Neurosymbolic Artificial Intelligence

Tensor logic: ©The uthor(s) 2026
Reprin n rmission:
The Ia nguage Of A I saeg'teputl:.cao.ilf/?ourisalosPermissions.nav

DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Pedro Domingos!

Abstract

Progress in Al is hindered by the lack of a programming language with all the requisite
features. Libraries like PyTorch and TensorFlow provide automatic differentiation and
efficient GPU implementation, but are additions to Python, which was never intended
for Al. Their lack of support for automated reasoning and knowledge acquisition has
led to a long and costly series of hacky attempts to tack them on. On the other hand,
Al languages like LISP and Prolog lack scalability and support for learning. This paper
proposes tensor logic, a language that solves these problems by unifying neural and
symbolic Al at a fundamental level. The sole construct in tensor logic is the tensor
equation, based on the observation that logical rules and Einstein summation are
essentially the same operation, and all else can be reduced to them. | show how to
elegantly implement key forms of neural, symbolic and statistical Al in tensor logic,
including transformers, formal reasoning, kernel machines and graphical models. Most
importantly, tensor logic makes new directions possible, such as sound reasoning in
embedding space. This combines the scalability and learnability of neural networks
with the reliability and transparency of symbolic reasoning, and is potentially a basis
for the wider adoption of Al.

Keywords
deep learning, automated reasoning, knowledge representation, logic programming,
Einstein summation, embeddings, kernel machines, probabilistic graphical models

LUniversity of Washington, Seattle, WA 98195-2350, USA

Corresponding author:

Pedro Domingos

Paul G. Allen School of Computer Science & Engineering
University of Washington

Seattle, WA 98195-2350, USA

Email: pedrod@cs.washington.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Neurosymbolic Artificial Intelligence XX(X)

Introduction

Fields take off when they find their language. Physics took off when
Newton invented calculus, and couldn’t have done so without it. Maxwell’s
equations would be unusable without Heaviside’s vector calculus notation. As
mathematicians and physicists like to say, a good notation is half the battle.
Much of electrical engineering would be impossible without complex numbers,
and digital circuits without Boolean logic. Modern chip design is made possible by
hardware description languages, databases by relational algebra, the Internet by
the Internet Protocol, and the Web by HTML. More generally, computer science
would not have gotten far without high-level programming languages. Qualitative
fields also depend critically on their terminology. Even artists rely on the idioms
and stylistic conventions of their genre for their work.

A field’s language saves its practitioners time, focuses their attention, and
changes how they think. It unites the field around common directions and
decreases entropy. It makes key things obvious and avoids repeatedly hacking
solutions from scratch.

Has AI found its language? LISP, one of the first high-level programming
languages, made symbolic Al possible. In the 80s Prolog also became popular.
Both, however, suffered from poor scalability and lack of support for learning,
and were ultimately displaced, even within AI, by general-purpose languages like
Java and C++. Graphical models provide a lingua franca for probabilistic AI, but
their applicability is limited by the cost of inference. Formalisms like Markov logic
seamlessly combine symbolic and probabilistic Al, but are also hindered by the
cost of inference.

Python is currently the de facto language of Al, but was never designed for it,
and it shows. Libraries like PyTorch and TensorFlow provide important features
like automatic differentiation and GPU implementation, but are of no help for
key tasks like automated reasoning and knowledge acquisition. Neurosymbolic Al
seeks to ameliorate this by combining deep learning modules with symbolic Al
ones, but often winds up having the shortcomings of both (Hitzler and Sarker
2021). In sum, AT has clearly not found its language yet.

There are clear desiderata for such a language. Unlike Python, it should hide
everything that is not AI, allowing AI programmers to focus on what matters.
It should facilitate incorporating prior knowledge into Al systems and reasoning
automatically over it. It should also facilitate learning automatically, and the
resulting models should be transparent and reliable. It should scale effortlessly.
Symbolic Al has some of these properties and deep learning has others, but neither
has all. We therefore need to merge them.

Tensor logic does this by unifying their mathematical foundations. It is based
on the observation that essentially all neural networks can be constructed using
tensor algebra, all symbolic Al using logic programming, and the two are
fundamentally equivalent, differing only in the atomic data types used. While
Markov logic combines logic with probability (Richardson and Domingos 2006),

Prepared using sagej.cls

Domingos 3

tensor logic combines it with embeddings, which are the key source of power in
neural networks. Nevertheless, under suitable restrictions tensor logic programs
reduce to probabilistic graphical models, preserving their sound treatment of
uncertainty. This contrasts with neurosymbolic representations like logic tensor
networks, which are based on fuzzy logic (Badreddine et al. 2022).

I begin with a brief review of logic programming and tensor algebra. The core
of the paper defines tensor logic and describes its inference and learning engines.
I then show how to elegantly implement neural networks, symbolic AI, kernel
machines and graphical models in it. I show how tensor logic enables reliable and
transparent reasoning in embedding space. I propose two approaches to scaling it
up. The paper concludes with a discussion of other potential uses of tensor logic,
prospects for its wide adoption, and next steps toward it.

