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Abstract
Large language models (LLMs) are increasingly deployed for multilingual information retrieval and reasoning over
very long documents, yet they often struggle with extracting dispersed facts and synthesizing robust answers across
linguistic boundaries. In this work, we propose a hybrid neural-symbolic framework that integrates scalable cross-
lingual retrieval with explicit symbolic reasoning. Our approach, CROSS (Cross-lingual Retrieval Optimized for Scalable
Solutions), efficiently narrows massive multilingual contexts using multilingual embeddings, dramatically improving
retrieval accuracy and mitigating the “lost-in-the-middle” problem. Building on this, we introduce NeuroSymbolic
Augmented Reasoning (NSAR), which prompts LLMs to extract structured facts and generate executable Python
code, enabling deterministic and interpretable multi-target reasoning. We evaluate our methods on the mLongRR-V2
benchmark, spanning seven languages, 49 cross-lingual pairs, and documents up to 512,000 words. Our experiments
show that compared to neural-only baselines, CROSS boosts retrieval accuracy up to 92% and NSAR reduces
reasoning failures fivefold, while maintaining stable performance across languages and context sizes. These results
establish a new standard for robust, scalable, and interpretable multilingual information extraction, demonstrating the
promise of hybrid neural-symbolic architectures for future AI systems.

Keywords
neurosymbolic, multilingual

Introduction

Despite recent advances in large language models (LLMs),
two fundamental challenges persist: the "needle-in-a-
haystack" retrieval problem and the "cross-lingual barrier."
While distinct, they often compound each other. The former
refers to the degradation of neural attention mechanisms
over extremely long sequences (Liu et al. 2023). The latter
involves the misalignment of semantic spaces when reason-
ing across languages, where models struggle to map a query
in Language A to evidence in Language B without explicit
translation (Agrawal et al. 2024). These challenges are not
merely engineering hurdles but reflect deeper limitations
in how neural language models process information. When
faced with documents spanning hundreds of thousands of
words or tasks requiring cross-lingual reasoning, even the
most advanced LLMs demonstrate significant degradation
in accuracy and reliability. This degradation is particularly
severe in multilingual contexts, where linguistic diversity
compounds the complexity of information retrieval and
inference.

Traditional approaches to these challenges have focused
primarily on architectural improvements—expanding con-
text windows (Beltagy et al. 2020; Zaheer et al. 2021),
enhancing attention mechanisms (Jiang et al. 2024), or devel-
oping specialized fine-tuning techniques (Litschko et al.
2022). While valuable, these approaches remain constrained

within a purely neural paradigm that forces models to per-
form both retrieval and reasoning through the same undif-
ferentiated neural processes. This monolithic architecture
inevitably creates bottlenecks even when initial retrieval
succeeds, leading to the "lost-in-the-middle" phenomenon
and cascading errors in multi-step reasoning (Liu et al. 2023;
Xu et al. 2024a).

Neurosymbolic artificial intelligence offers a promising
alternative by integrating the pattern recognition capabili-
ties of neural networks with the logical rigor of symbolic
systems (d’Avila Garcez and Lamb 2020). In our previous
work (Nezhad and Agrawal 2025), we introduced initial
components of a neurosymbolic framework for multilingual
tasks. This paper substantially extends that work, presenting
NeuroSymbolic Augmented Reasoning (NSAR)—a com-
prehensive paradigm that fundamentally reconceptualizes
how LLMs approach complex information extraction tasks.

The key novelties in this work compared to our previous
conference paper include:

• Formal introduction of the CROSS framework
for scalable cross-lingual retrieval, building on the
unnamed retrieval component from prior work.

• Expansion to fully bidirectional cross-lingual evalua-
tion across 49 language pairs, enabling queries and
contexts in any combination of the seven languages,
rather than fixed English queries.
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• Development of the mLongRR-V2 benchmark, which
enhances linguistic diversity, introduces 1-needle
retrieval tasks alongside 3-needle reasoning, and
supports more rigorous testing of cross-lingual
capabilities.

• Incorporation of both 1-needle and 3-needle evaluation
protocols for a more comprehensive assessment of
retrieval and reasoning performance.

• Detailed empirical analysis demonstrating up to 92%
retrieval accuracy in single-needle tasks and a fivefold
reduction in reasoning failures, with new insights into
error types and cross-script stability.

Rather than treating retrieval and reasoning as inseparable
neural processes, NSAR explicitly decomposes them,
introducing symbolic components precisely where neural
approaches typically falter. We implement this paradigm
through two complementary systems:

1. CROSS (Cross-lingual Retrieval Optimized for Scal-
able Solutions): A multilingual RAG framework that
embeds and narrows extensive documents to the most
relevant segments, effectively addressing the retrieval
challenge.

2. NSAR: A neurosymbolic reasoning layer that prompts
LLMs to (a) extract structured relations from
retrieved text, (b) generate executable Python code
implementing formal reasoning rules, and (c) execute
this code to produce verifiable answers.

This hybrid architecture transforms complex reasoning
from opaque neural computations into explicit, auditable
symbolic operations guided by neural components. By
introducing an intermediate symbolic representation layer
between retrieval and final inference, NSAR enables
compositional reasoning that remains robust even across
linguistic boundaries—a capability that purely neural
approaches have struggled to achieve consistently.

Our experiments on the mLongRR-V2
benchmark—spanning seven languages, 49 language
pairs, and documents up to 512,000 tokens—provide
compelling evidence for this paradigm shift. While baseline
GPT-4o-mini and Llama 3.2 models achieved only 37%
and 47% retrieval accuracy respectively across diverse
language combinations, our CROSS-enhanced approach
dramatically improved performance to 87% and 92%. Most
strikingly, in the challenging 3-needles reasoning task,
traditional approaches exhibited LLM failure rates of 52.2%
for GPT-4o-mini and 22.9% for Llama 3.2. NSAR reduced
these to just 8.9% and 6.2% respectively—a remarkable
fivefold improvement in reasoning capability.

The neurosymbolic approach demonstrated exceptional
cross-linguistic stability, with performance variations
under 5% across diverse scripts including Latin, Cyrillic,
Devanagari, and Arabic. Perhaps most significantly,
while purely neural reasoning methods showed declining
performance with increasing context complexity, NSAR
maintained robust performance regardless of input
volume—demonstrating its unique ability to handle
complexity through explicit symbolic representation. To

our knowledge, this is the first work exploring the promise
of neurosymbolic methods in improving multilingual
performance over long contexts.

The key findings of this paper include:

• CROSS improves retrieval accuracy from 37-47% in
baselines to 87-92% across multilingual settings.

• NSAR reduces reasoning failure rates fivefold in
multi-needle tasks.

