline.org the open PDF document, have segmented each chapter from the table
of contents (treating each chapter as a document), and apply normalization and tokenization rules as detailed in the pre-processing available
documentation. We obtained 1363 documents, 15085 distinct words, and 2701846 words in total, to be compared with the 1189 documents and
12818 distinct words reported by [51] using a different preprocessing. The order of magnitude is similar, while the preprocessing used in the
former case is more selective.

https://www.kingjamesbibleonline.org
https://line.gitlabpages.inria.fr/aide-group/macrovsa/kjvdemo/makefile
https://line.gitlabpages.inria.fr/aide-group/macrovsa/kjvdemo/makefile

18 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

word τ σ

fire 1.00 2.90 10−05

burn 0.40 1.56 10−05

chapter 0.38 7.10 10−05

out 0.38 4.83 10−05

offer 0.37 1.52 10−05

savour 0.36 9.21 10−06

day 0.34 4.01 10−05

among 0.34 4.00 10−05

even 0.34 4.41 10−05

burnt 0.33 1.72 10−05

word τ σ

water 1.00 1.63 10−05

wash 0.44 7.26 10−06

toucheth 0.44 4.48 10−06

bathe 0.42 2.27 10−06

clothes 0.40 9.94 10−06

issue 0.37 2.43 10−06

unclean 0.36 5.70 10−06

uncleanness 0.36 6.52 10−06

copulation 0.35 1.48 10−06

until 0.35 1.84 10−05

Table 5
Similarity between words as obtained using the macroscopic VSA implementation on the KJB data set.

prefix tail τ2

out land egypt 91

spake moses saying 77

if any man 77

thus saith hosts 76

therefore thus saith 63

thus saith behold 59

our jesus christ 57

word came saying 55

say thus saith 52

saying thus saith 51

τ = 1.1± 0.8 ∈ [1, 91] ≈ Γ(degree = 2, rate = 0.5,mode = 0.5)

#{τ, τ = 1} ≃ 93%, #{τ, τ ⩽ 4} > 99%

prefix tail τ

word came saying man 34

written book chronicles kings 34

years old began reign 33

old began reign reigned 32

praise exalt above ever 31

bless praise exalt above 31

spake moses saying speak 30

chapter spake moses saying 28

brought out land egypt 24

forth out land egypt 23

τ = 1.03± 0.36 ∈ [1, 34] ≈ Γ(degree = 8, rate = 0.1,mode = 0.7)

#{τ, τ = 1} ≃ 97%, #{τ, τ ⩽ 2} > 99%

Table 6
Prefix tail occurrence count for prefixes of length 2 (on the left) and 3 (on the right). The ten highest values are shown in both cases. The τ
distribution mean, standard deviation, Gamma-distribution approximation, and indications of value counts are reported.

Sequence encoding and item prediction
A step further, we follow [35] addressing the question of sequence encoding. In this work, the VSA representation

is implemented using binary values, while we use real values here. The key work is to measure, given a short
sequence of words as a prefix, the occurrence of related tails. Formally, we can consider the following associative
map data structure:

pl =
∑L

i+l B∑l
j=1 Bν j wi− j

wi

where ν j stands for independent symbols representing ordinal numbers, as developed in Appendix B.4, while wi

is the i-th word in a document. This structure is a simple combination of bindings and bundlings, making it easy
to implement within the VSA framework. Then, if a for a given prefix with τ = 1 the tail occurs several times in
the related bundling, say N times, considering the macroscopic bundling τ combination rule we obtain N = τ2,
allowing to directly estimate the prefix → tail occurrence statistics, reported in Table 6.

Such a count mechanism is the basic mechanism underlying, for instance, next-word prediction in large language
models (LLMs). In contrast, although approximately 2.5 105 prefixes have been considered throughout the book,
we are far from the data size used by LLMs.

Performance comparison
These results are not of intrinsic interest; they merely enable us to experimentally verify the use of this macro-

scopic implementation in a relatively large-scale experiment. Regarding computational time, we observed the fol-
lowing experimental results on a standard laptop, as reported in Table 7.

Mercier and Viéville / Algorithmic ersatz for VSA 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Macroscopic ersatz Mesoscopic calculation Mesoscopic calculation
for any d (observed) for d = 1024 (observed) for d ≃ 105 (interpolated)

Similarity 310.00 3.00 ≃ 300.00

Bundling add 0.01 0.03 ≃ 3.00

Associative map add 8.00 360.00 ≃ 180000.00

Table 7
Average unary computation time of one operation in µs (micro-second) using a standard Intel©CoreT M i5-8265U CPU @ 1.6GHz
x 8 processor, with 16 GBiB memory and no GPU usage. Macroscopic ersatz computation and mesoscopic calculation for d = 1024
times are experimentally observed. In contrast, mesoscopic calculation times for d ≃ 105 are interpolated (computing similarity or bundling
at the mesoscopic level is a simple dot-product or sum, which linearly scales with the dimension, while other computation requiring binding
computation that scale at about O(d1.35), as obtained in Appendix C.1). The d ≃ 103 corresponds to usual dimensions considered when
computing VSA at the mesoscopic level with standard methods. The d ≃ 105 value corresponds to biologically plausible dimensions of a neural
map.

We also numerically verified that the computational time of the macroscopic implementation is independent of
the dimension d. This was more to assess the absence of bugs in the code than to verify an obvious assumption,
since no computational loops or tests depend on the dimension d. The macroscopic approach is independent of
dimensionality; the same calculation applies in any dimension. Only the result precision prediction depends on the
dimension and is computed using a closed-form formula.

The point is that manipulating macroscopic data structures is slower than performing a direct elementary numer-
ical computation in low dimensions, especially since we have optimized the binding operations using index look-up
tables, as made explicit in Appendix C.

We observe that similarity is faster at the mesoscopic level, as expected, because it is a simple dot product rather
than requiring symbolic derivations. Then, for d ≃ 103, bundling calculation time has the same order of magnitude
at both mesoscopic and macroscopic scales, but in favor of macroscopic symbolic derivation, especially at higher
dimensions. A step further, as soon as binding is involved, even at a relatively low VSA dimension of d ≃ 103,
macroscopic computation is faster (about 45 times). At the same time, mesoscopic calculations become heavily
tractable (computation time of the results presented in Table 6 would require about 1 hour for d ≃ 104 and more
than 1 day for d ≃ 105).

Considering an associative map is a way to estimate the regarding binding operations. Here, we limit the study
to VTB, whereas using other faster-binding operators could alter the balance between mesoscopic and macroscopic
computation times. We, however, can easily make a prediction: the faster binding operators (e.g., commutative
convolution binding operator) run in O(d log(d)) > O(d), while bundling runs in O(d). Therefore, as soon as it is
faster to turn to macroscopic simulation for bundling, it must also be the case for any binding.

This provides a precise evaluation of when using VSA computations at a macroscopic scale is warranted.

5.3. A tiny illustrative application

To illustrate the use of macroscopic mechanisms beyond basic formulae, we reconsider the example proposed in
[30], which has been simulated at the mesoscopic level and is based on a minimal ontology in Fig. 6.

We have considered, for this experiment, a symbol encoding dimension of d = 256 to be consistent with previous
mesoscopic experiments, such as those in [30], at the precision level. However, we know that the current macro-
scopic implementation’s computational time is independent of the dimension. This is tested using associative and
relational maps, as described in the previous section. We have implemented the tiny Pizza experiment21, obtaining,
in the simplest case, the expected closure, as given in Table 8.

21 The source code is available at
https://gitlab.inria.fr/line/aide-group/macrovsa/-/blob/master/src/pizza_experiments.cpp,
and it is straightforward to implement such rules in C/C++, as documented in the source code. This piece of code output is available at
https://gitlab.inria.fr/line/aide-group/macrovsa/-/raw/master/src/pizza_experiments.out.txt,
per Fig. 8, and it also shows the intermediate inference steps.

https://gitlab.inria.fr/line/aide-group/macrovsa/-/blob/master/src/pizza_experiments.cpp
https://gitlab.inria.fr/line/aide-group/macrovsa/-/raw/master/src/pizza_experiments.out.txt

20 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 6. An example of a simple ontology with three individuals. The black arrows correspond to factual statements input into the database, and
the green arrows correspond to inferred statements. Rectangular boxes stand for individuals, round boxes stand for classes, and properties are
used to label arrows. Here, from the fact that a subject eats an object, we deduce that this subject is a Person, and the object is Food. A red arrow
illustrates this. From the fact that the object is a Margherita pizza, which is a Pizza, which is a Food, according to the class hierarchy, we deduce
that the object is a Pizza, and re-deduce that it is a Food. Furthermore, because Luigi (among other activities, given that it is an open world) eats
pizza, we infer that Luigi is a Person. Because of property heritage, meaning that here a Topping is an Ingredient, we also deduce from the fact
that this pizza has mozzarella as a topping that it also has mozzarella as an ingredient. In the macroscopic implementation, this property follows
from the fact that Margherita Pizza always has mozzarella as a topping, thereby enabling compound inferences. From [30].

Input triples Inferred triples

(Luigi eats thisPizza) (Luigi rdf:type Person)

(thisPizza rdf:type MargheritaPizza) (thisPizza rdf:type Pizza)

(MargheritaPizza rdfs:subClassOf Pizza) (thisPizza rdf:type Food)

(Pizza rdfs:subClassOf Food) (MargheritaPizza
rdfs:subClassOf Food)

Table 8
The expected inferences using the proposed RDFS subset of entailment rules obtained by the macroscopic algorithmic ersatz of the VSA
implementation.