Background
Logic Programming
The most widely used formalism in symbolic Al is logic programming (Lloyd
1987). The simplest logic programming language, which suffices for our purposes,
is Datalog (Greco and Molinaro 2016). A Datalog program is a set of rules and
facts. A fact is a statement of the form r(o1,...,0,), where r is a relation name
and the o’s are object names. For example, Parent(Bob, Charlie) states that Bob
is a parent of Charlie, and Ancestor(Alice,Bob) that Alice is an ancestor of Bob.
A rule is a statement of the form Ay < Ay,..., A,,, where the arrow means “if”,
commas denote conjunction, and each of the A’s has the form r(x1,...,z,), with
r being a relation name and the x’s being variables or object names. For example,
the rule

Ancestor(x,y) < Parent(x,y)

says that parents are ancestors, and the rule
Ancestor(x,z) < Ancestor(x,y),Parent(y, z)

says that x is z’s ancestor if x is y’s ancestor and y is z’s parent. Informally, a
rule says that its left-hand side or head is true if there are known facts that make
all the relations on its right-hand side or body simultaneously true. For example,
the rules and facts above imply that Ancestor(Alice,Charlie) is true.

In database terminology, a Datalog rule is a series of joins followed by a
projection. The (natural) join of two relations R and S is the set of all tuples
that can be formed from tuples in R and S having the same values for the same
arguments. When two relations have no arguments in common, their join reduces
to their Cartesian product. The projection of a relation R onto a subset G of
its arguments is the relation obtained by discarding from the tuples in R all
arguments not in G. For example, the rule

Ancestor(x, z) < Ancestor(x,y),Parent(y, z)

Prepared using sagej.cls

4 Neurosymbolic Artificial Intelligence XX(X)

joins the relations Ancestor(x,y) and Parent(y,z) on y and projects the result
onto {x, z}; the tuples Ancestor(Alice,Bob) and Parent(Bob, Charlie) yield the
tuple Ancestor(Alice, Charlie).

Two common inference algorithms in logic programming are forward and
backward chaining. In forward chaining, the rules are repeatedly applied to the
known facts to derive new facts until no further ones can be derived. The result is
called the deductive closure or fizpoint of the program, and all questions of interest
can be answered simply by examining it. For example, the answer to the query
Ancestor(Alice,x) (“Who is Alice an ancestor of?”) given the rules and facts
above is {Bob, Charlie}.

Backward chaining attempts to answer a question by finding facts that match
it or rules that have it as their head and facts that match the body, and so on
recursively. For example, the query Ancestor(Alice,Charlie) does not match
any facts, but it matches the rule

Ancestor(x,z) + Ancestor(x,y),Parent(y, z)

and this rule’s body matches the facts Ancestor(Alice,Bob) and
Parent(Bob, Charlie), and therefore the answer is True.

Forward and backward chaining in Datalog are sound inference procedures,
meaning that the answers they give are guaranteed to follow logically from
the rules and facts in the program. Logic programs have both declarative and
procedural semantics, meaning a rule can be interpreted both as a statement about
the world and as a procedure for computing its head with the given arguments
by calling the procedures in the body and combining the results.

The field of inductive logic programming (ILP) is concerned with learning logic
programs from data (Lavra¢ and Dzeroski 1994). For example, an ILP system
might induce the rules above from a small database of parent and ancestor
relations. Once induced, these rules can answer questions about ancestry chains
of any length and involving anyone. Some ILP systems can also do predicate
invention, i.e., discover relations that do not appear explicitly in the data, akin
to hidden variables in neural networks.

Tensor Algebra

A tensor is defined by two properties: its type (real, integer, Boolean, etc.) and its
shape (Rabanser et al. 2017). The shape of a tensor consists of its rank (number
of indices) and its size (number of elements) along each index. For example, a
video can be represented by an integer tensor of shape (t,z,y,c), where ¢ is the
number of frames, x and y are a frame’s width and height in pixels, and c is the
number of color channels (typically 3). A matrix is a rank-2 tensor, a vector a
rank-1 tensor, and a scalar a rank-0 tensor. A tensor of rank r and size n; in the
ith dimension contains a total of [[;_, n; elements. The element of a tensor A at
position ¢; along dimension 1, position ¢4 along dimension d, etc., is denoted by
Aiy ... ia....ir- This generic element of a tensor is often used to represent the tensor

Prepared using sagej.cls

Domingos 5

itself. The sum of two tensors A and B with the same shape is a tensor C' such
that
Cir.oviiaroie = Air e + Bin g

The tensor product of two tensors A and B of rank respectively r and r’ is a tensor
C of rank r + 7’ such that
Cityovgidsernsivsityeeesiarseeesive = Aityeesiagsein Bitsejar i

T‘/'

Einstein notation simplifies tensor equations by omitting all summation signs
and implicitly summing over all repeated indices. For example, A;;B;j, represents
the product of the matrices A and B, summing over j and resulting in a matrix
with indices ¢ and k:

Cik = AijBjr =Y _ AijBji.
J
More generally, the FEinstein sum (or einsum for short) of two tensors A and B
with common indices § is a tensor C' such that

Cay =) AapBsy,
E

where «, 8 and 7 are sets of indices, « is the subset of A’s indices not appearing
in B, the elements of « and § may be interspersed in any order, and similarly for
B and ~. Essentially all linear and multilinear operations in neural networks can
be concisely expressed as einsums (Rocktéschel 2018; Rogozhnikov 2022).

Like matrices, tensors can be decomposed into products of smaller tensors. In
particular, the Tucker decomposition decomposes a tensor into a more compact
core tensor of the same rank and k factor matrices, each expanding an index of
the core tensor into an index of the original one. For example, if A is a rank-3
tensor, in Einstein notation its Tucker decomposition is

_) / "
Aijk - szquMk'r'Cqu?

where C' is the core tensor and the M’s are the factor matrices.

Tensor Logic

Representation

Tensor logic is based on the answers to two key questions: What is the relation
between tensors and relations? And what is the relation between Datalog rules
and einsums?

