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Abstract
In this study, we propose Neuro-LENS, a Neuro-Symbolic Evidence-based Logic and
Symbolic Reasoning framework that combines incomplete symbolic knowledge with
neural learning to address ambiguity and improve the accuracy and interpretability
of the results. We explore three strategies for integrating symbolic reasoning with
deep learning and evaluate their effectiveness in practical settings: (i) applying
the symbolic component to the neural output (neural-to-symbolic chaining); (ii)
generating additional neural input features through symbolic rules (symbolic-to-
neural chaining); (iii) creating an ensemble reasoning model (parallel neural-symbolic
integration). The potential of the proposed Neuro-LENS framework is demonstrated
on two real-world use cases: scene classification with abandoned object detection
and prognostic health monitoring with vehicle failure prediction.
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1 Introduction

Deep learning has achieved remarkable results in perception-driven tasks such as image
recognition, natural language processing, and fault detection in industrial systems.
However, deep learning methods still suffer from lack of robustness and interpretability,
and the difficulty of directly incorporating structured background knowledge [Mar18].
Symbolic logic, on the other hand, is apt for representing structured thought and
explainable reasoning, although it struggles with scalability and perception tasks. This
long-standing trade-off has motivated the development of neuro-symbolic integration,
which aims to unify the learning capacity of neural networks with the structured
reasoning power of symbolic systems [Bes+17].

Injecting reasoning abilities in artificial intelligence remains one of the central
challenges in the field, as it would allow to enhance generalization and adaptability and
produce explainable AI models which can perform logical inference, make decisions
based on knowledge, and tackle structured problem solving [LWT25; BL04]. This
hybrid approach has shown advantages over purely symbolic or purely neural systems,
especially in real-world settings with noisy, unstructured data, as its flexibility makes it
robust and well-suited for real-world AI applications [Bes+17].

Specifically in real-world industrial applications, neuro-symbolic approaches can help
when dealing with noisy data and incomplete background knowledge. Traditionally,
probabilistic models such as Bayesian networks and Markov decision processes are used
to capture uncertainty and randomness in reasoning processes, while logic-based systems
are exploited to model high-level reasoning and decision making. Evidence theory
provides a bridge between the two paradigms, allowing to achieve high-level reasoning
while dealing with uncertainty and incomplete knowledge, making its combination with
deep learning approaches suited for real-world use cases.

In the current study, we propose a neuro-symbolic framework, Neuro-LENS (modal
Logic and EvideNce-based Symbolic reasoning), based on evidence fusion, which
integrates incomplete symbolic knowledge with neural learning in order to improve
both accuracy and interpretability of the obtained results. Three strategies for integrating
symbolic reasoning with deep learning in practical settings are explored:

(i) Neural-to-symbolic chaining: Applying symbolic reasoning on neural outputs to
perform classification tasks;

(ii) Symbolic-to-neural chaining: Using symbolic reasoning to create new features
that extend the neural input space, enabling more robust predictions and the
integration of background knowledge/context;

(iii) Parallel neural-symbolic integration: Combining decision rules derived from
both neural and symbolic components into a hybrid, rule-based classifier, providing
improved interpretability.

This work builds upon and develops further the methodology presented in [MBT25].
In the paper, a novel neuro-symbolic approach was introduced, integrating modal logic,
evidence theory, and deep learning, for the purpose of reasoning and decision making
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under ambiguity. The potential of the proposed hybrid method was validated on a real-
world use case, more concretely, on scene classification for surveillance applications.
In the current study, besides further enhancement and refinement of the theoretical
framework, two new additional alternative mechanisms for the integration of modal logic,
evidence theory, and deep learning are also considered.

The current work makes the following additional contribution with respect to the paper
[MBT25]:

• The approach presented in the original paper is embedded within a framework
integrating deep learning and symbolic reasoning.

• The theoretical background of the presented approach is extended.
• Two new strategies for the integration of a neural and a symbolic component are

introduced.
• A completely new use case is studied for the validation of the two novel strategies.

Moreover, the current work aims to demonstrate that the applicability of the proposed
neuro-symbolic approach is not limited to image data scenarios and can be generalized
to completely different use cases dealing with data types of very different nature, e.g.,
specification records or time series sensor measurements.

2 Background

2.1 Multi-valued mapping
In this section, we introduce some basic concepts from the theory of multi-valued
mappings [AF90; Ber77]. A multi-valued mapping F from a universe X into a universe
Y associates to each element x of X a subset F(x) of Y . The domain of F , denoted
dom(F), is defined as

dom(F) = {x | x ∈ X ∧ F(x) ̸= ∅}.

F is called non-void if (∀x ∈ X)(F(x) ̸= ∅), i.e., if dom(F) = X .
Consider a subset A of X and a subset B of Y . The following direct and inverse images

can be defined under multi-valued mapping F :

(i) The direct image of A under F is the subset F(A) of Y , defined as

F(A) =
⋃
x∈A

F(x).

(ii) The inverse image of B under F is the subset F−(B) of X , defined as

F−(B) = {x | x ∈ X ∧ F(x) ∩B ̸= ∅}. (1)

(iii) The superinverse image of B under F is the subset F+(B) of X , defined as

F+(B) = {x | x ∈ dom(F) ∧ F(x) ⊆ B}. (2)
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(iv) The subinverse image of B under F is the subset F∼(B) of X , defined as

F∼(B) = {x | x ∈ X ∧ B ⊆ F(x)}.

(v) The pure inverse image of B under F is the subset F−1(B) of X , defined as

F−1(B) = {x | x ∈ X ∧ F(x) = B}.

A schematic visualization of the inverse and superinverse images, used in this work, is
depicted in Fig. 1.

Figure 1. A visual illustration of inverse F−(B) (left) and superinverse F+(B) (right) images
of a set B under a multi-valued mapping F from a set X into a set Y , which associates to
each element x of X a subset F (x) of Y . The figure is adapted from [MBT25].