Mercier and Viéville / Algorithmic ersatz for VSA 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

More interesting is what happens when modality is considered, e.g.,
(Luigi 0.5 eats thisPizza).

In other words, it is possible but not completely necessary that Luigi eats the given pizza. In that case,
- it is still possible, but no longer entirely true that Luigi is a person;
- it is still entirely true that this pizza is some food, even if Luigi did not eat it, because it is true that it is a pizza,
which is food.
This is what is obtained by the implementation, as shown by the open-source tiny experiment output21.

Although far from complete, this macroscopic implementation of an algorithmic ersatz of VSA mesoscopic op-
erations appears sound and is consistent with previous results. It has a final non-negligible advantage: It is quite
“simple” in the sense that it does not require very complicated or twisted mechanisms. It requires more than 500
lines of formatted C++ code, including formal symbolic operations on algebraic operators.

6. Discussion and conclusion

6.1. Contributions

In this paper, we have been able to propose, up to the implementation level, in a very preliminary form, a refor-
mulation of the powerful VSA approach with a few additions:
- We make explicit a degree of belief for each knowledge item that is linked to the possibility theory related to
modal logic, and we. We revisit the central proposed abstraction of biologically plausible data structures to verify
its compatibility with this generalization, compare it with conventional programming data structures, and discuss
how to scan (i.e., enumerate) such data structures efficiently.
- We proposed an implementation of hierarchical or relational semantic data structures within the VSA formalism
in relation to hierarchical cognitive memory, allowing us to introduce symbolic derivations.
- We introduced the idea of simulating such a mechanism at a macroscopic, more symbolic level to obtain compu-
tations independent of the VSA dimension space, thus making it possible to scale up such mechanisms. This idea
has been applied to VTB algebra but is also readily applicable to other VSA algebras. However, the macroscopic
implementation is particularly interesting for binding operations that require multiple operations.

6.2. From VTB to other non-commutative binding operators and graph-VSA approaches

Our study is limited to the VTB non-commutative binding operator, for which we provide an efficient implemen-
tation making explicit all index permutations, so that the practical computation is finally less that O(d1.5), around
O(d1.35), as developed in Appendix C, thanks to modern hardware optimization of multi-core processors. The first-
order estimate of the noise at the macroscopic level is straightforward to derive because the operator is bilinear.

From two recent surveys of binding operators on continuous numbers [23, 39] we can make the following com-
parison:
- Other binding operators such as circular convolution based operators, when using Fast Fourier Transform (FFT),
can have a complexity of only O(d log2(d)), and also based on linear operations, so that first order estimation of
the noise at the macroscopic level is derivable as proposed here, though less apparent when the FFT is involved.
- While most binding operators are commutative, VTB is not the only non-commutative operator, like for instance
Matrix Binding of Additive terms, whose complexity is of O(d2) requiring full matrix multiplication, and whose
first-order noise estimation is also easy to perform because of linearity.
- In terms of non-commutative binding operation, the Generalized Holographic Reduced Representations based on
complex numbers [53] seem the most interesting in the sense that they generalize holographic reduced represen-
tation, considering not only circular convolution, but m-dimensional unary tensor products for each component. In
other words, the binding corresponds to a projection onto the block-diagonal of the outer product matrix, whereas
for m = 1 it reduces to the standard holographic reduced representation. This allows one to adjust the degree of
non-commutativity, in trade-off with the computational cost, more precisely, the ratio is of (m3) with respect to the

22 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

standard holographic reduced representation. First-order estimation of the noise at the macroscopic level can also
benefit from the linearity of this generalized operator.

In any case, we have observed that given a binding operator and beyond first-order estimation of the noise, the
most accurate solution is to calibrate the noise level, as performed in the benchmark experimental section.

Our approach only considers component-wise addition as bundling. It is up to our best knowledge the case for all
well-known continuous numbers VSA [23, 39], with re-normalization for some variants, easy to take into account
in the noise derivation and yielding to a second order effect, or thresholding that is not easy to take into account,
while omitting this effect yields to little over-estimate of the noise level.

Our approach considers only real-number vectors, and it is not straightforward to generalize our derivation to
integer or binary representations, which are also common in VSA, including non-commutative operators such as
Binary Sparse Distributed Representation, since for low levels of noise, calculations remain exact. In contrast, once
a threshold is exceeded, non-negligible errors occur. We indeed limit our approach to real numbers because we have
introduced the notion of belief in the representation.

Our approach is based on the strong assumption that fixed random vectors are used to represent atomic symbols.
Given N atomic symbols in dimension D, they can also be normalized in O(N D) operations and orthonormalized
in O(N2 D), using, e.g., a Gram–Schmidt process or more stable and performing methods. In that case, magnitude
noise on atomic symbols and noise similarity between atomic symbols reduce to fundamental computational uncer-
tainties. In contrast, our approach is not directly applicable unless these noise reductions are incorporated into the
macroscopic simulation code. Such an approach and other vector-optimization methods are particularly interesting
when designing a low-dimensional vector-symbolic architecture, as proposed in [14] for binary representations. One
advantage is obviously reduced computation time, and consequently, a smaller environmental impact of such large
computations. Working at the macroscopic level is also a way to reduce resource consumption.

Finally, not only bundling and binding operations are to be considered, but also permutations, usually used to
encode order in sequences [23]. We omitted this aspect because permutation is an exact operation that does not
increase the noise level; it only changes correlations between nearly orthogonal random vectors, which is a second-
order effect.

6.3. On biological plausibility and numerical versus semantic grounding

The VSA formalism, using SPA as proposed by [16] with the NEF approach reviewed in this paper, proposes an
anchoring, i.e., a numerical grounding of semantic information. This does not mean that the brain performs such
operations as it does; however, the authors and their followers consider this anchoring biologically plausible, in
that algorithms can be implemented within the NEF, which is a model of spiking neuron assembly activity. This
links abstract symbols to neuronal reality, enriching the reflection on how mental states can be encoded in neural
ensembles.

However, numerical grounding, or anchoring, fundamentally differs from the semantic symbol grounding prob-
lem, as reviewed and discussed in [44], in which symbols are linked to their meanings and anchored in sensorimotor
features, which involves the capacity to pick referents for concepts and a notion of consciousness. In brief, this
remains an open problem that we do not address here. Our contribution is thus limited to the technical level, not to
modeling, even though it aligns with what could be used in the NEF.

Another aspect not addressed by the present study is the emergence of symbols, i.e., the emergence of symbolic
representations from biological or other physical systems interacting with their environments. This issue corre-
sponds to the ungrounding of concrete signs22, as discussed in, e.g., [36], in relation to the emergence of symbolic
thinking (see, e.g., [48] for a detailed discussion). At the computational neuroscience level, the issue is addressed in
[37] for a toy experiment; that paper emphasizes that to address such an issue, we must avoid explicitly embedding
any symbol anywhere in the model, a priori or a posteriori. Here, we do not address the issue of emergence. Still,
in a sense, we do address a feasibility issue: To what extent can sophisticated symbolic processing be anchored in

22In the semiotic hierarchical meaning of an “icon” built only from sensorimotor features, structures at an “index” level built by concrete
relationships between given objects give rise to a “symbol” in the semiotic sense, which corresponds to abstract general relationships between
concrete concepts or sensorimotor features.

Mercier and Viéville / Algorithmic ersatz for VSA 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

numerical processing, not just rudimentary operators? We also address an interpretation issue, i.e., we consider the
extent to which sub-symbolic sensorimotor-anchored processing corresponds to symbolic processing.

6.4. Approach limitations and perspectives

The macroscopic simulator is operational but still limited to basic VSA operations of bundling and binding, on
real-valued hyper-vectors, and their applications to set, associative maps, and other data structures detailed in Ap-
pendix B. Another binding operator could easily be implemented as discussed previously. The symbolic mechanisms
are implemented directly at the procedural level because they are relatively simple. More complex symbolic algebra
could require specific software such as Maple23 or equivalent ones, but at the cost of relying on closed software or
middleware and at the price of a decrease in performance, because using very general mechanisms instead of tuned
dedicated coding. Interestingly, the present implementation generalizes readily to other binding operators or VSA
mechanisms, and to VSA with complex numbers, as detailed in appendix C. As a next step, the present macroscopic
package will be used to study biologically plausible inference mechanisms implemented with VSA.

At the data representation level, our proposal of representing a relational map, using two sets of associative maps,
is closely related to vector-symbolic architecture for graphs, in the sense that all subject-predicate-object triplets
form a knowledge graph, this oriented graph being general in the sense that its structure has no restriction, only
the nodes and edges interpretation is specific. Such VSA graph encoding has recently been studied in [54], which
analyzes approaches that use bundling operations to aggregate node edges and binding operations, and then proposes
a combined method. The key difference is that the graph is stored at the end in a unique hyper-vector. In contrast,
for robustness, we have considered a distributed representation, in the sense that, on the one hand, the underlying
associative maps are not combined into a single hyper-vector but are addressed by an additional associative map
of indexes. At the same time, we use a dual representation for nodes and edges. We also combine binding and
bundling, as is typically done for associative maps or to clean-up memory. Compared to [54], we clearly have
privileged robustness with respect to computing time. Our representation is closer to the [10] encoding scheme,
with the key difference that the authors use a binary representation.