The answer to the first question is that a relation is a compact representation of
a sparse Boolean tensor. For example, a social network can be represented by the
neighborhood matrix M;;, where ¢ and j range over individuals and M;; = 1 if 4
and j are neighbors and 0 otherwise. But for large networks this is an inefficient

Prepared using sagej.cls

6 Neurosymbolic Artificial Intelligence XX(X)

representation, since almost all elements will be 0. The network can be more
compactly represented by a relation, with a tuple for each pair of neighbors; pairs
not in the relation are assumed to not be neighbors. More generally, a sparse
Boolean tensor of rank n can be compactly represented by an n-ary relation with
a tuple for each nonzero element, and the efficiency gain will typically increase
exponentially with n.

The answer to the second question is that a Datalog rule is an einsum
over Boolean tensors, with a step function applied elementwise to the result.
(Specifically, the Heaviside step function, H(z) = 1 if z > 0 and 0 otherwise.) For
example, consider the rule

Aunt(x,z) < Sister(x,y),Parent(y, z).

Viewing the relations Aunt(x,z), Sister(x,y) and Parent(y,z) as the Boolean
matrices Ay, Sgy and P,,, respectively,

Ay, = H(SyyPy.) = H (Z SwaZ)
Yy

will be 1 iff S, and P, are both 1 for at least one y. In other words, the einsum
SgyPy. implements the join of Sister(x,y) and Parent(y,z). If x is 2’s aunt,
y is the sibling of x who is also a parent of z. The step function is necessary
because in general for a given (z, z) pair there may be more than one y for which
Sey = Py. = 1, leading to a result greater than 1. The step function then reduces
this to 1.

Let U and V be arbitrary tensors, and «, 8 and v be sets of indices. Then
Toy = H(UapVs,y) is a Boolean tensor whose element with indices oy is 1 when
there exists some 3 for which U,gV3, = 1. In other words, T represents the join
of the relations corresponding to U and V.

Since there is a direct correspondence between tensors and relations and
between einsums and Datalog rules, there should also be tensor operations that
directly correspond to database join and projection. We are thus led to define
tensor projection and tensor join as follows.

The projection of a tensor T onto a subset of its indices « is

ma(T) =Y Tas,
8

where § is the set of T’s indices not in «. (8’s elements may be interspersed with
a’s in any order.) In other words, the projection of T' onto « is the sum for each
value of « of all the elements of T with that value of a. For example, a vector may
be projected onto a scalar by summing all its elements, a matrix onto a column
vector by summing each row into an element of the vector, a cubic tensor onto any
one of its faces and then that face onto one of its edges and then onto a corner,

Prepared using sagej.cls

Domingos 7

etc. If the tensors are Boolean and the projection is followed by a step function,
tensor projection reduces to database projection.
The join of two tensors U and V along a common set of indices g is

(UMNV)apy = UapVsy,

where « is the subset of U’s dimensions not in V and similarly for v and V.
(Again, «, 8 and v may be interspersed in any order.) In other words, the join
of two tensors on a common subset of indices 8 has one element for each pair of
elements with the same value of 3, and that element is their product. If U has
rank r, V has rank v/, and || = ¢, U X V has rank r + ' — ¢. When two tensors
have no indices in common, their join reduces to their tensor product (Kronecker
product for matrices). When they have all dimensions in common, it reduces to
their elementwise product (Hadamard product for matrices). If the tensors are
Boolean, tensor join reduces to database join.

A tensor logic program is a set of tensor equations. The left-hand side (LHS) of
a tensor equation is the tensor being computed. The right-hand side (RHS) is a
series of tensor joins followed by a tensor projection, and an optional univariate
nonlinearity applied elementwise to the result. A tensor is denoted by its name
followed by a list of indices, comma-separated and enclosed in square brackets.
The join signs are left implicit, and the projection is onto the indices on the LHS.
For example, a single-layer perceptron is implemented by the tensor equation

Y = step(W[i] X[1]),

where joining on i and projecting it out implements the dot product of W and X.
Tensors can also be specified by listing their elements, e.g., W = [0.2,1.9, —0.7, 3]
and X = [0,1,1,0]. Typing Y? then causes Y to be evaluated.

Notice that, like the einsum implementations in NumPy, PyTorch, etc., a tensor
equation is more general than the original Einstein notation: the summed-over
indices are those that do not appear in the LHS, and thus a repeated index may
or may not be summed over. For example, the index i in

Y[i] = step(W[i] X[i])

is not summed over. The implementation of a multilayer perceptron below utilizes
this.

Tensor elements are 0 by default, and equations with the same LHS
are implicitly summed. This both preserves the correspondence with logic
programming and makes tensor logic programs shorter. Tensor types may be
declared or inferred. Setting a tensor equal to a file reads the file into the tensor.
Reading a text file results in a Boolean matrix whose ijth element is 1 if the ith
position in the text contains the jth word in the vocabulary. (The matrix is not
stored in this inefficient form, of course; more on this later.) For example, if the
file is the string “Alice loves Bob” and it’s read into the matrix M, the result is

Prepared using sagej.cls

8 Neurosymbolic Artificial Intelligence XX(X)

M[0,Alice] = M[1,1loves] = M[2,Bob] = 1 and M[i, j] = 0 for all other i, j. (Notice
how arbitrary constants, not just integers, can be used as indices.) Conversely,
setting a file equal to a tensor writes the tensor to the file.