• The framework maintains stable performance across
context lengths up to 512k words and diverse language
pairs.

• Neurosymbolic methods show superior robustness to
the "lost-in-the-middle" problem and cross-lingual
challenges.

• Optimal sentence cap sizes vary by task complexity,
with trade-offs between retrieval completeness and
reasoning accuracy.

For future research and design, we recommend:

• Extending symbolic representations to richer for-
malisms like first-order logic or constraint solvers.

• Evaluating on additional low-resource languages and
real-world multilingual corpora.

• Integrating more advanced embedding models and
exploring adaptive sentence cap selection.

• Developing automated verification mechanisms for
generated code in production systems.

• Investigating hybrid architectures for other multi-
modal long-context tasks beyond text.

This work extends beyond incremental improvements
to existing techniques, offering instead a fundamental
reconceptualization of how language models can approach
complex reasoning tasks. By establishing a principled
integration of neural flexibility with symbolic rigor, NSAR
opens new avenues for auditable AI systems in mission-
critical domains like healthcare, legal analysis, and scientific
research, where reliable cross-lingual understanding of
extensive documentation is essential. More broadly, our
results suggest that the future of AI for complex language
tasks likely lies not in ever-larger neural architectures alone,
but in hybrid systems that strategically combine neural
and symbolic components to overcome their respective
limitations.

Related Works
Recent advances in large language models (LLMs) have
brought renewed attention to the longstanding challenge
of retrieving and reasoning over information in long-
context scenarios. A growing body of work has documented
the “lost-in-the-middle” phenomenon, where LLMs fail to
reliably locate and integrate information embedded deep
within lengthy documents (Liu et al. 2023; Xu et al.
2024a). Even with expanded context windows, such as those
exceeding 8,000 tokens, models continue to exhibit sharp
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drops in retrieval accuracy when targets are positioned away
from document boundaries (Hengle et al. 2024).

To address these limitations, researchers have explored
a range of architectural and algorithmic improvements.
Parameter-efficient methods—including re-ranking
approaches and sparse fine-tuning masks (Litschko
et al. 2022)—offer better scalability but still struggle
with mid-context retrieval and cross-lingual generalization.
Specialized frameworks like XAMPLER (Lin et al. 2024)
and OPTICAL (Huang et al. 2023) improve multilingual
adaptation, especially in low-resource settings, yet they
often lack robustness when scaling to extremely long or
heterogeneous inputs.

Historically, Cross-Lingual Information Retrieval (CLIR)
relied heavily on dictionary-based translation and proba-
bilistic structured queries (Nie 2010). While these meth-
ods established the theoretical groundwork, they often
struggled with the semantic fluidity required for mod-
ern long-context understanding. Recent work has also
highlighted fundamental trade-offs in retrieval strategies.
For example, probabilistic structured queries can balance
efficiency and effectiveness but introduce challenges in
evaluation and scalability (Yang et al. 2024). Meanwhile,
the emergence of multilingual embeddings and transformer-
based architectures has enabled notable progress in cross-
lingual information retrieval (CLIR). Frameworks such as
LONGEMBED (Zhu et al. 2024) and LongRAG (Jiang
et al. 2024) extend context windows and improve retrieval
performance for long documents, but are primarily designed
for monolingual or limited multilingual applications.

For cross-lingual scenarios, methods like DR-RAG (Hei
et al. 2024) and McCrolin (Limkonchotiwat et al. 2024)
introduce dynamic relevance scoring and multi-task learning
to better handle diverse language pairs, yet these approaches
remain computationally intensive and may not scale well
to real-world document sizes. Datasets such as mLongRR
(Agrawal et al. 2024) and BordIRlines (Li et al. 2024)
have facilitated empirical progress in CLIR, though they are
limited in both linguistic diversity and context length. Newer
benchmarks including LONGEMBED (Zhu et al. 2024) and
DEBATEQA (Xu et al. 2024b) extend the domain of long-
context evaluation but do not provide comprehensive cross-
lingual coverage.

Beyond retrieval, interpretability and robust reasoning
remain open challenges. Most current approaches rely
on neural inference alone, making their decision process
opaque and vulnerable to hallucinations—especially when
integrating multiple facts from dispersed document regions.
Neurosymbolic methods have recently emerged as a
promising direction, coupling neural understanding with
explicit, symbolic reasoning modules. For instance, recent
work in the NeSy community has demonstrated that
integrating code generation or formal logic reasoning within
the retrieval pipeline can yield more interpretable and
reliable outcomes (Nezhad and Agrawal 2025).

In summary, existing research has made important strides
in long-context retrieval and cross-lingual adaptation, but
gaps remain in scalability, robustness, and interpretabil-
ity—particularly for multi-target reasoning in multilingual
settings. Our work builds directly on these foundations by

introducing a neurosymbolic retrieval and reasoning frame-
work that combines multilingual embeddings for scalable
retrieval with explicit code-based symbolic inference, set-
ting a new benchmark for robust, interpretable information
extraction in complex language scenarios.

Methodology
Our proposed architecture is a sequential pipeline designed
to bridge the gap between retrieval and reasoning. The
workflow proceeds as follows: First, the CROSS mod-
ule tokenizes and embeds the multilingual document (the
"haystack"), retrieving only the most semantically relevant
sentences. Second, these sentences are passed to the NSAR
module, which prompts the LLM to extract symbolic facts
and generate executable Python code. Finally, the code is
executed to derive the deterministic answer.

CROSS Framework
The CROSS framework (Cross-lingual Retrieval Optimized
for Scalable Solutions) efficiently extracts "needles" of rele-
vant information from extensive, multilingual "haystacks."
Using a two-phase approach, CROSS improves retrieval
accuracy, ensures cost efficiency, and overcomes the lim-
itations of current models in handling long, cross-lingual
contexts.

While CROSS leverages the fundamental architecture of
standard dense retrieval (RAG), it distinguishes itself through
its specific optimization for massive multilingual contexts
(up to 512k words). Unlike typical document-level or chunk-
level retrieval which may lose precision in cross-lingual set-
tings, CROSS operates at a strict sentence-level granularity.
This design choice, combined with the state-of-the-art BGE-
M3 embedding model, allows us to bypass the "translation
gap" often found in traditional CLIR systems, serving as a
necessary and highly optimized backbone for the subsequent
neurosymbolic reasoning.

Two-Phase Retrieval Mechanism CROSS employs a
Retrieval-Augmented Generation (RAG) framework that
leverages a two-phase retrieval process to enhance precision
while minimizing computational overhead.

