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Abstract. Artificial Intelligence (AI)-based drug repurposing is an emerging strategy to identify drug candidates to treat rare
diseases. However, cutting-edge algorithms based on Deep Learning (DL) typically don’t provide a human understandable ex-
planation supporting their predictions. This is a problem because it hampers the biologists’ ability to decide which predictions
are the most plausible drug candidates to test in costly lab experiments. In this study, we propose rd-explainer a novel AI drug
repurposing method for rare diseases which obtains possible drug candidates together with human understandable explanations.
The method is based on Graph Neural Network (GNN) technology and explanations were generated as semantic graphs using
state-of-the-art eXplainable AI (XAI). The model learns features from current background knowledge on the target rare disease
structured as a Knowledge Graph (KG), which integrates curated facts and their evidence on different biomedical entities such
as symptoms, drugs, genes and ortholog genes. Our experiments demonstrate that our method has excellent performance that is
superior to state-of-the-art models. We investigated the application of XAI on drug repurposing for rare diseases and we prove
our method is capable of discovering plausible drug candidates based on testable explanations.

Keywords: Rare Disease (RD), Knowledge Graph (KG), Drug Repurposing, Graph Neural Network (GNN), Explainable AI
(XAI)

1. Highlights

– We demonstrated the use of graph-based explainable AI for drug repurposing on rare diseases to accelerate
sound discovery of new therapies for this underrepresented group.

– We developed rd-explainer for rare disease specific drug research for faster translation. It predicts drugs to treat
symptoms/phenotypes, it is highly performant and novel candidates are plausible according to evidence in the
scientific literature and clinical trials. Key is that it learns a GNN model that is trained on a knowledge graph
built specifically for a rare disease. We provide rd-explainer code freely available for the community.

– rd-explainer is researcher-centric interpretable ML for hypothesis generation and lab-in-the-loop drug research.
Explanations of predictions are semantic graphs in line with human reasoning.

– We detected an effect of knowledge graph topology on explainability. This highlights the importance of knowl-
edge representation for the drug repurposing task.

*Corresponding author. E-mail: n.queralt_rosinach@lumc.nl.
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2. Introduction

Developing new drugs is a challenging effort that often ends with the drug not being able to launch. Recent
studies have shown that around 90% of drugs fail to be approved during their clinical development [1]. This leads
to a fruitless expenditure of both time and money that will yield no financial returns. The situation is even worse in
the case of rare diseases, as pharmaceutical companies may consider it risky to invest large amounts of resources
into developing drugs that only a small percent of the population will need. Nonetheless, in total, human beings are
affected by approximately 7,000 rare diseases, of which only 5% have an effective treatment [2]; and only in Europe
between 27 and 36 million people suffer from rare diseases [3].

In this scenario, drug repurposing strategies have appeared as a possible approach to solve these issues. By reusing
drugs that have already been approved, companies can avoid many of the costly and time-consuming steps of clinical
trials. In this context, innovative approaches to drug repurposing, such as computational strategies and AI-driven
methodologies, have emerged as promising solutions to address these challenges. Graph-based drug repurposing is
another noticeable strategy that has gained attention in recent years. By constructing intricate networks of molecular
interactions, genes, proteins, and diseases, this approach unveils hidden relationships and connections that might
otherwise go unnoticed [4].

Still, many people remain skeptical about AI-driven decisions, especially Machine Learning (ML) and Deep
Learning (DL), as many of them come with no explanation that can help to understand the reason why they should
be trusted (also called black-box AI). This issue is especially significant in the healthcare field, where decisions
may have an important impact on people’s lives. Also, giving valid explanations can help researchers to point in the
right direction in the generation of hypotheses that are testable in the lab and enable a solid knowledge discovery.
Furthermore, the EU General Data Protection Regulation (GDPR) is requesting the AI industry to fulfill the ’right
to explanation’ [5]. This ’right to explanation’ implies that when a decision is significantly affected by an automated
process/algorithm, the individual can demand an explanation. In recent years, many different tools have appeared to
try and cover this gap in the emerging explainable AI (XAI) research area [6–8].

In this study, we explore whether AI can be used to produce both predictions and explanations in computational
drug repurposing for rare diseases and, if so, how helpful can these explanations be for hypothesis generation. The
main objective of this work was to develop and implement a pipeline to find marketed drugs that can be used to
treat the symptoms of a rare disease. Our approach is based on cutting-edge AI algorithms used in computational
drug repurposing such as graph ML using knowledge graphs (KG) and graph neural networks (GNN), and XAI
methodology to provide the explanations supporting the drug predictions made by the AI model. The approach was
evaluated by selecting Duchenne muscular dystrophy (DMD) as a case study, a genetic disorder that is the most
common form of muscular dystrophy [9]. We demonstrate the generalizability of our approach by applying the
pipeline to different rare diseases.

3. Related work

3.1. Knowledge graph-based drug repurposing

The state-of-the-art of computational drug repurposing approaches make use of graph-based structures and AI
techniques to find potential drug candidates. One of the main advantages of using graph structures is that they can
easily incorporate information from different sources. This is especially important in the domain of rare diseases,
where information is distributed and often scarce. The ability to integrate as much relevant data as possible can
confer a significant advantage. An example of this would be the recent study of Al Saleem et al. [10], where a
knowledge graph was used to discover drug candidates to treat COVID-19.

Different ML algorithms can be used to analyse knowledge graphs, including matrix factorization, random-walk
approaches (node2vec [11]), geometric embeddings (DistMul [12]) and GNNs [13, 14], each one of them with its
own advantages and disadvantages, see Table 1. In our study, we used a combination of random-walk approaches
and GNNs as in contrast to other methods (like matrix factorization or geometric embeddings) they can easily
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incorporate new information without the need of retraining the ML model. This is especially relevant in the field of
drug repurposing where new information about drugs, genes and diseases is being published [15–17].

Table 1
Comparison of different graph-based machine learning methods in drug repurposing.

Method Example Advantages Disadvantages Applications

Matrix Factorization ADA-GRMFC [18] Captures global relationships
between entities.
Simple and interpretable.
Effective for sparse graphs.

Computationally expensive for large
graphs.
Difficulty in incorporating new data
without retraining.

Suitable for large-scale
recommendation systems

Random-walks node2vec [11] Efficient for large graphs.
Easy to implement.
Can capture node proximity.

Limited to local information; misses
long-range dependencies.
Cannot utilize node features or graph
structure.

Useful for tasks requiring
efficient exploration of graph
neighborhoods

Geometric Embeddings DistMult [12] Produces interpretable
low-dimensional embeddings.
Scalable and efficient for sparse
graphs.
Performs well on link prediction
tasks.

Captures only local information,
missing complex graph interactions.
Cannot handle high-order relationships
or complex structures.

Effective in link prediction or
node classification tasks with
relatively simple graph
structures.

Graph Neural Networks (GNNs) GraphSAGE [19] Aggregates local and global node
features.
Inductive learning, generalizes to
unseen nodes.
Scalable and flexible.

Computationally intensive for large
graphs.
"Black-box" nature hinders
interpretability.
Sensitive to choice of aggregation
function.

Ideal for large, dynamic
graphs in drug repurposing,
where new entities are
constantly introduced.

3.2. Explainable AI on graph ML

One of the graph-based methods that can provide explanations of the predictions, also called local explanations, is
(Graph)LIME [6], an adaptation of the popular and more general explainability method LIME [7]. The idea behind
this method is the following: when trying to get an explanation for a given prediction, (Graph)LIME performs
small perturbations to the features of nodes, and sees how the predictions vary with respect to the initial prediction.
The more the prediction changes, the more the model is relying on that feature to obtain its prediction. This way,
explanations in this model are given in the form of a set of node features. Among its drawbacks, this method can
only be used in node classification tasks. Another explainability method is CRIAGE [8] where explanations are
given as a set of rules.

Several other explainability methods have been proposed for Graph ML, including PGExplainer [20] and GRE-
TEL [21]. PGExplainer generates explanations by learning a probabilistic mask over graph structures, making it
more flexible in terms of capturing various graph features. GRETEL, on the other hand, is designed to provide
global explanations, making it different from other methods that focus on local interpretability.

Finally, the method chosen in this work is GNNExplainer [22]. The insight of how this method works is the
following: given an initial prediction (link prediction, node classification or graph classification) obtained through
a GNN, GNNExplainer finds a subset of node features and edges that are responsible for the prediction. This
subset is obtained by training an edge and node mask. This method was chosen as explanations are provided in
the form of a subgraph that can be easily understandable. Additionally, it is a post-hoc XAI method, i.e., it is
GNN model-agnostic, which means that if more sophisticated GNNs are developed in the future, these new GNNs
can be easily incorporated into the pipeline. Furthermore, as a post-hoc method, its explanations might not always
be faithful to the model’s decision-making process. If the GNN has been trained on noisy data, GNNExplainer
may highlight irrelevant edges or nodes simply because they correlate with predictions. These features make it a
popular method in the research community [23–25]. However, a major drawback is that it lacks consistency when
obtaining explanations. This means that explanations on the same prediction can significantly change if running
GNNExplainer several times.
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Table 2
Summary of explainability methods in graph ML.

Method Explanation Type Main Drawback

GraphLIME [6] Feature-based Limited to node features
CRIAGE [8] Rule-based Requires rule extraction
GNNExplainer [22] Subgraph-based Inconsistent explanations
PGExplainer [20] Probabilistic mask Complexity in training
GRETEL [21] Global explanation Not applicable to local explanations

4. Methods

4.1. rd-explainer method overview

rd-explainer is the drug repurposing method we developed for rare diseases and its pipeline is illustrated in Figure
1. rd-explainer has three modules: the Knowledge Graph Construction module constructs a KG for the specific rare
disease and drug repurposing task, the Prediction module trains a GNN model and predicts drug candidates for the
rare disease symptoms, and the Explainer module computes the most important semantic subgraphs that explain
the connection between the predicted drug and the symptom. Firstly, disease-related information is gathered from
different data sources: Monarch Initiative knowledge base [26] for disease pathology, and DrugCentral [27] and
Therapeutic Target Database [28] for disease druggability. This information is then preprocessed and captured as a
knowledge graph. Next, for each node in the graph, a feature vector is obtained that will be used as input for the GNN
model. This is done by making use of a method known as edge2vec [29] to consider the different edge semantics
in the KG for node embedding learning. We used the version extracted from GitHub (accessed in 2021) 1. The
next step is to build and train the GNN model, which is done using the GraphSAGE framework for learning graph
representation [19]. Next, link prediction is performed for each drug-symptom node embedding pair using the dot
product as scoring function. Finally, we produced prediction explanations as semantic graphs using GNNExplainer
[22], a recent and, to our knowledge, one of the first XAI methods for obtaining explanations from GNN predictions.

4.2. Rare disease-specific drug repurposing knowledge graphs

4.2.1. Data sources
Data were obtained from three different sources: Monarch [26] (accessed in 2021), DrugCentral [27] (2021 ver-

sion) and Therapeutic Target Database (TTD) [28] (November 8th, 2021 version). Monarch is a knowledge base
built on semantic principles, unifying gene, variant, genotype, phenotype, and disease data across different species.
Its primary aim is to establish links between genes and phenotypes, thereby facilitating computational exploration
of human disease biology. Monarch was chosen because it contains curated information across different species.
This way, because rare diseases are often less studied than common diseases, incorporating information from other
species can maximize the amount of knowledge in the graph. However, Monarch does not specialize in drug infor-
mation.

Drug information was incorporated from DrugCentral (drug-target information) and from Therapeutic Target
Database (drug-disease information). DrugCentral is a comprehensive online database that provides information
about approved drugs, active ingredients and other pharmaceutical products. One of its major features is that it
is open source and its data is freely available to anyone. For this project, we made use only of the drug-target
information (as it is the main piece of information that is not present in Monarch) downloaded as a tsv file from
their site [28] 2. Similarly, TTD is a database that specializes in drugs and their respective therapeutic targets.
Once more, this database is freely accessible and its information can be easily downloaded in csv format (in this

1https://github.com/RoyZhengGao/edge2vec
2DrugCentral, Download site, accessed March 2022, https://unmtid-dbs.net/download/DrugCentral/2021_09_01/drug.target.interaction.tsv.gz

https://github.com/RoyZhengGao/edge2vec
https://unmtid-dbs.net/download/DrugCentral/2021_09_01/drug.target.interaction.tsv.gz
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Fig. 1. rd-explainer drug repurposing method pipeline developed in this work.

project, we just made use of the drug-disease information [28] 3, once again because it is the information missing in
Monarch).