At another level, we have targeted a representation related to ontology, whose logical model is well established,
and the link with other frameworks based on relational representations, i.e., labeled graphs at the geometric level, is
well studied, including for frame-based semantics as discussed in this paper. The extension to hyper-graphs is less
obvious. Claiming that a hyper-graph can always be represented as a bipartite graph between nodes and edges is
technically accurate and usable for some applications, but reductive24.
However, this is the emerging part of the iceberg, because, as we did for the relational map representation, the hard
part is to specify the expected operations on such a data structure at the general level. The point is that hypergraphs
represent higher-order knowledge, such as inference rules for computing ontology justifications [52] or for query
processing [28], and enable the integration of rather big data bundles, as studied by the same authors. We thus
consider this as a limit of the present work.

Such an ontology-based representation is dedicated to deductive reasoning, whereas inductive and more interest-
ing abductive reasoning are required for concept emergence and for modeling cognitive symbolic behavior. This
is the next step in our work, taking into account recent contributions, such as a VSA approach for learning with
abstract rules [29], abduction mechanisms for abstract reasoning via learning rules, and VSA approaches such as
those proposed in [22] or [4].

At a more theoretical level, following the usual VSA approaches, the symbolic information is embedded in a
compact Riemannian manifold with an elementary topology, a hyper-sphere, and we have made explicit the fact that,

23See https://www.maplesoft.com.
24Several hypergraph VSA representations could be considered. In brief, hypergraphs are defined by a set of nodes and labeled hyperedges,

where each hyperedge is a subset of the nodes (in the non-oriented case). It is thus defined as an associative map that maps labels to sets of nodes,
with all tools available in the VSA framework. Formally, this could be written:

h def
=

∑
hyperedges Bhyperedge symbol

∑
hyperedge nodes snode symbol and h′ def

=
∑

nodes Bnode symbol
∑

node edges shyperedge symbol,

allowing one to access each edge node, with a dual construction to access the edges of a symbol, and it is to verify that h = B↔ h′ with the
notations of Appendix C.

https://www.maplesoft.com

24 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

finally, the number of encodable symbols is somewhat limited. Other geometries may offer better performances, and
the particular hyperbolic embedding of hierarchical representations benefits from the fact that, due to the hyperbolic
negative curvature of the space, even an exponentially growing data structure can be parsimoniously represented
[32] because of the expanding geometry (to make a long story short). The idea to embed the data representation
in non-Euclidean spaces and especially hyperbolic spaces has already been explored in detail, for instance, in [11],
showing that the satisfiability and algorithmic complexity can be drastically different25. This might be an interesting
extension of typical VSA approaches that makes it possible to consider the symbol’s numerical embedding in such
a Riemannian differential manifold. This could be a fruitful perspective of such work.

Acknowledgments Terrence C. Stewart is gratefully acknowledged for his inspiring advice, which helped us with
certain aspects of this work. Gabriel Doriath Döhler is thanked for his work clarifying the use of VTB algebra and
for introducing novel ideas during his undergraduate internship. Frédéric Alexandre and Hugo Chateau-Laurent are
gratefully acknowledged for their valuable advice and their contributions to previous works on this subject. This
work is supported by the https://team.inria.fr/mnemosyne/en/aide exploratory action. The NAI journal reviewers are
gratefully acknowledged for their precious advice, allowing us to improve this paper.

Conflict of interest: This work is not subject to any conflict of interest.

References

[1] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T.C. Stewart, D. Rasmussen, X. Choo, A.R. Voelker and C. Eliasmith, Nengo: A Python
tool for building large-scale functional brain models, Frontiers in Neuroinformatics 7 (2014).

[2] M. Beynon, B. Curry and P. Morgan, The Dempster–Shafer theory of evidence: An alternative approach to multicriteria decision modelling,
Omega 28(1) (2000), 37–50. https://www.sciencedirect.com/science/article/pii/S030504839900033X.

[3] B. Buchberger, G.E. Collins, R. Loos and R. Albrecht (eds), Computer Algebra, Computing Supplementa, Vol. 4, Springer, Vienna, 1983.
ISBN 978-3-211-81776-6 978-3-7091-7551-4.

[4] G. Camposampiero, M. Hersche, A. Terzić, R. Wattenhofer, A. Sebastian and A. Rahimi, Towards Learning Abductive Reasoning Us-
ing VSA Distributed Representations, in: Neural-Symbolic Learning and Reasoning, T.R. Besold, A. d’Avila Garcez, E. Jimenez-Ruiz,
R. Confalonieri, P. Madhyastha and B. Wagner, eds, Springer Nature Switzerland, Cham, 2024, pp. 370–385. ISBN 978-3-031-71167-1.

[5] S.T. Cao, L.A. Nguyen and A. Szałas, The Web Ontology Rule Language OWL 2 RL + and Its Extensions, in: Transactions on Compu-
tational Intelligence XIII, N.-T. Nguyen and H.A. Le-Thi, eds, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2014,
pp. 152–175. ISBN 978-3-642-54455-2.

[6] B. Cessac and T. Viéville, On dynamics of integrate-and-fire neural networks with adaptive conductances, Frontiers in Neuroscience 2(2)
(2008). https://hal.inria.fr/inria-00338369.

[7] B. Cessac, H. Paugam-Moisy and T. Viéville, Overview of facts and issues about neural coding by spikes, Journal of Physiology-Paris
104(1) (2010), 5–18. https://www.sciencedirect.com/science/article/pii/S0928425709000849.

[8] B. Cessac, H. Rostro-González, J.-C. Vasquez and T. Viéville, To which extend is the "neural code" a metric ?, arXiv, 2008, arXiv:0810.3990
[physics]. http://arxiv.org/abs/0810.3990.

[9] E. Crawford, M. Gingerich and C. Eliasmith, Biologically plausible, human-scale knowledge representation, Cognitive Science 40(4)
(2016), 782–821.

[10] F. Cumbo, K. Dhillon, J. Joshi, D. Chicco, S. Aygun and D. Blankenberg, A novel Vector-Symbolic Architecture for graph encoding and
its application to viral pangenome-based species classification, bioRxiv, 2025, ISSN: 2692-8205 Pages: 2025.09.08.674958 Section: New
Results.

[11] J.-P. Delahaye, Complexités : Aux limites des mathématiques et de l’informatique, HAL, 2006, Number: hal-00731936. https://ideas.repec.
org/p/hal/journl/hal-00731936.html.

[12] T. Denœux, D. Dubois and H. Prade, Representations of uncertainty in AI: Beyond probability and possibility, in: A Guided Tour of Artificial
Intelligence Research: Volume I: Knowledge Representation, Reasoning and Learning, P. Marquis, O. Papini and H. Prade, eds, Springer
International Publishing, Cham, 2020, pp. 119–150. ISBN 978-3-030-06164-7.

[13] T. Denœux, D. Dubois and H. Prade, Representations of Uncertainty in AI: Probability and Possibility, in: A Guided Tour of Artificial
Intelligence Research: Volume I: Knowledge Representation, Reasoning and Learning, P. Marquis, O. Papini and H. Prade, eds, Springer
International Publishing, Cham, 2020, pp. 69–117. ISBN 978-3-030-06164-7.

[14] S. Duan, Y. Liu, G. Liu, R.R. Kompella, S. Ren and X. Xu, Towards Vector Optimization on Low-Dimensional Vector Symbolic Architec-
ture, arXiv, 2025, arXiv:2502.14075 [cs]. http://arxiv.org/abs/2502.14075.

[15] H. Eichenbaum, Memory: Organization and control, Annual Review of Psychology 68(1) (2017), 19–45.

25A version of these elements intended for a wider audience is available in a science popularization journal: ..

https://neurosymbolic-ai-journal.com
https://www.sciencedirect.com/science/article/pii/S030504839900033X
https://hal.inria.fr/inria-00338369
https://www.sciencedirect.com/science/article/pii/S0928425709000849
http://arxiv.org/abs/0810.3990
https://ideas.repec.org/p/hal/journl/hal-00731936.html
https://ideas.repec.org/p/hal/journl/hal-00731936.html
http://arxiv.org/abs/2502.14075
https://interstices.info/calculer-dans-un-monde-hyperbolique

Mercier and Viéville / Algorithmic ersatz for VSA 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[16] C. Eliasmith, How to Build a Brain: A Neural Architecture for Biological Cognition, OUP, USA, 2013, Google-Books-ID:
BK0YRJPmuzgC. ISBN 978-0-19-979454-6.

[17] C. Eliasmith and C.H. Anderson, Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems, A Brad-
ford Book, The MIT Press, 2002. https://mitpress.mit.edu/books/neural-engineering.

[18] B. Fischer, Modal Epistemology: Knowledge of Possibility & Necessity, 2018. https://1000wordphilosophy.com/2018/02/13/
modal-epistemology/.

[19] R. Gayler, Vector Symbolic Architectures answer Jackendoff’s challenges for cognitive neuroscience, in: Frontiers in Artificial Intelligence
and Applications, 2003, ICCS/ASCS International Conference on Cognitive Science.

[20] J. Gosmann and C. Eliasmith, Vector-Derived Transformation Binding: An Improved Binding Operation for Deep Symbol-Like Processing
in Neural Networks, Neural Computation 31(5) (2019), 849–869.