2.2 Evidence measures
Evidence theory, also known as Dempster-Shafer theory, was initiated by Dempster with
his study of upper and lower probabilities [Dem08]. He showed that if P is a probability
measure on P(X), then a multi-valued mapping F from X into Y induces upper P ∗ and
lower P∗ probabilities on P(Y ), as follows:

P ∗(B) = P (F−(B) | dom(F))
P∗(B) = P (F+(B) | dom(F)).

(3)

It is clear that P ∗ and P∗ are only well defined if P (dom(F)) > 0. Note that P ∗ and P∗
are dual, i.e., P ∗(B) = 1− P∗(coB).

Shafer reinterpreted upper and lower probabilities as degrees of plausibility Pl and
belief Bel, abandoning Dempster’s idea that they emerge as upper and lower bounds
of Bayesian probabilities [Sha76]. Furthermore, in case of a finite universe Y , Shafer
introduced the concepts of a basic probability assignment and its focal elements.
Formally, a P(Y ) → [0, 1] mapping m is called a basic probability assignment on P(Y )
if m(∅) = 0 and ∑

B∈P(Y )

m(B) = 1.
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A subset F of Y for which m(F ) > 0 is called a focal element of m. The belief Bel
and plausibility Pl measures can be defined in terms of basic probability assignment as
follows:

Bel(B) =
∑
C⊆B

m(C) Pl(B) =
∑

C∩B ̸=∅

m(C),

where, the corresponding basic probability assignment m is given by [Dem67]:

m(B) = P (F−1(B) | dom(F)). (4)

2.3 Modal logic
Modal logic is an extension of classical propositional logic. It has been developed to
formalize arguments that involve the notions of necessity and possibility [Che80]. These
notions are often expressed using the concept of possible worlds: necessary propositions
are those that are true in all possible worlds, whereas possible propositions are those that
are true in at least one possible world. Possible worlds are abstract concepts, and it is
difficult to provide a precise definition of them. Intuitively, however, we can view them
as possible states of affairs, situations or scenarios.

The language of modal logic consists of a set of atomic propositions, logical
connectives ¬, ∧ , ∨ ,→,↔, and modal operators of possibility 3 and necessity 2.
The propositions of the language can be the atomic propositions, and if p and q are
propositions, then are so ¬p, p ∧ q, p ∨ q, p → q, p ↔ q, 2p, 3p.

The interpretations of the Dempster-Shafer theory [TBD99; TBB00] used in this study
are based on the semantics of modal logic using the concept of a standard model. A
standard model of modal logic is a triplet M = ⟨W,R, V ⟩, where W denotes a set of
possible worlds, R is a binary relation on W called accessibility relation, and V is the
value assignment function by which truth T or falsity F of each atomic proposition p in
each world w is assigned. A proposition p may have different truth-values in different
worlds. Therefore V assigns the truth-values not to proposition constants alone, but to
pairs consisting of a possible world and a proposition constant, i.e., the value V (w, p) is
to be thought of as the truth-value of p in w. The value assignment function is inductively
extended to all propositions in the usual way. The extension to possibilitations, i.e.,
propositions of the type 3p, and necessitations, i.e., propositions of the type 2p, are
defined for any proposition p and any world w ∈ W as follows:

V (w,3p) = T ⇔ ∃v ∈ W : wRv ∧ V (v, p) = T

V (w,2p) = T ⇔ ∀v ∈ W : wRv ⇒ V (v, p) = T.

2.4 Modal logic interpretations of evidence measures
Dempster-Shafer theory is closely related to the theory of multi-valued mappings as
discussed above. In several studies [BTB98; TBB00; TBD99], set-valued interpretations
of plausibility and belief measures in modal logic have been proposed. The authors
consider a model M = ⟨W,R, V, P ⟩, where P is a probability measure on the powerset
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P(W ) of W . Furthermore, the propositions have the form eA =“a given incompletely
characterized element ϵ is classified in set A”, where ϵ ∈ X and A ∈ P(X). As atomic
propositions, they consider the propositions e{x}, for all x ∈ X . In addition, it is assumed
that exactly one e{x} is true in each world. This implies that eX and also eA ↔ ¬ecoA
are always true in M . In this context it is shown that a plausibility measure and a belief
measure can be expressed in terms of conditional probabilities of truth sets of possibilities
and necessities, i.e.

Pl(A) = P (∥3eA∥M | ∥3eX∥M )
Bel(A) = P (∥2eA∥M | ∥3eX∥M ).

3 Related work
Neuro-symbolic approaches in the literature have been leveraged to obtain interpretable
systems that are robust to uncertainty while maintaining accuracy. The integration
of symbolic components alleviates the downsides of deep learning-based methods,
improving their performance on reasoning tasks and providing them with explainability
features.

Deep learning approaches dealing with image data have dominated the literature.
However, recent advancements have demonstrated the potential of neuro-symbolic
methods in various applications, even outperforming traditional neural models in tasks
like question answering and image classification [Fit25]. Neuro-symbolic approaches
have shown great value specifically in safety-critical fields such as surveillance, medical
imaging, or autonomous systems, where it is paramount to employ trustworthy models.
In [Lu+25], Logical Neural Networks (LNNs) are used to combine learnable parameters
with logical operators. The networks incorporate first-order logic and are able to learn
rule thresholds and weights from the training data. In [Wan+23], the challenge of lack
of annotated image data is tackled. The work combines a pre-trained computer vision
model, which extracts features from the unlabeled images, and an inductive logic learner
module inferring logic-based rules that can be exploited for the annotation. A human
in the loop is queried to confirm the labeling of uncertain samples and to improve the
derived logic-based rules. The study delivers promising results, but the reached accuracy
is not yet on par with the labeling of human experts, on which it still relies for feedback
in the active learning portion of the method pipeline.

Evidence theory is often leveraged in the symbolic component of integrated hybrid
systems to deal with uncertainty in the data. In [Zha+23], it is used to re-label the training
set, by assigning ambiguous images to a meta-category, i.e., a subset of all possible
categories, and selecting the meta-category with the highest degree of belief for each
selected image. Ambiguous images are defined as samples showing features of multiple
classes. The model is re-trained on the dataset updated with meta-categories, so that it
can learn without overfitting to incorrect labels or misclassified examples.