4.2.2. Knowledge graph construction
To extract information from Monarch, the BioKnowledge Reviewer [30] tool was used. This tool was originally

created to collect knowledge from several sources and create a knowledge graph that could be later used for hy-
pothesis generation. It works by using several seeds (node identifiers (IDs)) as input to query the Monarch API and
constructing the graph based on the neighborhood of those seeds. After introducing the seeds in the BioKnowledge
Reviewer pipeline, the final output is the rare disease research question specific knowledge graph structured in two
dataframes (stored as csv files). One of them contains a list of nodes with their respective name, IDs, semantic entity
type, synonyms and description. The second file contains the list of edges, again containing the IDs of the entities
participating in each link and other edge information such as type of edge, supporting evidence and reference date.
Monarch was our main source of information and therefore served as a starting point to create the rest of the graph.
This way, data from other data sources were modified to fit Monarch’s standards by unifying the identifiers. Finally,
the graphs were constructed using the networkx Python library [31]. With this library, the dataframes extracted using
BioKnowledge Reviewer were converted into a Graph object.

We integrated data into two different knowledge graphs to perform the experiments. Each one of them was
constructed using different (number of) node seeds to extract information from Monarch. The first one (KG A) uses
only two seeds: DMD seed (HGNC:2928), corresponding to the human gene that causes the disease; and DMD seed
(MONDO:0010679), corresponding to the disease itself. The second graph (KG B), extends KG A by including as
seeds all phenotypes of the rare disease (in total, 27 more seeds). The seeds used for the construction of each graph
can be found in Tables S1 and S2. The idea of creating two different graphs is to find out if the performance of the
model and the quality of the explanations increases by incorporating more (phenotypic) information.

3Therapeutic Target Database, Download site, accessed March 2022,https://idrblab.net/ttd/sites/default/files/ttd_database/P1-05-Drug_diseas
e.txt

https://idrblab.net/ttd/sites/default/files/ttd_database/P1-05-Drug_disease.txt
https://idrblab.net/ttd/sites/default/files/ttd_database/P1-05-Drug_disease.txt
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4.3. ML model and XAI

4.3.1. Node features
At this point, none of the nodes has any specific node features. It is possible to run a GNN relying only on graph

information, i.e., network topology (this is done, for example, by using the node degree as graph feature); nonethe-
less, this resulted in poor performance (results not shown). To increase the efficiency of the model, edge2vec was
used to produce a specific embedding for each node that captures information about its neighborhood. edge2vec [29]
is a tool that generates node embeddings based on the node neighborhood and types of edges connecting each node.
After executing edge2vec, each node was given a unique feature vector. Since edge2vec is an unsupervised method
that does not use task-specific labels, these embeddings serve as general-purpose representations of the graph struc-
ture rather than encoding direct knowledge of the downstream task. This approach ensures that the GNN still needs
to learn task-relevant patterns, rather than relying only on the precomputed embeddings.

4.3.2. Data splitting
As any other machine learning task, data needs to be split into training, validation and test sets. However, when

tackling a link prediction task, there are different ways to perform this split. In link or edge prediction tasks, edges
can be divided into two groups: message passing edges and supervision edges. Message passing edges are the ones
that will be used by our GNN to obtain the embeddings, while supervision edges are the ones that will be used
to test the performance of our model [32, 33]. Additionally, when creating the supervision edges it is necessary
to include negative examples by applying negative sampling. Negative sample edges are those not present in the
original graph—pairs of entities known to be unconnected or for which no link is known. The goal is for the neural
network to learn to distinguish true (positive) edges from false (negative) ones. In general, one negative edge is
created for each true edge [32, 33].

In this work, we selected the all-graph transductive split [32, 33]. This method divides the data as follows: in
the training set, the supervision edges and message-passing edges are the same. In the validation set, the message-
passing edges are the same as those in the training set, while the supervision edges are different from the training
supervision edges. Finally, in the test set, the message-passing edges consist of the validation edges, and the super-
vision edges are distinct from both the training and validation supervision edges.

This method is one of the standard settings for link prediction tasks, as the whole graph can be seen in all dataset
splits [32]. The split proportion we used was 80% of edges for training set, 10% for validation set and 10% for test
set. The training set was used to train the model, the validation set to select the best hyperparameters, and the test
set to obtain the global performance of the model.

To avoid data leakage, node features were obtained by running edge2vec only in the train split; this way, no infor-
mation from the validation or test set is seen during the training. This procedure was just used during the evaluation
of the model to ensure our experiment was unbiased.

4.3.3. GNN model
We first utilized a GNN algorithm to learn vector representation embeddings for nodes in our knowledge graphs.

Then, we applied these node embeddings for drug-phenotype link prediction. The GNN algorithm that we used in
this work is called GraphSAGE [19]. GraphSAGE performs inductive graph representation learning by leveraging
rich node attribute information. The main advantage that was brought by GraphSAGE is its scalability: instead of
working with full batches (the whole graph is seen during the training) it works with mini-batches. Each mini-batch
is a subset of computational graphs (a computational graph is the individual GNN that is built for each node) of N
nodes. By applying this technique, the GNN can better manage larger graphs. The GraphSAGE model was created
using the DeepSNAP library [33] to obtain the predictions. Hyperparameter optimization was performed using Ray
Tune [34], as it is a model-agnostic library that allows multiple trials to be run in parallel, reducing the training time.
The list of hyperparameters that needed to be tuned and the optimal values can be found in Table S5. In total, 30
models were created (each of them containing a random selection of parameters).

The final model consists of a GraphSAGE-based neural network that processes node embeddings through two
graph convolutional layers using mean aggregation. The first SAGEConv layer transforms the input features into a
264-dimensional hidden representation, followed by batch normalization, LeakyReLU activation, and dropout (0.2)
to prevent overfitting. The second SAGEConv layer maps the hidden representation to a 64-dimensional output
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space, which serves as the final node embeddings. Link prediction is performed by computing the dot product
between the embeddings of node pairs. The model is trained for 150 epochs using the Binary Cross-Entropy with
Logits Loss function and optimized with a learning rate of 0.07.

4.3.4. Drug-phenotype link predictions
The GNN model generates embeddings for individual nodes within the graph as its final output. By applying

the dot product between distinct node pairs and applying a sigmoid function, we obtain a value that shows the
likelihood of a link existing between those nodes. Consequently, we obtain dot products between each drug and
every phenotype in the graph, and rank them in descending order. The top-ranked dot products are considered the
most promising targets. Links that were already present on the graph were removed from the ranking.

4.3.5. Graph-based prediction explanations
We applied GNNExplainer to generate explanations for every drug-phenotype prediction. To do so, we adapted

the pipeline code (from Pytorch geometric version 2.0.4) to generate explanations for the link prediction task, which
was not implemented in the authors’ version [22] (see pseudocode in Algorithm 1 in the Supplementary material).
However, this XAI algorithm has a robustness problem in the explanations it produces [35] and, additionally, it may
produce disconnected graphs that affect the interpretability of explanations by domain-users. To solve this issue,
we developed the following procedure. First, we assume that a complete explanation is one that connects the two
targeted nodes. If drug A can treat phenotype B, there must be some common pathway that allows A to interact
with B. This way, the procedure starts by running GNNExplainer for several iterations. In each iteration, networkx
is used to check if, in the subgraph generated by GNNExplainer, a path exists between both nodes. If no path is
found, it continues with the next iteration; if it does exist, it stops iterating and that subgraph is considered to be the
final explanation. If no subgraph is found that satisfies the ’pathway’ condition, the last subgraph is returned as a
possible explanation.

In total 7 phenotypes were selected to evaluate the explanations (Muscular Dystrophy (HP:0003560), Res-
piratory Insufficiency (HP:0002093), Arrhythmia (HP:0011675), Congestive Heart Failure (HP:0001635), Di-
lated Cardiomyopathy (HP:0001644), Cognitive Impairment (HP:0100543) and Progressive Muscle Weakness
(HP:0003323)). These phenotypes were selected to cover all the main areas that are affected by the disease (mus-
cular, respiratory, cardiac and intellectual symptoms). For each prediction obtained in these phenotypes (three drug
predictions per phenotype), an explanation was obtained. This process was done for the predictions coming from
KG A and for those coming from KG B. This makes a total of 42 explanations (21 for each graph).

Regarding the parameters of GNNExplainer, because the graphs are highly connected, explanations were gener-
ated by using the 1-hop neighborhood of the graph. Using a higher k-hop neighborhood is not recommended as the
number of nodes in the subgraph increases exponentially which can make it difficult to understand the explanation.
This happens because both graphs are scale-free graphs, and thus, by increasing the number of hops there is a higher
chance that a ’hub-node’ is hit, and the number of nodes escalates exponentially (see Section 5.1 in the results).

Additionally, the maximum size of the explanations was set to 15 (this means that no more than 15 edges will be
part of the explanation). This way, we will avoid obtaining too complex explanations with many edges that might
be impossible to comprehend by researchers. This was done by selecting the edges whose contribution values are
among the 15th highest values.

Finally, the maximum number of iterations was set to 10. In other words, if after 10 iterations GNNExplainer
has not found an explanation that connects the drug candidate with the targeted phenotype it will conclude that
no ’complete’ explanation was found, and the last explanation produced by GNNExplainer will be the one that
will serve as the final answer. This parameter can be increased or reduced depending on the expectations of the
researcher. A large number of iterations increases the chances of finding a complete explanation at the cost of more
computational time. In contrast, reducing the number of iterations reduces the computational time, which can be
useful if a researcher wants to obtain explanations for a large number of predictions.

4.4. Evaluation and metrics

4.4.1. Evaluation of GNN model
Data. We used both graphs KG A and B. Data was split into three sets: training set, validation set and test

set. Baselines. Our baselines include edge2vec [29], GraphSAGE [19], ComplEX [36], DistMult [12], and TransE
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[37]. Evaluation metrics. The Area Under the Precision-Recall curve (AUPRC) was used to validate and test the
performance of the model, as it has been shown to lead to better precision when evaluating link prediction [38].
Additionally, we also computed the Area Under the ROC curve (AUROC), Precision, Recall and the F1-Score
metrics - the harmonic mean of precision and recall.

Other evaluations were developed to further assess the performance of the model. These evaluations include the
testing of different negative sampling sizes (n = 1, 5, 10 and 20) to determine the importance of keeping the data
balanced. Additionally, a regular 10-fold cross validation and a biased 7-fold cross validation were performed. The
biased cross validation consists of the following: in each fold 4 phenotypes were removed from the training set, and
it was observed how well the model was able to predict the links of the removed phenotypes.

4.4.2. Evaluation of explanations
The evaluation of the explanations was done manually, following a two-step process. Firstly, they were classified

as complete or incomplete explanations based on the appearance of a connection between the drug and the pheno-
type. We developed a function to visualize the explanations as semantic graphs (see section 9.5 in the supplementary
material for further details). This way, if the explanation contains a link between the drug and the phenotype it is
considered to be a complete explanation. These explanations are considered to be the most useful as they can be
easily understood and interpreted. However, explanations where there is no link between drug and phenotype (where
there are two separate clusters) or where only one of the target elements (either the drug or the phenotype) is missing,
are considered incomplete explanations. Several illustrative examples are provided in the supplementary material
(See section 9.6).

During the second step, we evaluated the explanations using an objective and a subjective approach. First, com-
plete explanations were reviewed and a manual search was performed to check whether the explanation proposed
by the model had already been described in the literature (objective evaluation). This process was only performed
for predictions that have supporting evidence in the literature and that were classified as complete explanations. The
literature examination was performed using PubMed and Google Scholar during the first half of 2022. Finally, each
explanation was evaluated domain knowledge from rare disease researchers (subjective evaluation).

5. Results

5.1. Rare disease KG topology and representation for drug repurposing

We generated two different drug repurposing knowledge graphs for the Duchenne muscular dystrophy rare dis-
ease. KG A contains 10,786 nodes, 93,905 directed edges. The average node degree of the graph ( 2×numbero f edges

numbero f nodes )
is 10.83, being the node with the highest degree, the human DMD gene, with a total degree of 1683. The diameter
of the graph was 6, meaning that the longest shortest path between two nodes is 6 (in other words, one can travel
from one node to another in 6 steps or fewer). The final feature that was obtained is the clustering coefficient, which
measures the extent to which a graph is clustered together. In a complete graph (where all nodes are connected to
all nodes) this clustering coefficient is equal to 1, while in a tree-like graph this coefficient is equal to 0. In KG A
this clustering coefficient is equal to 0.33. A summary of the features can be found in Table 3.

