
Proceedings of Machine Learning Research vol vvv:1–20, 2025

Metatuning: An Empirical Study of Judge-Guided Prompt
Refinement and Its Boundary Conditions

Aniruddha Chattopadhyay studyaniruddha@gmail.com

Raj Dandekar rajd@mit.edu
Massachusetts Institute of Technology

Kaushik Roy kroy2@ua.edu
University of Alabama

Abstract
Iterative prompt refinement is a practical approach for improving the reliability of large
language models (LLMs) without weight updates. In this work, we study metatuning: a
judge-guided prompt-refinement loop in which an evaluator critiques errors and provides
targeted natural-language corrections or demonstrations that are incorporated into the
prompt. We evaluate metatuning on axiomatic deductive reasoning (MATH-500), on com-
binations with Chain-of-Thought (CoT) and self-reflection prompting, and on video-based
physical reasoning (CLEVRER). Our results show that metatuning can improve baseline
performance in static, rule-like domains, but offers limited benefit when paired with strong
reasoning baselines and does not generalize to spatio-temporal video reasoning. Overall,
we identify boundary conditions for judge-guided prompt refinement and motivate future
work on integrating feedback at the level of reasoning traces.
Keywords: Large Language Models, Prompt Optimization, Symbolic Feedback

1. Introduction

Large language models (LLMs) have become strong general-purpose systems, yet they still
exhibit brittleness in complex reasoning and can fail systematically on recurring error pat-
terns Capitanelli and Mastrogiovanni (2024). A practical family of approaches to improve
reliability without weight updates is prompt refinement: iteratively modifying prompts and
demonstrations based on observed failures. In this paper, we study metatuning1, a judge-
guided prompt-refinement loop in which a separate evaluator critiques errors and produces
targeted corrections or demonstrations that are incorporated into the prompt.

In this work, we frame metatuning as a form of symbolic feedback in an operational sense:
the feedback signal is expressed in discrete natural-language instructions and examples
that can be inspected, edited, and reused. This perspective connects to neurosymbolic
motivations Fang et al. (2024); Sheth et al. (2024); Colelough and Regli (2024), but our
claims in this revision are deliberately empirical: we evaluate when judge-guided prompt
refinement helps, when it becomes redundant, and when it fails to transfer across domains.
Future work should complement this operational framing with direct representation probing
to test stronger grounding/alignment hypotheses Bisk et al. (2022); Blank and Piantadosi
(2023).

1. An earlier version of this manuscript is available as an arXiv preprint Chattopadhyay et al. (2025).

© 2025 A. Chattopadhyay, R. Dandekar & K. Roy.



Chattopadhyay Dandekar Roy

Judge-Guided Prompt Refinement Perspective

Can judge-guided, error-driven prompt refinement reliably improve LLM reasoning,
and what are its boundary conditions?

Rather than updating model parameters, metatuning refines a task
state—a prompt plus a structured memory of critiques/demonstrations—
derived from repeated dataset interactions and an external judge.

Under such a learning regime, there are direct analogs to the traditional learning setup –
train-validation-test splits, number of training runs through the dataset (epochs), gradient
accumulation (when to trigger a prompt revision), model saving (saving the history of
interactions and prompt-revisions, along with the final prompt), and model loading at
inference time on the test set (loading the same history and warm starting with a few
sample generations before testing begins).

We evaluate metatuning on axiomatic deductive reasoning (MATH-500), study its in-
teraction with Chain-of-Thought (CoT) and self-reflection prompting, and test transfer to
a multimodal, spatio-temporal video reasoning domain (CLEVRER). Our goal is to em-
pirically characterize where iterative prompt refinement improves reliability and where it
breaks down.

To further explore the boundaries of our framework, we investigate its interaction with
other advanced reasoning techniques. Recently, methods like Chain-of-Thought (COT) and
self-reflection have been proposed to enhance LLM reasoning by guiding the model to pro-
duce a step-by-step reasoning trace. This raises a crucial question: Do the benefits of our
metatuning approach complement or become redundant when combined with these powerful
prompting techniques? Our experiments reveal that while COT and self-reflection signifi-
cantly boost baseline accuracy on mathematical problems, adding metatuning provides no
further benefit to GPT-4o and, in some cases, even degrades performance for Gemini 1.5
Flash.

Furthermore, we extend our evaluation to a new domain: video-based physical reasoning.
Using the CLEVRER dataset, we assess whether our metatuning approach can improve an
LLM’s ability to answer descriptive, explanatory, predictive, and counterfactual questions
about object trajectories and collisions in short video clips. We find that in this dynamic and
visual domain, metatuning has a negligible effect on performance. These findings provide
valuable insights into the limitations of metatuning and suggest that its effectiveness is
highly dependent on the nature of the task and the symbolic domain (e.g., static, discrete
logical rules vs. dynamic, continuous physical laws).

Thus our main contributions are:

Main Contributions:

• Symbolic Feedback Perspective. Frame judge-guided prompt refinement as op-
erational symbolic feedback expressed in natural language instructions and demon-
strations.

2



Metatuning Boundary Conditions

• Iterative Prompt-Refinement. Introduce a structured approach to “learning”
via iterative prompt revisions and critique-driven updates, bridging symbolic rea-
soning and gradient-based optimization.