The application of neuro-symbolic approaches to time series is also a challenging
task that is being extensively researched. Time-series data are central to applications
ranging from finance and healthcare to manufacturing, autonomous driving, and
traffic management. In safety critical domains such as medicine and public security,
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interpretability in models is fundamental and only trustworthy approaches are likely to
be adopted. Post-hoc methods such as SHAP ([LL17]) can provide an explanation of the
model’s output based on the input features that were most influential in a prediction, but
do not really aid in understanding the underlying model mechanism.

Neuro-symbolic frameworks can reach intrinsic interpretability while balancing an
accuracy trade-off in the final results. Neuro-symbolic rule-based approaches have been
investigated in this regard. In [Wan+25], a model called TemporalRule is proposed
to automatically learn Signal Temporal Logic rules for interpretable time series
classification. The work aims at solving, by taking the temporal properties of the data into
account, the discrepancy between discrete logical rules and continuous neural networks,
which might make generated logical rules inconsistent with the decision process that
needs to be carried out. The input time series is represented in three views: raw data,
frequency-domain features, and derivative (rate of change between subsequent points),
each capturing different temporal properties. After having been binarized, the inputs are
passed to a Temporal Logical Layer, where temporal operators (Always, Eventually,
Until, and their combinations) are simulated using small neural networks. A Logical
Layer combines temporal predicates using logical connectives (AND/OR), and a final
Linear Layer assigns weights to the learned rules and generates the classification output.
So far, the method has only been tested on univariate time series.

Dhont et al. ([DMT25]), again put an emphasis on interpretability, employing a hybrid
modeling framework for traffic dynamics forecast in terms of humanly interpretable
traffic states. The work proposes three different workflows: a purely neural approach
leveraging CNNs or RNNs, a neural-to-symbolic one where a deep learning model
detects current traffic state probabilities, which are then fed into Markov chains for
the forecast, and a symbolic-to-neural one, where the detected traffic state probabilities
form the input for a deep neural predictor performing the forecast. The purely neural
model achieved the highest accuracy; the neuro-symbolic models, while performing
slightly worse in accuracy, provide interpretability, computational efficiency, and easier
adaptability. In addition to [Wan+25], the workflows are applied to multi-variate time
series. The sequential nature of the proposed neuro-symbolic approaches makes them
subject to a possibly compounding error; in the symbolic-to-neural models in particular,
the final performance is highly dependent on the quality of the initial state detection step.

Hogea et al. ([Hog+24]) integrated logical rules into recurrent neural networks to
improve interpretability and accuracy in fault diagnosis of gearboxes. The authors
introduced LogicLSTM, which adds an Explainability Layer and a Logic Tensor Network
(LTN) on top of a pre-trained LSTM model. The Explainability Layer re-weights the
features based on feature importance, forcing the model to focus more on signals which
are relevant for the task; in the LTN, logical rules derived from domain knowledge are
introduced, and the network is further trained to maximize both predictive accuracy
and logical consistency with the provided constraints. The method is best suited
for scenarios where there is prior knowledge about the relationship between classes
or numerical values. LogicLSTM performed better than the presented purely neural
baselines, confirming the effectiveness of the addition of symbolic constraints to enhance
model robustness in noisy environments. However, the method’s performance is critically
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impacted by the number of available samples within each considered sequence of data;
moreover, manual intervention seems to be required to define the leveraged logical rules.

4 Method: Neuro-LENS Framework
In this section, we provide a detailed explanation of the two main components (symbolic
and neural) of our neural-symbolic approach, Neuro-LENS. We also explain how these
components can be integrated into a neuro-symbolic learning framework to tackle
different use case scenarios.

Neuro-LENS, as typically neuro-symbolic systems are, is characterized by modularity
and hierarchical organization. Modularity relates to the construction of a neuro-symbolic
network as an ensemble of neural networks, leading to more flexibility, simplicity, and
maintainability. Hierarchical organization means that each subsequent network level uses
the output of the preceding level as input, thus increasing the abstraction level of the
model [GLG09].

The symbolic module (component) exploited within the Neuro-LENS workflows
is outlined in detail in Section 4.1. The neural component to be used needs to be
selected based on the type of data to be processed, the scope, and requirements of the
considered use case. Pre-trained, off-the-shelve models or customized models can be
employed. Three possible hierarchical organizations (workflows) of the two modules
are proposed in Section 4.2. The first strategy, neural-to-symbolic chaining, was first
presented in [MBT25]. The two additional alternative strategies presented in the current
study, symbolic-to-neural chaining and parallel neural-symbolic integration, are novel
extensions of [MBT25]. A high-level schematics of the three approaches is presented in
Fig. 2.

Figure 2. Three strategies for integrating neural and evidence-based (symbolic) components:
(i) The neural component extracts attributes for use by the symbolic component; (ii) The
symbolic component generates additional input features for the neural component; (iii) Both
the symbolic and the neural components are used to extract inputs for a rule-based classifier.
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4.1 Symbolic component
The symbolic component exploits modal logic and evidence theory in order to extract
measures to quantify the uncertainty embedded in the raw data itself or in the available
background knowledge. In brief, binary attributes of the considered samples are extracted
to construct logical constraints that need to be satisfied by a sample to belong to a certain
class, with a degree of uncertainty specified by its plausibility and belief measures. These
measures can be used as such or combined into a single score, leveraged directly for
interpretable classification, or fed to a neural network for further processing. A schematic
view of the steps followed within this component can be consulted in Fig. 3.

Figure 3. The symbolic component pipeline.