In the case of KG B (built from 29 nodes: KG A seeds extended by 27 phenotypes of DMD), the total number
of nodes is 83665, with a total of 1984774 directed edges. The average degree in this case is 34.43, being the node
with the highest degree the physiological process ’Protein Binding’ with a total degree of 4817. The diameter of the
graph is 7, which shows one of the features of scale-free networks: despite increasing the number of nodes 8 times
and the number of edges 20 times, the diameter of graph B only increased one unit with respect to graph A. In this
case, the clustering coefficient is equal to 0.48, showing that KG B is more clustered. Table 3 shows a summary of
the features of both graphs.
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Table 3
Table showing features of KG A and B.

Property KG A KG B

Number of Nodes 10786 83665
Number of Directed Edges 93855 1984774
Number of Undirected Edges 58435 1440418
Average Degree 10.83 34.43
Highest Degree 1683 4817
Diameter 6 7
Average Clustering Coefficient 0.33 0.48
Number of drugs 337 1565
Number of diseases 5419 25636
Number of drug-disease pairs 86 599

The schema of the knowledge graph, which is the same for KG A and KG B, can be seen in Figure 2 and shows
how the 8 different node types interact with each other. The schema contains 24 and 29 different edge types for
KG A and KG B respectively, which are not included in this figure for clarity, but are listed in the Supplementary
material S3 and S4.

Fig. 2. Schema of the knowledge graph. Node types are: drugs or chemical compounds (DRUG), genes (GENE), symptoms/phenotypes or
diseases (DISO), gene variants (VARI), genotypes (GENO), gene orthologs (ORTHO), anatomical structures (ANAT), and biological processes
(PHYS).

5.2. GNN model performance for rare disease specific drug repurposing

In total, two GNNs were used, one trained on KG A and one trained on KG B. Hyperparameter optimization was
developed using Ray Tune and optimal values can be found in Table S5. These hyperparameters were obtained by
training several GNN models (Random Search) on graph A; and were later used to train a GNN model on graph B.
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Table 4
Precision, Recall and F1-Score obtained on each dataset, trained on each graph.

Precision Recall F1-Score

Dataset KG A KG B KG A KG B KG A KG B

Training 0.97 0.95 0.97 0.94 0.97 0.94
Validation 0.92 0.94 0.92 0.94 0.92 0.94
Test 0.92 0.94 0.92 0.94 0.92 0.94

To measure link prediction performance, the scores obtained were Precision, recall and the F1-Score, and can be
found in Table 4 (the threshold used was 0.8). We found that both models (the one trained with KG A and the one
trained with KG B) show high performance (F1-Score = 0.92 and 0.94 in KG A and B, respectively in the test set).
To visualize the performance of the link prediction task, the ROC curve of KG A and KG B obtained in the test set
can be found in Figures 3 and Figure 4, respectively.

Fig. 3. AUROC on the test dataset using KG A.

Fig. 4. AUROC on the test dataset using KG B.
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5.3. Evaluating rd-explainer with state-of-the-art methods

Firstly, we evaluated our GNN model applying different strategies and compared its performance with the state-
of-the-art graph embeddings used in drug repurposing methods. Then, we evaluated our approach based on its ability
to predict drugs that have already been reported in the literature for a new symptom or phenotype.

We performed a regular 10-fold cross-validation and a biased 7-fold cross-validation evaluation in KG A. The
regular 10-fold cross-validation obtained an average AUPRC of 0.98 and an average AUROC of 0.98. For the biased
7-fold cross-validation, in each fold 4 symptoms (along with the edges connected to those symptoms) were removed
from the training set. The performance of the model was then tested on the removed symptoms. In this case, the
average AUPRC was 0.75 and the AUROC was 0.8.

The performance of the pipeline was evaluated for a different number of negative edges. This evaluation was only
performed in KG A due to the large increase in the number of edges in the evaluation tests (and the consequential
increase in the computational time). The results can be seen in Table 5. It is seen that as the number of negative
edges increases, the PR curve is affected while the ROC curve remains mostly intact, a result that has been previously
reported [39].

Table 5
Performance as the number of negative edge samples increases. This results were obtained using KG A.

Number of
negative edges

Precision Recall F1-Score AUROC AUPRC

1 0.92 0.92 0.92 0.97 0.97
5 0.86 0.92 0.89 0.97 0.90
10 0.87 0.90 0.89 0.97 0.84
20 0.69 0.92 0.75 0.96 0.74

Finally, the performance of rd-explainer (tested in KG A) was also compared to other state-of-the-art methods,
including edge2vec, GraphSAGE, ComplEX, DistMult, and TransE. Our results can be seen in Table 6 and revealed
that rd-explainer outperformed all other methods based on the different evaluation metrics measured.

Table 6
Prediction performance metrics comparing rd-explainer with other state-of-the-art graph embedding methods including edge2vec, GraphSAGE,
ComplEX, DistMult and TransE. The best results are highlighted. In the headings, P stands for Precision, R for Recall, and F1 for F1-Score.

Method P R F1 AUROC AUPRC

edge2vec 0.90 0.90 0.90 0.98 0.97
GraphSAGE 0.71 0.65 0.62 0.64 0.87
ComplEX 0.84 0.76 0.74 0.95 0.99
DistMult 0.93 0.93 0.92 0.95 0.98
TransE 0.88 0.87 0.87 0.95 0.95
rd-explainer 0.94 0.94 0.94 0.98 0.98

5.4. Drug predictions validation based on the scientific literature

We also evaluated the prediction performance based on the capacity of our method to discover marketed drugs
already reported to be used for a new phenotype. First, we listed for each of the 7 selected phenotypes the three
drugs with the highest scores. Because the objective is to find new indications for drugs; if any of the reported drugs
already appears in the graph as a treatment for the targeted symptom, this drug will be skipped and the next one
with the highest score will be selected. For example, if aprindine is selected as the drug with the highest score to
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treat arrhythmia, but the relation ’aprindine is a substance that treats arrhythmia’ is already present in our graph,
aprindine will not be reported as a possible drug candidate.

For each possible drug candidate, a literature search was performed to find preliminary evidence that that drug
had already been used to treat the symptom. If the drug was contraindicated to treat the symptom (or if it could
cause the symptom) it was also annotated. The results of each drug candidate obtained using KG A can be found in
Table S9. Additionally, Table 7 summarizes the amount of drugs (in percentage) that contained supporting evidence,
contraindication evidence or no evidence at all. We found that only a fifth of drug candidates had supporting evidence
in the literature, and that the vast majority of candidates (65.43%) did not have any evidence at all. There is a small
percentage of them that are actually contraindicated to treat the targeted symptom/phenotype. Finally, the amount
of supporting/contraindicating evidence can be found summarized in Table S7.

Table 7
Percentage of drugs containing supporting evidence, contraindication evidence or no evidence at all for both Graph A and B.

Property KG A KG B

Supporting Evidence 20.99 % 27.16 %
Contraindication Evidence 13.58 % 14.82 %
No Evidence 65.43 % 58.02 %

The same approach was followed for KG B. Information regarding the drug candidates for each symptom (as
well as supporting evidence) can also be found in Table S10. Additionally, the percentage of drugs with supporting
evidence, contraindication evidence or no evidence at all can be seen in Table 7. In this case, the number of drug
candidates with evidence has increased relative to the drug candidates obtained with KG A (27% in B vs 21% in
A), and the number of drug candidates without evidence has been reduced (58% in B vs 65% in A). The number of
drug candidates with contraindications remains almost the same (13% in A vs 14% in B).

5.5. Evaluating drug repurposing explanations as semantic graphs

Evaluating an explanation is a tough task and many different benchmarks have recently appeared to evaluate
them [40]. In this work, we followed two different approaches to evaluate the explanations: a more subjective one,
where the explanation was evaluated with our own biological knowledge; and a more objective one, where a manual
literature search and curation was performed to check if the suggested explanation has already been reported. We se-
lected 7 phenotypes (muscular dystrophy, respiratory insufficiency, arrhythmia, dilated cardiomyopathy, congestive
heart failure, progressive muscle weakness and cognitive impairment) and their top 3 predictions, then explanations
were produced from the models trained in both KGs. The selection of these phenotypes aimed to cover the diverse
systems affected by the disease. Each explanation was analyzed and, if possible, compared to the one found in the
literature.

Explanations were classified into complete and incomplete explanations. Complete explanations are those that
show a connection (path) between the drug candidate and the targeted symptom/phenotype (Figure S3). They are
considered complete because they allow for an easy human-understandable interpretation. However, incomplete
explanations are those where the explanation is made up of two separate clusters (one for the drug and one for the
phenotype) (Figure S4) or by a unique cluster where either the drug or the phenotype is missing (Figure S5).
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Table 8
Number and percentage of complete and incomplete explanations in each evidence type.

Complete
Explanations

Percentage
Complete
Explanations

Incomplete
Explanations

Percentage
Incomplete
Explanations

Supporting Evidence 13 68 % 6 32 %
Contraindication Evidence 3 30 % 7 70 %
No Evidence 5 38 % 8 62 %

Total 21 50 % 21 50 %

The global analysis of the completeness of the explanations generated can be seen in Table 8 (amount of complete
and incomplete explanations in each type of supporting evidence) and Table 9 (amount of supporting evidence in
each type of explanation). This analysis was performed taking into account the explanations from both graphs. As
can be seen in Table 8, in total the same number of complete and incomplete explanations were obtained (21 each).
However, when looking at each category separately, it is seen that when there is evidence GNNExplainer tends
to produce complete explanations (68%), and conversely when there is no supporting evidence or when the drug
is contraindicated the resulting explanation is usually incomplete (62% and 70%, respectively). As can be seen in
Table 9, when a complete explanation is created, almost 2/3 of the time the explanation contains supporting evidence
(62%); while when the explanation is incomplete, only 1/4 of the time it contains supporting evidence (28%).

Table 9
Number and percentage of explanations with no evidence, with supporting evidence and with contraindications in each type of explanation.

Supporting Evidence
Percentage
with
Evidence

Contraindication Evidence

Percentage
with
Contraindications

No
Evidence

Percentage
No
Evidence

Complete

Explanations
13 62 % 3 14 % 5 24 %

Incomplete

Explanations
6 28% 7 33 % 8 38%

An additional analysis was performed, this time considering each graph separately. This can be seen in Table
10 and Table S7. There is a clear difference between the explanations obtained in graph A and B. Firstly, KG A
explanations are more likely to be complete (72 % in A vs 28 % in B), while KG B produces more incomplete
explanations (72 % in B vs 28 % in A) (Table 10).

Table 10
Number and percentage of complete and incomplete explanations in each evidence type and in each graph.

Evidence Type
Complete Explanations Incomplete Explanations

Number Percentage Number Percentage

KG A

Supporting Evidence 9 100% 0 0%
Contraindication Evidence 1 17% 5 83%
No Evidence 5 83% 1 17%
Total 15 72% 6 28%

KG B

Supporting Evidence 4 40% 6 60%
Contraindication Evidence 2 50% 2 50%
No Evidence 0 0% 7 100%
Total 6 28% 15 72%
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An example of an explanation produced by rd-explainer can be seen in Figure 5. This explanation is classified as
complete and suggests why Doxorubicin should be considered to treat respiratory insufficiency; as it is a drug that
targets CHRM1 a gene that interacts with DAG1, which causes the disease. Throughout this section explanations
have been classified into complete and incomplete. However, an explanation being complete does not make it a good
explanation. This way, for example, an explanation of the type ’Drug A targets Gene B, Gene B interacts with Gene
C, and Gene C causes Disease D’ can make biological sense such as in Figure 5. On the other hand, an explanation
of the type ’Drug A treats Disease B, Disease B is caused by Gene C, Gene C causes Disease D’ does not make full
biological sense (Drug A could treat Disease B by targeting a gene other than Gene C; this way, the same treatment
could not be applied for Disease D). In fact this is what is observed in Figure S6, where disopyramide is said to
treat muscular dystrophy following the next explanation: disopyramide treats urinary incontinence, affectation of
the DMD gene can cause urinary incontinence, and DMD gene has muscular dystrophy as a phenotype. In this case,
a person may have urinary incontinence for several reasons, and disopyramide may be able to treat one of them, but
not necessarily the one caused by affectation in DMD gene.