[21] B.C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider and U. Sattler, OWL 2: The next step for OWL, Journal of Web Semantics
6(4) (2008), 309–322. https://www.sciencedirect.com/science/article/pii/S1570826808000413.

[22] M. Hersche, F.d. Stefano, T. Hofmann, A. Sebastian and A. Rahimi, Probabilistic Abduction for Visual Abstract Reasoning via Learning
Rules in Vector-symbolic Architectures, 2023. https://openreview.net/forum?id=rTz88hpGxc.

[23] D. Kleyko, D.A. Rachkovskij, E. Osipov and A. Rahimi, A Survey on Hyperdimensional Computing aka Vector Symbolic Architectures,
Part I: Models and Data Transformations, ACM Computing Surveys 55(6) (2023), 1–40, arXiv:2111.06077 [cs]. http://arxiv.org/abs/2111.
06077.

[24] B. Komer, T.C. Stewart, A.R. Voelker and C. Eliasmith, A neural representation of continuous space using fractional binding, in: 41st
Annual Meeting of the Cognitive Science Society, Cognitive Science Society, Montreal, Canada, 2019, p. 6. http://compneuro.uwaterloo.
ca/publications/komer2019.html.

[25] H.J. Levesque, Knowledge Representation and Reasoning, Annual Review of Computer Science 1(1) (1986), 255–287, Publisher: Annual
Reviews.

[26] H.J. Levesque and R.J. Brachman, Expressiveness and tractability in knowledge representation and reasoning, Computational Intelligence
3(1) (1987), 78–93, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8640.1987.tb00176.x.

[27] S.D. Levy and R. Gayler, Vector Symbolic Architectures: A New Building Material for Artificial General Intelligence, in: Frontiers in
Artificial Intelligence and Applications, 2008, p. 6.

[28] M. Masmoudi, S.B.A.B. Lamine, H.B. Zghal, B. Archimede and M.H. Karray, Knowledge hypergraph-based approach for data integration
and querying: Application to Earth Observation, Future Generation Computer Systems 115 (2021), 720–740, Publisher: Elsevier. https:
//hal.science/hal-04456331.

[29] M. Mejri, C. Amarnath and A. Chatterjee, LARS-VSA: A Vector Symbolic Architecture For Learning with Abstract Rules, 2024.
[30] C. Mercier, H. Chateau-Laurent, F. Alexandre and T. Viéville, Ontology as neuronal-space manifold: Towards symbolic and numerical

artificial embedding, in: KRHCAI-21@KR2021, 2021.
[31] M.E. Nelson, A Mechanism for Neuronal Gain Control by Descending Pathways, Neural Computation 6(2) (1994), 242–254.
[32] M. Nickel and D. Kiela, Poincaré Embeddings for Learning Hierarchical Representations, in: Advances in Neural Information Process-

ing Systems, Vol. 30, Curran Associates, Inc., 2017. https://papers.nips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.
html.

[33] A. Nieder, Representation of Numerical Information in the Brain, in: Representation and Brain, S. Funahashi, ed., Springer Japan, Tokyo,
2007, pp. 271–283. ISBN 978-4-431-73021-7.

[34] F. Pulvermüller, How neurons make meaning: brain mechanisms for embodied and abstract-symbolic semantics, Trends in Cognitive
Sciences 17(9) (2013), 458–470. http://www.sciencedirect.com/science/article/pii/S1364661313001228.

[35] J.I. Quiroz Mercado, R. Barrón Fernandez and M.A. Ramírez Salinas, Sequence Prediction with Hyperdimensional Computing, Research
in Computing Science (2025). https://www.academia.edu/54349431/Sequence_Prediction_with_Hyperdimensional_Computing.

[36] J. Raczaszek-Leonardi and T. Deacon, Ungrounding symbols in language development: implications for modeling emergent symbolic
communication in artificial systems, in: Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics,
2018, p. 237.

[37] N.P. Rougier, Implicit and Explicit Representations, Neural Networks 22(2) (2009), 155–160. https://hal.inria.fr/inria-00336167.
[38] A.L. Rusawuk, Possibility and Necessity: An Introduction to Modality, 2018. https://1000wordphilosophy.com/2018/12/08/

possibility-and-necessity-an-introduction-to-modality/.
[39] K. Schlegel, P. Neubert and P. Protzel, A comparison of vector symbolic architectures, arXiv:2001.11797 [cs] 55 (2020). http://arxiv.org/

abs/2001.11797.
[40] G. Simic, I. Kostovic, B. Winblad and N. Bogdanovic, Volume and number of neurons of the human hippocampal formation in normal

aging and Alzheimer’s disease, The Journal of comparative neurology 379 (1997), 482–94.
[41] L. Smith, The development of modal understanding: Piaget’s possibility and necessity, New Ideas in Psychology 12(1) (1994), 73–87.

https://www.sciencedirect.com/science/article/pii/0732118X94900590.
[42] J. Steinberg and H. Sompolinsky, Associative memory of structured knowledge, Scientific Reports 12(1) (2022), 1–15, Number: 1 Publisher:

Nature Publishing Group. https://www.nature.com/articles/s41598-022-25708-y.
[43] T.C. Stewart, Y. Tang and C. Eliasmith, A biologically realistic cleanup memory: Autoassociation in spiking neurons, Cognitive Systems

Research 12(2) (2011), 84–92. https://linkinghub.elsevier.com/retrieve/pii/S1389041710000525.
[44] M. Taddeo and L. Floridi, Solving the Symbol Grounding Problem: A Critical Review of Fifteen Years of Research, Journal of Experimental

and Theoretical Artificial Intelligence 17 (2005).

https://mitpress.mit.edu/books/neural-engineering
https://1000wordphilosophy.com/2018/02/13/modal-epistemology/
https://1000wordphilosophy.com/2018/02/13/modal-epistemology/
https://www.sciencedirect.com/science/article/pii/S1570826808000413
https://openreview.net/forum?id=rTz88hpGxc
http://arxiv.org/abs/2111.06077
http://arxiv.org/abs/2111.06077
http://compneuro.uwaterloo.ca/publications/komer2019.html
http://compneuro.uwaterloo.ca/publications/komer2019.html
https://hal.science/hal-04456331
https://hal.science/hal-04456331
https://papers.nips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html
https://papers.nips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html
http://www.sciencedirect.com/science/article/pii/S1364661313001228
https://www.academia.edu/54349431/Sequence_Prediction_with_Hyperdimensional_Computing
https://hal.inria.fr/inria-00336167
https://1000wordphilosophy.com/2018/12/08/possibility-and-necessity-an-introduction-to-modality/
https://1000wordphilosophy.com/2018/12/08/possibility-and-necessity-an-introduction-to-modality/
http://arxiv.org/abs/2001.11797
http://arxiv.org/abs/2001.11797
https://www.sciencedirect.com/science/article/pii/0732118X94900590
https://www.nature.com/articles/s41598-022-25708-y
https://linkinghub.elsevier.com/retrieve/pii/S1389041710000525

26 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[45] A. Tettamanzi, C.F. Zucker and F. Gandon, Possibilistic testing of OWL axioms against RDF data, International Journal of Approximate
Reasoning 91 (2017). https://hal.inria.fr/hal-01591001.

[46] P.V. Tymoshchuk and D.C. Wunsch, Design of a K-Winners-Take-All Model With a Binary Spike
Train, IEEE Transactions on Cybernetics 49(8) (2019), 3131–3140, Conference Name: IEEE Transac-
tions on Cybernetics. https://ieeexplore.ieee.org/abstract/document/8417947?casa_token=vK30j2BWdHYAAAAA:
RcZjyJ1BCa6QE53oMhLBbVuLzetpGSh4FaFtSqu1RXsuqa82umuuPCzEm6KODKTGDBzIfUhP9_I.

[47] T. Vallaeys, Généraliser les possibilités-nécessités pour l’apprentissage profond, Report, Inria, 2021. https://hal.inria.fr/hal-03338721.
[48] T.D. Villiers, Why Peirce Matters: The Symbol in Deacon’s Symbolic Species, Language Sciences 29(1) (2007), 88–101. https://philarchive.

org/rec/DEVWPM-4.
[49] T. Viéville and C. Mercier, Representation of belief in relation to randomness, Research Report, RR-9493, Inria & Labri, Univ. Bordeaux,

2022. https://hal.inria.fr/hal-03886219.
[50] A. Voelker, E. Crawford and C. Eliasmith, Learning large-scale heteroassociative memories in spiking neurons, in: Unconventional Com-

putation and Natural Computation, 2014.
[51] D. Widdows and T. Cohen, Reasoning with Vectors: A Continuous Model for Fast Robust Inference, Logic Journal of IGPL (2014).
[52] H. Yang, Y. Ma and N. Bidoit, Hypergraph-Based Inference Rules for Computing $$\mathcal{EL}\mathcal{}^+$$-Ontology Justifications,

in: Automated Reasoning, J. Blanchette, L. Kovács and D. Pattinson, eds, Springer International Publishing, Cham, 2022, pp. 310–328.
ISBN 978-3-031-10769-6.

[53] C. Yeung, Z. Zou and M. Imani, Generalized Holographic Reduced Representations, 2024.
[54] A. Zakeri, Z. Zou, H. Chen and M. Imani, Configurable hyperdimensional graph representation, Artificial Intelligence 347 (2025), 104384.

https://www.sciencedirect.com/science/article/pii/S0004370225001031.