More concretely, multi-valued interpretations of upper and lower probabilities in
modal logic are employed in order to reason within ambiguous scenarios. Consider a
set of entities (objects) Y described by a set of attributes (properties) X . Each entity
may have multiple properties, and a property may be associated with multiple entities.
In addition, the entities in Y are distributed across c different categories (classes), i.e.,
Y =

⋃c
i=1 Yi, where Yi ⊂ Y and Yi ∩ Yj = ∅, for i ̸= j. In this scenario, our aim is to

interpret each class in terms of its associated properties with the aim to enable automatic
recognition of the most probable class of a new, unseen entity described by its properties.

In the above context, a multi-valued mapping F from the set of properties X to the
set of entities Y can be defined. This mapping associates each property x ∈ X with a set
of entities F(x) ⊆ Y that possess it. The properties are defined as binary attributes that
can be either satisfied or not by an entity. In the general case of multi-class classification,
the mapping F is exploited to characterize each class Yi, for i = 1, 2, . . . , c, in terms of
its possibility and necessity conditions, by constructing inverse and superinverse images
of the class as defined in (1) and (2). Formally, the necessity and possibility conditions
referring to class Yi can be described by the following two expressions:

2Yi =
∨

xj∈F+(Yi)

xj and 3Yi =
∨

xj∈F−(Yi)

xj . (5)

Intuitively, a property xj contributes to the possibility condition of a class Yi, if at
least one entity in its direct image F(xj) satisfies this property of class Yi. Similarly,
a property xj contributes to the necessity condition of class Yi if all entities in its direct
image under the function F satisfy this property of class Yi. This reasoning is repeated
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for all defined properties and the final possibility and necessity conditions for class Yi

are defined as the disjunction of all single properties contributing to each of them.
The inferred possibility and necessity conditions of the classes defined in (5) can be

used to reason about, and eventually predict, the most probable class of unseen entities,
based on their properties. In addition, the plausibility and belief that each new unseen
entity belongs to each class Yi (for i = 1, . . . , c) can be computed. The plausibility (Pli)
and belief (Beli) that an entity presented by a set of properties Xj belongs to class Yi are
computed as the ratio of instances that satisfy the possibility and necessity conditions of
the class, as follows:

Pli(Xj) = | 3Yi(Xj) | / | 3Yi | and Beli(Xj) = | 2Yi(Xj) | / | 2Yi |. (6)

The calculated plausibility and belief values can be used to extend the feature set in
the proposed integration strategy (ii) discussed in Section 4.2. These values can also
be combined to calculate a single score for each entity-class pair. Namely, a scoring
function S can be defined, which combines the plausibility and belief measures for all
classes, producing a value in the interval [0, 1] that can be interpreted as the likelihood
of an entity Xj to belong to a certain class. More concretely, the calculated beliefs and
plausibilities for a given entity represented by the set of properties Xj , with respect to
a set of classes c, form a set of intervals, [Belk(Xj), Plk(Xj)], for k = 1, . . . , c. The
width of these intervals is correlated with the uncertainty associated with that an entity
presented by Xj belongs to class Yi, respectively. Thus a scoring function Si expressing
this uncertainty can be defined as ratio of available evidence supporting class Yi:

Si(Xj) =
Pli(Xj) + Beli(Xj)∑c

k=1

(
Plk(Xj) + Belk(Xj)

) . (7)

Note that the above scoring function is a generalization to multi-class context of the
scoring function defined in [MBT25] in case of a binary classification task, i.e., two
classes, positive (+) and negative (−):

S(Xj) =
Pl+(Xj) + Bel+(Xj)(

Pl+(Xj) + Bel+(Xj)
)
+
(
Pl−(Xj) + Bel−(Xj)

) . (8)

4.2 Neuro-LENS: Neuro-symbolic integration
In the current section, we discuss the different ways in which background knowledge can
be expressed in an evidence-based language and integrated into a neural / deep learning
(DL) component to improve model performance. Three paradigms are presented within
the Neuro-LENS framework:

(i) Neural-to-symbolic chaining: the symbolic component is applied to the neural
output. This approach is relevant when the type of data cannot be processed by the
symbolic component as such (e.g., images), and needs to first be transformed into
a suitable representation. Thus, a DL model capable of processing the considered
data type is applied to the raw data in order to extract features to be fed as input to
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the symbolic component described in Section 4.1. The latter exploits the extracted
features to produce both logical rules and a score, used to perform respectively
rule- or score-based classification, as demonstrated in [MBT25].

(ii) Symbolic-to-neural chaining: the symbolic component generates extra input
features for the neural component. This strategy is valuable when the use case
requires integrating data of different type, e.g., time series sensor measurements
and background knowledge as configuration specifications or log events. The usage
of background knowledge in industrial settings is often compromised due to the
ambiguity typically present in such datasets, making them not immediately suitable
for model learning. The developed symbolic module is capable of deriving relevant
features from background knowledge datasets and of dealing with their ambiguity.
The features are then used to enhance the feature input of a suitable DL model.
The potential of this integration scheme is supported by our validation study on
the Scania use case.

(iii) Parallel neural-symbolic parallel integration: symbolic and neural components
create an ensemble reasoning model. Here, both components extract features from
the data in parallel, allowing to employ the most suitable modeling paradigm for
each data type and still be able to benefit from the interpretability of the symbolic
component. The features are subsequently used to construct decision rules.

Finally, note that, like most data-driven methods, the Neuro-LENS method is sensitive
to the variability and size of the training dataset. However, an important advantage of our
method is that it can deal with imbalanced datasets. This allows an initial model to be
bootstrapped from a limited set of available labels, which can easily be upgraded when
more data becomes available.

5 Experiments and evaluation
In our experiments, we have used real-world datasets to simulate two use case scenarios:
scene classification with abandoned object detection, and prognostic health monitoring
with vehicle failure prediction. The following subsections present the two use cases,
elaborating on the problem statement, data, method adaptation, and results of each of
the explored domains.

5.1 Scene classification
Within this use case, we aim at applying the proposed neuro-symbolic framework to
perform a binary scene classification task: understanding whether a frame taken from
surveillance videos of train station or similar public places, contains (positive class)
or does not contain (negative class) an abandoned luggage. The task usually involves
complex scenarios and ambiguity, and it can be safety critical.