The objective evaluation is undoubtedly more unbiased and equitable. Nonetheless, subjective evaluations are
also significant since there are drug-phenotype interactions that are not fully understood (especially when a certain
drug is producing an undesired side effect), and so are not well established in the literature. However, analyzing the
proposed explanations based on expert domain knowledge might shed light on the interaction and help to formulate
a hypothesis that can be clearly designed to be tested in the wet laboratory.

After applying the objective evaluation, only one explanation (levosimendan - progressive muscle weakness)
was found to have supporting evidence (where levosimendan treats the disease by increasing the troponin C affin-
ity for calcium), and two links’ explanations (doxorubicin - respiratory insufficiency and sorafenib - respiratory
insufficiency) contained unclear interactions (both were of type contraindications). The results after applying this
evaluation can be found summarised in Table S6. Regarding subjective evaluations, 17 out of 21 explanations were
found to be good explanations (they were in accordance with biological reasoning) such as the one illustrated by
doxorubicin - respiratory insufficiency in Figure 5; and 4 were considered bad explanations (they did not make
biological sense), the previously mentioned disopyramide - muscular dystrophy in Figure S6, and the explanations
in Figures S7, S8 and S9.

Fig. 5. Explanation of drug candidate Doxorubicin as possible treatment for Respiratory Insufficiency. Classified as complete explanation.
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5.6. Generalizability of rd-explainer tested on other case studies

To show that this method can be extended to other rare diseases it was also tested in Alzheimer’s Disease (AD)
and Amyotrophic Lateral Sclerosis (ALS) type 1. Although Alzheimer’s disease is not a rare disease, there are
different types of Alzheimer with very little prevalence. This way, for the Alzheimer’s knowledge graph we used
the general disease (MONDO:0004975) and all its causal genes that were present in Monarch (APP (HGNC:620),
APOE (HGNC:613), PSEN1 (HGNC:9501) and PSEN2 (HGNC:9509)) as seeds. The final result would be a knowl-
edge graph that specializes in Alzheimer diseases and that we can use to focus on the symptoms of the rare types
of the disease. For the ALS type 1 knowledge graph we used the seed for the disease (MONDO:0007103) and the
causal gene according to Monarch (SOD1 (HGNC:11179)). Table 11 shows the GNN performance in both diseases,
again showing a high AUROC and AUPRC for these diseases.

Table 11
Table showing different performance metrics tested in AD and ALS.

Precision Recall F1-score AUROC AUPRC

AD 0.95 0.95 0.95 0.98 0.97
ALS 0.94 0.93 0.94 0.97 0.97

The same approach that was followed for DMD was followed for both diseases: for each symptom we analyzed
the three drug candidates with the highest score (these drug candidates should not appear in the knowledge graph);
then a literature search was performed to check if the drug candidates had been reported by the scientific community.
The complete list of phenotypes as well as drug candidates and scores for each phenotype can be found in Tables
S11 and S12. These tables also contain whether drug candidates had supporting evidence in the literature.

Among the predictions, it is worth mentioning Pexidartinib, a drug candidate that was proposed by the model
to treat memory impairment in AD and currently undergoing a clinical trial as a drug that could potentially be
beneficial to treat the disease [41].

6. Discussion

We integrated disease-specific knowledge graphs in combination with GNN and XAI for interpretable drug re-
purposing. We found that state-of-the-art XAI methods based on GNNs support in silico predictions of candidate
repurposable drugs for rare diseases by providing interpretable reasoning paths of mechanism of action. We devel-
oped rd-explainer, a method for performing computational drug repurposing specifically for rare diseases. It utilizes
cutting-edge deep learning methods such as edge2vec and GNNs and provides drug-symptom/phenotype predic-
tions with high performance scores, and utilizes a modified version of GNNExplainer to provide explanations as
semantic graphs for the interpretability of the results. We also found that these explanations have different levels of
usefulness to generate testable hypotheses: paths linking drug and phenotype nodes are more understandable versus
isolated clusters since they are similar to human reasoning; adding semantics to relations adds biological meaning
to help to formulate a hypothesis and design the experiment in the laboratory; and providing clear semantic graphs
by removing relations that are not contributors in the learning process. We tested the generalizability of our method
by running it on two additional diseases: ALS and AD. ALS type 1 was selected to test the pipeline in another
monogenic disease with fewer available information. AD was selected as it is a common disease with rare subtypes
that can be caused by several genes, and we wanted to test the pipeline in a polygenic and multifactorial disease. We
demonstrated that our pipeline performs well on mono- and polygenic rare diseases.

rd-explainer is a researcher-centered drug repurposing method that has been demonstrated to be an innovative
AI based method for rare disease drug research. rd-explainer’s main advantage is its interpretability. The main
motivation of this study was to provide explanations underlying AI predictions. rd-explainer provides explanations
as semantic graphs, a type of explanation that resembles human reasoning. This is in line with current research on
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user-centric XAI [42]. Not only does this have high value to support rare disease researchers to formulate evidence-
based hypotheses testable in the wet laboratory (and reduce cost, time and risk), but to gain new disease knowledge
and speed up robust drug research. Our approach was to use state-of-the-art AI and XAI methods used in drug
repurposing such as knowledge graphs to naturally represent known associations among biological entities with
expressive semantics and supporting curated evidence, graph learning, and graph based XAI methods. The advance
in the field of rare diseases is that we provide interpretable predictions thanks to a pipeline that seamlessly integrates
a graph learning model with an explainer, combining results of both model performance and explanation accuracy to
mitigate the black-box problem and promote XAI adoption in the field [43]. BioKnowledge Reviewer tool provides
rare disease specific knowledge graphs for disease biology data collection using the Monarch knowledge base API
[30] and, thus, disease context. We argue that a tool or approach that can collect associations from a virtual, federated
knowledge graph via APIs could extend this feature to any biomedical associations such as for drug data collection,
and improve data and knowledge driven research. Another great advantage of the rd-explainer method is its modular
implementation; this means that different parts of the workflow (data, features, GNN and explanations) can be
independently modified and the pipeline can still be run. For example, if one is interested in using another node
feature embedding algorithm instead of edge2vec, one can just modify that component of the pipeline and still run
the rest of the workflow.

Our results showed that rd-explainer is a highly performant graph ML based drug repurposing method. Our
method builds rare disease-specific models trained in newly generated KG for the disease of focus and enriched with
data for the prediction task. Compared with state-of-the-art AI-based drug repurposing approaches, rd-explainer
demonstrates outstanding performance. Throughout this paper, we have compared rd-explainer with various AI
methods that employ different techniques for their predictions, including GNNs such as GraphSAGE, random walk
embeddings such as edge2vec, and geometric embeddings using models like ComplEX, DistMult, and TransE. By
combining random walk models (edge2vec) with GNNs (GraphSAGE), rd-explainer achieves superior results in the
link prediction task. In particular, edge2vec outperforms GraphSAGE, suggesting that the exceptional performance
of rd-explainer is primarily attributed to the random walk model, with the GNN providing an additional performance
boost. This level of performance rivals other models developed for drug repurposing, such as deepDR (AUROC =
0.908) [44]. Although there are benchmarks and frameworks to evaluate the performance of GNNs [45–50], to the
best of our knowledge there is no standard for drug repurposing, and this makes it challenging to directly com-
pare rd-explainer with other methods due to one of its key features: the creation of high-quality disease specific
knowledge graphs. These knowledge graphs are enriched with data from a wide array of sources including domain
expert knowledge via the seed nodes, and curated known relations among genes, anatomical structures, biologi-
cal processes and diseases not only from humans, but also importantly numerous other species to fill the lack of
molecular knowledge. This comprehensive approach significantly boosts the graph’s richness and diversity, making
it a valuable resource for tackling rare diseases, which often suffer from limited research attention. By maximizing
the information available, rd-explainer enhances our ability to identify potential treatments for these understudied
conditions and ultimately enable more effective and faster translation. In contrast, Huang et al. recently proposed a
clinician-centered drug repurposing foundation model pre-trained in a medical KG composed of 17,000 diseases and
transfer learning based on disease mechanism similarity [51]. It would be interesting to combine both approaches
and investigate the effect of extending our KGs with similar disease networks from well-known diseases.

Our new predictions are valid drug candidates since they are consistent with recent findings in the literature. We
demonstrated that rd-explainer can provide new interesting drug-phenotype predictions. For example, Sunitinib,
one of the drugs that appears to be a good candidate to treat disease symptoms according to both models (using
KG A and KG B), has been considered a good drug candidate for treating DMD and in 2019 appeared to be in
preclinical trials [52]. This drug belongs to the group of tyrosine kinase inhibitors, and many other drugs that belong
to this category have been proposed by our model (Fedratinib, Sorafenib, Bosutinib, Ruxolitinib and Midostaurin).
Similarly, Mezlocillin, an antibiotic used to treat gram-negative bacterial infections, has also been proposed by our
model; while Gentamicin, another gram-negative antibiotic, was in 2019 in clinical trials to treat DMD [52]. This
way, despite not producing drug candidates that are undergoing a clinical trial or treating the disease, it produces drug
candidates that participate in similar biological processes (i.e., tyrosine kinases inhibitor, gram negative antibiotics)

Importantly, explanations for hypothesis generation may enable one to move towards lab-in-the-loop framework.
Regarding the interpretability and utility of the explanations, one of the 21 explanations examined was supported by
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evidence in the literature. Nonetheless, this does not mean that the explanations are useless. A good example of this
would be the explanation for the Methylprednisolone-Muscular Dystrophy link (Figure S10). The explanation is
simple: ’Methylprednisolone treats DMD, DMD has Muscular Dystrophy as a phenotype; thus, methylprednisolone
can treat Muscular Dystrophy’. In this case, the explanation does not contain supporting evidence but the explanation
still makes sense. In the literature, methylprednisolone is said to be a good candidate for the treatment muscular
dystrophies because it interacts with the glucocorticoid receptor and this leads to the activation of anti-inflammatory
signaling and the inhibition of proinflammatory signaling [53]. The explanation proposed by rd-explainer does
not provide the underlying causative mechanism that relates methylprednisolone and muscular dystrophy, but a
researcher can still see that muscular dystrophies and methylprednisolone are interrelated. This illustrates how
even though an explanation may lack comprehensive supporting evidence, it can still provide valuable directional
cues for further more precise investigation. Another important aspect is that rare disease findings in the lab can be
introduced back in the knowledge graph to update and improve the disease specific AI model for continual learning
and enabling precise experimental design. In addition, this synergy fosters collaboration between computational and
wet lab researchers to increase efficiency for disease specific drug research [30].

Finally, we found that knowledge graph topology has an impact on explainability. It was also seen that KG A usu-
ally produces more complete explanations, while in KG B incomplete explanations appear to be more numerous.
This could happen due to the difference in the graph structure itself: graph A has a smaller clustering coefficient than
graph B (see Section 5.1), which leads to more edges being present in the subgraphs produced by GNNExplainer.
This way, because the 15th edges with the highest scores are selected, it is more likely to find a path between drug
and phenotype in KG A than in B. Another interesting difference is that explanations generated with KG A tend
to have a higher ’sensitivity’, while explanations generated with KG B tend to have a higher ’specificity’. When an
incomplete explanation is produced using graph A it is very unlikely that the explanation will contain supporting
evidence (0 explanations were found to have evidence if the explanation was incomplete in KG A). Similarly, when
a complete explanation is produced in KG B, it is very likely that the explanations have supporting evidence or
contraindication evidence (67% of complete explanations had supporting evidence and 33% of complete explana-
tions had contraindication evidence). For this reason, if one remains skeptical about the explanations themselves,
this quality of the explanations might be used as filter/validation. For example, if an incomplete explanation is ob-
tained with KG A, it is unlikely that it is trustworthy (none of the incomplete explanations had supporting evidence).
Similarly, if a complete explanation is obtained using KG B, it is likely that there is some interaction between the
drug and the phenotype (all complete explanations generated with graph B had either supporting or contraindication
evidence). Our findings are aligned with recent studies in which the influence of clustering coefficient and topology
has been observed on embedding-based predictions [54, 55], here we extend these observations to its impact on
graph-based explanations.