This is the entire definition of tensor logic. There are no keywords, other
constructs, etc. However, it is convenient to allow some syntactic sugar
that, while not increasing the expressiveness of the language, makes it more
convenient to write common programs. For example, we may allow: multiple
terms in one equation (e.g., Y= step(W[i]X[i] +C)); index functions (e.g.,
X[i,t+1] = W[i, j]X[j, t]); normalization (e.g., Y[i] = softmax(X[i])); other tensor
functions (e.g., Y[k] = concat(X[i, j])); alternate projection operators (e.g., max=
or avg = instead of 4+ =, which = defaults to); slices (e.g., X[4 : 8]); and procedural
attachment (predefined or externally defined functions). Tensor logic accepts
Datalog syntax; denoting a tensor with parentheses instead of square brackets
implies that it’s Boolean. In particular, a sparse Boolean tensor may be written
more compactly as a set of facts. For example, the vector X = [0,1,1,0] can also
be written as X(1), X(2), with X(0) and X(3) being implicitly 0. Similarly, reading
the string “Alice loves Bob” into the matrix M produces the facts M(0,Alice),
M(1,loves) and M(2,Bob).)

As another simple example, a multilayer perceptron can be implemented by the
equation

X[1, 3] = sig(uli, 3,k X[i—1,k)),

where i ranges over layers and j and k over units, and sig() is the sigmoid
function. Different layers may be of different sizes (and the corresponding
weight matrices are implicitly padded with zeros to make up the full tensor).
Alternatively, we may use a different equation for each layer.

A basic recursive neural network (RNN) can be implemented by

X[i,*t+1] = sig(W[i, j] X[j, *t] + V[1, j] U[5, t]),

where X is the state, U is the input, i and j range over units, and t ranges over
time steps. The *t notation indicates that t is a virtual index: no memory is
allocated for it, and successive values of the X[i] vector are written to the same
location. Since RNNs are Turing-complete (Siegelmann and Sontag 1995), the
implementation above implies that so is tensor logic.

Inference

Inference in tensor logic is carried out using tensor generalizations of forward and
backward chaining.

In forward chaining, a tensor logic program is treated as linear code. The tensor
equations are executed in turn, each one computing the tensor elements for which
the necessary inputs are available; this is repeated until no new elements can be
computed or a stopping criterion is satisfied.

In backward chaining, each tensor equation is treated as a function. The query
is the top-level call, and each equation calls the equations for the tensors on its

Prepared using sagej.cls

Domingos 9

RHS until all the relevant elements are available in the data or there are no
equations for the subqueries. In the latter case (sub)query elements are assigned
0 by default.

The choice of whether to use forward or backward chaining depends on the
application.

Learning

Because there is only one type of statement in tensor logic—the tensor equation—
automatically differentiating a tensor logic program is particularly simple.
Univariate nonlinearity aside, the derivative of the LHS of a tensor equation with
respect to a tensor on the RHS is just the product of the other tensors on the
RHS. More precisely, if

Y[...] = T[] X1[.] - - - Ka[o],
then
oY|..]
oT][...]
Special cases of this include: if Y = AX, then 0Y/0X = A; if Y =W[i] X[i], then
dY/OW[i] = X[i]; and if Y[1, j] = M[i, k] X[k, j], then Y[1, j]/OM[1, k] = X[k, j].
As a result, the gradient of a tensor logic program is also a tensor logic program,

with one equation per equation and tensor on its RHS. Omitting indices for
brevity, the derivative of the loss L with respect to a tensor T is

OL dL d4dY
T awal®

E U\T

=X[.]. . . Xa]..].

where E are the equations whose RHSs T appears in, Y is the equation’s LHS, U
is its nonlinearity’s argument, and X are the tensors in U.

Learning a tensor logic program requires specifying the loss function and the
tensors it applies to by means of one or more tensor equations. For example, to
learn an MLP by minimizing squared loss on the last layer’s outputs we can use
the equation

Loss = (Y[e] — X[xe, N, j])?,

where e ranges over training examples and j over units, Y contains the target
values, X is the MLP as defined above extended with a virtual index for examples,
and N is the number of layers. By default, all tensors that are not supplied as
training data will be learned, but the user can specify if any should remain
constant (e.g., hyperparameters). The optimizer itself can be encoded in tensor
logic, but typically a pre-supplied one will be used.

While backpropagation in traditional neural networks is applied to the same
architecture for all training examples, in tensor logic the structure may effectively
vary from example to example, since different equations may apply to different

Prepared using sagej.cls

10 Neurosymbolic Artificial Intelligence XX(X)

examples, and backpropagating through the union of all possible derivations
of the example would be wasteful. Fortunately, a solution to this problem is
already available in the form of backpropagation through structure, which for
each example updates each equation’s parameters once for each time it appears
in the example’s derivation (Goller and Kiichler 1996). Applying this to RNNs
yields the special case of backpropagation through time (Werbos 1990).

Learning a tensor logic program consisting of a fixed set of equations is quite
flexible, since an equation can represent any set of rules with the same join
structure. (E.g., an MLP can represent any set of propositional rules.) Further,
tensor decomposition in tensor logic is effectively a generalization of predicate
invention. For example, if the program to be learned is the equation

A]ivj’k] = M[i,p] M/[jvqj M”[kv r} C[pqu I‘]

and A is the sole data temsor, the learned M, M, M’ and C form a Tucker
decomposition of A; and thresholding them into Booleans turns them into invented
predicates.

Implementing Al Paradigms

The implementations below use forward chaining unless otherwise specified.

Neural Networks

A convolutional neural network is an MLP with convolutional and pooling layers
(LeCun et al. 1998). A convolutional layer applies a filter at every location in an
image, and can be implemented by a tensor equation of the form

Features[x, y] = relu(Filter[dx, dy, ch] Image[x+dx, y+dy, ch]),

where x and y are pixel coordinates, dx and dy are filter coordinates, and ch is
the RGB channel. A pooling layer combines a block of nearby filters into one, and
can be implemented by

Pooled[x/S,y/S| = Features|x,y],

where / is integer division and S is the stride. This results in the filter
outputs at S successive positions in each dimension being summed into one.
This implements sum-pooling; max-pooling would replace = with max=, etc.
A convolutional and pooling layer can be combined into one with the equation
Pooled[x/S,y/S| = relu(...).