5.1.1 Datasets
The proposed method is validated on the PETS2006 and the AVS2007 datasets, both
containing videos depicting abandoned luggage scenarios.
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The PETS2006 dataset contains videos with multi-sensor sequences depicting scenes
of a luggage being abandoned inside a train station. Static frames are extracted from the
videos in order to apply the proposed approach. Ground truth is not available, neither
for the object detection task or the abandoned bag scene classification task. Labels
indicating whether the represented scene contains an abandoned bag have been manually
identified and created. The dataset consists of 1325 images, of which 95% do not depict
an abandoned object, while in the remaining 5% an abandoned bag can be detected.

The AVS2007 dataset (Advanced Video and Signal Based Surveillance) provides
benchmark datasets for testing and evaluating detection and tracking algorithms. The
i-LIDS bag subset of AVS2007 is considered, as it consists of abandoned luggage
scenarios. The dataset comprises of 161 images, 14% of which shows an abandoned
object. Again, labels indicating whether an abandoned bag is present in the image have
been manually added to the data.

5.1.2 Method adaptation
The current section details the adaptation of the neural-to-symbolic chaining integration
strategy to the scene classification use case. The process consists of three stages, as
depicted in Fig. 6:

1. The available set of labeled images is fed to the neural component, the deep-
learning based block of the framework. The neural component makes use of two
pre-trained DL models: a OneFormer model [Jai+23], which detects the objects of
interest in the images (in this case, people and bags) and returns the classes and
bounding boxes of the detected objects; a Depth Anything V2 model [Yan+24],
which provides a pixel-wise measure of the depth of each object in an image,
allowing to more accurately place objects in a 2D image. Fig 4 shows the output
of the two DL models on an example image.

Figure 4. Example of object detection (left) and depth estimation (right) results [MBT25]

2. The outputs of the deep learning models are passed to the symbolic component,
which uses them to derive meaningful attributes (or instances) for the use case
at hand, which characterize the input images. The attributes contain relevant
information about the people and luggage depicted in the image and the
relationship between them (e.g., overlap between their bounding boxes and
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distance between a luggage and the person closest to it, Fig. 5. Then, a multi-
valued mapping between the set of attributes and the images to be categorized is
constructed, by associating each instance with the set of images in which it appears.
A list of the extracted attributes can be seen in the first column of Table 1. Note
that all extracted attributes are binary.

Figure 5. Overlap types and distance calculation for a selected bag [MBT25]. The distance
between two objects is estimated as the distance between the centers of their bounding
boxes while considering the estimated depth of each object, i.e., a 3-dimensional Euclidean
distance is calculated. The calculated distances are binned into five overlapping ranges
formed by increasing the radius of concentric circles with the bag of interest in their center.

3. The inverse and superinverse images of the multi-valued mapping are used to
define the necessity and possibility conditions for the positive and negative
classes. To exemplify, the necessity conditions for the positive class describe
the attributes an image has when it depicts a scene necessarily containing an
abandoned luggage. The possibility conditions for the positive class specify the
attributes an image has if it depicts a scene possibly containing an abandoned
luggage. The obtained conditions are presented in Table 1. It can be observed
that eight instances contribute to the discrimination between the two classes in
the PETS2006 dataset (one fewer in the AVS2007 dataset). The ambiguity aspect
is captured by the instances which are common to the two classes, indicated below
by their index: ambiguous evidence = 3{abandoned} ∩3{non-abandoned} =
{0, 1, 5, 7, 8}. Thus, the possibility of either of the two classes can be expressed,
as shown below, as the disjunction of the respective necessity of this class and the
ambiguous evidence:

3{abandoned} = 2{abandoned} ∨ ambiguous evidence

3{non-abandoned} = 2{non-abandoned} ∨ ambiguous evidence.

Next, the decision rules exploited by the rule-based classifier are defined. An image
is assigned to the positive (negative) class if the instances representing it satisfy the
necessity conditions for the positive (negative) class, i.e.,

IF 2X+(Xi) THEN Xi ∈ positive class
IF 2X−(Xi) THEN Xi ∈ negative class,
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Table 1. Inverse (poss+, poss−) and superinverse (nec+, nec−) images for the two classes.

attributes poss+ poss− nec+ nec−
0: contains bag True True False False
1: contains person True True False False
2: contains person but no bag False True False True
3: has partial overlap True∗ | False True False False∗ | True
4: has total overlap False True False True
5: has no overlap True True False False
6: min distance below 0.1 False True False True
7: min distance above 0.1 True True False False
8: min distance above 0.25 True True False False
9: min distance above 0.5 True False True False
10: min distance above 0.75 True False True False

∗ These are the values for the AVS2007 data set. All other values are the same for both datasets.

where 2X+ and 2X− are the necessity conditions of the positive and negative
classes, respectively. Consequently, in the context of our use case, Table 1 can be
used to define the decision rules for the two classes as follows:

IF (9 ∨ 10) THEN x ∈ {abandoned}
IF (2 ∨ 3 ∨ 4 ∨ 6) THEN x ∈ {non-abandoned}. (9)

In case an image does not satisfy either decision rule, it is assigned to a ”none of
known” class, in order to avoid misclassifications.
The necessity and possibility are further exploited to compute the plausibility and
belief values for the two classes, using (6). These values are then combined into a
single score using (8). The computed scores focus on the positive class, indicating
the likelihood of an image to contain an abandoned luggage.

Figure 6. A schematic illustration of the first integration strategy as applied to scene
classification task.

5.1.3 Results and discussion
The neural-to-symbolic strategy is applied to the two image datasets: AVS2007 and
PETS2006 (see Section 5.1.1). The datasets are split into training and test sets with
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proportion 80/20, with the ratio of images belonging to each class kept fixed in the
division. The extracted decision rules in (9) are employed to construct a rule-based
classifier which assigns every image to its class according to the decision rule it satisfies.
A ”none of known” class is also created for ambiguous images which do not satisfy either
decision rule. Table 2 reports the averaged results of the classifier over 20 iterations.
Note that no sample is misclassified. Thus, we report as metric the percentage of samples
which are considered ambiguous by the model.