• Empirical Validation. We show that while our iterative prompt-refinement ap-
proach (metatuning) improves reasoning on baseline problems, its effectiveness is
limited when combined with advanced prompting techniques like Chain-of-Thought
and self-reflection.

• Boundary Conditions for Metatuning We investigate the applicability of our
metatuning approach beyond text-based domains, demonstrating its limitations in
improving performance on video-based, spatio-temporal reasoning tasks. This pro-
vides valuable insights into the types of problems where our framework is most
effective.

Our work is also related to recent methods for automatic prompt optimization and meta-
prompting, where prompts are improved via search or feedback loops rather than parameter
updates. Examples include human-level prompt engineering via automatic prompt search
Zhou et al. (2023), optimizing prompts using LLMs as optimizers Yang et al. (2024), and
iterative refinement with self-feedback Madaan et al. (2023). Metatuning differs in that it
uses judge-driven critiques and error-driven example selection to construct a learned prompt
artifact focused on specific failure modes.

The rest of the paper is organized as follows. Section 2 introduces the operational
framing of symbolic feedback and situates metatuning relative to prompt optimization and
in-context learning. Section 3 presents our judge-guided prompt-refinement loop and Al-
gorithm 1. Section 4 compares our approach to conventional backpropagation training.
Section 5 reports experiments on MATH-500, Chain-of-Thought/self-reflection prompting,
and CLEVRER. Section 6 concludes, and the Appendix provides qualitative examples.

2. Background: Symbolic Feedback and Prompt Refinement

2.1. Operational View

We use symbolic feedback in an operational sense: feedback is communicated through dis-
crete natural-language artifacts (instructions, critiques, and demonstrations) that can be ap-
pended to a prompt and directly inspected. This differs from weight updates, and it does not
require claiming that the model is symbol-grounded in a philosophical or representational-
probing sense Bisk et al. (2022). Our goal is to study whether such feedback improves
empirical task performance and how its effects depend on the task and prompting baseline.

2.2. Relation to Prompt Optimization and ICL

Metatuning is closely related to prompt optimization and meta-prompting methods that
search over prompts or iteratively refine them based on feedback Zhou et al. (2023); Yang
et al. (2024); Madaan et al. (2023). It also resembles in-context learning (ICL) at in-
ference time because it conditions on demonstrations; however, metatuning emphasizes
error-driven construction of those demonstrations via judge-guided correction, rather than

3



Chattopadhyay Dandekar Roy

static or similarity-retrieved examples. We make this distinction explicit in our CLEVRER
experiments (Section 5.3).

3. Method: Metatuning (Judge-Guided Prompt Refinement)

3.1. Illustrative Example

Imagine an LLM-based agent in a text-based adventure game (a simple “world”). The
agent’s policy is given by an LLM, but we also maintain a symbolic memory of facts the
agent has discovered (e.g. a natural language-based description of the game’s map, items,
etc.), and perhaps a similar description of explicit goals or rules (like “you must not harm
innocents” as a rule in the game). As the agent acts, an external prompt-based probe/judge
model (another LLM) could check its actions against these rules and the known facts of the
world. If the agent attempts something against the rules or logically inconsistent with its
knowledge, the evaluator can intervene – for instance, by giving a natural language feedback
(“You recall that harming innocents is against your code.”) or by adjusting the agent’s state
(inserting a reminder into the agent’s context window). The agent (LLM) thus receives
symbolic interactions (in this case, a textual message that encodes a rule or a fact) that
alter its subsequent processing. In this learning scenario, the agent refines its internal model
based on such interactions. Note that this does not involve directly tweaking weights each
time; it instead involves an iterative procedure where each episode of interaction produces
a trace that is used to slightly adjust the model’s state (it’s current prompt, history of
interactions, prompt-revisions, and judge critiques). Over time, the model internalizes the
rules so that it no longer needs the intervention. This viewpoint reframes symbolic learning
as training on a dataset of task-related world experiences where the experience
includes symbolic content (natural language descriptions of rules, knowledge queries) and
the learning algorithm’s job is to make the model’s behavior align with task objectives.

3.2. Task Learning Algorithm

We propose an iterative learning paradigm for judge-guided prompt refinement that mir-
rors gradient-based optimization but uses symbolic feedback and intervention (expressed in
natural language) to update the prompt state. The loop can be summarized at a high level
in four steps:

1. Model Initialization: Begin with a pre-trained model (e.g., an LLM) with initial
parameters θ0.

2. Evaluation via an External Judge: Present tasks to the model and assess its
responses through an evaluator that detects errors or inconsistencies.

3. Generating Symbolic Corrections: Use the feedback to generate symbolically
structured interventions (natural language), such as prompt refinements, addi-
tional demonstrations, or logical explanations.

4. Iterative Refinement: Apply the corrections iteratively to improve the model’s
output, either through context updates (natural language-based prompting).

4



Metatuning Boundary Conditions

This cycle repeats for a fixed number of iterations (or until the judge indicates that no
further improvement is being made). The process is formally described in Algorithm 1.