Graph neural networks (GNNs) apply deep learning to graph-structured data
(e.g., social networks, molecules, metabolic networks, the Web) (Liu and Zhou
2022). Table 1 shows the implementation of a simple GNN. The network’s graph
structure is defined by the Neig(x, y) relation, with one fact for each adjacent (x,y)
pair; or equivalently, by the Boolean tensor Neig[x, y] = 1 if x and y are adjacent

Prepared using sagej.cls

Domingos 11

Table 1. Graph neural networks in tensor logic

Component Equation

Graph structure Neig(x,y)

Initialization Emb[n, 0,d] = X[n, d]

MLP Z[n,1,d'] = relu(Wp[1,d’,d] Emb[n, 1, d]), etc.
Aggregation Aggln,1,d] = Neig(n,n’) Z[n’, 1,d]

Update Emb[n,141,d] = relu(Wags Agg(n,1,d] + Wse1¢ Emb[n, 1,d])
Node classification Y[n] = sig(Woys[d] Emb[n, L, d])

Edge prediction Y[n,n'] = sig(Emb[n,L,d]Emb[n’,L,d])

Graph classification Y = sig(Woyt[d] Emb|n, L, d])

and 0 otherwise. The main tensor is Emb[n,1,d], containing the d-dimensional
embedding of each node n in each layer 1. Initialization sets each node’s 0th-
layer embeddings to its features (externally defined or learned). The network
then carries out L iterations of message passing, one per layer. Each iteration
starts by applying one or more perceptron layers to each node. (Table 1 shows
one. To preserve permutation invariance, the weights Wp do not depend on the
node. Although there are no sub/superscripts in tensor logic, I will use them here
for brevity.) The GNN then aggregates each node’s neighbors’ new features Z by
joining the tensors Neig(n,n’) and Z[n’,1,d]. For each node, this zeroes out the
contributions of all non-neighbors; the result is the sum of the neighbors’ features.
(Internally, this can be done efficiently by iterating over the node’s neighbors or by
other methods; see the section on scaling up below.) The aggregated features may
then be passed through another MLP (not shown), after which they are combined
with the node’s features using weights Wy, and Wse1s to produce the next layer’s
embeddings.

The most common applications of GNNs are node classification, edge prediction
and graph classification. For two-class problems, each node is classified by doing
the dot product of its final embedding with a weight vector, and passing the
result through a sigmoid to yield the class probability. For multiclass problems
(not shown), each node’s final embedding is dotted with a weight vector for each
class c, Wout[c, d], yielding a vector of logits that is then passed through a softmax
to yield the class probabilities Y[n, c]. Edge prediction predicts whether there is
an edge between each pair of nodes by dotting their embeddings and passing the
result through a sigmoid. Graph classification produces a class prediction for the
entire graph, and is identical to node classification save for the result being a
scalar Y instead of a vector Y[n].

Attention, the basis of large language models, is also straightforward to
implement in tensor logic (Vaswani et al. 2017). Given an embedding matrix
X[p, d], where p ranges over items (e.g., positions in a text) and d over embedding
dimensions, the query, key and value matrices are obtained by multiplying X by

Prepared using sagej.cls

12 Neurosymbolic Artificial Intelligence XX(X)

the corresponding weight matrices:

Query([p, di] = Wq[dx, d] X[p,
Key|[p, di] = Wx[dx, d] X[p,
Val[p, d,] = Wy[dy, d] X[p,

S -Y

Attention can then be computed in two steps, the first of which compares the
query at each position with each key:

Comp[p,p’.] = softmax(Query[p, di]) Key[p’, dx] / sqrt(Dy)),

where sqrt(Dy) scales the dot products by the square root of the keys’ dimension.
The notation p’. indicates that p’ is the index to be normalized (i.e., for each p,
softmax is applied to the vector indexed by p’). The attention head then returns
the sum of the value vectors weighted by the corresponding comparisons:

Attn[p,d,] = Comp|p, p’] Vallp’,d,].

We can now implement an entire transformer with just a dozen tensor equations
(Table 2). As we saw in the subsection on representation, a text can be represented
by the relation X(p,t), stating that the pth position in the text contains the
tth token. (Tokenization rules are easily expressed in Datalog, and are not
shown.) The text’s embedding EmbX[p, d] is then obtained by multiplying X(p, t)
by the embedding matrix Emb[t,d]. The next equation implements positional
encoding as in the original paper (Vaswani et al. 2017); other options are possible.
(Incidentally, this equation also shows how conditionals and case statements can
be implemented in tensor logic: by joining each expression with the corresponding
condition.) The residual stream is then initialized to the sum of the text’s
embedding and the positional encoding.

Attention is implemented as described above, with two additional indices for
each tensor: b for the attention block and h for the attention head. The attention
heads’ outputs are then concatenated, added to the residual stream and layer-
normalized. MLP layers are implemented as before, with additional indices for
block and position, and their outputs are also normalized and added to the stream
(not shown). Finally, the output (token probabilities) is obtained by dotting the
stream with an output weight vector for each token and passing through a softmax.

Symbolic Al

A Datalog program is a valid tensor logic program. Therefore anything that can
be done in Datalog can be done in tensor logic. This suffices to implement many
symbolic systems, including reasoning and planning in function-free domains.
Accommodating functions (as in Prolog) requires implementing unification in
tensor logic (Lloyd 1987).