Limitations and future directions
An important limitation of this study is that we only utilize one XAI method, which is not model agnostic. XAI

is a hot research topic in AI, where new and more sophisticated methods are frequently published [56]. It would be
good to extend our study to other XAI types to check how applicable they are given the unique characteristics of rare
diseases, including limited data, lack of knowledge, and lack of a gold drug-phenotype standard. Additionally, the
data used in the pipeline is from 2021, so updating the pipeline on recent data in the future could further strengthen
its applicability. Another important limitation is the lack of standard benchmarking and metrics to systematically
evaluate explainers and explanations. Currently, some initial efforts are underway in this direction [35, 57–61], but
there is still a lack of a common standard [62]. Another limitation is the known reproducibility issue of our explainer
[35], which may imply that the explanations are different each time it is used, and may reduce the confidence and
reliance on the explanations. We did several experiments to try and bring consistency to explanations; for example,
executing GNNExplainer several times and using the mean mask as the final mask or increasing the number of
epochs (results not shown). However, this did not solve the issue. This experience makes us strongly recommend
working on the standard evaluation of explanations by the XAI community to foster trust in the application of
AI in bioinformatics and biomedicine. Additionally, many times the explanation would consist of a subgraph in
which the two targeted nodes would be disconnected from each other, which might bring confusion and could be
seen as a ‘bad’ explanation. Therefore, work towards methods that prioritize or focus on providing just connecting
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paths such as metapath based ones [63–67] and improving path visualization for user interpretation [68–70] is
arguably recommended. Finally, while we focused primarily on integrating a graph ML model with an explainer,
a clear line of research will be to work on interpretability and reproducibility of explanations in the context of
the drug repurposing task. The reproducibility/inconsistency could be affected by the size and complexity of our
data. This inconsistency could make the users of this pipeline skeptical about its explanations and, for this reason,
more investigation should be done in this element of the pipeline to make it a more robust model. To improve
this, ontologies could be incorporated into the knowledge graph to increase the quality and interpretability of our
data. Ontologies help to standardize data into the shared meaning by a community enhancing thus interpretability
by domain users. Importantly, the formal description of knowledge embedded in ontologies can be used to verify
data consistency and to infer implicit knowledge into the graph [71]. Nonetheless, knowledge graph and ontology
changes pose a great interoperability challenge to the community to keep up with downstream bioinformatics and
data science workflows and analyses [72, 73]. Finally, it would make our work more ’FAIR’ [74], i.e., not only
understandable by humans but also by machines, by providing our drug repurposing for DMD KG from a FAIR
data point [75], and rd-explainer from workflowHub [76].

7. Conclusion

We present an application of explainable AI on state-of-the-art computational drug repurposing for rare dis-
eases. Our knowledge graph-based deep learning method provides human understandable explanations for the drug-
symptom/phenotype link prediction task and we demonstrated that graph XAI can be applied to rare diseases. The
rd-explainer method is an innovative approach that can maximize available disease-specific knowledge and gener-
ates context-aware predictions with explanations. Our GNN-based method is highly performant and drug predictions
are often supported by evidence. The key contribution of our study is that our method provides explanations in the
form of semantic graphs that can help researchers of rare diseases make informed decisions to experimentally val-
idate candidate drugs. However, we detected that data topology affects explanations, highlighting the importance
of investigating further how best to represent graphical knowledge for robust model performance and explanation
accuracy. rd-explainer is generalizable to other rare diseases and provides computer-aided guidance for biologists
to accelerate translational research. Finally, future research should advance on necessary standard mechanisms to
evaluate explainability and foster adoption by domain experts and to mitigate the black-box problem of trust on AI,
especially for biomedicine where decisions can have an important impact on people’s lives.

8. Code availability

The code is freely accessible with an open MIT license at https://github.com/PPerdomoQ/rare-disease-explainer.

https://github.com/PPerdomoQ/rare-disease-explainer
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9. Supplementary section

9.1. Knowledge Graph seeds

Table S1
Table containing seeds used to build KG A.

Seed Name Seed ID

DMD HGNC:2928
DMD MONDO:0010679
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Table S2
Table containing seeds used to build KG B.

Seed Name Seed ID

DMD HGNC:2928
DMD MONDO:0010679
Hypotonia HP:0001252
Specific learning disability HP:0001328
Arrhythmia HP:0011675
Congestive heart failure HP:0001635
Dilated cardiomyopathy HP:0001644
Calf muscle hypertrophy HP:0008981
Motor delay HP:0001270
Muscular dystrophy HP:0003560
Delayed speech and language development HP:0000750
Hypoventilation HP:0002791
Intellectual disability, mild HP:0001256
Hyporeflexia HP:0001265
Cognitive impairment HP:0100543
Proximal muscle weakness HP:0003701
Abnormal EKG HP:0003115
Calf muscle pseudohypertrophy HP:0003707
Cardiomyopathy HP:0001638
Flexion contracture HP:0001371
Elevated circulating creatine kinase concentration HP:0003236
Global developmental delay HP:0001263
Skeletal muscle atrophy HP:0003202
Respiratory insufficiency HP:0002093
Waddling gait HP:0002515
Gowers sign HP:0003391
Generalized hypotonia HP:0001290
Progressive muscle weakness HP:0003323
Scoliosis HP:0002650
Hyperlordosis HP:0003307
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9.2. Number of edge types

Table S3
Number and percentage of edge types in KG A.

Edge Type Count Percentage

in 1 to 1 orthology relationship with 35650 37.96%
in orthology relationship with 25242 26.88%
has phenotype 15730 16.75%
interacts with 9824 10.46%
is part of 1465 1.56%
has affected feature 1101 1.17%
expressed in 1079 1.14%
enables 983 1.04%
pathogenic for condition 976 1.03%
targets 518 0.55%
involved in 432 0.46%
likely pathogenic for condition 182 0.19%
contributes to condition 171 0.18%
has role in modeling 134 0.14%
is allele of 96 0.10%
is substance that treats 86 0.09%
colocalizes with 84 0.09%
source 29 0.03%
is causal germline mutation in 16 0.02%
has genotype 7 0.01%
contributes to 5 0.01%
causes condition 3 0.003%
is marker for 1 0.001%
is causal germline mutation partially giving rise to 1 0.001%
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Table S4
Number and percentage of edge types in the KG B.

Edge Type Count Percentage

has phenotype 836138 42.13%
in 1 to 1 orthology relationship with 520547 23.23%
in orthology relationship with 333288 16.79%
interacts with 226174 11.40%
expressed in 14589 0.74%
is part of 9427 0.47%
colocalizes with 8112 0.41%
involved in 7790 0.39%
enables 7053 0.36%
targets 5070 0.26%
has role in modeling 3449 0.17%
causes condition 2479 0.12%
contributes to condition 2203 0.11%
is allele of 1167 0.06%
has affected feature 1137 0.06%
pathogenic for condition 1024 0.05%
is causal germline mutation in 900 0.04%
is substance that treats 599 0.03%
contributes to 198 0.01%
likely pathogenic for condition 185 0.01%
is causal loss of function germline mutation of in 179 0.01%
is reference allele of 130 0.01%
is marker for 97 0.005%
has genotype 67 0.003%
is causal susceptibility factor for 42 0.002%
source 32 0.002%
is causal somatic mutation in 16 0.001%
is causal gain of function germline mutation of in 15 0.001%
is causal germline mutation partially giving rise to 12 0.001%
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9.3. GNNExplainer algorithm

GNN,NodeIdx1,NodeIdx2,G Gs,m, Mask Emb = GNN(G) // Obtain embeddings
InitialPred = Emb[NodeIdx1] · Emb[NodeIdx2] // Get initial prediction
Gs = S ubgraph(G,NodeIndex1,NodeIndex2) // Obtain subgraph
Mask = InitializeMask(Gs) // Initialize Mask
for Epoch in Epochs do

Gs,m = ApplyMask(Gs,Mask) // Apply Mask to subgraph
NewEmb = GNN(Gs,m) // Get new embeddings
NewPred = NewEmb[NodeIdx1] · NewEmb[NodeIde2] // Get new prediction
Loss = GetLoss(InitialPred,NewPred) // Calculate loss
Mask = Backpropagate(Mask, Loss) // Backpropagate loss

end
return Gs,m, Mask

Algorithm 1: GNNExplainer Link Prediction Pseudocode. GNN stands for the trained GNN model. G stands
for the Graph.
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9.4. List of hyperparameters

Table S5
Table showing the different options of hyperparameters that were tested as well as their optimal values.

Process Hyperparameter Options Optimal Value

edge2vec

Number of walks 2, 4, 6 2
Walk Length 3, 5, 7 7
Embedding Dimension 32, 64, 128 32
Edge Direction Undirected, Directed Directed
p 0.5, 0.7, 1 0.7
q 0.5, 0.7, 1 1
Epochs 5, 10 10

GNN

Hidden Dimension 64, 128, 256 256
Output Dimension 64, 128, 256 64
Layers 2, 4, 6 2
Aggregation Function mean, sum mean
Dropout 0, 0.1, 0.2 0.2
Learning Rate 0.001 - 0.1 0.07
Epochs 100, 150, 200 150
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9.5. Visualization of explanations

To visualize the resulting explanations, a custom visualization function was developed to represent explanations
as more human readable and semantic graphs and, thus, improving the one provided by Pytorch Geometric [77].
In the first place, the possibility of visualizing the edge types has been incorporated. Additionally, in this new
formula several customizable parameters have been added. Now, it is possible to only visualize the active edges of
the explanation, removing non-important edges. This will allow for clearer visualization of the subgraph. Figure S1
shows how an explanation is modified after applying this option. Finally, it is also possible to remove unconnected
clusters from the explanations. This way, if an explanation is formed by several clusters, there is the possibility
of just viewing the ones that contain the drug candidate and the targeted phenotype. Figure S2 shows how the
explanation is modified after applying this filter.

Fig. S1. Explanation after removing non-important edges. Left: Explanation keeping all the edges. Right: Explanation removing non-important
edges.

Fig. S2. Explanation after removing unconnected clusters. Left: Explanation keeping all the clusters. Right: Explanation removing additional
clusters.
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9.6. Complete/Incomplete explanation Example

Fig. S3. Explanation of drug candidate Levosimendan as possible treatment for Muscular Dystrophy. Classified as complete explanation.
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Fig. S4. Explanation of drug candidate Axitinib as possible treatment for Respiratory Insufficiency. Classified as incomplete explanation.

Fig. S5. Explanation of drug candidate Entrectinib as possible treatment for Dilated cardiomyopathy. Classified as incomplete explanation.
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9.7. Evaluation of explanations

Table S6
Table showing the amount of times each drug appears as one of the top 3 drug candidates with highest score treat one of the 27 symptoms. It is
also shown the amount of supporting evidence and contraindication evidence for each drug. This information was obtained using Graph A.

Drug Appearances Percentage With Evidence
With
Contraindications

Entrectinib 25 92.59 % 0 8
Axitinib 19 70.37 % 1 1
Nintedanib 12 44.44 % 2 0
Levosimendan 7 25.92 % 6 0
Disopyramide 6 22.22 % 2 0
Doxorubicin 2 7.40 % 0 2
Aprindine 2 7.40 % 2 0
Amiodarone 1 3.70 % 1 0
Acepromazine 1 3.70 % 0 0
Mezlocillin 1 3.70 % 0 0
Sunitinib 1 3.70 % 0 0
Fedratinib 1 3.70 % 0 0
Carvedilol 1 3.70 % 1 0
Queracetin 1 3.70 % 1 0

Table S7
Table showing the number and percentage of explanations with no evidence, with supporting evidence, and with contraindications for each type
of explanation and each graph.

With Evidence
Percentage
With Evidence

With Contraindications
Percentage
With Contraindications

No Evidence
Percentage
No Evidence

KG A
Complete Explanations 9 60% 1 7% 5 33%
Incomplete Explanations 0 0% 5 83% 1 17%

KG B (Large)
Complete Explanations 4 67% 2 33% 0 0%
Incomplete Explanations 6 40% 2 13% 7 47%
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Fig. S6. Explanation of drug candidate Disopyramide as possible treatment for Muscular Dystrophy. Classified as complete explanation.

Table S8
Table showing the analysis of the explanation. The Good/Bad column shows the subjective evaluation. The Supporting Evidence Link shows
if the Drug-Disease link contains supporting evidence. The Supporting Evidence Explanation shows if the explanation itself has supporting
evidence.