Phase 1: Tokenization and Embedding The con-
text—potentially comprising hundreds of thousands of
words in multiple languages—is segmented into sentences
using the Punkt tokenizer (Kiss and Strunk 2006). Each
sentence is then embedded using the multilingual "BGE-
M3" model (Chen et al. 2024), which effectively captures
semantic nuances across languages. Although operating at
the sentence level might seem computationally demanding,
particularly if one considers finer granularity, our cost analy-
sis demonstrates that the expense of embedding and retrieval
is negligible relative to the cost of LLM processing.

Phase 2: Candidate Selection and Model Input Within
this RAG framework, CROSS calculates the semantic
distance between each sentence embedding and the query,
selecting the top k most relevant sentences based on a tunable
hyperparameter. In our experiments, we evaluated k values
of 3, 5, 10, 20, and 50. These selected sentences are then
passed as concise, contextually rich inputs to the language
model (e.g., GPT-4o-mini or Llama 3.2 90b) for final answer
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extraction. This design ensures that, despite the additional
embedding and retrieval steps, the overall token processing
by the LLM is drastically reduced, preserving both accuracy
and efficiency.

Embedding Model: BGE-M3 for Cross-Lingual Com-
patibility The BGE-M3 embedding model, with a 1024-
dimensional embedding size, is key to CROSS’s multilin-
gual capabilities. It embeds sentences from different lan-
guages into a shared vector space, enabling CROSS to
assess sentence relevance across languages and significantly
boosting cross-lingual accuracy. By capturing both syntactic
and semantic features, BGE-M3 ensures robustness across
diverse linguistic families, supporting accurate retrieval in
languages like Persian, Hindi, Russian, and Arabic.

Efficiency and Model Independence CROSS is model-
independent, enhancing retrieval accuracy with any language
model used in Phase 2. Tested with GPT-4o-mini and Llama
3.2, it dynamically adjusts the number of retrieved sentences,
ensuring consistent, cost-effective performance. By focusing
on the most relevant context segments, CROSS avoids
attention drop-offs in long texts and maximizes precision.
Its fixed input length makes it scalable, effectively handling
document lengths far beyond the native context limits of
most language models.

NeuroSymbolic Augmented Reasoning (NSAR)
Purely neural approaches to long-context question answering
often struggle with reliability, interpretability, and logically
integrating multiple pieces of information. While recent
prompting techniques (e.g., Chain-of-Thought, ReAct, and
Self-Reflection) have improved reasoning, they remain
reliant on implicit neural processes, leaving little room for
explicit verification or modular correction. To address these
limitations, we introduce the NeuroSymbolic Augmented
Reasoning (NSAR) component which integrates structured
symbolic representations within the neural architecture by
extracting symbolic facts and generating executable Python
code for reasoning. This approach bridges the gap between
the flexibility and fluency of LLMs and the interpretability
and rigor of symbolic methods. Neural systems excel at
language understanding and generation, but often fail in
complex scenarios requiring multiple reasoning steps, such
as comparing multiple facts, deducing the “largest” or
“smallest” value, or verifying constraints across scattered
pieces of information. Symbolic methods, by contrast,
excel in structured reasoning but can be brittle when
parsing unstructured text. By coupling a language model
with a symbolic layer, NSAR enhances interpretability
by providing an explicit record of extracted facts and
logical steps, enabling users to audit and verify the model’s
reasoning. Additionally, it improves reliability by reducing
errors in compositional tasks by systematically comparing
and fusing pieces of information through symbolic code
execution.

We design an NSAR prompt to append to the retrieved
context before querying the LLM. This prompt guides the
reasoning process through three distinct stages:

1. Symbolic Fact Extraction First, the model is instructed
to identify all relevant facts in the provided context and

represent them in a structured, symbolic format. For instance,
if the context contains lines such as “The special magic
Cairo number is: 1234567” and “The special magic Mumbai
number is: 9999999”, the model generates:

FACT("Cairo", "special_magic_number",
1234567)

FACT("Mumbai", "special_magic_number",
9999999)

2. Python Code Generation Next, the model is prompted
to produce concise, executable Python code that uses the
extracted symbolic facts to answer the question. Instead of
implicitly inferring logic through text, the Python code can
contain explicit comparisons (>, <, ==), data structures
(lists, dictionaries), or domain-specific libraries. In the case
of identifying the largest special magic number, this code
might look like:

numbers = [1234567, 9999999]
answer = max(numbers)

The logic here can be arbitrarily extended to handle more
complex reasoning steps (e.g., filtering facts, applying
constraints, or computing aggregates). Once the LLM
generates the Python code, it is executed in a controlled
environment.

3. Final Answer Extraction Finally, the answer is
determined by executing the generated Python code. This
guarantees a concise, verified response and prevents any
contradictory or incoherent rationales that might arise from
purely text-based reasoning. In other words, while the LLM
might propose a final textual answer, the actual answer
delivered to the user is the deterministic output of the code
execution.

As such, NSAR prompt structure ensures that the language
model provides an interpretable chain of reasoning, resulting
in a Python snippet that can be independently executed and
verified. The template of NSAR prompt is shown below:

NSAR Prompt Template

You are a helpful assistant that employs a neurosymbolic
method. Given the following context and question, please
follow these steps:
1. Extract all relevant facts from the context and represent
them as symbolic facts using the format FACT(entity,
attribute, value).
2. Generate executable Python code that uses the extracted
symbolic facts to compute the final answer.
3. Finally, output only the final answer.
#CONTEXT
{text}
#ENDCONTEXT
#QUESTION
What is the largest special magic number?

In this work, “neurosymbolic” denotes the hybrid of
explicit FACT-triple extraction with deterministic code
execution. While our current triples support only simple
attribute logic, extending to richer formalisms (e.g. first-
order rules or constraint solvers) would more fully realize
the neurosymbolic ideal.
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Dataset: mLongRR-V2
The mLongRR-V2 dataset builds on the original mLongRR
by Agrawal et al., which evaluated multilingual long-
context models on retrieval tasks using five Latin script
languages. However, the original mLongRR was limited to
a maximum context length of 64,000 tokens and lacked
diversity in script types (Agrawal et al. 2024). mLongRR-
V2 addresses these limitations by extending the context
length to 512,000 words and expanding the language set
to include seven languages: English, Vietnamese, Swahili,
Persian, Russian, Hindi, and Arabic. This expansion not
only enhances linguistic diversity by incorporating non-Latin
scripts such as Cyrillic, Devanagari, and Arabic, but also
introduces a crucial cross-lingual dimension, allowing for
more robust evaluations of retrieval models in multilingual
and cross-script scenarios.

The cross-lingual aspect of mLongRR-V2 is designed to
rigorously test retrieval models across different language
combinations. In this dataset, the haystack is always
monolingual, meaning that all context within a given test
case is written in a single language. However, the needle
(target sentence) is embedded within the haystack in the
same language as the haystack itself. The cross-lingual
challenge arises from the fact that the query is presented
in a different language from the haystack, requiring the
model to bridge linguistic differences to retrieve the correct
information.