Algorithm 1: Iterative Learning via Symbolic Feedback
Input: Pre-trained model with parameters θ0 (e.g., LLM)
Output: Refined model with improved reasoning capabilities
Initialize model with parameters θ0 for iteration = 1 to N do

// Step 1: Model generates output for a given input/task
y ← modelθ(x) ; // Generate output for task input x
// Step 2: External judge evaluates the output
feedback ← Judge.evaluate(x, y) ; // Feedback contains a score or identified
errors

if feedback indicates perfect output then
break ; // No correction needed, exit loop

end
// Step 3: Generate symbolic corrections
corrections← generate corrections(feedback, x, y) ; // Corrections can be:
; // - Refined prompts/instructions
; // - Additional training examples
; // - Logical explanations for reasoning
// Apply corrections to influence the model
if corrections include prompts/instructions then

θ ← update prompt context(θ, corrections)
end
// Step 4: Proceed to next iteration with updated model/state

end

Algorithm 1 details our proposed perspective on learning. This iterative cycle aims to
systematically reduce reasoning errors through natural language-based interactions
and feedback based on running through the training set. Because the procedure relies on
heuristic feedback and prompt/context updates, it does not provide formal convergence
guarantees.

The Judge.evaluate function represents our symbolic evaluator. It could be imple-
mented in numerous ways. For instance, we might have an LLM (potentially a more ad-
vanced or specialized one) that examines the model’s output and compares it to expected
results or known constraints, outputting a “score” or textual critique.

The generate corrections step is where symbolic intervention comes in. The judge
gives natural language feedback. For example, the judge might say: “The reasoning is flawed
because it assumed X, which contradicts known fact Y.” The algorithm then turns that into
a corrected reasoning trace or a prompt that reminds the model of Y in context. In essence,
part of the model state, i.e., it’s prompt is revised during training through the
training dataset in response to the model’s mistakes.

The update mechanism for the model is in the effective model behavior, modulated by
providing a better prompt or adding a memory of previous corrections). For example, we
can use a persistent prompt that accumulates instructions (a form of prompt tuning or using
the model in a closed-loop system). This can be interpreted as a kind of supervised training

5



Chattopadhyay Dandekar Roy

loop where the new examples from corrections serve as training data with the judge acting
as an oracle providing the target output or loss.

4. Comparison to Conventional Backpropagation Training

We compare our paradigm to standard backpropagation-based learning as follows:
Differentiability: Backprop requires the model and loss to be differentiable end-to-end.

Our approach uses non-differentiable feedback. The judge could be a black-box procedure
(e.g., LLM) that we cannot differentiate through Hasan and Holleman (2021). We treat the
judge as an external oracle and make model state updates via generated examples-based
prompt adjustments. This is a big advantage in incorporating arbitrary symbolic rules – we
don’t need to make the symbolic logic differentiable; we can just have it critique the model
and then adjust via examples

Data Efficiency and Curriculum: Traditional training uses a fixed dataset, and if the
model makes mistakes, it will continue to unless the data distribution covers those mistakes.
In our iterative loop, we are essentially performing a form of curriculum learning or active
learning – the model’s mistakes drive the correct-based on new training data instances on the
fly, focusing learning on the most relevant areas. This can be more sample-efficient within
the context window for correcting specific failure modes, without implying overall training
data efficiency. For example, if an LLM consistently makes a reasoning error, we go through
a few training examples demonstrating the correct reasoning and behavior-correct on them;
a small number of focused examples might correct a behavior that would otherwise require
many implicit examples in random training data to fix. Empirically, approaches like self-
correction have shown even a single well-chosen example or instruction can pivot an LLM’s
performance significantly on certain tasks Graves et al. (2017).

Limitations and Convergence: Our approach does not have the convergence guar-
antees or well-defined optimization objective that gradient descent has. It’s a more heuristic
process. The quality of the final model depends on the quality of the judge and the correc-
tions. If the judge is imperfect (e.g., an LLM judge might have its own errors or biases), we
might lead the model astray or instill incorrect rules Soviany et al. (2021). Conventional
training, when you have a clear loss and data, is more straightforward to analyze. One
could end up oscillating or not converging if, say, the prompt-based corrections don’t stick
in the model’s long-term memory.

Relation to Prompt Optimization: Our formulation is closely related to prompt
optimization and self-improvement methods that update prompts (or prompting policies)
based on performance feedback rather than weight updates Zhou et al. (2023); Yang et al.
(2024); Madaan et al. (2023). We emphasize an error-driven, judge-mediated construction
of the prompt as a learned artifact, which we then evaluate empirically to identify boundary
conditions for when such updates help or become redundant with strong reasoning prompts.

5. Experiments and Discussion

5.1. Metatuning with Zero-shot Prompting

In this section, we evaluate the impact of metatuning on the performance of a Large Lan-
guage Model (LLM) using the Maths 500 Dataset. We begin by selecting a subsample of

6

https://huggingface.co/datasets/HuggingFaceH4/MATH-500


Metatuning Boundary Conditions

100 problems from the dataset. As illustrated in Figure 3, we assess the model’s zero-shot
performance by prompting it to generate answers without any prior fine-tuning. The gen-
erated responses, along with the corresponding ground-truth answers, are then evaluated
by an LLM-based judge. The subsampled dataset contains problems of various levels from
level 1 to level 5 of varying difficulty. One example from each level is given in Figure 5.1.

Figure 1: Level of problems distribution in the dataset

Following this, we implement a train-test split on the dataset. For the training set,
we identify instances where the LLM’s initial responses were incorrect. For these incorrect
cases, we construct a solution-infused chat history by incorporating the correct answers
and their corresponding solutions. This enriched context is then provided to the model
during inference on the test set.Finally, we compare the model’s zero-shot accuracy with
its performance after metatuning. The results highlight the effectiveness of metatuning in
enhancing the model’s ability to solve mathematical problems by leveraging solution-infused
contextual learning.