Graph Drug Disease Good/Bad Supporting Evidence Link Supporting Evidence Explanation

KG A

Levosimendan Muscular Dystrophy Good Yes -
Disopyramide Muscular Dystrophy Bad Yes -
Entrectinib Muscular Dystrophy Good No -
Entrectinib Respiratory Insufficiency Good No -
Doxorubicin Respiratory Insufficiency Good Contraindication Unclear: https://grantome.com/grant/NIH/R01-HL146443-01
Levosimendan Arrhythmia Bad Yes -
Amiodarone Arrhythmia Good Yes -
Isradipine Arrhythmia Good Yes -
Levosimendan Dilated Cardiomyopathy Bad Yes -
Aprindine Congestive Heart Failure Bad Yes -
Nintedanib Congestive Heart Failure Good No -
Levosimendan Progressive Muscle Weakness Good Yes https://www.frontiersin.org/articles/10.3389/fphys.2021.786895/full
Entrectinib Cognitive Impairment Good Contraindication -
Axitinib Cognitive Impairment Good Yes -
Quercetin Cognitive Impairment Good Yes -

KG B (Large)

Methylprednisolone Muscular Dystrophy Good Yes -
Methylprednisolone Respiratory Insufficiency Good Yes -
Sorafenib Respiratory Insufficiency Good Contraindication Unclear: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961597/
Methylprednisolone Progressive Muscle Weakness Good Contraindication -
Resveratrol Progressive Muscle Weakness Good Yes -
Sorafenib Cognitive Impairment Good Contraindication -

https://grantome.com/grant/NIH/R01-HL146443-01
https://www.frontiersin.org/articles/10.3389/fphys.2021.786895/full
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961597/
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Fig. S7. Explanation of drug candidate Aprindine as possible treatment for Congestive heart failure. Classified as complete explanation.

Fig. S8. Explanation of drug candidate Levosimendan as possible treatment for Dilated cardiomyopathy. Classified as complete explanation.
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Fig. S9. Explanation of drug candidate Levosimendan as possible treatment for Arrhythmia. Classified as complete explanation.

Fig. S10. Explanation of drug candidate Methylprednisolone as possible treatment for Muscular dystrophy. Classified as complete explanation.
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9.8. Drug Candidates on KG A

Table S9: Table showing the drug candidates with the highest scores for each symptom/phenotype obtained in
Graph A. Any evidence that supports the prediction will be shown in the Supporting Evidence column. If the drug
is contraindicated for the given symptom/phenotype it will also be shown in this column.

Symptom ID Drug Candidate Score Supporting Evidence

Muscular dystrophy HP:0003560
Levosimendan 0.849 https://pubmed.ncbi.nlm.nih.go

v/30796500/
Disopyramide 0.848 https://pubmed.ncbi.nlm.nih.go

v/7045292/
Entrectinib 0.845 None

Respiratory
insufficiency HP:0002093

Entrectinib 0.954 None
Axitinib 0.925 None
Doxorubicin 0.915 May produce respiratory dys-

function: https://grantome.com
/grant/NIH/R01-HL146443-01

Gowers sign HP:0003391
Entrectinib 0.963 None
Axitinib 0.945 None
Nintedanib 0.932 None

Global
developmental delay HP:0001263

Entrectinib 0.985 Can produce developmental de-
lay: https://www.ncbi.nlm.nih.g
ov/pmc/articles/PMC8341080/

Axitinib 0.974 None
Nintedanib 0.968 None

Hyporeflexia HP:0001265
Entrectinib 0.923 None
Axitinib 0.905 None
Nintedanib 0.872 None

Proximal muscle
weakness HP:0003701

Entrectinib 0.961 Can produce muscle weakness:
https://www.drugs.com/sfx/entr
ectinib-side-effects.html

Axitinib 0.944 None
Nintedanib 0.925 https://pubmed.ncbi.nlm.nih.go

v/29991677/

Intellectual disability HP:0001256
Entrectinib 0.947 None
Axitinib 0.921 None
Doxorubicin 0.884 Can produce cognitive impair-

ment: https://pubmed.ncbi.nl
m.nih.gov/34055643

Calf muscle
pseudohypertrophy HP:0003707

Disopyramide 0.813 None
Entrectinib 0.784 None
Axitinib 0.776 None

Elevated serum
creatine kinase HP:0003236

Entrectinib 0.929 Can increase more: https://ww
w.oncolink.org/cancer-treatme
nt/oncolink-rx/entrectinib-rozly
trek

Levosimendan 0.920 None
Disopyramide 0.915 None

https://pubmed.ncbi.nlm.nih.gov/30796500/
https://pubmed.ncbi.nlm.nih.gov/30796500/
https://pubmed.ncbi.nlm.nih.gov/7045292/
https://pubmed.ncbi.nlm.nih.gov/7045292/
https://grantome.com/grant/NIH/R01-HL146443-01
https://grantome.com/grant/NIH/R01-HL146443-01
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341080/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341080/
https://www.drugs.com/sfx/entrectinib-side-effects.html
https://www.drugs.com/sfx/entrectinib-side-effects.html
https://pubmed.ncbi.nlm.nih.gov/29991677/
https://pubmed.ncbi.nlm.nih.gov/29991677/
https://pubmed.ncbi.nlm.nih.gov/34055643
https://pubmed.ncbi.nlm.nih.gov/34055643
https://www.oncolink.org/cancer-treatment/oncolink-rx/entrectinib-rozlytrek
https://www.oncolink.org/cancer-treatment/oncolink-rx/entrectinib-rozlytrek
https://www.oncolink.org/cancer-treatment/oncolink-rx/entrectinib-rozlytrek
https://www.oncolink.org/cancer-treatment/oncolink-rx/entrectinib-rozlytrek
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Abnormal EKG HP:0003115
Levosimendan 0.777 https://pubmed.ncbi.nlm.nih.go

v/20814559/
Aprindine 0.747 https://pubmed.ncbi.nlm.nih.go

v/10068848/
Disopyramide 0.713 https://pubmed.ncbi.nlm.nih.go

v/9141608/

Arrhythmia HP:0011675
Levosimendan 0.890 https://ccforum.biomedcentral.

com/articles/10.1186/cc1595#:
$\sim$:text=Effects%20of%20l
evosimendan%20on%20cardi
ac%20arrhythmia%20in%20pat
ients%20with%20severe%20he
art%20failure,-J%20Lilleberg
%20%26&text=Levosimendan
%20(LS)%20is%20a%20novel
,oxygen%20consumption%2C
%20and%20induces%20vasod
ilation.

Amiodarone 0.792 https://www.aafp.org/pubs/afp/
issues/2003/1201/p2189.html#:
$\sim$:text=Amiodarone%20is
%20a%20potent%20antiarrhyt
hmic,deaths%20in%20high%
2Drisk%20patients.

Isradipine 0.953 https://pubmed.ncbi.nlm.nih.go
v/8480504/

Waddling gait HP:0002515
Entrectinib 0.976 None
Axitinib 0.964 None
Nintedanib 0.947 None

Dilated
cardiomyopathy HP:0001644

Entrectinib 0.967 Can produce heart disease: http
s://www.drugs.com/cons/entre
ctinib.html

Levosimendan 0.950 https://pubmed.ncbi.nlm.nih.go
v/25863426/#:$\sim$:text=Con
clusions%3A%20Levosimend
an%20seems%20to%20improv
e,support%20while%20awaiti
ng%20heart%20transplantation
.

Nintedanib 0.933 None

Flexion contracture HP:0001371
Entrectinib 0.980 None
Axitinib 0.975 None
Nintedanib 0.958 None

Specific learning
disability HP:0001328

Entrectinib 0.871 None
Axitinib 0.862 None
Acepromazine 0.830 None

Skeletal muscle
atrophy HP:0003202

Entrectinib 0.962 None
Axitinib 0.946 None

https://pubmed.ncbi.nlm.nih.gov/20814559/
https://pubmed.ncbi.nlm.nih.gov/20814559/
https://pubmed.ncbi.nlm.nih.gov/10068848/
https://pubmed.ncbi.nlm.nih.gov/10068848/
https://pubmed.ncbi.nlm.nih.gov/9141608/
https://pubmed.ncbi.nlm.nih.gov/9141608/
https://ccforum.biomedcentral.com/articles/10.1186/cc1595#:$\sim $:text=Effects%20of%20levosimendan%20on%20cardiac%20arrhythmia%20in%20patients%20with%20severe%20heart%20failure,-J%20Lilleberg%20%26&text=Levosimendan%20(LS)%20is%20a%20novel,oxygen%20consumption%2C%20and%20induces%20vasodilation.
https://ccforum.biomedcentral.com/articles/10.1186/cc1595#:$\sim $:text=Effects%20of%20levosimendan%20on%20cardiac%20arrhythmia%20in%20patients%20with%20severe%20heart%20failure,-J%20Lilleberg%20%26&text=Levosimendan%20(LS)%20is%20a%20novel,oxygen%20consumption%2C%20and%20induces%20vasodilation.
https://ccforum.biomedcentral.com/articles/10.1186/cc1595#:$\sim $:text=Effects%20of%20levosimendan%20on%20cardiac%20arrhythmia%20in%20patients%20with%20severe%20heart%20failure,-J%20Lilleberg%20%26&text=Levosimendan%20(LS)%20is%20a%20novel,oxygen%20consumption%2C%20and%20induces%20vasodilation.
https://ccforum.biomedcentral.com/articles/10.1186/cc1595#:$\sim $:text=Effects%20of%20levosimendan%20on%20cardiac%20arrhythmia%20in%20patients%20with%20severe%20heart%20failure,-J%20Lilleberg%20%26&text=Levosimendan%20(LS)%20is%20a%20novel,oxygen%20consumption%2C%20and%20induces%20vasodilation.
https://ccforum.biomedcentral.com/articles/10.1186/cc1595#:$\sim $:text=Effects%20of%20levosimendan%20on%20cardiac%20arrhythmia%20in%20patients%20with%20severe%20heart%20failure,-J%20Lilleberg%20%26&text=Levosimendan%20(LS)%20is%20a%20novel,oxygen%20consumption%2C%20and%20induces%20vasodilation.
https://ccforum.biomedcentral.com/articles/10.1186/cc1595#:$\sim $:text=Effects%20of%20levosimendan%20on%20cardiac%20arrhythmia%20in%20patients%20with%20severe%20heart%20failure,-J%20Lilleberg%20%26&text=Levosimendan%20(LS)%20is%20a%20novel,oxygen%20consumption%2C%20and%20induces%20vasodilation.
https://ccforum.biomedcentral.com/articles/10.1186/cc1595#:$\sim $:text=Effects%20of%20levosimendan%20on%20cardiac%20arrhythmia%20in%20patients%20with%20severe%20heart%20failure,-J%20Lilleberg%20%26&text=Levosimendan%20(LS)%20is%20a%20novel,oxygen%20consumption%2C%20and%20induces%20vasodilation.
https://ccforum.biomedcentral.com/articles/10.1186/cc1595#:$\sim $:text=Effects%20of%20levosimendan%20on%20cardiac%20arrhythmia%20in%20patients%20with%20severe%20heart%20failure,-J%20Lilleberg%20%26&text=Levosimendan%20(LS)%20is%20a%20novel,oxygen%20consumption%2C%20and%20induces%20vasodilation.
https://ccforum.biomedcentral.com/articles/10.1186/cc1595#:$\sim $:text=Effects%20of%20levosimendan%20on%20cardiac%20arrhythmia%20in%20patients%20with%20severe%20heart%20failure,-J%20Lilleberg%20%26&text=Levosimendan%20(LS)%20is%20a%20novel,oxygen%20consumption%2C%20and%20induces%20vasodilation.
https://ccforum.biomedcentral.com/articles/10.1186/cc1595#:$\sim $:text=Effects%20of%20levosimendan%20on%20cardiac%20arrhythmia%20in%20patients%20with%20severe%20heart%20failure,-J%20Lilleberg%20%26&text=Levosimendan%20(LS)%20is%20a%20novel,oxygen%20consumption%2C%20and%20induces%20vasodilation.
https://ccforum.biomedcentral.com/articles/10.1186/cc1595#:$\sim $:text=Effects%20of%20levosimendan%20on%20cardiac%20arrhythmia%20in%20patients%20with%20severe%20heart%20failure,-J%20Lilleberg%20%26&text=Levosimendan%20(LS)%20is%20a%20novel,oxygen%20consumption%2C%20and%20induces%20vasodilation.
https://ccforum.biomedcentral.com/articles/10.1186/cc1595#:$\sim $:text=Effects%20of%20levosimendan%20on%20cardiac%20arrhythmia%20in%20patients%20with%20severe%20heart%20failure,-J%20Lilleberg%20%26&text=Levosimendan%20(LS)%20is%20a%20novel,oxygen%20consumption%2C%20and%20induces%20vasodilation.
https://www.aafp.org/pubs/afp/issues/2003/1201/p2189.html#:$\sim $:text=Amiodarone%20is%20a%20potent%20antiarrhythmic,deaths%20in%20high%2Drisk%20patients. 
https://www.aafp.org/pubs/afp/issues/2003/1201/p2189.html#:$\sim $:text=Amiodarone%20is%20a%20potent%20antiarrhythmic,deaths%20in%20high%2Drisk%20patients. 
https://www.aafp.org/pubs/afp/issues/2003/1201/p2189.html#:$\sim $:text=Amiodarone%20is%20a%20potent%20antiarrhythmic,deaths%20in%20high%2Drisk%20patients. 
https://www.aafp.org/pubs/afp/issues/2003/1201/p2189.html#:$\sim $:text=Amiodarone%20is%20a%20potent%20antiarrhythmic,deaths%20in%20high%2Drisk%20patients. 
https://www.aafp.org/pubs/afp/issues/2003/1201/p2189.html#:$\sim $:text=Amiodarone%20is%20a%20potent%20antiarrhythmic,deaths%20in%20high%2Drisk%20patients. 
https://www.aafp.org/pubs/afp/issues/2003/1201/p2189.html#:$\sim $:text=Amiodarone%20is%20a%20potent%20antiarrhythmic,deaths%20in%20high%2Drisk%20patients. 
https://pubmed.ncbi.nlm.nih.gov/8480504/ 
https://pubmed.ncbi.nlm.nih.gov/8480504/ 
https://www.drugs.com/cons/entrectinib.html
https://www.drugs.com/cons/entrectinib.html
https://www.drugs.com/cons/entrectinib.html
https://pubmed.ncbi.nlm.nih.gov/25863426/#:$\sim $:text=Conclusions%3A%20Levosimendan%20seems%20to%20improve,support%20while%20awaiting%20heart%20transplantation.
https://pubmed.ncbi.nlm.nih.gov/25863426/#:$\sim $:text=Conclusions%3A%20Levosimendan%20seems%20to%20improve,support%20while%20awaiting%20heart%20transplantation.
https://pubmed.ncbi.nlm.nih.gov/25863426/#:$\sim $:text=Conclusions%3A%20Levosimendan%20seems%20to%20improve,support%20while%20awaiting%20heart%20transplantation.
https://pubmed.ncbi.nlm.nih.gov/25863426/#:$\sim $:text=Conclusions%3A%20Levosimendan%20seems%20to%20improve,support%20while%20awaiting%20heart%20transplantation.
https://pubmed.ncbi.nlm.nih.gov/25863426/#:$\sim $:text=Conclusions%3A%20Levosimendan%20seems%20to%20improve,support%20while%20awaiting%20heart%20transplantation.
https://pubmed.ncbi.nlm.nih.gov/25863426/#:$\sim $:text=Conclusions%3A%20Levosimendan%20seems%20to%20improve,support%20while%20awaiting%20heart%20transplantation.
https://pubmed.ncbi.nlm.nih.gov/25863426/#:$\sim $:text=Conclusions%3A%20Levosimendan%20seems%20to%20improve,support%20while%20awaiting%20heart%20transplantation.
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Nintedanib 0.925 https://pubmed.ncbi.nlm.nih.go
v/29991677/