Needle Structure In this task, the model’s objective is to
locate and extract information from a single target sentence
hidden within the context. We adopt the same needle pattern
as used in previous studies (Agrawal et al. 2024; Team 2024;
Anthropic 2024), which takes the form: “The special magic
{city} number is: {number}”. Here, {city} is randomly
chosen from a list of 23 unique cities worldwide, and
{number} is a randomly generated 7-digit number. The list of
cities was translated into all the dataset languages to ensure
accuracy and linguistic consistency.

Cross-Lingual Language Pairs and Needle Positioning
To provide a rigorous assessment, mLongRR-V2 includes
49 cross-lingual language pairs, pairing each language in the
prompt and query with every other language in the context.
This setup simulates real-world scenarios where queries and
contexts are often in different languages, adding complexity
to the retrieval task.

Building on the original mLongRR, mLongRR-V2
positions the target information (the "needle") at five distinct
locations within the context: the beginning (0%), near the
start (25%), in the middle (50%), near the end (75%), and
at the end (100%). This systematic positioning tests model
robustness across varying depths, addressing challenges like
the “lost in the middle” problem, where retrieval accuracy
typically drops for mid-context information.

To test the reasoning capability of CROSS, we introduced
a 3-needles setup, where three needles are placed randomly
within the context. The task requires the model to identify
and reason about the needles to answer a query related to
the largest one, further evaluating CROSS’s ability to process
complex multilingual scenarios.

Context Length mLongRR-V2 significantly extends the
context length to a maximum of 512,000 words, enabling the

evaluation of models on much longer texts compared to the
original mLongRR dataset. The dataset is carefully designed
to test models across varying context lengths, consisting of
2k, 8k, 16k, 32k, 64k, 128k, 256k, and 512k words. This
range allows for a comprehensive assessment of a model’s
scalability and performance under diverse conditions.

Evaluation Protocol
To comprehensively evaluate the effectiveness of CROSS,
we designed two distinct evaluation tasks: the 1-needle
test and the 3-needles test. These tests assess retrieval and
reasoning capabilities across diverse cross-lingual scenarios.

1-Needle Test The 1-needle test evaluates the model’s
ability to retrieve specific information embedded within
extensive multilingual contexts. In this task, a single "needle"
(a target piece of information) is placed in the context at
one of five predefined positions: the beginning (0%), near
the start (25%), in the middle (50%), near the end (75%), or
at the end (100%).

The prompt asks the model: “What is the special
magic number?”, written in different languages to assess
cross-lingual retrieval. The model must locate the relevant
information and provide the correct answer, ensuring
retrieval accuracy across both language pairs and varying
context positions.

3-Needles Test The 3-needles test evaluates the model’s
reasoning capability in addition to retrieval. In this setup,
three needles are randomly distributed throughout the
context. The model is prompted to identify and reason about
the needles to answer the query: “What is the largest special
magic number?”

This task challenges the model to not only locate multiple
relevant pieces of information but also reason over them
to produce the correct answer. The random placement
of the needles tests robustness against varying context
complexity. Each case was tested three times to account
for the variability introduced by the random distribution of
needles, ensuring a more reliable evaluation of the model’s
reasoning capabilities.

Metric: Retrieval Accuracy We use retrieval accuracy
as the primary metric to evaluate model performance in
both tasks. Accuracy is defined as the percentage of test
cases where the model correctly identifies and retrieves
the required information. In the 1-needle test, this means
correctly locating the "special magic number." In the 3-
needles test, accuracy measures the model’s ability to reason
and correctly identify the largest "special magic number."

Prompts and Queries The prompts and queries used in
both the 1-needle and 3-needles tests are carefully crafted to
ensure clarity and fairness across languages.

Results and Analysis
This section presents the experimental results of our
approach, which combines CROSS’s retrieval framework
with Llama 3.2 and GPT-4o-mini as the underlying language
model. We analyze its performance across retrieval accuracy,
robustness to context length, needle position sensitivity,
cross-lingual consistency, and cost efficiency, comparing it
to the baseline performance of LLMs alone.
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Initial LLM Performance Evaluation without
"Contexts"
Before integrating CROSS, we tested both GPT-4o-mini
and Llama 3.2 90b independently to verify their ability
to understand the prompts and correctly retrieve or reason
answers without any provided context. This evaluation
was conducted for both the 1-needle (retrieval) and 3-
needles (reasoning) scenarios. Each model was tested 10
independent times using prompts and needles alone, without
contextual interference. Both models demonstrated flawless
performance, successfully identifying the correct answers in
all tests. These results confirm that the prompts are clear
and fully understandable to the LLMs, establishing a solid
foundation for evaluating the impact of CROSS in more
complex retrieval scenarios.

Retrieval Accuracy
CROSS achieved significant improvements in retrieval
accuracy across all tested languages and language pairs
when paired with both GPT-4o-mini and Llama 3.2 90b.
Compared to using the language models alone, the CROSS-
enhanced approach consistently retrieved the target sentence
with higher exact match accuracy, especially in long contexts
and complex cross-lingual pairs.

Baseline Definition: In all comparisons, the "Baseline"
(e.g., "GPT-4o-mini only") refers to the standard long-con-
text capability of the model, where the entire haystack text
is provided in the prompt up to the model’s context window
limit (128k tokens). This serves as a strong baseline, rep-
resenting the model’s native ability to handle long contexts
without external retrieval.

On average, across all 49 language combinations,
CROSS with GPT-4o-mini achieved a retrieval accuracy of
87%, significantly outperforming the baseline GPT-4o-mini,
which achieved only 37%. Similarly, CROSS with Llama
3.2 achieved a remarkable improvement, with accuracy
increasing from 47% for Llama 3.2 alone to 92% when
enhanced with CROSS.

Furthermore, for contexts under 64k words—the length
supported by both models—CROSS-enhanced GPT-4o-mini
maintained a retrieval accuracy of 88%, compared to 59%
for GPT-4o-mini alone. Llama 3.2 also showed improvement
under 64k words, with accuracy increasing from 75%
for the baseline model to 95% with CROSS. These
substantial improvements across both context lengths and
models demonstrate CROSS’s effectiveness in preserving
high retrieval accuracy.

As illustrated in the radar graphs in Figures 1a and
1b, CROSS enhances retrieval and reasoning performance
across all prompt and context languages, indicating the
robustness of this approach in varied multilingual scenarios.
These results highlight the effectiveness of the CROSS
framework in maintaining high accuracy across diverse
linguistic contexts when paired with both GPT-4o-mini and
Llama 3.2.