Initial experiments were conducted with smaller language models (SLMs), such as
LLaMA 3.2 (1B parameters), inferenced via Ollama. However, these models exhibited
extremely low baseline accuracy, making them unsuitable for the study. Furthermore, given
the critical role of the Judge LLM, we found that employing a large, state-of-the-art (SOTA)
model as the judge is essential. If the Judge LLM’s evaluations lack high fidelity, the entire
metatuning process becomes unreliable.

7



Chattopadhyay Dandekar Roy

EXAMPLE PROBLEMS FROM DIFFERENT LEVELS:

Level 1 Level 2 Level 3 Level 4 Level 5
If a snack-size
tin of peaches
has 40 calories
and is 2% of a
person’s daily
caloric require-
ment, how
many calories
fulfill a person’s
daily caloric
requirement?

A regular
hexagon can
be divided into
six equilateral
triangles. If
the perimeter
of one of the
triangles is 21
inches, what is
the perimeter,
in inches, of
the regular
hexagon?

How many
positive whole-
number divisors
does 196 have?

Find the con-
stant term in
the expansion of(

10x3 − 1
2x2

)5

Let p(x) be a
polynomial of
degree 5 such
that

p(n) = n

n2 − 1

for n = 2, 3,
4, . . . , 7. Find
p(8).

Figure 2: Dataset Examples

Therefore, this study focuses exclusively on SOTA models. Future work could explore
the impact of metatuning on reasoning-focused models compared to non-reasoning models,
using both as candidate and judge LLMs. In this study, all models used are non-reasoning
models, but the candidate LLMs are explicitly prompted to provide both a reasoning process
and a final solution. In the experimentation the candidate LLMs used are GPT-4o and
Gemini-1.5-Flash and the judge model used is Gemini-2.0-Flash.

Benchmarking Results We conducted experiments on GPT-4o and Gemini 1.5 Flash
using different train-test splits and evaluated their performance with and without metatun-
ing. Train Context Size of x means there are x problems used for metatuning and rest 100-x
problems are used for testing the metatuned model. The results are summarized in Tables
1 and 2.

Analysis From the results, we observe that metatuning improves the accuracy of both
models in most cases. GPT-4o benefits significantly at smaller context sizes (e.g., +5.56%
at context size 10), but shows no improvement at larger context sizes. In contrast, Gemini
1.5 Flash exhibits consistent improvements across all context sizes except for context size
5, where accuracy slightly decreases (-1.05%). The largest improvement for Gemini occurs
at context size 10, with a +6.67% accuracy boost.

These results highlight that metatuning can be beneficial for improving model accuracy
but may exhibit diminishing returns or even slight regressions depending on context size
and model architecture.

8



Metatuning Boundary Conditions

Figure 3: Workflow for Evaluating Metatuning on MATH500

Table 1: Performance of GPT-4o with and without metatuning
Train Context Size Setting Correct Incorrect Accuracy Delta

5 Without Metatuning 62 33 65.26% -
With Metatuning 64 31 67.37% +2.11%

10 Without Metatuning 59 31 65.56% -
With Metatuning 64 26 71.11% +5.56%

20 Without Metatuning 52 28 65.00% -
With Metatuning 52 28 65.00% 0.00%

30 Without Metatuning 47 23 67.14% -
With Metatuning 45 25 64.29% -2.86%

40 Without Metatuning 40 20 66.67% -
With Metatuning 40 20 66.67% 0.00%

5.2. Metatuning with Advanced Prompting

In this section, we extend the experimentation on the same subsection of dataset with
advanced prompting instead of using zero-shot prompting as baseline. We use a Chain-of-
Thought prompt with two steps: (1) ask the LLM to think step by step, and (2) ask it
to reflect on its own answer from Step 1. What we find is a high jump in accuracy from

9



Chattopadhyay Dandekar Roy

Table 2: Performance of Gemini 1.5 Flash with and without metatuning
Train Context Size Setting Correct Incorrect Accuracy Delta

5 Without Metatuning 41 54 43.16% -
With Metatuning 40 55 42.11% -1.05%

10 Without Metatuning 39 51 43.33% -
With Metatuning 45 45 50.00% +6.67%

20 Without Metatuning 35 45 43.75% -
With Metatuning 40 40 50.00% +6.25%

30 Without Metatuning 30 40 42.86% -
With Metatuning 33 37 47.14% +4.29%

40 Without Metatuning 23 37 38.33% -
With Metatuning 26 34 43.33% +5.00%

zero-shot to this new CoT-based prompting but negligible change in accuracy (or degrading
accuracy) when metatuning is incorporated with CoT, as can be seen in Tables 3 and 4.

Analysis The results suggest that metatuning is not reliably additive with strong reason-
ing prompts. For GPT-4o, metatuning yields small gains or plateaus once CoT is enabled.
For Gemini 1.5 Flash, adding metatuning to CoT consistently reduces accuracy, indicating
a boundary condition rather than a stable improvement. A plausible explanation is context
saturation: the model must attend to both the injected metatuning demonstrations (which
encode symbolic corrections) and a long CoT + self-reflection trace; the additional context
may become redundant, compete for attention, or introduce noise that disrupts reasoning.