Hypoventilation HP:0002791
Axitinib 0.781 None
Entrectinib 0.769 None
Mezlocillin 0.759 None

Calf muscle
hypertrophy HP:0008981

Entrectinib 0.978 None
Axitinib 0.977 None
Disopyramide 0.976 None

Motor delay HP:0001270
Entrectinib 0.991 None
Sunitinib 0.985 None
Fedratinib 0.978 None

Generalized
hypotonia HP:0001290

Entrectinib 0.995 None
Axitinib 0.988 None
Nintedanib 0.983 None

Cardiomyopathy HP:0001638
Levosimendan 0.899 https://www.ncbi.nlm.nih.gov/p

mc/articles/PMC6588712/
Entrectinib 0.848 Can produce myocarditis: https:

//pubmed.ncbi.nlm.nih.gov/34
315748/

Carvedilol 0.837 https://www.ncbi.nlm.nih.gov
/pmc/articles/PMC4055878/#:
$\sim$:text=Pathways%20thro
ugh%20which%20carvedilol
%20exert,for%20beneficial%
20effects%20in%20cardiomyo
pathy.

Hyperlordosis HP:0003307
Entrectinib 0.970 None
Axitinib 0.959 None
Disopyramide 0.932 None

Congestive heart
failure HP:0001635

Entrectinib 0.863 Can produce heart failure: https:
//www.rozlytrek.com/ntrk/how
-rozlytrek-may-help/possible-s
ide-effects.html

Aprindine 0.857 https://pubmed.ncbi.nlm.nih.go
v/6871919/

Nintedanib 0.835 None
Delayed speech and
language
development

HP:0000750
Entrectinib 0.986 None
Axitinib 0.977 None
Nintedanib 0.969 None

Scoliosis HP:0002650
Entrectinib 0.994 None
Axitinib 0.989 None
Nintedanib 0.981 None

Progressive muscle
weakness HP:0003323

Levosimendan 0.864 https://www.frontiersin.org/arti
cles/10.3389/fphys.2021.7868
95/full

Entrectinib 0.985 Can cause weakness: https://ww
w.drugs.com/sfx/entrectinib-sid
e-effects.html

https://pubmed.ncbi.nlm.nih.gov/29991677/ 
https://pubmed.ncbi.nlm.nih.gov/29991677/ 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588712/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588712/
https://pubmed.ncbi.nlm.nih.gov/34315748/
https://pubmed.ncbi.nlm.nih.gov/34315748/
https://pubmed.ncbi.nlm.nih.gov/34315748/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055878/#:$\sim $:text=Pathways%20through%20which%20carvedilol%20exert,for%20beneficial%20effects%20in%20cardiomyopathy.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055878/#:$\sim $:text=Pathways%20through%20which%20carvedilol%20exert,for%20beneficial%20effects%20in%20cardiomyopathy.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055878/#:$\sim $:text=Pathways%20through%20which%20carvedilol%20exert,for%20beneficial%20effects%20in%20cardiomyopathy.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055878/#:$\sim $:text=Pathways%20through%20which%20carvedilol%20exert,for%20beneficial%20effects%20in%20cardiomyopathy.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055878/#:$\sim $:text=Pathways%20through%20which%20carvedilol%20exert,for%20beneficial%20effects%20in%20cardiomyopathy.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055878/#:$\sim $:text=Pathways%20through%20which%20carvedilol%20exert,for%20beneficial%20effects%20in%20cardiomyopathy.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055878/#:$\sim $:text=Pathways%20through%20which%20carvedilol%20exert,for%20beneficial%20effects%20in%20cardiomyopathy.
https://www.rozlytrek.com/ntrk/how-rozlytrek-may-help/possible-side-effects.html
https://www.rozlytrek.com/ntrk/how-rozlytrek-may-help/possible-side-effects.html
https://www.rozlytrek.com/ntrk/how-rozlytrek-may-help/possible-side-effects.html
https://www.rozlytrek.com/ntrk/how-rozlytrek-may-help/possible-side-effects.html
https://pubmed.ncbi.nlm.nih.gov/6871919/
https://pubmed.ncbi.nlm.nih.gov/6871919/
https://www.frontiersin.org/articles/10.3389/fphys.2021.786895/full
https://www.frontiersin.org/articles/10.3389/fphys.2021.786895/full
https://www.frontiersin.org/articles/10.3389/fphys.2021.786895/full
https://www.drugs.com/sfx/entrectinib-side-effects.html
https://www.drugs.com/sfx/entrectinib-side-effects.html
https://www.drugs.com/sfx/entrectinib-side-effects.html
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Axitinib 0.960 Can cause weakness: https://ww
w.mayoclinic.org/drugs-suppl
ements/axitinib-oral-route/sid
e-effects/drg-20075455?p=1#:
$\sim$:text=This%20medicine
%20may%20cause%20serious
,trouble%20talking%2C%20or
%20vision%20changes.

Cognitive
impairment HP:0100543

Entrectinib 0.952 Can induce cognitive disorders:
https://www.ncbi.nlm.nih.gov
/pmc/articles/PMC8149347/#:
$\sim$:text=Cognitive%20dis
orders%20included%20events
%20reported,(0.2%25)%20%5
B20%5D.

Axitinib 0.931 https://www.neuro-central.com
/reversing-alzheimers-symptom
s-in-mice-with-axitinib- treat
ment/

Quercetin 0.991 https://www.ncbi.nlm.nih.gov
/pmc/articles/PMC3736941/#:
$\sim$:text=In%20vitro%20re
search%20also%20suggests,s
imilar%20to%20that%20of%
20caffeine.

https://www.mayoclinic.org/drugs-supplements/axitinib-oral-route/side-effects/drg-20075455?p=1#:$\sim $:text=This%20medicine%20may%20cause%20serious,trouble%20talking%2C%20or%20vision%20changes.
https://www.mayoclinic.org/drugs-supplements/axitinib-oral-route/side-effects/drg-20075455?p=1#:$\sim $:text=This%20medicine%20may%20cause%20serious,trouble%20talking%2C%20or%20vision%20changes.
https://www.mayoclinic.org/drugs-supplements/axitinib-oral-route/side-effects/drg-20075455?p=1#:$\sim $:text=This%20medicine%20may%20cause%20serious,trouble%20talking%2C%20or%20vision%20changes.
https://www.mayoclinic.org/drugs-supplements/axitinib-oral-route/side-effects/drg-20075455?p=1#:$\sim $:text=This%20medicine%20may%20cause%20serious,trouble%20talking%2C%20or%20vision%20changes.
https://www.mayoclinic.org/drugs-supplements/axitinib-oral-route/side-effects/drg-20075455?p=1#:$\sim $:text=This%20medicine%20may%20cause%20serious,trouble%20talking%2C%20or%20vision%20changes.
https://www.mayoclinic.org/drugs-supplements/axitinib-oral-route/side-effects/drg-20075455?p=1#:$\sim $:text=This%20medicine%20may%20cause%20serious,trouble%20talking%2C%20or%20vision%20changes.
https://www.mayoclinic.org/drugs-supplements/axitinib-oral-route/side-effects/drg-20075455?p=1#:$\sim $:text=This%20medicine%20may%20cause%20serious,trouble%20talking%2C%20or%20vision%20changes.
https://www.mayoclinic.org/drugs-supplements/axitinib-oral-route/side-effects/drg-20075455?p=1#:$\sim $:text=This%20medicine%20may%20cause%20serious,trouble%20talking%2C%20or%20vision%20changes.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149347/#:$\sim $:text=Cognitive%20disorders%20included%20events%20reported,(0.2%25)%20%5B20%5D.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149347/#:$\sim $:text=Cognitive%20disorders%20included%20events%20reported,(0.2%25)%20%5B20%5D.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149347/#:$\sim $:text=Cognitive%20disorders%20included%20events%20reported,(0.2%25)%20%5B20%5D.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149347/#:$\sim $:text=Cognitive%20disorders%20included%20events%20reported,(0.2%25)%20%5B20%5D.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149347/#:$\sim $:text=Cognitive%20disorders%20included%20events%20reported,(0.2%25)%20%5B20%5D.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149347/#:$\sim $:text=Cognitive%20disorders%20included%20events%20reported,(0.2%25)%20%5B20%5D.
https://www.neuro-central.com/reversing-alzheimers-symptoms-in-mice-with-axitinib-treatment/
https://www.neuro-central.com/reversing-alzheimers-symptoms-in-mice-with-axitinib-treatment/
https://www.neuro-central.com/reversing-alzheimers-symptoms-in-mice-with-axitinib-treatment/
https://www.neuro-central.com/reversing-alzheimers-symptoms-in-mice-with-axitinib-treatment/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736941/#:$\sim $:text=In%20vitro%20research%20also%20suggests,similar%20to%20that%20of%20caffeine.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736941/#:$\sim $:text=In%20vitro%20research%20also%20suggests,similar%20to%20that%20of%20caffeine.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736941/#:$\sim $:text=In%20vitro%20research%20also%20suggests,similar%20to%20that%20of%20caffeine.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736941/#:$\sim $:text=In%20vitro%20research%20also%20suggests,similar%20to%20that%20of%20caffeine.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736941/#:$\sim $:text=In%20vitro%20research%20also%20suggests,similar%20to%20that%20of%20caffeine.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736941/#:$\sim $:text=In%20vitro%20research%20also%20suggests,similar%20to%20that%20of%20caffeine.
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9.9. Drug Candidates on KG B

Table S10: Table showing the drug candidates with the highest scores for each symptom/phenotype obtained with
Graph B. Any evidence that supports the prediction will be shown in the Supporting Evidence column. If the drug
is contraindicated for the given symptom/phenotype it will also be shown in this column.