Context Length Robustness
A key strength of CROSS is its robust performance across
varied context lengths. Without CROSS, both models exhibit
a notable decline in retrieval accuracy as context length

increases, with sharp reductions observed beyond 64k
words. In contrast, the CROSS-enhanced approach maintains
consistent accuracy across context lengths up to 512k words
for both models, showing only minimal reduction (Figure
2a). By narrowing the input to a fixed set of top-relevant
sentences, CROSS effectively mitigates the typical accuracy
drop-off associated with large contexts, enabling both GPT-
4o-mini and Llama 3.2 to perform reliably on larger-scale
retrieval tasks.

Notably, this pattern persists in the more challenging 3-
needles test. CROSS continues to stabilize retrieval accuracy
across increasing context lengths for both models, as shown
in Figure 2b, further emphasizing its robustness in scenarios
with multiple target sentences.

Needle Position Sensitivity
To assess CROSS’s effectiveness in addressing the “lost in
the middle” issue, we measured retrieval accuracy across five
needle positions (0%, 25%, 50%, 75%, and 100%). Both
GPT-4o-mini and Llama 3.2 90b performed best when the
needle was at the beginning (0%) or end (100%) of the
context. However, GPT-4o-mini exhibited a significant drop
in accuracy for mid-context positions (25%, 50%, 75%), with
an average accuracy of only 27%. Llama 3.2, being a newer
model, handled mid-context positions better, achieving an
average accuracy of 45%, though it still showed a noticeable
reduction compared to its performance at the boundaries.

When paired with CROSS, both models demonstrated
a dramatic improvement in positional resilience. CROSS
maintained stable performance across all needle positions,
achieving an average mid-context accuracy of 86% for GPT-
4o-mini and 91% for Llama 3.2. This indicates that CROSS
effectively mitigates the loss in retrieval accuracy commonly
associated with middle-positioned target information.

Notably, CROSS ensures consistent accuracy regardless
of where the needle is located, addressing the challenges
inherent in finding information deeply embedded within
extensive contexts. This improvement underscores CROSS’s
ability to generalize effectively across models, resolving the
"lost in the middle" problem even for a robust baseline like
Llama 3.2 (Figure 3).

Cross-Lingual Consistency
Notably, CROSS demonstrates strong performance across
linguistically dissimilar language pairs, such as Hindi-
Russian, where the prompt and query are in Hindi, and
the context is in Russian. In these challenging cross-lingual
scenarios, GPT-4o-mini alone exhibits a marked reduction
in accuracy, while Llama 3.2 fares better. When paired
with CROSS, however, both models maintain high retrieval
accuracy, demonstrating robust consistency even across
widely varying linguistic structures.

For GPT-4o-mini, CROSS significantly boosts accuracy
in cross-lingual pairs, bridging the gap between same-
language and cross-language scenarios. Similarly, Llama
3.2 paired with CROSS achieves consistently strong
performance, handling diverse language pairs effectively,
and demonstrating its adaptability in multilingual contexts.
This makes CROSS a robust solution for multilingual
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(a) Comparison of Average Accuracy for Each Prompt and Context
Language in the 1-Needle Test

(b) Comparison of Average Accuracy for Each Prompt and Context
Language in the 3-Needles Test

Figure 1. Radar Plots Comparing Average Accuracy in Different Tests. Dashed lines represent the CROSS-enhanced models,
while solid lines represent the baseline LLMs. Red indicates GPT-4o-mini and Blue indicates Llama 3.2.

(a) Comparison of Retrieval Accuracy Across Context Lengths in
1-Needle Test

(b) Comparison of Retrieval Accuracy Across Context Lengths in
3-Needles Test

Figure 2. Retrieval Accuracy Across Different Context Lengths

applications requiring retrieval across varied linguistic
structures and combinations.

Figure 4 illustrates the performance of both models in the
1-needle test, comparing retrieval accuracy when the prompt
and context languages are the same versus different. For the
3-needles test, a similar comparison is provided in Figure 5.
These figures highlight CROSS’s ability to maintain robust
retrieval accuracy across both same-language and cross-
lingual scenarios, even in more complex reasoning tasks.

Figure 3. Retrieval Accuracy Comparison Across Needle
Positions

Cost Efficiency Analysis
A key advantage of CROSS is its dramatic reduction in
the number of tokens processed by the expensive language
model. In a conventional setup, the entire context of T tokens
is fed into the LLM, incurring a cost that scales linearly with
T . In contrast, CROSS first processes the full context with
a lightweight embedding model (BGE-M3) and then selects
the top k sentences (each averaging roughly T/N tokens ,
where N is the total number of sentences in the haystack) to
pass to the LLM. Thus, the LLM processes approximately

k · T
N

tokens,

instead of T tokens.
Assuming that the computational cost per token for

the LLM is proportional to the model’s parameter count,
and noting that BGE-M3 (568M parameters) is roughly
180 times more efficient per token than Llama 3.2 (90B
parameters), the cost incurred by the embedding stage is only
a small fraction of that of the LLM. In our experiments, this
two-phase approach resulted in an average reduction of token
usage for the LLM by about 90% across various context
lengths (see Figure 6).

In addition to these costs, CROSS requires computing
the semantic distances between the embedded query and
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Figure 4. Comparison of Retrieval Accuracy in Same-Language and Cross-Lingual Settings in the 1-needle test. This figure
illustrates the retrieval performance of CROSS when the prompt and context are in the same language versus when they differ.

Figure 5. Comparison of Retrieval Accuracy in Same-Language and Cross-Lingual Settings in the 3-needles test. This figure
highlights CROSS’s performance in reasoning tasks involving multiple targets across different language settings.

Figure 6. Mean Input Reduction Using CROSS by Context
Length for Each Context Language

each sentence’s embedding. This involves a vector distance
computation (typically a cosine or Euclidean similarity) for
each of the N sentence embeddings. The computational cost
of these distance calculations is generally:

Costdistances ∝ N × d,

where d is the embedding dimension (e.g., 1024). In practice,
since d is relatively small and these computations can be
highly optimized (or even performed using approximate
nearest-neighbor search techniques), the overall cost of the
distance calculations is modest compared to the cost saved
by significantly reducing the LLM’s input size.

Thus, the overall computational cost of CROSS can be
expressed as:

Cost = T · Cembed +
(
k · T

N

)
· CLLM +N · d · Cdist

(1)

where:

• Cembed is the per-token cost of the embedding model,

• CLLM is the per-token cost of the LLM,

• Cdist is the per-dimension cost of computing distances.