Finally, our current implementation uses the judge to evaluate and correct the final
answer rather than the intermediate CoT trace. This may limit how metatuning can com-
plement CoT, since the feedback does not target flawed intermediate reasoning steps. A key
direction for future work is to incorporate trace-level critiques so that the judge can correct
the reasoning process, not only the outcome. Another important direction is to replicate
these metatuning+CoT interactions across additional candidate models.

Table 3: Performance of GPT-4o with and without metatuning with COT
Train Context Size Setting Correct Incorrect Accuracy Delta

5 Without Metatuning 75 20 78.95% -
With Metatuning 79 16 83.16% +4.21%

10 Without Metatuning 71 19 78.89% -
With Metatuning 72 18 80.00% +1.11%

20 Without Metatuning 67 13 83.75% -
With Metatuning 68 12 85.00% +1.25%

30 Without Metatuning 59 11 84.29% -
With Metatuning 60 10 85.71% +1.43%

40 Without Metatuning 51 19 72.86% -
With Metatuning 51 19 72.86% 0.00%

10



Metatuning Boundary Conditions

Table 4: Performance of Gemini 1.5 Flash with and without metatuning with COT
Train Context Size Setting Correct Incorrect Accuracy Delta

5 Without Metatuning 75 20 78.95% -
With Metatuning 62 33 65.26% -13.68%

10 Without Metatuning 71 19 78.89% -
With Metatuning 63 27 70.00% -8.89%

20 Without Metatuning 67 13 83.75% -
With Metatuning 42 38 52.50% -31.25%

30 Without Metatuning 59 11 84.29% -
With Metatuning 36 34 51.43% -32.86%

40 Without Metatuning 51 19 72.86% -
With Metatuning 31 29 51.67% -21.19%

5.3. Evaluation on Video-Based Physical Reasoning

To assess the generalizability of our metatuning approach beyond text-based mathematical
problems, we conducted an experiment on a video-based physical reasoning task. For this,
we used the CLEVRER dataset, which consists of short video clips depicting interactions
between various 3D objects (e.g., cubes, spheres) and a set of associated questions for
each video. The questions fall into four categories: descriptive (e.g., ”How many spheres
are moving?”), explanatory (e.g., ”Which of the following is responsible for the collision
between the gray object and the cube?”), predictive (e.g., ”What will happen next?”), and
counterfactual (e.g., ”What will happen if the gray sphere is removed?”).

For our methodology, we selected a total of 50 videos from the dataset, each containing
multiple questions, for a total of 620 questions. We used Gemini 2.0 Flash as the candidate
model. In the baseline condition, we provided the video and its questions to the model
without any additional examples in the prompt. For the metatuning condition, we first ran
a short sweep to identify questions the model answered incorrectly and used the judge to
obtain corrected solutions; we then prepended two representative failure cases (question +
corrected solution) as demonstrations before asking the remaining questions. The model’s
answers were then evaluated by a judge against the ground-truth solutions.

Although the resulting inference-time prompt resembles standard in-context learning
(ICL), the key distinction is how the examples are constructed. In standard ICL, demon-
strations are typically static or retrieved by similarity. In metatuning, the demonstrations
are a learned artifact derived from the model’s prior errors and the judge’s critiques during
a training sweep (consistent with Algorithm 1). This distinction matters because it shifts
the method from “using examples” to “using error-driven example selection”.

The results of this experiment are summarized in Table 5 and Figure 4.

Table 5: Performance on CLEVRER Video Reasoning Task
Setting Correct Incorrect Accuracy Delta
Without Metatuning 319 301 51.45% -
With Metatuning 320 300 51.61% +0.16%

11



Chattopadhyay Dandekar Roy

Figure 4: CLEVRER data distribution and accuracy across each question type

Analysis The central finding from this experiment is that metatuning had a negligible
impact on the model’s performance, resulting in only a marginal improvement of +0.16%.
This outcome stands in contrast to our findings on the mathematical reasoning tasks, where
metatuning consistently improved accuracy.

This result leads us to a key insight regarding the limitations of our metatuning frame-
work. Our initial hypothesis was that providing solved examples would help the LLM
identify patterns and improve its reasoning, much like it did for the logical and arithmetic
problems. However, the nature of the ”symbols” and ”rules” in the video domain is fun-
damentally different. In mathematical reasoning, the symbols (e.g., numbers, variables)
are discrete, and the rules (e.g., logical identities, algebraic formulas) are static and well-
defined. The model can effectively learn to apply these explicit, high-level rules from a few
examples in the context window.

In contrast, the symbols in the CLEVRER dataset (e.g., the position, velocity, and
interactions of objects) are continuous and dynamic. The underlying “rules” are the laws
of physics, which are far more complex and only implicitly reflected in the model’s learned
representations. The two examples provided via metatuning are likely insufficient to teach
the model a complex new physical law or to correct a fundamental misunderstanding of
spatio-temporal dynamics. This suggests that representation-mediated prompt steering,

12



Metatuning Boundary Conditions

while effective for discrete linguistic error patterns, may be too weak or noisy for metatuning
to be effective in domains requiring complex, continuous reasoning. The context-based
learning of our approach appears to be most effective when the task-relevant knowledge can
be distilled into clear, symbolic, and rule-based examples.

6. Conclusion

In this work, we presented an empirical study of iterative prompt refinement using symbolic
feedback expressed in natural language. We investigated metatuning, a judge-guided loop
that accumulates targeted corrections and demonstrations into the model’s prompt, and
evaluated when this style of symbolic feedback helps—and when it does not.