Table 2. Performance of the rule-based classifier on the two datasets.

Metric (%) AVS2007 PETS2006
Detected positives 50 76.7
Detected negatives 60.2 97.7

Positives in ”none of known” 50 23.3
Negatives in ”none of known” 39.8 2.3
Overall in ”none of known” 41 3.5

A single score is obtained by combining plausibility and belief using (8), that quantifies
the likelihood of an image to depict abandoned luggage. In Fig. 7 the ROC curves
produced by the score-based classifier on the two datasets are depicted, illustrating the
variation in the model’s performance when varying the single score threshold. As can be
seen, the classifier demonstrates good performance on both PETS2006 and AVS2007,
showing to be robust to data scarcity and complexity of scenarios. The AVS2007
dataset is, in fact, much smaller than the PETS2006 dataset and contains more complex
scenarios.

Figure 7. ROC curves of the score-based classifier for the two datasets.

Both rule-based and score-based classifiers demonstrate a strong discrimination
potential in distinguishing between the two classes. The rule-based classifier allows to
avoid misclassifications and signals uncertain scenarios which cannot be assigned to any
class due to lack of sufficient evidence. The score-based classifier quantifies the risk of

Prepared using sagej.cls



16 Journal Title XX(X)

an abandoned object being present in a scene in a more granular fashion, offering the
possibility of setting a threshold to trigger alarms for high-risk scenarios.

In summary, the neural-to-symbolic chaining strategy allows to leverage pre-trained
DL models to extract attributes from images, which are subsequently used to obtain
robust logical rules through the usage of modal logic and evidence theory. The resulting
approach is significantly less sensitive to data scarcity and imbalance than fully DL-
based methods, confirming the added value of neural and symbolic integration. Note
also that the performance of the object detection DL model poses an upper bound to
the performance of the overall framework. Thus, it is important to ensure that the object
detection models deliver satisfactory results.

Baseline comparison
Considering the nature of the use case, it is difficult to find a suitable baseline study
in the literature. Therefore, we built our own baseline rule-based classifier which does
not leverage modal logic and the extracted instances and simply sets a threshold on the
minimum distance between the considered bag and any person in an image. The threshold
is selected based on the training set, and chosen to be the minimum distance observed
in the set between an abandoned bag and a person present in the frame. We compare
the complete framework to the simple rule-based model, to showcase the value of the
proposed symbolic component. In Table 3, the precision, i.e., the accuracy of the positive
predictions made by the two models, is shown for the AVS2007 and the PETS2006
datasets.

Dataset Model Precision (%)
AVS2007 Simple rule-based 0.25

Neuro-LENS 1
PETS2006 Simple rule-based 0.52

Neuro-LENS 1
Table 3. Precision of a basic rule-based model compared to Neuro-LENS

Moreover, we investigated the contribution of considering the estimated depth when
calculating the distance between objects. The model’s performance did not change for
the AVS2007 dataset when the estimated object depth was not considered, while a
clear performance degradation was observed when applying the model to the PETS2006
dataset without considering depth.

5.2 Vehicle failure prediction
This use case is concerned with the prediction of failures in a large fleet of over
23.000 heavy-duty trucks. The application context is completely different than the scene
classification use case. Moreover, the described application deals with multi-source data
(sensor measurements and technical specifications) and tackles a complex industrial
phenomenon.

Prepared using sagej.cls



Murtas, Boeva and Tsiporkova 17

5.2.1 Dataset
Within the vehicle failure prediction use case, the symbolic-to-neural chaining and
the parallel neural-symbolic integration strategies are applied and validated on the
Scania dataset [Kha+25]. The latter is a real-world multi-source dataset collected from
a single engine component across a fleet of SCANIA trucks. The dataset contains:
operational data collected by onboard sensors; repair records, which include information
about maintenance, repairs, and servicing performed on the vehicles; specifications of the
analyzed component, collected with the production system, such as engine type, weight
capacities, dimensions, and other technical details. The operational data are stored as
multi-variate time series where the time steps are chronologically sequential but do not
have a specified duration, and the amount of time they encompass can vary from one
truck to another. As mentioned above, the specifications describe the technical properties
of each truck. However, as the dataset is fully anonymized, the specifications are not
indicated by name but merely numbered. Most trucks do not experience a fault during
the observation period covered by the dataset. Table 4 shows the percentage of trucks
that did or did not require maintenance in the training, validation, and test set. The high
imbalance of healthy vs. faulty behavior constitutes a challenge for training a robust fault
prediction model on this dataset. Each truck is annotated with a class label. The provided

Dataset Healthy trucks (%) Faulty trucks (%)
Train set 90.4 9.6

Validation set 97.3 2.7
Test set 97.2 2.8

Table 4. Percentage of healthy and faulty trucks.

class labels divide the dataset into 5 groups, based on the remaining time before failure
as specified in Table 5. The last column of Table 5 contains the class label distribution in
the training set, which demonstrates very clearly the highly imbalanced label context of
this use case.

Class labels Time to failure Training set distribution (%)
Class 0 more than 48 hours left 90.4
Class 1 between 48 and 24 hours 0.1
Class 2 between 24 and 12 hours 0.3
Class 3 between 12 and 6 hours 0.7
Class 4 less than 6 hours left 8.5

Table 5. Truck class labels: meaning and distribution in the training set.

5.2.2 Method adaptation
In this section, we present how the symbolic-to-neural chaining and the parallel neural-
symbolic integration strategies are applied in the context of the vehicle failure prediction
use case. As the symbolic component is the same in the two strategies, it is only presented
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Table 6. Inverse (poss+, poss−) and superinverse (nec+, nec−) images for the two classes.

attributes poss+ poss− nec+ nec−
Spec0 = Cat0 True True False False
. . . . . . . . . . . . . . .
Spec1 = Cat14 False True False True
. . . . . . . . . . . . . . .
Spec0 = Cat0 & Spec1 = Cat0 True True False False
. . . . . . . . . . . . . . .
Spec0 = Cat0 & Spec1 = Cat16 True False True False
. . . . . . . . . . . . . . .
Spec0 = Cat0 & Spec1 = Cat0 & Spec2 = Cat0 True True False False
. . . . . . . . . . . . . . .
Spec0 = Cat0 & Spec1 = Cat0 & Spec2 = Cat4 False True False True
. . . . . . . . . . . . . . .

once, in the paragraph below. The rest of the section describes the adaptation of the two
strategies to the use case at hand.