Given that Cembed ≪ CLLM and that the cost of the distance
computations (N · d · Cdist) is relatively low, the overall
efficiency gains are overwhelmingly driven by reducing the
number of tokens fed into the LLM—an effect that is most
pronounced when k ≪ N .

In summary, by reducing the effective token input to
the LLM by up to 90%, and with a minimal overhead for
both embedding and distance computations, CROSS offers
a scalable and economically efficient solution for handling
extremely long contexts.

Ablation Results

Effect of Sentence Cap Size on Accuracy
To evaluate the impact of sentence cap size on the accuracy
of CROSS, we conducted tests with cap sizes of 3, 5, 10, 20,
and 50 sentences. The results revealed interesting patterns
that varied depending on the number of target needles in the
context and the underlying language model.

In the 1-needle scenario, as shown in Figure 7, accuracy
generally increased with larger sentence cap sizes for
both GPT-4o-mini and Llama 3.2. While variations were
observed across different context languages, the overall trend
demonstrated that providing more top-relevant sentences
improved retrieval performance.

Conversely, in the 3-needles scenario, illustrated in Figure
8, accuracy decreased as the sentence cap size increased.
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Figure 7. Accuracy of CROSS with varying sentence cap sizes in the 1-needle scenario, showing improved performance as the
cap size increases.

Figure 8. Accuracy of CROSS with varying sentence cap sizes in the 3-needles scenario, showing improved performance as the
cap size increases.

Figure 9. Failure rate analysis

This decline highlights a trade-off: although a larger cap
size provides more context, it also introduces more distractor
sentences, which can confuse the model in multi-needle
retrieval tasks. These findings underline the importance of
tailoring sentence cap sizes based on the complexity and
requirements of the retrieval task.

These findings indicate that the optimal sentence cap size
for CROSS depends on the context language and complexity
of the retrieval task.

Failure Analysis
While CROSS demonstrates significant improvements in
retrieval accuracy, a closer examination of failure cases
provides insights into its limitations, particularly in multi-
target scenarios. This section analyzes the failure rates in
both the 1-needle and 3-needles tests, distinguishing between

failures arising in the embedding retrieval phase and those
occurring within the language model’s response generation.

We categorize retrieval failures into two types:

• Embedding Failure: Cases where the target label
is absent from the retrieved sentence cap, indicating
that the embedding model did not select the relevant
sentences.

• LLM Failure: Cases where the language model fails
to correctly extract or reason about the label, despite it
being present in the retrieved sentence cap.

Failure Rates and Trends Figure 9 illustrates the failure
rates across different test scenarios. In the 1-needle test,
both embedding and LLM failures remain relatively low. The
embedding model correctly retrieves the relevant sentence in
96% of cases, with embedding failures accounting for only
4.0%. Similarly, LLM failures remain low, at 10.1% for
GPT-4o-mini and 4.6% for Llama 3.2.

However, in the 3-needles test, we observe a substan-
tial increase in LLM failures. Although embedding failures
remain marginal at 5.7%, LLM failures escalate signifi-
cantly. GPT-4o-mini exhibits a failure rate of 52.2%, while
Llama 3.2, though performing better, still registers a notable
22.9% failure rate. This indicates that while CROSS reliably
retrieves relevant sentences, the challenge in the 3-needles
scenario primarily lies in the model’s ability to reason over
multiple retrieved labels and correctly extract the appropriate
one.

Impact of Cross-Lingual Settings on Failure Rates To
further dissect the model’s limitations, we analyzed failure
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Figure 10. Failure rate in same vs different language

Figure 11. Comparison of failure rates between GPT-4o-mini
and o1-mini in the 3-needles scenario.

rates by comparing scenarios where the prompt and context
languages were the same against those where they were
different. As illustrated in Figure 10, cross-lingual settings
consistently amplify failure rates, with the most pronounced
impact on the language model’s reasoning capabilities.

While embedding failures see a slight increase in the
cross-lingual setting (from 2% to 6%), they remain a
minor contributor to the overall error rate. This suggests
that the ‘BGE-M3‘ model is highly effective at cross-
lingual retrieval, though locating needles across languages
is inherently more difficult.

The most dramatic trend is the sharp escalation in LLM
failures, particularly in the 3-needles reasoning task. In
the same-language setting, the LLM failure rate is already
notable, but it skyrockets when the context is in a different
language. For GPT-4o-mini, the failure rate for 3-needles
reasoning jumps from 31% to over 62%, indicating a
severe impairment in its ability to synthesize multiple facts
presented in a foreign language. Although Llama 3.2 is
more resilient, it also experiences a significant increase
in reasoning failures in the cross-lingual condition. These
results pinpoint cross-lingual, multi-target reasoning—not
retrieval—as the primary bottleneck, revealing a critical area
for improvement in future models.

Analysis of Increased LLM Failures in 3-Needles Test
The increased failure rate in the 3-needles test suggests
that the presence of multiple target sentences creates
ambiguity, making it more difficult for the language model to
consistently select the correct answer. Possible contributing
factors include:

• Increased Distractors: The presence of multiple
similar sentences in the sentence cap introduces
additional reasoning complexity, leading to incorrect
selections.

• Inconsistent Answer Prioritization: The LLM may
struggle to determine the "largest" or "most relevant"
label when multiple valid answers exist.

• Ambiguity in Sentence Ranking: Despite successful
embedding retrieval, the semantic similarity between
different needle sentences can lead to incorrect
prioritization when forming the final response.

To further investigate whether the LLM failure is due to a
lack of reasoning capability, we tested the 3-needles scenario
on the o1-mini model, which is specifically designed for
reasoning tasks (OpenAI 2024). The results, shown in
Figure 11, indicate a significant reduction in LLM failure
rates. GPT-4o-mini exhibited a LLM failure rate of 52.2%,
whereas o1-mini showed a much lower failure rate of 9.7%.
These results suggest that a model explicitly trained for
reasoning can significantly mitigate failure rates in complex
retrieval scenarios.

Effect of Sentence Cap Size on Failure Rates To analyze
the impact of increasing the sentence cap size on retrieval
failures, we evaluated both embedding and LLM failure rates
across different cap sizes, as shown in Figure 12. In both
the 1-needle and 3-needles scenarios, embedding failures
decrease as the sentence cap size increases. This indicates
that retrieving a larger number of sentences improves the
likelihood of including the correct sentence in the context
provided to the language model.

However, a contrasting trend is observed with LLM
failures. As the sentence cap size increases, LLM failures
exhibit a noticeable rise, particularly in the 3-needles
scenario. This suggests that while a larger cap size helps
ensure the retrieval of relevant information, it also introduces
additional distractor sentences, making it more difficult for
the language model to accurately extract or reason about
the correct label. These findings highlight the trade-off
between retrieval accuracy and reasoning complexity when
determining the optimal sentence cap size.