Appendix A. Hypothesis testing regarding symbol similarity

We first verify to what extent the assumptions regarding random vector magnitude and orthogonality is verified
at the numerical level, as reported in Table 9 26. For d ⩾ 200, biases are below 10−3, while the magnitude standard-
deviation appears to decrease faster than 1/

√
d and the orthogonality standard-deviation accurately with respect

to 1/
√

d with a residual sum-of-squares lower than 10−4. This numerically validates the assumptions reviewed in
subsection 2.1, which are conservative due to the observed bias.

d E[∥u∥ − 1] σ[∥u∥ − 1] E[uT v] σ[uT v]]
100 -4.05e-03 7.05e-02 -2.84e-03 9.88e-02

200 7.58e-05 5.01e-02 -3.69e-04 7.15e-02

500 -4.38e-04 3.21e-02 8.80e-04 4.51e-02

1000 -7.31e-04 2.30e-02 -7.59e-04 3.21e-02

2000 3.93e-04 1.59e-02 -1.47e-04 2.30e-02

5000 2.74e-04 9.55e-03 -8.14e-05 1.42e-02

10000 7.55e-05 7.38e-03 -3.80e-04 9.94e-03

20000 -1.14e-04 5.04e-03 1.67e-04 7.07e-03

50000 -4.23e-05 3.23e-03 -2.97e-04 4.45e-03

Table 9
Bias on random vector magnitude and orthogonality. Vectors u or v of dimension d are drawn from a centered normal distribution of standard-
deviation 1√

d
. The average value and standard deviation are calculated from 1000 draws. The magnitude standard-deviation fits to 1

dp , p = 0.56

with a residual sum-of-square σ = 3.9e − 05, thus slightly biased (it fits to 1√
p with a bias of about 10−2), and the orthogonality standard-

deviation fits to 1
dp , p = 0.50 with a residual sum-of-square σ = 2.7e − 05. For d ⩾ 200, biases are below 10−3.

A step further, the design choice of a symbol implementation as a random normal unary vector, as reviewed in
subsection 2.1, allows us to define a hypothesis to decide whether theH0 hypothesis x · y = 0 can be rejected.

In our case, we approximate the chi-square distribution average of x · y by a normal distribution of the same
standard deviation, which is a conservative choice as shown in Fig. 7.

26See https://raw.githubusercontent.com/vthierry/onto2spa/main/figures/z_score.mpl for the open-source code used in this subsection.

https://hal.inria.fr/hal-01591001
https://ieeexplore.ieee.org/abstract/document/8417947?casa_token=vK30j2BWdHYAAAAA:RcZjyJ1BCa6QE53oMhLBbVuLzetpGSh4FaFtSqu1RXsuqa82umuuPCzEm6KODKTGDBzIfUhP9_I
https://ieeexplore.ieee.org/abstract/document/8417947?casa_token=vK30j2BWdHYAAAAA:RcZjyJ1BCa6QE53oMhLBbVuLzetpGSh4FaFtSqu1RXsuqa82umuuPCzEm6KODKTGDBzIfUhP9_I
https://hal.inria.fr/hal-03338721
https://philarchive.org/rec/DEVWPM-4
https://philarchive.org/rec/DEVWPM-4
https://hal.inria.fr/hal-03886219
https://www.sciencedirect.com/science/article/pii/S0004370225001031
https://raw.githubusercontent.com/vthierry/onto2spa/main/figures/z_score.mpl

Mercier and Viéville / Algorithmic ersatz for VSA 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 7. Comparison between a chi-square distribution in black (numerically drawn from 105 samples) and the normal distribution of the same
mean and standard deviation, in red: The choice is conservative because many more samples have values close to zero in the former case. More
precisely, the kurtosis is of about 6 (i.e., the sharpness estimation with respect to a normal distribution using 4th-order moments).

We can consider a two-tailed “z-test” with the alternative hypothesis H0, which states that x · y ̸= 0. Here, the
z-score27, with d samples and a known standard deviation with an order of magnitude O(1/d), is the following:

z ≡
√

d (x · y).
It follows an approximately normal distribution, which can be readily verified numerically, as shown in Fig. 8
(left column). For two vectors that are not independent but are angularly dependent, we observe, in Fig. 8 (right
column), the similarity dependence as a function of the relative orientation between the vectors. This elementary
fact is essential for developing a macroscopic simulation of VSA operations.

This makes it possible, on the one hand, to consider, for instance, a threshold:

θ
def
= ±2σ,

along with considering this z-score to have a confidence interval better than 99%, and to relate the similarity es-
timation to an angular dependence between two vectors, as detailed in Fig. 8. To the best of our knowledge, this
straightforward implementation has not yet been made explicit, perhaps because the authors consider it obvious, but
it is worth noting. It is used in section 4, thereby enabling us to propose simulating the operations defined later in
this paper at a macroscopic scale.

Appendix B. On VSA data structures

This section revisits the literature, emphasizing the properties of the data structures; it discusses their computa-
tional properties and limitations in greater detail and links them to standard programming-language data structures.

B.1. Unordered set or bundling

We first consider an unordered set S of N symbols grounded to values {s1, · · · si · · · sN}, and we would like to be
able to store them in such a way that we can check if a given symbol is in the set. Very simply, we ground S to the

27Given a distribution, the z-score for d samples is defined as

z def
= X̄−µ
σ/

√
d
,

where the expected mean is µ = 0, the a priory standard deviation is σ = O(1/d), and the experimental mean X̄ = (x · y) is obtained from the
dot product.

28 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 8. Numerical observations of the similarity defined by the dot product of two random vectors for d = 100 in the upper row and d = 1000 in
the lower row. The left column shows the histogram of the z-score (

√
d (x · y)) for two normal vectors, in comparison with a normal distribution.

These experimental distributions have a kurtosis of approximately 10, which is lower than that of a normal distribution, which is expected to

have a kurtosis of 3. The right column shows the z-score as a function of the angle a def
= x̂, y = arccos(x · y), making it possible to visualize the

dispersion with respect to the expected cosine profile.

vector s:

s def
=

∑
i si,

which provides a solution, because given a symbol s•, we observe that s• ·s ≃ 1 if it corresponds to a particular sym-
bol si, and it is almost 0 otherwise, because random vectors are approximately orthogonal, as previously explained.
This is called bundling [39] or superposition.

Mercier and Viéville / Algorithmic ersatz for VSA 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Furthermore, the representation intrinsically entails transitivity: if a set contains another subset, then, by construc-
tion, it also contains the elements of that subset. More precisely,

s def
=

∑
i si and si

def
=

∑
j si j ⇒ s def

=
∑

i j si j,

and thus, si j · s > 0 for all subset elements.
This generalizes to weighted symbols ŝi, i.e., symbols with modality weighting. In that case, s• · s ≃ τ makes it

possible to retrieve the belief weight. This is equivalent to inputting a symbol s• that is approximately similar to a
given symbol si, thus indicating an approximate similarity; however, it neither allows us to retrieve the exact value
of si nor indicates if a positive value below 1 corresponds to a weighted symbol that has been exactly retrieved or to
a symbol approximation.

This has an interesting biological interpretation: S exhibits features in common with Hopfield networks and
related attractor networks, in which information is stored in a distributed manner, whereas activating the map with an
input allows one to determine whether the symbol is stored. This is also called self-associative. The main difference
between auto-associative (clean-up) memory and the Hopfield network is that, in the Hopfield network, attractor
states converge to the exact stored value, providing an associative memory mechanism. This is now developed by
introducing superposition, allowing us to better understand the need for a more sophisticated mechanism.

Let us provide an analogy with programming data structures, making explicit the similarities and differences
between what is proposed here and what is available in common programming languages28. This unordered set
representation corresponds to a “set” container (e.g., a std::unordered_set in C++ or a set() in Python)
that has only an insertion method and a membership test function, without the capability to enumerate the elements,
as formerly discussed intrinsically.

B.1.1. Symbol enumeration
At this stage, this structure does not allow us to directly enumerate all symbols si, because from s, it is not possible

to decode the superposed vectors. In [9], for instance, where data structures are defined using superposition, the
intrinsic memory enumeration of the stored information is not addressed. We thus require an external mechanism
to select all elements and apply an operation to each. However, at the implementation level, in NENGO [16], an
explicit list of the defined vocabulary {· · · si · · · } is maintained, and the way to select the elements is to test (sT si)
for each component of the vocabulary. This select operator has complexity of O(K), where K is the size of the
vocabulary. Later in this section, we will also propose a biologically plausible indexing mechanism, in order, for
instance, to manipulate sequences.

B.1.2. Symbol sorting selection
With the notion of weight vectors indexed by a τ value, another bundling mechanism can be considered: either

sort symbols in decreasing τ order, or select N′ <= N symbols with the highest τ. Although, this has a complexity
of O(N log(N)) at the programmatic level, or O(N) if selecting without sorting symbols above a threshold, there is a
very efficient not at the mesoscopic, but at the microscopic level [7] in link with rank coding [8], when implementing
as a spiking neural network. In a nutshell, following [46], given two values encoded by spikes, the highest the value,
the shortest the spike time: Therefore, assuming a connectivity where each value is stored, in the arrival order using
a triggered memory, we immediately (i.e., at the end of the emission of the N′ values) a sorting selection. This is
made available at the macroscopic level, taking into account that two values are indistinguishable when they are too
close, as discussed and quantified in this paper.