Prepared using sagej.cls

Domingos 13

Table 2. Transformers in tensor logic

Component Equation(s)

Input X(p,t)

Embedding EmbX[p, d] = X(p, t) Emb][t, d]

Pos. encoding PosEnc[p, d] = Even(d) sin(p/LY/?*) + 0dd(d) cos(p/L4/Pe)
Res. stream Stream|0, p,d] = EmbX[p, d] + PosEnc|p, d]

Attention Query[b, h, p, dx] = Wg[b, h, di, d] Stream[b, p, d], etc.

Comp|b,h,p,p’.] = softmax(Query|[b,h,p, dx| Key[b,h, p’, dx]/sqrt(Dx))

Attn[b,h,p,d,] = Comp[b, h, p,p] Vallb,h,p’, dy]

Merge and Mergeb, p, dy] = concat(Attn[b,h,p,d,])

layer norm Stream[b,p,d.] = lnorm(Ws[b,d, d,| Merge[b, p,d,] + Stream[b, p,d])
MLP MLP[b, p] = relu(Wp[p,d] Streamb,p,d]), etc.
Output Y[p,t.] = softmax(Wg[t, d] Stream[B, p, d])

Kernel Machines
A kernel machine can be implemented by the equation
Y[Q] = £(A[i] Y[i] K[Q, i] + B),

where Q is the query example, i ranges over support vectors, and £() is the output
nonlinearity (e.g., a sigmoid) (Schélkopf and Smola 2002). The kernel K is then
implemented by its own equation. For example, a polynomial kernel is

K[1,1'] = (X[, 3] X[2", 3])",

where i and i’ range over examples, j ranges over features, and n is the degree
of the polynomial. A Gaussian kernel is

K[1,1'] = exp(—(X[1,j] — X[1', j])* / Var).

(More precisely, K is the Gram matrix of the kernel with respect to the examples.)
Structured prediction, where the output consists of multiple interrelated elements
(Bakr et al. 2007), can be implemented by an output vector Y[Q, k] and equations
stating the interactions among outputs and between outputs and inputs.

Probabilistic Graphical Models

A graphical model represents the joint probability distribution of a set of random
variables as a normalized product of factors,

Px=2) = - [] orlray),
.

where each factor ¢y, is a non-negative function of a subset of the variables z ;) and
Z =3 I #x(2giy) (Koller and Friedman 2009). If each factor is the conditional

Prepared using sagej.cls

14 Neurosymbolic Artificial Intelligence XX(X)

Table 3. Graphical models in tensor logic

Component Implementation
Factor Tensor
Marginalization Projection
Pointwise product Join

Join tree Tree-like program

P(Query|Evidence) Prog(Q,E)/Prog(E)
Belief propagation Forward chaining
Sampling Selective projection

probability of a variable given its parents (predecessors in some partial ordering),
the model is a Bayesian network and Z = 1.

Table 3 shows how the constructs and operations in discrete graphical models
map directly onto those in tensor logic. A factor is a tensor of non-negative real
values, with one index per variable and one value of the index per value of the
variable. The unnormalized probability of a state x is the product of the element
in each tensor corresponding to x. A Bayesian network can thus be encoded in
tensor logic using one equation per variable, stating the variable’s distribution in
terms of its conditional probability table (CPT) and the parents’ distributions:

Py[x] = CPTx(x, pary, ..., pary) Py[par] . .. Pu[par,).

Inference in graphical models is the computation of marginal and conditional
probabilities, and consists of combinations of two operations: marginalization and
pointwise product. The marginalization of a subset of the variables Y in a factor
¢ sums them out, leaving a factor over the remaining variables X:

¢'(X) = S (X, Y).
Y

Marginalization is just tensor projection. The pointwise product of two potentials
over subsets of variables X and Y combines them into a single potential over
X UY, and is the join of the corresponding tensors.

Every graphical model can be expressed as a join tree, a tree of factors where
each factor is a join of factors in the original model. All marginal and conditional
queries can be answered in time linear in the size of the tree by successively
marginalizing factors and pointwise-multiplying them with the parent’s factor. A
join tree is a tree-like tensor logic program, i.e., one in which no tensor appears
in more than one RHS. As a result, linear-time inference can be carried out by
backward chaining over this program. Specifically: the partition function Z can
be computed by adding the equation Z = T|...] to the program, where T|[...] is the
LHS of the root factor’s equation, and querying Z; the marginal probability of
evidence P(F) can be computed by adding F to the program as a set of facts,

Prepared using sagej.cls

Domingos 15

querying Z, and dividing by the original one; and the conditional probability of a
query given evidence can be computed as P(F) = P(Q, E)/P(E).

However, the join tree may be exponentially larger than the original model,
necessitating approximate inference. The two most popular methods are loopy
belief propagation and Monte Carlo sampling. Loopy belief propagation is forward
chaining on the tensor logic program representing the model. Sampling can be
implemented by backward chaining with selective projection (i.e., replacing a
projection by a random subset of its terms).

Reasoning in Embedding Space

The most interesting feature of tensor logic is the new models it suggests. In
this section I show how to perform knowledge representation and reasoning in
embedding space, and point out the reliability and transparency of this approach.