Types of LLM Failures To better understand the nature of
LLM failures, we further categorize them into:
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Figure 12. Effect of Sentence Cap Size on Failure Rates in the 1-Needle and 3-Needles Scenarios.

Figure 13. LLM Failure Breakdown

• Incorrect Answer Failures: Cases where the model
provides an incorrect label despite the correct label
being present in the retrieved sentence cap.

• Unanswerable Failures: Cases where the model
incorrectly responds with "UNANSWERABLE" even
though the correct label is available.

Figure 13 presents the breakdown of these failure types
in both the 1-needle and 3-needles scenarios. In the 1-
needle test, failure rates for both incorrect answers and
unanswerable responses remain relatively low. However,
in the 3-needles test, we observe a significant increase in
unanswerable failures, particularly with GPT-4o-mini, where
over 45% of total responses were classified as unanswerable
despite the correct label being retrievable.

NeuroSymbolic Reasoning (NSAR)
Although RAG narrows down the context and alleviates
many challenges inherent to long input passages, it alone
does not guarantee robust multi-target reasoning. To address
this shortcoming, we enhance our baseline RAG system
with NSAR component. Besides RAG-Vanilla, we evaluate
three prompting-based methods—Chain-of-Thought (CoT),
ReAct, and Self-Reflection—as well as a hybrid approach
(NSAR+3) that combines NSAR with all three prompting
strategies. To ensure a fair comparison, all reasoning base-
lines (CoT, ReAct, Self-Reflection) utilize the same CROSS
retrieval backbone to fetch the relevant context; they differ
only in the prompting strategy used to generate the answer.

In the hybrid NSAR+3 approach, we combine neurosym-
bolic reasoning with Chain-of-Thought, ReAct, and Self-
Reflection strategies via a unified prompt. Specifically, the
model is instructed to follow a sequential six-step process:
(1) extract relevant facts as symbolic triples; (2) provide
a step-by-step Chain-of-Thought explanation; (3) describe
the intended action (ReAct); (4) generate executable Python
code to compute the result; (5) reflect on the reasoning
process to verify soundness. This comprehensive sequence
ensures that the symbolic execution is grounded in semantic
planning and iterative verification.

As depicted in Figure 14, the RAG-Vanilla baseline
lags behind in multi-target reasoning, confirming that
narrowing the context alone does not suffice to fuse and
compare multiple pieces of information. In contrast, our
proposed approach NSAR substantially improves accuracy
by leveraging explicit symbolic extraction and Python-
based reasoning. Moreover, combining NSAR with CoT,
ReAct, and Self-Reflection (NSAR+3) yields the highest
accuracy overall. Notably, for GPT-4o-mini, NSAR achieves
91.1%, followed closely by NSAR+3 and CoT, both
at 90.2%, whereas for Llama 3.2, NSAR+3 attains the
highest performance at 93.8%. These findings suggest that
integrating explicit symbolic reasoning can fill critical gaps
in retrieval-augmented generation, particularly for complex
tasks that demand robust compositional inference.

Accuracy by context language Figures 15a and 15b
provide a more granular perspective on how each approach
performs across seven context languages. Each cell repre-
sents the accuracy (%) of a particular approach–language
pair, revealing where certain strategies excel or fall short.

Across both heatmaps, NSAR and NSAR+3 maintain high
accuracy in most languages, confirming the benefits of
explicit symbolic reasoning for multi-target retrieval tasks.
In contrast, baseline methods (RAG-Vanilla) and single-
step prompting strategies (Chain-of-Thought, ReAct, Self-
Reflection) exhibit more variability and struggle in specific
languages. Notably, languages such as Swahili and Arabic
appear more challenging, yet neurosymbolic approaches still
achieve competitive performance. These language-specific
patterns underscore the importance of robust, compositional
reasoning—particularly in cross-lingual or lower-resource
settings.

Effect of k on performance Figure 16 shows how
different reasoning strategies perform as we vary the number

Prepared using sagej.cls



12 Neurosymbolic Artificial Intelligence XX(X)

Figure 14. Overall accuracy of GPT-4o-mini (left) and Llama 3.2 90b (right) under different reasoning strategies (RAG-Vanilla, CoT,
ReAct, Self-Reflection, NSAR, and a combined approach which combines NSAR with other reasoning methods (NSAR+3).

(a) GPT-4o mini.

(b) Llama 3.2 90b.

Figure 15. Heatmaps illustrating the accuracy (%) of different
approaches (rows) across seven context languages (columns).
Darker cells indicate lower accuracy, while lighter cells indicate
higher accuracy.

of retrieved sentences k (3, 5, 10, 20, and 50) for GPT-4o-
mini (left) and Llama 3.2 90b (right). Several trends are
evident. First, at low values of k, all methods tend to have
lower accuracy, likely due to the increased chance of missing
key information during retrieval. As k increases, accuracy
generally improves up to a point. However, very large k (e.g.,
50) can introduce additional distractors, leading to a decline
in performance. This aligns with our earlier observations

that, while a broader retrieval scope reduces the risk of
overlooking relevant facts, it can also complicate the model’s
reasoning by introducing more non-essential content.

Comparing across models, Llama 3.2 shows more pro-
nounced fluctuations as k increases, suggesting it is more
sensitive to context size and potential distractors. In con-
trast, GPT-4o-mini maintains relatively stable performance
at intermediate k values. Notably, NSAR+3 consistently
outperforms purely neural prompting methods in Llama 3.2,
whereas GPT-4o-mini exhibits closer competition among
NSAR and Chain-of-Thought. Overall, these findings high-
light the importance of carefully tuning k to balance retrieval
breadth and processing load, while also demonstrating that
neurosymbolic reasoning can mitigate many of the chal-
lenges introduced by larger context windows.

Error analysis for NSAR and NSAR+3 Figure 17
illustrates the distribution of error types for GPT-4o-mini
and Llama 3.2 under the NSAR and NSAR+3 methods,
categorizing failures into two types:

• Facts: The model retrieved the correct segments but
failed to extract the target fact from the input.

• Code: Although the target fact was extracted correctly,
the model produced incorrect or incomplete Python
code, leading to an erroneous final answer.

The distribution of fact-extraction versus code-generation
failures varies notably between the two models and across
the two neurosymbolic methods. In NSAR for GPT-4o-mini,
most errors stem from fact extraction, whereas Llama 3.2
primarily struggles with code generation. This suggests
that GPT-4o-mini’s neurosymbolic pipeline frequently have
problem to locate the correct sentences to extract facts, while
Llama 3.2 successfully extracts facts but sometimes produces
flawed Python code. Moving from NSAR to NSAR+3
reverses this trend for Llama 3.2, significantly reducing code-
generation failures but leading to more fact-extraction issues.
Meanwhile, GPT-4o-mini exhibits a small increase in fact-
extraction errors and a modest rise in code-generation errors
when switching to NSAR+3.