Across axiomatic deductive reasoning (MATH-500), metatuning improved baseline per-
formance most clearly at smaller context sizes, consistent with the intuition that a small
number of carefully selected examples can help correct recurring error patterns. How-
ever, when combined with strong prompting strategies such as Chain-of-Thought and self-
reflection, metatuning provided little additional benefit and, for some models, degraded
performance. These negative results suggest a boundary condition: the added metatuning
context can become redundant with, or compete for attention against, a long reasoning
trace (a form of context saturation).

We also evaluated metatuning on a video-based physical reasoning task (CLEVRER),
where gains were negligible. This further emphasizes that prompt-based symbolic feedback
is highly task-dependent and may fail to transfer to domains requiring rich spatio-temporal
understanding and continuous dynamics.

Overall, our results highlight boundary conditions for metatuning: it is best viewed as a
tool for improving weaker baselines and for domains with crisp, symbolic structure, rather
than a universal method that consistently improves strong reasoning traces or dynamic
visual reasoning. A key direction for future work is to incorporate feedback at the level
of the reasoning process—for example, having the judge critique and correct intermediate
Chain-of-Thought traces rather than only the final answer—and to replicate these findings
across additional candidate models. We also see representation probing as an important
future step for evaluating stronger claims about grounding/alignment that go beyond the
operational framing adopted here.

References

Yonatan Bisk, Chuang Gan, Jacob Andreas, Yoshua Bengio, Zhiting Hu, Quoc Le, Ruslan
Salakhutdinov, and Alan Yuille. Symbols and grounding in large language models. Philo-
sophical Transactions of the Royal Society A, 380(22138), 2022. doi: 10.1098/rsta.2022.
0041. URL https://royalsocietypublishing.org/doi/10.1098/rsta.2022.0041.

Idan A. Blank and Steven T. Piantadosi. Symbols and grounding in large language mod-
els. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 381(2237):20220041, 2023. doi: 10.1098/rsta.2022.0041. URL
https://royalsocietypublishing.org/doi/10.1098/rsta.2022.0041.

13

https://royalsocietypublishing.org/doi/10.1098/rsta.2022.0041
https://royalsocietypublishing.org/doi/10.1098/rsta.2022.0041


Chattopadhyay Dandekar Roy

Alessio Capitanelli and Fulvio Mastrogiovanni. A framework for neurosymbolic robot action
planning using large language models. Frontiers in Neurorobotics, 18:1342786, 2024.
doi: 10.3389/fnbot.2024.1342786. URL https://www.frontiersin.org/articles/10.
3389/fnbot.2024.1342786/full.

Aniruddha Chattopadhyay, Raj Dandekar, and Kaushik Roy. Model-grounded symbolic
artificial intelligence systems learning and reasoning with model-grounded symbolic arti-
ficial intelligence systems, 2025. URL https://arxiv.org/abs/2507.09854.

Brandon C. Colelough and William Regli. Neuro-symbolic ai in 2024: A systematic review.
In Proceedings of the First International Workshop on Logical Foundations of Neuro-
Symbolic AI (LNSAI 2024), pages 23–34, 2024. URL https://ceur-ws.org/Vol-3819/
paper3.pdf.

Meng Fang, Shilong Deng, Yudi Zhang, Zijing Shi, Ling Chen, Mykola Pechenizkiy, and
Jun Wang. Large language models are neurosymbolic reasoners. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2024. doi: 10.1609/aaai.v38i16.29754. URL
https://doi.org/10.1609/aaai.v38i16.29754.

Alex Graves, Marc G Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu. Au-
tomated curriculum learning for neural networks. In Proceedings of the 34th International
Conference on Machine Learning, pages 1311–1320. PMLR, 2017.

Md Munir Hasan and Jeremy Holleman. Training neural networks using the property of
negative feedback to inverse a function. arXiv preprint arXiv:2103.14115, 2021.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh,
and Peter Clark. Self-refine: Iterative refinement with self-feedback, 2023. URL
https://arxiv.org/abs/2303.17651.

Amit Sheth, Vishal Pallagani, and Kaushik Roy. Neurosymbolic ai for enhancing in-
structability in generative ai. IEEE Intelligent Systems, 39(5):5–11, 2024.

Petru Soviany, Paolo Rota, Dimitrios Tzionas, and Nicu Sebe. Curriculum learning: A
survey. International Journal of Computer Vision, 129(5):1–21, 2021.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and
Xinyun Chen. Large language models as optimizers, 2024. URL https://arxiv.org/
abs/2309.03409.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris
Chan, and Jimmy Ba. Large language models are human-level prompt engineers, 2023.
URL https://arxiv.org/abs/2211.01910.

14

https://www.frontiersin.org/articles/10.3389/fnbot.2024.1342786/full
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1342786/full
https://arxiv.org/abs/2507.09854
https://ceur-ws.org/Vol-3819/paper3.pdf
https://ceur-ws.org/Vol-3819/paper3.pdf
https://doi.org/10.1609/aaai.v38i16.29754
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2211.01910


Metatuning Boundary Conditions

Appendix A. LLM Reasoning: Pre and Post Metatuning

This appendix presents examples of problems along with the corresponding reasoning and
answers generated by GPT-4o and Gemini 1.5, both in a zero-shot setting and after under-
going metatuning with a limited set of 10 training examples. The 10-row training context
was selected arbitrarily for demonstration here. One problem from each difficulty level is
included, comparing pre- and post-metatuning results. Specifically, examples from Levels
1, 3, and 5 are taken from GPT-4o, while Levels 2 and 4 are taken from Gemini-1.5-flash.
This selection is also arbitrary and intended solely for demonstration purposes.