Consider first the case where an object’s embedding is a random unit vector.
The embeddings can be stored in a matrix Emb[x, d], where x ranges over objects
and d over embedding dimensions. Multiplying Emb[x, d] by a one-hot vector V[x]
then retrieves the corresponding object’s embedding. If V[x| is a multi-hot vector
representing a set,

S[d] = V[x] Emb|x, d]
is the superposition of the embeddings of the objects in the set. The dot product
D[A] = S[d] Embl[A, d]

for some object A is then approximately 1 if A is in the set and approximately 0
otherwise (with standard deviation y/N/D, where N is the cardinality of the set
and D is the embedding dimension). Thresholding this at % then tells us if A is in
the set with an error probability that decreases with the embedding dimension.
This is similar to a Bloom filter (Bloom 1970).

The same scheme can be extended to embedding a relation. Consider a binary
relation R(x,y) for simplicity. Then

E'.mbR[:i.7 J] = R(X7 y) Emb[x7 i] Emb[y7 J]
is the superposition of the embeddings of the tuples in the relation, where
the embedding of a tuple is the tensor product of the embeddings of its
arguments. This is a type of tensor product representation (Smolensky 1990).
It can be computed in time linear in |R| by iterating over the tuples adding the

corresponding tensor product to the result. The equation

D[A, B] = EmbR[i, j] Emb[A, i] Emb|[B, j]

Prepared using sagej.cls

16 Neurosymbolic Artificial Intelligence XX(X)

retrieves R(A,B), i.e., D[A, B] is approximately 1 if the tuple (A,B) is in the relation
and 0 otherwise, since

D[A,B] = EmbR[i, j]Emb[A, i] Emb[B, j]
= (R(xy) Emb[al] b[7J})Emb[Aa i] EInb[ij}
= R(x,y) (Emb[x, i] Emb[A, i]) (Embly, j] Emb(B, j])
~ R(A,B).

The penultimate step is valid because einsums are commutative and associative.
(In particular, the result does not depend on the order the tensors appear in, only
on their index structure.) The last step is valid because the dot product of two
random unit vectors is approximately 0.

By the same reasoning, the equation

D[A,y] = EmbR[i, j| Emb[A, i] Embly, j]

returns the superposition of the embeddings of the objects that are in relation R
to A, and
D[x,y] = EmbR[i, j] Emb[x, i] Embly, j]

returns the entire relation R(x, y). EmbR[i, j|, Emb[x, i] and Embly, j] form a Tucker
decomposition of the data tensor D[x,y|, with EmbR[i, j] as the core tensor and
Emb|x, i] and Emb[y, j] as the factor matrices.

The relation symbols themselves may be embedded. (E.g., R, A and B in R(4, B)
may all be embedded.) This results in a rank-3 tensor. Relations of arbitrary
arity can be reduced to sets of (relation, argument, value) triples. Thus an entire
database can be embedded as a single rank-3 tensor.

The next step is to embed rules. We can embed a Datalog rule by replacing its
antecedents and consequents by their embeddings: if the rule is

Cons(...) + Anty(...),...,Ant,(...),
its embedding is
EmbCons|...] = EmbAnt,[...] ... EmbAnt,|[...],

where
EmbAnt[...] = Anty(...) Emb[...] ... Emb][...],

etc. Reasoning in embedding space can now be carried out by forward or backward
chaining over the embedded rules. The answer to a query can be extracted by
joining its tensor with its arguments’ embeddings, as shown above for any relation.
This gives approximately the correct result because each inferred tensor can be
expressed as a sum of projections of joins of embedded relations, and the product
Emb[x, 1] Emb[x’, i] for each of its arguments is approximately the identity matrix.
The error probability decreases with the embedding dimension, as before. To

Prepared using sagej.cls

Domingos 17

further reduce it, we can extract, threshold and re-embed the inferred tensors at
regular intervals (in the limit, after each rule application).

The most interesting case, however, is when objects’ embeddings are learned.
The product of the embedding matrix and its transpose,

Sim[x,x'] = Emb[x,d] Emb[x’, d],

is now the Gram matrix measuring the similarity of each pair of objects by the
dot product of their embeddings. Similar objects “borrow” inferences from each
other, with weight proportional to their similarity. This leads to a powerful form
of analogical reasoning that explicitly combines similarity and compositionality
in a deep architecture.

If we apply a sigmoid to each equation,

1

o(x,T) = m,

setting its temperature parameter 7' to 0 effectively reduces the Gram matrix
to the identity matrix, making the program’s reasoning purely deductive. This
contrasts with LLMs, which may hallucinate even at T' = 0. It’s also exponentially
more powerful than retrieval-augmented generation (Jiang et al. 2025), since it
effectively retrieves the deductive closure of the facts under the rules rather than
just the facts.

Increasing the temperature makes reasoning increasingly analogical, with
examples that are less and less similar borrowing inferences from each other.
The optimal T will depend on the application, and can be different for different
rules (e.g., some rules may be mathematical truths and have T' = 0, while others
may serve to accumulate weak evidence and have a high T).

The inferred tensors can be extracted at any point during inference. This
makes reasoning highly transparent, in contrast with LLM-based reasoning
models. It’s also highly reliable and immune to hallucinations at sufficiently low
temperature, again in contrast with LLM-based models. At the same time, it has
the generalization and analogical abilities of reasoning in embedding space. This
could make it ideal for a wide range of applications.

Scaling Up

For large-scale learning and inference, equations involving dense tensors can be
directly implemented on GPUs. Operations on sparse and mixed tensors can be
implemented using (at least) one of two approaches.

The first is separation of concerns: operations on dense (sub)tensors are
implemented on GPUs, and operations on sparse (sub)tensors are implemented
using a database query engine, by treating (sub)tensors as relations. The full
panoply of query optimization can then be applied to combining these sparse
(sub)tensors. An entire dense subtensor may be treated as single tuple by the

Prepared using sagej.cls

18 Neurosymbolic Artificial Intelligence XX(X)

database engine, with an argument pointing to the subtensor. Dense subtensors
are then joined and projected using GPUs.