Overall, these results imply that while neurosymbolic
reasoning substantially mitigates retrieval shortcomings, the
balance between accurate fact extraction and correct code
generation can shift depending on the underlying model and
the specific prompting strategy.
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Figure 16. Accuracy versus k (the number of retrieved sentences) for GPT-4o-mini (left) and Llama 3.2 (right).

Figure 17. Error sources under NSAR and NSAR+3.

Discussion
Our results demonstrate a significant leap forward in
robust, multilingual, long-context reasoning, underscoring
the power of a hybrid neural-symbolic approach. The
core success of our framework stems from a strategic
division of labor: the neural component (the BGE-M3
embedding model) excels at scalable pattern recognition
and semantic understanding across languages, while the
symbolic component (NSAR’s code generation) provides
the structured, deterministic, and interpretable reasoning that
purely neural models lack. By decoupling retrieval from
reasoning, our system effectively circumvents the inherent
limitations of monolithic LLM architectures.

A key finding is the framework’s exceptional cross-
lingual and cross-script stability. While end-to-end neural
models often exhibit performance degradation when faced
with typologically distant languages, our approach maintains
high accuracy across Latin, Cyrillic, Devanagari, and
Arabic scripts (Figure 1). This resilience arises because the
shared multilingual embedding space normalizes linguistic
differences at the retrieval stage, and the subsequent
reasoning is performed in the language-agnostic domain
of Python code. This design makes the reasoning process
independent of the source language’s syntax or structure—a
critical advantage for building truly global AI systems.

Furthermore, our CROSS framework offers a pragmatic
and highly effective solution to the well-documented
"lost-in-the-middle" problem. Instead of attempting to
architecturally enhance the attention mechanism of an LLM
to handle vast contexts, CROSS reframes the problem by
ensuring the LLM only ever processes a small, highly

relevant subset of the document. As shown in Figure 3, this
simple yet powerful pre-filtering step virtually eliminates
performance degradation based on needle position, allowing
models like GPT-4o-mini and Llama 3.2 to operate at near-
peak efficiency regardless of where information is located.

The ablation studies reveal important trade-offs. The
optimal number of retrieved sentences (k) depends critically
on task complexity (Figure 16). For single-target retrieval (1-
needle), a larger k increases the probability of capturing the
correct sentence, improving accuracy. However, for multi-
target reasoning (3-needles), a larger k introduces more
distractors, increasing the cognitive load on the LLM and
leading to a higher rate of reasoning failures. This is precisely
where NSAR proves its value. By forcing the LLM to
structure its reasoning through explicit fact extraction and
code generation, NSAR mitigates the negative impact of
distractors, reducing reasoning failures fivefold compared to
a vanilla RAG setup (Figure 14).

Nonetheless, our framework is not without limitations.
The entire pipeline’s performance is contingent on the qual-
ity of the initial embedding-based retrieval; if the correct
sentences are not among the top k, the failure is irrecov-
erable. Our failure analysis confirms this, though embed-
ding failures were relatively rare (Figure 9). Moreover, the
current symbolic representation—‘FACT(entity, attribute,
value)‘—is tailored to this specific task. Real-world applica-
tions will demand richer formalisms capable of representing
complex relationships, temporal dynamics, and uncertainty.
The errors in code generation, though reduced, also highlight
the need for robust verification and sandboxing mechanisms
for deployable systems.

Regarding the complexity of reasoning, we acknowledge
that the current symbolic representation (subject-attribute-
value triples) is relatively elementary. While this structure
suffices for aggregation tasks like finding the "largest" value,
real-world applications often demand richer relational struc-
tures. However, the strength of the NSAR framework lies in
the Python code generation step. Even if the extracted facts
are simple, the generated code can implement arbitrarily
complex logic (e.g., loops, conditional filtering, and library
integrations) that purely formal logic solvers might struggle
to scale.

Furthermore, while specialized reasoning models like o1-
mini demonstrate low failure rates (9.7%) without symbolic
augmentation, they remain opaque "black boxes." In con-
trast, NSAR offers a distinct advantage in auditability: the
generated Python code serves as a verifiable proof of the
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reasoning process. This is critical in high-stakes domains
where identifying why a model failed is as important as
the answer itself. Additionally, the computational cost of
running a smaller model (like GPT-4o-mini) with NSAR
is significantly lower than employing heavy reasoning-opti-
mized models for every query.

Looking forward, this work opens several promising
avenues. Extending the symbolic layer to more expressive
systems like first-order logic or probabilistic programs
could unlock more sophisticated reasoning capabilities.
Future systems could also feature an adaptive mechanism
to dynamically select the optimal sentence cap size
based on query complexity. Ultimately, our findings
suggest a paradigm shift away from the pursuit of
ever-larger, monolithic neural models and toward hybrid
architectures that thoughtfully integrate neural and symbolic
components. For mission-critical domains where reliability,
interpretability, and auditability are paramount, such
neurosymbolic systems represent the most viable path
toward truly intelligent and trustworthy AI.

Conclusion
In this work, we have addressed the persistent challenges
of multilingual retrieval and multi-target reasoning in long-
context scenarios by introducing a hybrid neural-symbolic
architecture. Our framework, CROSS, efficiently narrows
massive multilingual documents to concise, relevant seg-
ments using advanced multilingual embeddings, substan-
tially improving retrieval accuracy and overcoming the "lost-
in-the-middle" problem. Building upon CROSS, our Neu-
roSymbolic Augmented Reasoning (NSAR) module brings
explicit symbolic inference into the loop, prompting LLMs to
extract structured facts and generate executable Python code
for robust, interpretable reasoning.

Comprehensive experiments on the mLongRR-V2 bench-
mark—spanning seven languages, 49 cross-lingual pairs,
and contexts up to 512,000 words—demonstrate that our
approach consistently outperforms neural-only baselines,
achieving state-of-the-art results in both retrieval and reason-
ing across diverse linguistic and contextual settings. NSAR
not only delivers a fivefold reduction in reasoning failures
but also maintains stable performance for traditionally chal-
lenging languages and extreme context sizes.

Our findings highlight the promise of hybrid neural-
symbolic systems for building scalable, transparent, and
reliable AI in real-world multilingual environments. By
bridging neural flexibility with symbolic rigor, this paradigm
sets a new standard for auditable and generalizable
information extraction and reasoning. Future work will
extend this approach to richer symbolic representations,
more complex compositional tasks, and broader application
domains, further advancing the frontier of neurosymbolic
artificial intelligence.
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