Formally, this performs the transformation:∑
i τi si →

∑
i τi Bνi si

from a weighted bundling to an indexed list, νi being a known vector as developed below in subsection B.4.

B.2. Associative map

We now consider an unordered associative memory, or “map,” of N correspondences {s1 → o1, · · · si →
oi · · · sN → oN} between subjects and objects. To this end, we use the binding operation Bsi , defined in Appendix C,

28We will do the same for other cognitive structures because we think that it illustrates the computing capability of the cognitive object.

30 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

with a pseudo-inverse, i.e., an unbinding operator, Bs∼i :

m def
=

∑
i Bsi oi,

so that
Bs∼• m ≃

∑
i,s•=si

oi + unknown,

where unknown def
=

∑
s• ̸=si

Bs∼• Bsi oi is an “unknown” vector, i.e., a vector that has, in the general case, no similarity
with the other vectors.

In other words, the unbinding operation makes it possible to retrieve up to an orthogonal vector unknown the set,
i.e., the additive superposition of all objects oi associated with a given subject s•, while Bs∼k m = unknown if none.

Then, using a similarity operation:
Bs∼• m · o• = δs•→o• + ν(O(1/d1/4))

allows to check whether the value o• is associated to the key s•. Here ν(O(1/d1/4)) comes from the unbinding
operation uncertainty.

This is done up to a level of noise of O(1/d1/4), as derived in Appendix C (while the dot-product with the
unknown vector is of negligible magnitude with respect to the former source of uncertainty), which is rather high
with respect to the similarity precision, which is O(1/d), as observed numerically [39]; however, in biological
neuronal networks, where the dimension is an order of magnitude higher, this is no longer a limitation because d is
high.

This allows us to determine whether the information is in the table in a single step. However, as in the previous
case, no mechanism allows the explicit retrieval of the value of oi or the enumeration of the map’s subjects or
objects.

In the literature, the notion of clean-up memory corresponds to auto-associative memory that retrieves an exact
“clean-up” value of an existing symbol, given an approximate or noisy input of this symbol [43]. A step further, the
notion of hetero-associative memory corresponds to storing input-output relationships [50]. It should be noted that in
the NENGO simulator of the Neural Engineering Framework (NEF), hetero-associative memory is implemented in
a biologically plausible manner: rather than relying directly on the present binding/bundling algebraic mechanism,
an input/output architecture with appropriate connections is used instead. Each input unit has an encoding vector
in which input weights are tuned to fire for a specific key and drive a connected output vector that is optimized
to estimate the value associated with the related key [50]. An associative memory of structured knowledge has
been studied in detail for a holographic reduced representation by [42], which quantifies, depending on the design
parameters, the memory performance.

This algebraic construction also makes it possible to retrieve the subjects associated with a given object, because
of the commutator B↔, such that

B↔ Boi si = Bsi oi,

yielding

m↔
def
= B↔ m =

∑
i Boi si,

which is now the numerical grounding of the reciprocal map {o1 → s1, · · · oi → si · · · oN → sN}.
The algebraic construction also offers the notion of the identity vector i, with Bi = I, so that

si = i→ Bsi oi = oi.

In other words, the binding reduces to a superposition. Theoretical details underlying the implementation of such
associative memories are available in [43].

As for the previous structure, this obviously generalizes to weighted symbols ŝi and an approximate input s• ≃
ŝi, allowing us to retrieve the object oi weighted by either the modality weighting or the input approximation,
indistinctly.

Several solutions have been proposed to define such binding, unbinding, and commutator operators. A proposed
solution is developed in Appendix C after the work in [20], which was completed by [30]. This design choice is
guided by the fact that we need to avoid spurious inferences: With a binding commutative operator (such as the
convolution operator), Boi si would equal Bsi oi, which could generate nonsense deductions (e.g., for a driver-vehicle

Mercier and Viéville / Algorithmic ersatz for VSA 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

map, this would mean that if Ming-Yue drives a bicycle, then the bicycle drives Ming-Yue unless some additional
mechanism is considered to avoid such nonsense). The proposed VTB algebra avoids such caveats (see [39] for a
recent comparison of different VSAs)29. A commutative binding operator can be used for auto-associative memory
[43] or if key and values do not belong to the same symbol set, e.g., considering “symbol id” and “symbol value”
[9].

This associative memory mechanism has a biological interpretation: it implements an associative memory in the
biological sense, with the association stored in a distributed manner, and activating the associative memory with an
input s• allows us to retrieve the associated symbol. This occurs in several biological mechanisms, as reviewed, for
instance, in [15].

In particular, a structure of the form

m def
=

∑
n Bsi si

that maps an object onto itself enables the retrieval of an exact symbol from an approximate input, thereby address-
ing the caveats associated with using only a superposition mechanism previously presented. This is exactly what
is expected in an associative encoder (e.g., a Hopfield network); if a symbol is close to an existing symbol, the
associative memory will output a weighted version of the symbol.

At the level of computer programming, this corresponds to a “map” container (e.g., a Map in JavaScript or a
dictionary() in Python), again with only insertion and retrieval methods, and without intrinsic iterators.

To take this a step further, we can propose a complementary functionality, defining an additional symbol “some-
thing” whose numerical grounding is fixed to any new random vector σ that is never used elsewhere. This allows
us to enhance the information to be obtained as follows: Each time a piece of information si → oi is added, we also
add si → σ and σ→ oi, i.e., we make explicit the fact that si and oi are defined in this table, which can be retrieved
in one step, without the need to enumerate the different elements. In such a case,

ms j

def
=

∑
i,s j=si

oi = Pσ⊥ Bs∼i m + unknown,

where Pσ⊥
def
= I− σσT is the projection onto the orthogonal of σ, i.e., we must eliminate the symbol “something”

from the expected values.

B.3. Associative network

We can also consider for N correspondences {s1 → o1, · · · si → oi · · · sN → oN} between subjects and objects,
an associative network of the form:

M def
=

∑
i oi sT

i ,

which is no longer a vector, but a matrix, allowing one to retrieve the object since: explicitly
M si = ∥si∥2 oi + ν((N − 1)/d),

as obtained from obvious algebra.
This corresponds to a macroscopic implementation of associative networks, as proposed, e.g., in [9]. With respect

to the previous associative map, we recover the object value directly up to a scale factor and additive noise, rather
than merely testing whether it is in the map.

It is worth noticing that MT allows us to retrieve keys associated with a given value, while we can also consider
a multi-map, i.e., associate the bundling of several values to a given key.

B.4. Indexed and chained list

B.4.1. Construction of indexes
To define an indexed list, we need indexes, i.e., a mechanism that generates ordinal values. Our primary purpose

here is to make explicit that the results developed using convolution operators [24] remain valid with VTB. We fix
the symbol grounding of the “zero” symbol ν0, which is never used elsewhere, and define the following recursively:

29An alternative to VTB algebra is called MBAT algebra; it requires matrix inversion instead of transposition, and thus it is less efficient.

32 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

νn+1
def
= Bν0 νn,

i.e., the (n+1)-th ordinal value is obtained by binding the n-th, and we easily obtain, from a few algebra operations,

Bνp νq = Bνq νp = Bνp+q ν0, Bνp ν
∼
q = Bν∼q νp ≃ Bνp−q ν0.

In particular, νn−1 ≃ Bν∼0 νn, so that the definition holds for n ∈ Z .
Here, we consider only the minimal material required to build an indexed list; numerical information in the brain

is a much more complex subject [33] beyond the scope of this work.
In fact, what has not been noticed previously is the fact that the accumulation of binding operations leads to a

significant increase in noise, more precisely:
νn = (Bν0)

n
ν0 + ν(O(n/d1/4))

so that for as soon as n4 > d the noise order of magnitude is higher than 1, i.e., the value order of magnitude.
However, this is not a problem in practice because as soon as we do not repeat the calculation twice, i.e., we do not
redraw the values, but keep a trace of the previous pre-calculated values, so that each “number” has a unique vector
as an identifier.

B.4.2. Indexed list
We can now define an indexed list or array, often called a vector, since the previous mechanism allows us to

generate a “counter” that can be incremented or decremented using the binding or unbinding operator.
To this end, an associative map indexed by these ordinals can be managed as a list whose values can be enumer-

ated. Such a representation is also present at several cognitive levels when considering temporal sequences, actions,
or any enumeration. This is also the tool that allows us to enumerate all elements of the symbol set S, as defined
previously, or the subjects of an associative map.

To make this mechanism explicit, let us consider a list l def
=

∑
i Bνi li, and a variable index k. A construct of the

form
for k← ν0; while ∥Bk l∥ > 0; next k← Bν0 k do

li ← Bk∼ l
../..

end for
allows us to enumerate30 all elements, this being indeed only an algorithmic ersatz to illustrate the mechanism
beyond the biologically plausible implementation of sequential memory organization.

At the biological plausibility level, following [15], we may consider that the brain can have three kinds of memory:
associative, sequential, and hierarchical (called schematic by the author of [15]) memory. All three memory types are
present and required for cognitive processes. The VSA approach provides both associative and sequential memory.
Let us consider the third type of memory, which, to the best of our knowledge, has not been addressed in relation to
VSAs.

At the level of computer programming, this corresponds to an extensible “array” (e.g., a std::vector in C++
or java.util.AbstractList in Java), with basic insertion and retrieval methods available.