Symbolic component
The symbolic component is used to derive the predisposition to failure of a vehicle,
solely based on its technical characteristics. In the data, each vehicle is described by 8
specifications. The possible values each specification can take are expressed as numbered
categories. Labels are available for each vehicle, indicating whether it has experienced a
failure during the observation period of the dataset. Thus, as in the previous use case, the
symbolic component deals with two classes: healthy (negative class, as in ”vehicles not
presenting failures”) and failing vehicles (positive class). The steps carried out within the
symbolic component are those seen in Fig. 3, similarly to the neural-to-symbolic strategy.
The binary attributes needed for the approach (first block of the schema in Fig.3) are
extracted by listing all possible combinations of specifications a vehicle can have. In
order to take the interactions between different specifications into account, all possible
pairs and triplets of specifications are also included in the attributes. A few examples
of these attributes can be seen in the first column of 6. The process can theoretically be
extended to larger groups of specifications, but the computational time quickly explodes.

Subsequently (second block in Fig 3, a multi-valued mapping is constructed between
the set of extracted attributes and the set of vehicles in the training dataset. Namely,
each specification, or combination of specifications, is mapped to all the vehicles in the
training set that presents it. As in the first use case, the inverse and superinverse images of
the constructed mapping characterize the two defined classes, and allow us to retrieve the
possibility conditions (inverse image of the mapping function) and necessity conditions
(superinverse image of the mapping function) of healthy and failing vehicles. A short
excerpt of the obtained conditions for the two classes is shown in Table 6 for the purpose
of illustration.

Using the formulas in (6), the plausibility and belief measures of the two classes can
be computed from the obtained possibility and necessity conditions. As seen in Fig 3,
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these measures can directly be taken as output of the symbolic component and exploited
in the following steps of the pipeline. Alternatively, they can be combined into a single
score, using (8).

Symbolic-to-neural chaining
This section presents the second integration strategy in Fig. 2. Within this strategy,
the outputs of the symbolic component are used as additional features for the neural
component. The goal of adding the extra features is to infuse the neural component with
the background knowledge contained in the data, which cannot otherwise be directly fed
to the neural network. In the use case at hand, the provided background knowledge is
the predisposition to failure of the trucks, based on their technical characteristics. The
neural component uses an LSTM neural network, suited to process the multi-variate time
series in the sensor data together with the output of the symbolic component to accurately
predict failures in the vehicles.

Parallel neural-symbolic integration
In the third explored strategy, both neural and symbolic components are used to generate
features, which are then combined into a rule-based model. The symbolic component
remains the same as in the previous strategy. Within the neural component, an LSTM-
autoencoder is trained to reconstruct sequences of time series data for healthy vehicles.
The obtained reconstruction error together with the evidence metrics returned by the
symbolic component are used to define the following logic rule, employed as a classifier

IF reconstruction error > x and (Pl+ > y or Bel+ > 0) THEN failure detected,

where x and y are chosen based on the validation data distribution.

5.2.3 Results and discussion
In this section, the results obtained by applying the described frameworks on the
SCANIA dataset are presented and discussed in detail.

Symbolic component
The symbolic component extracts the possibility and necessity conditions for the two
classes based on the data in the original training and validation sets of the SCANIA
dataset. The computed conditions are then used to calculate the plausibility and belief
of the two classes for each vehicle in the test set. The ROC curves in Fig. 8 visualize
the performance of classifying healthy and failing trucks when only exploiting the
information contained in the specification data (technical characteristics of the trucks)
via the extracted single score from (8), without taking the sensor data into account. The
performance is compared to the risk score from [FTB24]. Here, the authors carry out a
survival risk analysis on the vehicles in the SCANIA dataset. As part of their pipeline,
they compute a risk score based on specification data using Cox Proportional Hazard
analysis and survival trees. As the authors do not compute the bias on the test data, this
comparison was only possible on the training set.
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Figure 8. Classification performance on the training and test set when only using the
symbolic component. The different traces show the results obtained when: 1)including only
single specifications in the extracted attributes, 2) including single and pairs of specifications,
3) including single, pairs, and triplets of specifications. The 4th trace shows the performance
obtained with the risk score from [FTB24]. The performance of a Random Classifier is also
shown as reference.

Within the single score, we analyzed the weight of belief and plausibility values,
by looking at the classification performance obtained when removing one or the other
value from the score. Belief measures do not seem to contribute much in distinguishing
between the classes. This is probably due to the fact that the technical characteristic of
a truck only contain limited information about an eventual failure. Thus, it is highly
unlikely that one (or a combination of) specific technical characteristic alone will
necessarily (with high certainty) lead to failure. In other words, decisions taken when
considering the specification data by itself are too uncertain in order to be able to benefit
significantly by the belief measures.

Symbolic-to-neural chaining
As mentioned above, the neural component used within this strategy exploits an LSTM
model, suited for handling sequential data. The model takes windows of 12 time steps as
input and predicts one of the five class labels in presented in Table 5 for each of the 12
future time steps. The missing data in the training set are handled by performing forward
filling, and the training and test set are defined in the same way as for the symbolic
component. In order to validate the contribution of the symbolic component’s output, the
model is first trained on the sensor data only. In Fig. 9, this model is indicated with the
label ”Sensor data”. The experiment is then repeated by adding the features produced by
the symbolic component: either the plausibility and belief measures of the positive class
(failing vehicles), or the combined single score. The addition of the symbolic component
features is done in two alternative ways:

1. The features are simply concatenated to the input of the model, i.e., the same value
is repeated at each time step, as the outputs of the symbolic model represent a static
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property of the vehicles. The models where this approach was used are indicated
with ”concatenated” in Fig. 9;

2. The features are used to set the LSTM initial state, allowing to treat them as a
context rather than features replicated across all time steps. Additionally, a gate
is added to the static features in order to avoid their influence being too strong
compared to the time-series signal. In this manner, the network can learn how
much weight to assign to the static features. The models indicated with ”gated” in
Fig. 9 have been trained this way.