The second and more interesting approach is to carry out all operations
on GPUs, first converting the sparse tensors into dense ones via Tucker
decomposition. This is exponentially more efficient than operating directly on
the sparse tensors, and as we saw in the previous section, even a random
decomposition will suffice. The price is that there will be a small probability of
error, but this can be controlled by appropriately setting the embedding dimension
and denoising results by passing them through step functions. Scaling up via
Tucker decompositions has the significant advantage that it combines seamlessly
with the learning and reasoning algorithms described in previous sections.

Discussion

Tensor logic is likely to be useful beyond Al. Scientific computing consists
essentially of translating equations into code, and with tensor logic this
translation is more direct than with previous languages, often with a one-to-
one correspondence between symbols on paper and symbols in code. In scientific
computing the relevant equations are then wrapped in logical statements that
control their execution. Tensor logic makes this control structure automatically
learnable by relaxing the corresponding Boolean tensors to numeric ones, and
optionally thresholding the results back into logic. The same approach is
applicable in principle to making any program learnable.

Any new programming language faces a steep climb to wide adoption. What are
tensor logic’s chances of succeeding? Al programming is no longer a niche; tensor
logic can ride the Al wave to wide adoption in the same way that Java rode the
Internet wave. Backward compatibility with Python is key, and tensor logic lends
itself well to it: it can initially be used as a more elegant implementation of einsum
and extension of Python to reasoning tasks, and as it develops it can absorb more
and more features of NumPy, PyTorch, etc., until it supersedes them.

Above all, adoption of new languages is driven by the big pains they cure
and the killer apps they support, and tensor logic very much has these: e.g., it
potentially cures the hallucinations and opacity of LLMs, and is the ideal language
for reasoning, mathematical and coding models.

Fostering an open-source community around tensor logic will be front and
center. Tensor logic lends itself to IDEs that tightly integrate coding, data
wrangling, modeling and evaluation, and if it takes off vendors will compete to
support it. It is also ideally suited to teaching and learning AI, and this is another
vector by which it can spread.

Next steps include implementing tensor logic directly in CUDA, using it in a
wide range of applications, developing libraries and extensions, and pursuing the
new research directions it makes possible.

For more information on tensor logic, visit tensor-logic.org.

Prepared using sagej.cls

Domingos 19

Acknowledgements

This research was partly funded by ONR grant N00014-18-1-2826.

References

Badreddine A, Garcez A, Serafini L and Spranger M (2022) Logic tensor networks.
Artificial Intelligence 303: 103649.

Bakr G, Hofmann T, Schélkopf B, Smola A, Taskar B and Vishwanathan S (eds.) (2007)
Predicting Structured Data. Cambridge, MA: MIT Press.

Bloom B (1970) Space/time tradeoffs in hash coding with allowable errors. Comm. ACM
13: 422-426.

Goller C and Kiichler A (1996) Learning task-dependent distributed representations
by backpropagation through structure. In: Proc. Int. Conf. Neural Networks. pp.
347-352.

Greco S and Molinaro C (2016) Datalog and Logic Databases. San Rafael, CA: Morgan
& Claypool.

Hitzler P and Sarker MK (eds.) (2021) Neuro-Symbolic Artificial Intelligence.
Amsterdam, Netherlands: IOS Press.

Jiang P, Ouyang S, Jiao Y, Zhong M, Tian R and Han J (2025) Retrieval and structuring
augmented generation with large language models. In: Proc. Int. Conf. Knowl. Disc.
& Data Mining. pp. 6032—-6042.

Koller D and Friedman N (2009) Probabilistic Graphical Models: Principles and
Techniques. Cambridge, MA: MIT Press.

Lavrat N and Dzeroski S (1994) Inductive Logic Programming: Techniques and
Applications. Chichester, UK: Ellis Horwood.

LeCun Y, Bottou L, Bengio Y and Haffner P (1998) Gradient-based learning applied to
document recognition. Proc. IEEE 86: 2278-2324.

Liu Z and Zhou J (2022) Introduction to Graph Neural Networks. San Rafael, CA:
Morgan & Claypool.

Lloyd JW (1987) Foundations of Logic Programming. 2nd edition. Berlin, Germany:
Springer.

Rabanser S, Shchur O and Giinnemann S (2017) Introduction to tensor decompositions
and their applications in machine learning. arXiv:1711.1078 .

Richardson M and Domingos P (2006) Markov logic networks. Machine Learning 62:
107-136.

Rocktéschel T (2018) Einsum is all you need — Einstein summation in deep learning.
https://rockt.ai/2018/04/30/einsum .

Rogozhnikov A (2022) Einops: Clear and reliable tensor manipulations with Einstein-like
notation. In: Proc. Int. Conf. Learn. Repr.

Scholkopf B and Smola AJ (2002) Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press.

Prepared using sagej.cls

20 Neurosymbolic Artificial Intelligence XX(X)

Siegelmann H and Sontag E (1995) On the computational power of neural nets. J. Comp.
& Sys. Sci. 50: 132—-150.

Smolensky P (1990) Tensor product variable binding and the representation of symbolic
structures in connectionist systems. Artif. Intel. 46: 159-216.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A, Kaiser L and
Polosukhin I (2017) Attention is all you need. Adv. Neural Inf. Proc. Sys. 30: 5998
6008.

Werbos P (1990) Backpropagation through time: What it does and how to do it. Proc.
IEEE 78: 1550-1560.

Prepared using sagej.cls