B.4.3. Chained list
We can also define a chained list using an associative memory of the form:

first→ second
second→ third

· · ·
last→ END + first

,

where every value of the list acts as a key to the value of its successor in the list, thus enumerating the values. END is

30In fact, considering l def
=

∑
i Bνi li+Bν−1 λ, where λ is the list length, which is updated when an element is added or deleted, would improve

the algorithmic ersatz implementation, which is not the issue here.

Mercier and Viéville / Algorithmic ersatz for VSA 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

a predefined specific symbol that makes it possible to know when the list ends, which we can superpose to a pointer
to the first value in case we need to iterate through the entire list again.

We also could have considered multiple binding31, as proposed in [30].

Appendix C. Using VTB algebra

At the mesoscopic level, symbols represent a numerical grounding to real or complex vectors of dimension d,
with each numerical grounding corresponding to some distributed activity of a spiking neuronal assembly and each
algebraic operation corresponding to some transformation of this activity.

Let us review and further develop one of the algebras used to manipulate such symbols at an abstract level in
this paper: the vector-derived transformation binding (VTB) algebra. We follow [20] and extend its developments
by deriving the component-level operations, yielding an optimal implementation, and explicitly characterizing the
computational complexity and associated first-order noise. This is, in particular, used in section 4 to derive the
macroscopic computations.

We also have to reconsider the binding output magnitude since vector magnitudes correspond to a belief value,
as discussed in section 2.2.

We consider that d def
= (d′)2 for some integer d′; thus, it is a quadratic number, and we start from the standard

definition of the VTB binding operation:

z def
= By x,

where By is a block-diagonal matrix defined as follows:

By
def
=


B′

y 0 . . . 0
0 B′

y . . . 0
...

...
. . .

...
0 0 . . . B′

y

 , with B′
y

def
=
√

d′


y1 y2 . . . yd′

yd′+1 yd′+2 . . . y2d′

...
...

. . .
...

yd−d′+1 yd−d′+2 . . . yd

 ,
or equivalently32, for i = 1 · · · d,{

[z]i
def
= By x =

√
d′ ∑k=d′

k=1 [y]k+β(i) [x]k+α(i),

[By]i j =
√

d′ δi⩽d′ and j⩽d′ [y]k+β(i)−α(i),

written

{
α(i) def

= d′ ((i− 1) div d′),

β(i) def
= d′ ((i− 1) mod d′),

(1)

with the matrix multiplication made explicit as a sum, which can be easily verified. Here, [z]k stands for the k-th
coordinate of the vector z, and δP is 1 if P is true; otherwise, it is 0. This is our basic definition, and reformulating
the VTB operation using (1) will help us better understand its properties.

This operation is bilinear in x and y, and thus it is distributive with respect to addition and the scalar product.
Since y and x are random vectors [z]i, in (1) it is estimated up to a standard-deviation33 of O

(
1/d

1
4

)
which is

an order of magnitude higher than for similarity estimation, which related standard-deviation was of O (1/d). This

31In such a case, a list of the form l = [v1, v2, · · ·] is encoded without associative memory as

l = Bvalue v1 + Bnext
(
Bvalue v2 + Bnext (· · ·+ Bnext (list-end))

)
,

allowing us to obtain the list’s head and tail values and to detect its end. This corresponds, for instance, to the rdf:first, rdf:rest, and
rdf:nil symbols of the RDF representation. However, as discussed in Appendix C, chaining unbinding operations are not numerically very
robust due to the additional residual noise.

32All algebraic derivations reported here are straightforward and were verified using a piece of symbolic algebra code available at https:
//raw.githubusercontent.com/vthierry/onto2spa/main/figures/VTB-algebra.mpl.

33Each component [z]i corresponds to the computation of a dot-product between two d′ dimensional vectors, yielding a standard-deviation
of O (1/d′), renormalized by

√
d′ = d

1
4 , leading to the final order of magnitude. As for similarity estimation, chi-square distribution is

approximated by a normal distribution of the same standard-deviation, which is known as a conservative choice.

https://raw.githubusercontent.com/vthierry/onto2spa/main/figures/VTB-algebra.mpl
https://raw.githubusercontent.com/vthierry/onto2spa/main/figures/VTB-algebra.mpl

34 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

also explains the relatively limited numerical performances of simulations with d < 103, as reported, for instance,
in [39].

The
√

d′ renormalization factor allows z to have a unary order of magnitude34. However, the magnitude is not
precisely one, but35:

∥By x∥ ≃
{

∥y∥ ∥x∥ if y ⊥ x√
2 ∥y∥ ∥x∥ if y∥x

which is important in our context, since the vector magnitude corresponds to the τ value.
At the algorithmic implementation level, the calculation of z is performed in36 O

(
d

3
2

)
operations, and the yk+β[i]

and xk+α[i] indexing can be tabulated in two fixed look-up tables β[i] and α[i], avoiding any additional calculations.
Furthermore, the fact that

√
d′ is an integer makes it possible to limit numerical approximations to improve numeri-

cal conditioning. This will be verified for all other explicit formulae later in this paper. We present these formulae in
detail, not to reimplement these operations, which are already available in the NENGO simulator, but to study their
complexity and precision, with the goal of proposing a macroscopic algorithmic ersatz of these operations.

This can be compared to the fastest binding operation, which is convolution implemented via the fast Fourier
transform [39], and thus it has a complexity of O (d log(d)):

d = 10 d = 100 d = 500 d = 1000 d = 10000
VTB 101.5 103 104 104.5 106

Convolution 101.4 102.6 103.5 103.8 105

Ratio =
√

d
log(d) ≃ 1 ≃ 2 ≃ 3.5 ≃ 4.5 ≃ 10

However, at the implementation level, we observe that, due to compiler and online processor optimizations, the
average computation time is an order of magnitude lower because the VTB binding formula in eq. (1) is amenable
to optimization.

As stated in [20] and reviewed in [30], the key point is that this binding operation generates a new vector z that is
almost orthogonal to x and y:

(By x) · x ≃ 0,

and this operation is neither commutative,
(Bx y) · (By x) ≃ 0,

nor associative37, in the following sense:
(B(Bz y) x) · ((Bz By) x) ≃ 0.

These properties ensure that we do not infer spurious derivations.

34More precisely, two random normalized vectors of dimension d drawn from a random normal distribution of independent samples verify
that x · y ≃ N (0, 1/d′), as described in subsection 2.1. Then, applying a permutation on all indices on a random vector x yields another random
vector, which is not correlated with any vector y if x is not. Thus, when computing the components [z]i in (1) for two general random vectors
x and y, we compute the dot product of two random vectors of dimension d′ renormalized by

√
d′, and thus this dot product comes from the

distribution N (0, 1); this corresponds to drawing a random vector unary on average.
35 We can easily derive:

∥By x∥2 = d′
∑d

i=1(
∑k=d′

k=1 [y]k+β(i) [x]k+α(i)) (
∑l=d′

l=1 [y]l+β(i) [x]l+α(i))

= d′
∑

ikl[y]k+β(i) [x]k+α(i) [y]l+β(i) [x]l+α(i)
= d′

∑
ik([y]k+β(i) [x]k+α(i))

2 + noise ,

the first line being obtained by substitution from the definition, the second line by expansion, and the third line is obtained by considering
that if k ̸= l we are multiplying four almost independent random distributions which product expectation cancels in average (i.e., formally:
E[YkXkYlXl] = E[Yk]E[Xk]E[Yl]E[Xl] ≃ 0 by construction). If y ⊥ x, we are left with numerically approximating the mean of the square of
a normal distribution, i.e., its second moment, equal to 1. If y∥x we are left with numerically approximating the mean of the fourth power of
a normal distribution, i.e., its fourth momentum, equal to 2 (it is known that if X is centered normal variable of unary standard deviation, then
E[X2n] = (2 −1)!! where !! denotes the double factorial, i.e., the product of all numbers down to 1 which have the same parity as the argument.)

36Each of the d components [z]i requires a dot product of size d′ =
√

d that is not factorizable in the general case, since involving different
elements of the vectors as readable on the matrix form.

37Of course, as a product of matrices, the combination of three bindings or two binding operations and a vector is associative, but the operator
B itself is not, as made explicit in the formula.

Mercier and Viéville / Algorithmic ersatz for VSA 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

To take this a step further, in the real case, the random matrix is almost orthogonal, i.e.,
B⊤

y By ≃ I,
for the same reasons evoked above38.

We thus define
By∼

def
= B⊤

y with [y∼]i
def
= [y]σ(i),

with
σ(i) def

= 1 + d′ ((i− 1) mod d′) + (i− 1) div d′.

In other words, B⊤
y has the same structure as By, except that the vector coordinates are subject to a permutation

σ(i), which is idempotent (σ(σ(i)) = i) and thus its own inverse, so that if z′ def
= By∼ x, we obtain

[z′]i =
√

d′ ∑k=d′

k=1 [y]σ(k+β(i)) [x](k+α(i))

(where β(i) and α(i) are the indexing defined to calculate By x explicitly), and this makes it possible to define a left
unbinding operation:

By∼ (By x) = B⊤
y By x = x + noise ≃ x.

From similar derivations, as detailed in footnote35, also verified at the numerical level, we obtain the magnitude:

∥B∼
y By x∥ ≃

{√
2 ∥y∥2 ∥x∥ if y ⊥ x√
5 ∥y∥2 ∥x∥ if y∥x,

which should be considered to properly normalize unbinding operations at the mesoscopic level.
The right identity vector i such that Bi = I can be written explicitly as follows:

[i]i = 1√
d′ δi=σ(i).