All evaluated models exhibit a very high accuracy (over 95is highly imbalanced, a high
accuracy is not very indicative. Predicting imminent failures correctly (classes 3 and 4)
is more important for the use case at hand than correctly individuating normal conditions
(class 0). Thus, F1- score and precision are selected to compare the performance of the
models. In Fig. 9, the evolution of the two metrics across all time steps is depicted, for
class 0 (normal operation) and class 4 (imminent failure). The difference in performance
between the two classes in the figure is striking, highlighting once again the challenge
of dealing with an imbalanced dataset. When predicting normal operation (class 0, the
majority class), all models perform well, and augmenting the LSTM’s input with the
symbolic output does not provide measurable improvement. The overall performance for
class 4 reflects the difficulty of predicting failures in the vehicles.

The model trained with the addition of the single score (gated) slightly outperforms the
rest of the models, which might indicate that the plausibility and belief measures of the
negative class, included in the formula for the computation of the single score (see (8)),
also provide some relevant information. In addition, the fact that feeding the single score
as a separate gated input to the network performs better than simply concatenating the
score to the sensor data, supports the understanding that a more context-aware integration
yields better results than naive concatenation.

Parallel neural-symbolic integration
In this integration strategy, the neural component includes an LSTM-autoencoder, trained
on entire data sequences from healthy vehicles, i.e., vehicles that do not experience a
failure during the monitored time period. 80% of healthy vehicles data from the SCANIA
training set are used to train the autoencoder. The remaining 20% of healthy trucks
is combined with the data from failing trucks which to form the validation set. The
autoencoder is trained to reconstruct sequences of sensor data and takes windows of
48 time steps as input. Fig. 10 depicts the evolution of the average reconstruction error
of healthy vs. failing vehicles on the validation set defined above, as we get closer to
either a failure or the end of the observation period. The average reconstruction errors
for failing trucks starts deviating already about 60 timesteps before a failure or end of
observation. It is interesting to notice how the reconstruction error of healthy trucks also
tends to increase in time. This confirms the inconsistency between the available discrete
class labels and the actual continuous health degradation of a vehicle throughout its life.
It must also be noted that such a sharp separation between failing and healthy vehicles
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Figure 9. Class 0 vs. class 4 performance comparison in terms of F1-score and precision.

can only be detected in the average values, while there is a significant overlap between
the two when looking at the values for single trucks.

Figure 10. Evolution of the LSTM-autoencoder average reconstruction error for failing and
non-failing vehicles as either a failure or the end of the observation window get closer. The
time windows corresponding to the class labels defined in 5 are also shown.

The reconstruction error obtained by the autoencoder is combined with the outputs
of the symbolic component and exploited by the rule-based classifier described in the
previous section. Fig 11 depicts the performance of the rule-based classifier, confirming
that very high accuracy can be obtained for vehicles operating in normal conditions, i.e.,
class 0, since the dataset is heavily skewed toward such samples. In order to optimize
the number of predicted failures, a reconstruction error threshold of 0.2 is selected
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(prioritizing a higher recall even if losing accuracy) corresponding to an overall accuracy
of over 80%.

Figure 11. Rule-based classifier performance as function of the reconstruction error.

Fig. 12 shows the prediction performance of the rule-based classifier using the formula
provided in the previous section, with the selected threshold for the reconstruction error,
for different time horizons. As expected, the performance of the model decreases for
longer time horizons.

Figure 12. Cumulative percentage of failing vehicles correctly detected. Three temporal
horizons are considered: prediction made 1 time step in advance, 6 time steps in advance, or
12 time steps in advance.

Baseline comparison
In this section, we compare the parallel neural-symbolic variation of the proposed
approach with several alternative approaches presented in [ZW24], where the authors
apply a variety of deep learning models to the SCANIA dataset to predict faulty trucks.
These models were only trained on the time series data, discarding the specification data
of the trucks. For this comparison, our approach was trained and evaluated on the same
dataset split as indicated in the original paper [ZW24]. Table 7 presents the accuracy
of the compared models. It is impressive to observe that exploiting the integration of
the neural and symbolic components enables a simple LSTM to outperform the more
complex deep learning architectures used in [ZW24]. This demonstrates the prediction
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potential of the Neuro-LENS framework and the importance of effectively embedding
background knowledge in the model.

Model Accuracy (%)
CNN 88.2

Bi-LSTM 77.6
Bi-LSTM with attention 81

Neuro-LENS 93.3
Table 7. The accuracy of the best-performing models presented in [ZW24] is benchmarked
against the parallel neural-symbolic version of Neuro-LENS, as evaluated on the SCANIA
validation set.

6 Conclusion
This study presented Neuro-LENS, a neuro-symbolic framework exploring different
integrations of a neural model with a symbolic reasoning component. The symbolic
component is based on the multi-valued interpretations of the theory of evidence in
modal logic. As demonstrated in our experiments, the modular nature of the Neuro-
LENS framework allows for great flexibility and generalizability across various use
cases and data types. Three complementary strategies that integrate symbolic reasoning
and deep learning have been investigated in our study: neural-to-symbolic chaining,
symbolic-to-neural chaining, and parallel neural-symbolic integration. The Neuro-LENS
framework has been validated across two different use cases (scene classification and
failure prediction) using different data types (images vs. time series and tabular data).
The results obtained highlight the framework’s generalizability and practical relevance
in real-world scenarios and industrial settings, where explainability, robustness, and trust
are fundamental.
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