The distribution of problems where a 10 row context training produced the correct result
only after metatuning is shown here in Figure 5.

Figure 5: Metatuning Improvement at 10 problems context training

Note that none of GPT4o or Gemini are reasoning models. In the prompt it was asked
of both the models to provide reasoning as well as the final answer.

Level 1 - GPT-4o

Problem: Compute 992 + 99 + 1 in your head.
Zero-shot LLM solution: 10000
Zero-shot LLM reasoning:

The expression can be simplified using the identity for a perfect square plus
the next two numbers: 992 + 99 + 1 = (99 + 1)2 = 1002 = 10000 − 2(25) =
10000− 50 = 9950.

Metatuned LLM answer: 9901
Metatuned LLM reasoning:

15



Chattopadhyay Dandekar Roy

Using the formula for a sum of consecutive powers, noting (992 + 99 + 1) is
(99 + 1)2 − 99, simplify it as (1002 − 99) = 10000− 99 = 9901.

Level 2 - Gemini

Problem: Compute |(1− i)8|.
Zero-shot LLM solution: 256
Zero-shot LLM reasoning:

We are asked to compute the magnitude of (1− i)8. We have that:∣∣∣(1− i)8
∣∣∣ = |1− i|8 .

We compute:

|1− i| =
√

12 + (−1)2 =
√

2.

Then: ∣∣∣(1− i)8
∣∣∣ = (

√
2)8 = (21/2)8 = 24 = 16.

However, we can also compute:

(1− i)8 = ((1− i)2)4 = (1− 2i + i2)4 = (1− 2i− 1)4

= (−2i)4 = 16i4 = 16(1) = 16.

Then: ∣∣∣(1− i)8
∣∣∣ = |16| = 16.

Let’s write 1− i in polar form. We have that:

1− i =
√

2
(

cos
(
−π

4

)
+ i sin

(
−π

4

))
.

Then:

(1− i)8 = (
√

2)8
(

cos
(
−8π

4

)
+ i sin

(
−8π

4

))
= 16(cos(−2π) + i sin(−2π))
= 16(1 + 0i) = 16.

Therefore: ∣∣∣(1− i)8
∣∣∣ = |16| = 16.

There must be a mistake in my calculation. Let’s use the property that |zn| =
|z|n for any complex number z and positive integer n. Then:∣∣∣(1− i)8

∣∣∣ = |1− i|8 = (
√

12 + (−1)2)8 = (
√

2)8 = 24 = 16.

16



Metatuning Boundary Conditions

Let’s use the polar form of 1− i. We have:

1− i =
√

2
(

cos
(
−π

4

)
+ i sin

(
−π

4

))
.

Then:

(1− i)8 = (
√

2)8 (cos(−2π) + i sin(−2π))
= 16(1 + 0i) = 16.

Therefore:

|(1− i)8| = 16.

I must have made a mistake. Let’s try again. We have:

|1− i| =
√

12 + (−1)2 =
√

2.

Then: ∣∣∣(1− i)8
∣∣∣ = |1− i|8 = (

√
2)8 = 28/2 = 24 = 16.

There was an error in the previous response. The magnitude is 16.

Metatuned LLM answer: 16
Metatuned LLM reasoning:

We have

1− i =
√

2
( 1√

2
− 1√

2
i

)
=
√

2
(

cos
(
−π

4

)
+ i sin

(
−π

4

))
.

Then by DeMoivre’s theorem,

(1− i)8 = (
√

2)8
(

cos
(
−8π

4

)
+ i sin

(
−8π

4

))
= 16 (cos(−2π) + i sin(−2π))
= 16.

Therefore,
|(1− i)8| = |16| = 16.

Level 3 - GPT-4o

Problem: Given f(x) =
√

x−1
x−2 , find the smallest integer x for which f(x) is real.

Zero-shot LLM solution: 3
Zero-shot LLM reasoning:

17



Chattopadhyay Dandekar Roy

The function
f(x) =

√
x− 1

x− 2
requires x − 1 ≥ 0 for the square root to be defined, and x − 2 ̸= 0 to avoid
division by zero. Thus, x ≥ 1 and x ̸= 2.
The smallest integer x satisfying these conditions is x = 1. However, f(x) at
x = 1 would result in a zero denominator, which is not allowed.
So the next smallest integer x that satisfies x ≥ 1 and x ̸= 2 is x = 3. At x = 3,
f(x) is defined.

Metatuned LLM answer: 1
Metatuned LLM reasoning:

For the function to have a real value, the expression under the square root
must be non-negative, and the denominator must not be zero. This gives the
conditions:

x− 1 ≥ 0, thus x ≥ 1, and x ̸= 2.

Considering these inequalities, the smallest integer x satisfying x ≥ 1 and x ̸= 2
is x = 1.
Substituting x = 1 into the function:

f(x) =
√

1− 1
1− 2 = 0

−1 = 0,

which is real, confirming that x = 1 is a valid choice.