In other words, we get iB by “unfolding” the identity matrix I′d line by line, writing a 1, then d times 0, then another
1, and so on.

Considering the mirroring matrix B↔, which is defined as

[B↔]i j
def
= δ j=σ(i)

(which is thus not block-diagonal in the way that a matrix of the form By is), so that:
B↔ x = x∼,

we obtain
B↔ By x = Bx y, while B↔ B↔ = I and B⊤

↔ = B↔,

which makes it possible to define a right unbinding operation:
(Bx∼ B↔) (By x) = Bx∼ Bx y ≃ y,

and expand nested binding operations:
BBy x = B↔ Bx By.

This could extend the actual binding algebra, considering the dual operator ∼.

38From (1), we derive [
B⊤

y By
]

i j
=

∑d′
k=1[By]ki [By]k j

= d′
∑d′

k=1[y]k+β(i)−α(i) [y]k+β(j)−α(j)

= d′
∑d′

l=1[y]l [y]k+(β(j)−β(i))−(α(j)−α(i))

= d′
∑d′

l=1[y]l [y]k+d′ ((j−i) div d′)−((j−i) div d′).

-
[
B⊤

y By
]

ii
=

∑d′
l=1[y]

2
l = 1 + noise; and

-
[
B⊤

y By
]

i j,i ̸= j
= 0 + noise, because it is easy to verify that ((j − i) div d′) − ((j − i) div d′) ̸= 0 when i ̸= j, so that the dot product of d′

random components of [y]l with d′ other random components yields approximately normal noise.

36 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Unfortunately, B↔ is not a binding matrix, i.e., it is not of the form Bz for some vector z, which is easily verified
by the fact that some components that must be equal to 0 for a binding matrix are equal to 1 in B↔. Furthermore,
the left or right multiplication of a binding matrix by this mirroring matrix does not yield a binding matrix, because
of the same observation; components that must be equal to 0 for a binding matrix are equal to 1 in B↔.

Beyond [20], the authors of [30] introduced a vector composition operator ⊘ to make explicit the composition of
two binding operations, namely,

Bv = By Bx ⇔ v def
= y⊘ x,

which can be explicitly written as follows39:

[v]i =
√

d′ ∑k=d′

k=1 [y](i−1) d′+k [x]1+d′ (k−1)+(i−1) mod d′ .

. At the algebraic level, the key point is that the product of two binding matrices is still a binding matrix. As a
consequence, this composition operator is bi-linear, and thus it is distributive with respect to addition; it is not
commutative, but it is associative and commutes with the inversion as follows:

(y⊘ x)∼ = x∼ ⊘ y∼,
while x∼ ⊘ x ≃ i; all these results can be easily derived by considering usual matrix properties. This allows us to
combine two binding matrices without an explicit matrix product in O

(
d

3
2

)
operations only. At the numeric level,

since v is up to a
√

d′ factor, the dot product of segments of random vectors of dimension d′, we obtain the same
order of magnitude of noise level, as discussed previously. Altogether, this can enrich the actual binding algebra to
obtain more elegant formulas, in particular when combinations of binding operations are used.

Using VTB algebra in the complex case

All of the developments described in this section generalize to complex numbers. Although it is not used directly
here, such a generalization is of broader interest because complex implementations of VSA frameworks have also
been considered [39]. Furthermore, it is of interest to determine whether our macroscopic implementation can be
readily adapted to the complex case.

Stating that two resources are semantically equivalent if the unary vectors are aligned can be written in the
complex case as follows40:

39Since By and Bx are block-diagonal matrices, it is easy to verify that Bv is a block-diagonal matrix with a d′ × d′ block Bv
′ = By

′ Bx
′

using the notation from the beginning of this section, and we can explicitly write that

[Bv
′]i j =

√
d′

√
d′

∑d′
k=1[y]k+(i−1) div d′ [x](k−1) d′+ j,

from which we obtain the desired formula.
40If we are in the real case x and y ∈ Rd , with ∥x∥2 = ∥y∥2 = 1, then the equality is written as

x = y ⇔ x · y =
∑

i xi yi = cos (x̂ y) = 1 ⇔ x̂ y = 0 (mod 2Π),

i.e., both unary vectors have the same direction; in other words, they are aligned. If we are in the complex case x and y ∈ Cd , let us consider the
canonical embedding in R2 d , i.e., we consider the real (Re) and imaginary (Im) parts as two real coordinates, denoting by x the corresponding
vector:

x def
= (x1, x2, · · ·)T ⇔ x def

= (Re(x1), Im(x1),Re(x2), Im(x2), · · ·)T ,

where z∗ is the conjugate of a complex number z, while < x|y > stands for the complex inner product:

< x|y > def
=

∑
i xi y∗i

=
∑

i(Re(xi)Re(yi) + Im(xi) Im(yi)) + I (Re(xi) Im(yi)− Im(xi)Re(yi))

= x · y + I x∗ · y,

so that Re(< x|y >) = x · y and ∥x∥ =
√
< x|x > = ∥x∥ − 2 =

√
x · x, and since vectors are unary,

< x|y >= 1 ⇔ x · y = 1 ⇔ x = y ⇔ x = y,
making explicit the obvious fact that unary real or complex vectors are equal if and only if their inner product equals one, while we consider the
“angle” of two complex vectors as the angle of their 2 d real embedding, i.e.,

x̂ y def
= arccos(Re(< x|y >)).

Mercier and Viéville / Algorithmic ersatz for VSA 37

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

x ≃ y⇔< x|y >≃ 1,

while the orientation is usually defined as

x̂ y def
= arccos(Re(< x|y >)),

as explained in the previous footnote.
Provided that the space dimension d is large enough, two randomly chosen different complex vectors x and y41

will also be approximately orthogonal in the sense that
x ̸= y⇔< x|y >≃ 0.

As a consequence, the VTB matrix is almost unitary, i.e.,
By

∗ By ≃ I,
considering the conjugate transpose.

All other algebraic operations are common to both real and complex linear algebra, and this is also the case for
other VSA binding operators.

More than just a confirmation, these derivations allow us to observe that using a complex representation would be
interesting if the conjugate of a vector could have a semantic interpretation. In that case, if, say, x and y∗ are similar,
then < x|y >≃ I, as easily verified from the previous derivations.

C.1. Binding computation duration.

Let us finally observe the VTB binding computation time on an optimized processor in comparison to the O
(

d
3
2

)
order of magnitude.

In Fig. 9, we observe the VTB binding mechanism computation time, which is expected to evolve with O
(

d
3
2

)
.

In fact, at the implementation level, we observe that due to compiler and on-line processor optimization, the average
computation time is an order of magnitude lower, because the VTB binding formula in eq. (1) is easy to optimize,
at both the compilation and multi-core processor levels. Fitting the results we obtain, for one binding computation
average time, something like:

Tmilli−seconds ≃ 0.048 + 0.28 d1.35

10000 ,

on a standard Intel® Core™ i5-8265U CPU @ 1.60GHz × 8 cores processor, with 16 GBiB memory
and no GPU usage, while the obtained result is not very stable around O

(
d1.35

)
. This instability depends on the

processor’s actual multi-core state during the simulation.
This result supports the use of VTB algebra, including at the mesoscopic level, despite its lower computational

performance, and we have implemented a computational time prediction function based on this order-of-magnitude
result.

Regarding bundling, we have also verified the expected fact that it is linearly increasing with the dimension d and
the bundling data-structure size s, i.e., in the same conditions:

Tmilli−seconds ≃ 0.001 + 0.009 d s.

At a more concrete level, this order-of-magnitude estimate is provided as a callable function in the software
implementation to support analysis of computational cost.

41Considering again the canonical embedding in R2 d and the fact that

< x|y >= x · y + I x∗ · y,
because x and thus x∗ and y are random vectors, their dot product almost vanishes; thus, the real and imaginary parts of < x|y > also almost
vanish.

38 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 9. Binding average computation time as a function of the space dimension. Although not very stable, a better fit is always obtained for a
O (dp) , 1 < p < 3

2
interpolation.

	Introduction
	Biologically plausible neurosymbolic representations
	What is this paper about?

	Symbolic information encoding
	Symbol encoding
	Modality encoding
	The notion of belief
	Implementing partial similarity knowledge

	Knowledge structure encoding
	Using bundling and binding to store information
	Relational maps
	VSA implementation
	Implementation performances

	Implementation at the macroscopic scale
	Symbol indexing and specification
	Symbolic derivation of compounded symbols
	Symbol noise derivation
	Other possible features
	Available implementation

	Experimental results
	Calibrating macroscopic simulation
	Benchmarking macroscopic simulation
	Document and word similarity
	Sequence encoding and item prediction
	Performance comparison

	A tiny illustrative application

	Discussion and conclusion
	Contributions
	From VTB to other non-commutative binding operators and graph‑VSA approaches
	On biological plausibility and numerical versus semantic grounding
	Approach limitations and perspectives

	References
	Appendix A. Hypothesis testing regarding symbol similarity
	Appendix B. On VSA data structures
	Unordered set or bundling
	Symbol enumeration
	Symbol sorting selection

	Associative map
	Associative network
	Indexed and chained list
	Construction of indexes
	Indexed list
	Chained list

	Appendix C. Using VTB algebra
	Using VTB algebra in the complex case
	Binding computation duration.