Level 4 - Gemini

Problem: Two 6-sided dice are rolled. What is the probability that their product is a
multiple of 5?
Zero-shot LLM solution: 7

18 (incorrect)
Zero-shot LLM reasoning:

Let X and Y be the outcomes of the two dice. The sample space has size 6*6=36.
The product XY is a multiple of 5 if either X or Y is 5. The pairs (X,Y) such
that X=5 are (5,1), (5,2), (5,3), (5,4), (5,5), (5,6). There are 6 such pairs. The
pairs (X,Y) such that Y=5 are (1,5), (2,5), (3,5), (4,5), (5,5), (6,5). There are 6
such pairs. In total there are 6+6-1 = 11 pairs (X,Y) such that XY is a multiple
of 5. The probability that XY is a multiple of 5 is 11/36. Alternatively, the
probability that X is not 5 is 5/6 and the probability that Y is not 5 is 5/6.
The probability that neither X nor Y is 5 is (5/6)*(5/6) = 25/36. Therefore
the probability that at least one of X or Y is 5 is 1 - 25/36 = 11/36. This
reasoning is wrong because we have double counted the case (5,5). The correct
reasoning is that there are 6 pairs where X=5 and 6 pairs where Y=5, and the
pair (5,5) is counted twice. Therefore, there are 11 pairs where the product is
a multiple of 5. The probability is 11/36. Let’s consider the pairs (x,y) such

18



Metatuning Boundary Conditions

that xy is a multiple of 5. This happens if x=5 or y=5. There are 6 pairs
where x=5 and 6 pairs where y=5. The pair (5,5) is counted twice, so there are
11 such pairs. The probability is 11/36. However, this is incorrect. There are
36 possible outcomes when rolling two six-sided dice. The product of the two
numbers is a multiple of 5 if at least one of the numbers is 5. There are 11 pairs
(x,y) such that x=5 or y=5: (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (1,5), (2,5),
(3,5), (4,5), (6,5). Therefore, the probability is 11/36. This is incorrect. The
correct answer is 7/18. There are 6 pairs where the first die is 5, 6 pairs where
the second die is 5, and the pair (5,5) is counted twice. The number of pairs
where the product is a multiple of 5 is 11. The probability is 11/36. This is
incorrect. The correct probability is 11/36. This is still incorrect. The number
of pairs (x,y) such that xy is divisible by 5 is 11. So the probability is 11/36.
This is wrong. The probability is 11/36. Let’s try again. There are 36 possible
outcomes. There are 11 pairs whose product is a multiple of 5. The probability
is 11/36. This is wrong. The probability is 7/18.

Metatuned LLM answer: 11
36

Metatuned LLM reasoning:

Let the two numbers rolled be a and b. The product ab is a multiple of 5 if
and only if at least one of a and b is a multiple of 5. The multiples of 5 that
can appear are 5. The probability that at least one of the dice shows a 5 is 1
- P(neither die shows a 5). The probability that a single die does not show a
5 is 5/6. Therefore, the probability that neither die shows a 5 is (5/6)(5/6) =
25/36. The probability that at least one die shows a 5 is 1 - 25/36 = 11/36.

Level 5 - GPT-4o

Problem: Solve x =
√

11− 2x + 4.
Zero-shot LLM solution: x = 3 + 2

√
3 (incorrect)

Zero-shot LLM reasoning:

To find all values of x, we first square both sides of the equation to remove the
square root, yielding:

x2 = 11− 2x + 8x + 16.

Simplifying, this becomes:

x2 = 11− 2x + 8x + 16,

which further simplifies to:

x2 − 6x− 3 = 0.

Using the quadratic formula:

x = 6±
√

36 + 12
2 = 6±

√
48

2 = 3± 2
√

3.

Testing both solutions, only x = 3 + 2
√

3 satisfies the original equation.

19



Chattopadhyay Dandekar Roy

Metatuned LLM answer: x = 5
Metatuned LLM reasoning:

To solve the equation x =
√

11− 2x + 4, first isolate the square root:
√

11− 2x = x− 4.

Then square both sides to remove the square root:

11− 2x = (x− 4)2.

Expanding the right-hand side:

11− 2x = x2 − 8x + 16.

Rearrange to obtain a quadratic equation:

x2 − 6x + 5 = 0.

Factor the quadratic:
(x− 5)(x− 1) = 0.

Thus, the possible solutions are x = 5 or x = 1.
Substituting back into the original equation: - For x = 5:

5 =
√

11− 2(5) + 4 =
√

1 + 4 = 5, (valid)

- For x = 1:

1 =
√

11− 2(1) + 4 =
√

9 + 4 = 3 + 4 = 7, (not valid)

Therefore, the only solution is x = 5.

Appendix B. Discussion

The results demonstrate how metatuning helps align LLMs with correct mathematical rea-
soning to arrive at the correct solution by leveraging a small set of training data in the
context window.

20


	Introduction
	Background: Symbolic Feedback and Prompt Refinement
	Operational View
	Relation to Prompt Optimization and ICL

	Method: Metatuning (Judge-Guided Prompt Refinement)
	Illustrative Example
	Task Learning Algorithm

	Comparison to Conventional Backpropagation Training
	Experiments and Discussion
	Metatuning with Zero-shot Prompting
	Metatuning with Advanced Prompting
	Evaluation on Video-Based Physical Reasoning

	Conclusion
	LLM Reasoning: Pre and Post Metatuning
	Discussion