Symptom ID Drug Candidate Score Reference

Muscular dystrophy HP:0003560
Methylprednisolone 0.993 https://pubmed.ncbi.nlm.nih.go

v/17541998/
Resveratrol 0.963 https://www.nature.com/article

s/s41598-020-77197-6
Tofisopam 0.919 https://extrapharmacy.ru/grand

axin-tofisopam-50mg-60tabs

Respiratory
insufficiency HP:0002093

Methylprednisolone 0.984 https://jintensivecare.biomedc
entral.com/articles/10.1186/s4
0560-018-0321-9

Fedratinib 0.981 None
Sorafenib 0.975 Can cause pneumonia: https://

www.ncbi.nlm.nih.gov/pmc/art
icles/PMC3961597/

Gowers sign HP:0003391
Fedratinib 0.994 None
Bosutinib 0.991 None
Nintedanib 0.990 None

Global
developmental delay HP:0001263

Fedratinib 0.995 None
Sorafenib 0.994 None
Bosutinib 0.994 None

Hyporeflexia HP:0001265
Fedratinib 0.996 None
Sunitinib 0.994 None
Bosutinib 0.994 None

Proximal muscle
weakness HP:0003701

Fedratinib 0.997 Can produce muscle weakness:
https://medlineplus.gov/drugin
fo/meds/a619058.html

Bosutinib 0.995 None
Methylprednisolone 0.995 Can produce weakness: https://

erj.ersjournals.com/content/21
/2/377.2#:$\sim$:text=Methylp
rednisolone%20is%20often%2
0given%20in,weakness%20fol
lowing%20high%2Ddose%20s
teroids.

Intellectual disability HP:0001256
Fedratinib 0.996 None
Sorafenib 0.995 None
Bosutinib 0.995 None

Calf muscle
pseudohypertrophy HP:0003707

Methylprednisolone 0.970 https://www.britannica.com/sci
ence/pseudohypertrophy

Ruxolitinib 0.967 https://www.sciencedirect.com/
science/article/pii/S147148921
630100X

https://pubmed.ncbi.nlm.nih.gov/17541998/
https://pubmed.ncbi.nlm.nih.gov/17541998/
https://www.nature.com/articles/s41598-020-77197-6
https://www.nature.com/articles/s41598-020-77197-6
https://extrapharmacy.ru/grandaxin-tofisopam-50mg-60tabs
https://extrapharmacy.ru/grandaxin-tofisopam-50mg-60tabs
https://jintensivecare.biomedcentral.com/articles/10.1186/s40560-018-0321-9
https://jintensivecare.biomedcentral.com/articles/10.1186/s40560-018-0321-9
https://jintensivecare.biomedcentral.com/articles/10.1186/s40560-018-0321-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961597/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961597/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961597/
https://medlineplus.gov/druginfo/meds/a619058.html
https://medlineplus.gov/druginfo/meds/a619058.html
https://erj.ersjournals.com/content/21/2/377.2#:$\sim $:text=Methylprednisolone%20is%20often%20given%20in,weakness%20following%20high%2Ddose%20steroids.
https://erj.ersjournals.com/content/21/2/377.2#:$\sim $:text=Methylprednisolone%20is%20often%20given%20in,weakness%20following%20high%2Ddose%20steroids.
https://erj.ersjournals.com/content/21/2/377.2#:$\sim $:text=Methylprednisolone%20is%20often%20given%20in,weakness%20following%20high%2Ddose%20steroids.
https://erj.ersjournals.com/content/21/2/377.2#:$\sim $:text=Methylprednisolone%20is%20often%20given%20in,weakness%20following%20high%2Ddose%20steroids.
https://erj.ersjournals.com/content/21/2/377.2#:$\sim $:text=Methylprednisolone%20is%20often%20given%20in,weakness%20following%20high%2Ddose%20steroids.
https://erj.ersjournals.com/content/21/2/377.2#:$\sim $:text=Methylprednisolone%20is%20often%20given%20in,weakness%20following%20high%2Ddose%20steroids.
https://erj.ersjournals.com/content/21/2/377.2#:$\sim $:text=Methylprednisolone%20is%20often%20given%20in,weakness%20following%20high%2Ddose%20steroids.
https://www.britannica.com/science/pseudohypertrophy
https://www.britannica.com/science/pseudohypertrophy
https://www.sciencedirect.com/science/article/pii/S147148921630100X
https://www.sciencedirect.com/science/article/pii/S147148921630100X
https://www.sciencedirect.com/science/article/pii/S147148921630100X
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Fedratinib 0.948 None

Elevated serum
creatine kinase HP:0003236

Methylprednisolone 0.994 Can increase creatinine: https:
//www.ncbi.nlm.nih.gov/pmc/a
rticles/PMC4275145/

Fedratinib 0.989 Can increase more: https://jama
network.com/journals/jamaonc
ology/fullarticle/2330618

Bosutinib 0.982 Can increase more: https://ww
w.sciencedirect.com/science/ar
ticle/pii/S2152265017305840

Abnormal EKG HP:0003115
Methylprednisolone 0.982 Can affect EKG: https://pubm

ed.ncbi.nlm.nih.gov/29668335/
Patisiran 0.879 None
Silodosin 0.878 None

Arrhythmia HP:0011675
Methylprednisolone 0.989 Can produce arrhythmia: http://

www.ijps.ir/article_2090.html#:
$\sim$:text=Cardiac%20dysrh
ythmias%20have%20been%20
reported,turn%2C%20may%2
0initiate%20cardiac%20dysrhy
thmias.

Fedratinib 0.980 None
Sorafenib 0.979 None

Waddling gait HP:0002515
Fedratinib 0.991 Can produce gait: https://www.

accessdata.fda.gov/drugsatfda_
docs/nda/2019/212327Orig1s
000MultidisciplineR.pdf

Sorafenib 0.990 Can produce gait: https://www.
ncbi.nlm.nih.gov/pmc/articles/
PMC4094497/

Midostaurin 0.990 None

Dilated
cardiomyopathy HP:0001644

Methylprednisolone 0.993 https://pubmed.ncbi.nlm.nih.go
v/25614863/

Adefovir dipivoxil 0.980 None
Milrinone 0.966 https://pubmed.ncbi.nlm.nih.go

v/10488574/#:$\sim$:text=Con
clusion%3A%20Milrinone%2
0lactate%20is%20an,and%20I
V%20of%20heart%20failure.

Flexion contracture HP:0001371
Fedratinib 0.997 None
Sorafenib 0.996 https://pubmed.ncbi.nlm.nih.go

v/35274715/
Bosutinib 0.995 None

Specific learning
disability HP:0001328

Fedratinib 0.984 None
Sorafenib 0.978 None
Sunitinib 0.977 https://pubmed.ncbi.nlm.nih.go

v/27046396/

Skeletal muscle
atrophy HP:0003202

Fedratinib 0.995 None
Ruxolitinib 0.994 None

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275145/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275145/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275145/
https://jamanetwork.com/journals/jamaoncology/fullarticle/2330618
https://jamanetwork.com/journals/jamaoncology/fullarticle/2330618
https://jamanetwork.com/journals/jamaoncology/fullarticle/2330618
https://www.sciencedirect.com/science/article/pii/S2152265017305840
https://www.sciencedirect.com/science/article/pii/S2152265017305840
https://www.sciencedirect.com/science/article/pii/S2152265017305840
https://pubmed.ncbi.nlm.nih.gov/29668335/
https://pubmed.ncbi.nlm.nih.gov/29668335/
http://www.ijps.ir/article_2090.html#:$\sim $:text=Cardiac%20dysrhythmias%20have%20been%20reported,turn%2C%20may%20initiate%20cardiac%20dysrhythmias.
http://www.ijps.ir/article_2090.html#:$\sim $:text=Cardiac%20dysrhythmias%20have%20been%20reported,turn%2C%20may%20initiate%20cardiac%20dysrhythmias.
http://www.ijps.ir/article_2090.html#:$\sim $:text=Cardiac%20dysrhythmias%20have%20been%20reported,turn%2C%20may%20initiate%20cardiac%20dysrhythmias.
http://www.ijps.ir/article_2090.html#:$\sim $:text=Cardiac%20dysrhythmias%20have%20been%20reported,turn%2C%20may%20initiate%20cardiac%20dysrhythmias.
http://www.ijps.ir/article_2090.html#:$\sim $:text=Cardiac%20dysrhythmias%20have%20been%20reported,turn%2C%20may%20initiate%20cardiac%20dysrhythmias.
http://www.ijps.ir/article_2090.html#:$\sim $:text=Cardiac%20dysrhythmias%20have%20been%20reported,turn%2C%20may%20initiate%20cardiac%20dysrhythmias.
http://www.ijps.ir/article_2090.html#:$\sim $:text=Cardiac%20dysrhythmias%20have%20been%20reported,turn%2C%20may%20initiate%20cardiac%20dysrhythmias.
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212327Orig1s000MultidisciplineR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212327Orig1s000MultidisciplineR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212327Orig1s000MultidisciplineR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212327Orig1s000MultidisciplineR.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094497/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094497/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094497/
https://pubmed.ncbi.nlm.nih.gov/25614863/
https://pubmed.ncbi.nlm.nih.gov/25614863/
https://pubmed.ncbi.nlm.nih.gov/10488574/#:$\sim $:text=Conclusion%3A%20Milrinone%20lactate%20is%20an,and%20IV%20of%20heart%20failure.
https://pubmed.ncbi.nlm.nih.gov/10488574/#:$\sim $:text=Conclusion%3A%20Milrinone%20lactate%20is%20an,and%20IV%20of%20heart%20failure.
https://pubmed.ncbi.nlm.nih.gov/10488574/#:$\sim $:text=Conclusion%3A%20Milrinone%20lactate%20is%20an,and%20IV%20of%20heart%20failure.
https://pubmed.ncbi.nlm.nih.gov/10488574/#:$\sim $:text=Conclusion%3A%20Milrinone%20lactate%20is%20an,and%20IV%20of%20heart%20failure.
https://pubmed.ncbi.nlm.nih.gov/10488574/#:$\sim $:text=Conclusion%3A%20Milrinone%20lactate%20is%20an,and%20IV%20of%20heart%20failure.
https://pubmed.ncbi.nlm.nih.gov/35274715/
https://pubmed.ncbi.nlm.nih.gov/35274715/
https://pubmed.ncbi.nlm.nih.gov/27046396/
https://pubmed.ncbi.nlm.nih.gov/27046396/
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Sunitinib 0.993 https://www.ncbi.nlm.nih.gov/p
mc/articles/PMC4413636/

Hypoventilation HP:0002791
Methylprednisolone 0.990 https://jintensivecare.biomedc

entral.com/articles/10.1186/s4
0560-018-0321-9

Resveratrol 0.966 None
Fedratinib 0.993 None

Calf muscle
hypertrophy HP:0008981

Methylprednisolone 0.978 https://www.ncbi.nlm.nih.gov/p
mc/articles/PMC2879072/

Fedratinib 0.977 None
Resveratrol 0.976 https://journals.plos.org/ploson

e/article?id=10.1371/journal.p
one.0083518

Motor delay HP:0001270
Fedratinib 0.995 None
Sunitinib 0.994 https://www.ncbi.nlm.nih.gov/p

mc/articles/PMC6586148/
Vincristine 0.993 None

Generalized
hypotonia HP:0001290

Fedratinib 0.982 None
Sorafenib 0.980 None
Primidone 0.980 None

Cardiomyopathy HP:0001638
Methylprednisolone 0.995 https://pubmed.ncbi.nlm.nih.go

v/7971647/
Resveratrol 0.974 https://onlinelibrary.wiley.com/

doi/full/10.1002/fsn3.92
Adefovir dipivoxil 0.971 None

Hyperlordosis HP:0003307
Methylprednisolone 0.986 https://www.ncbi.nlm.nih.gov/p

mc/articles/PMC4897302/
Fedratinib 0.982 None
Sorafenib 0.980 None

Congestive heart
failure HP:0001635

Methylprednisolone 0.979 https://www.sciencedirect.com/
science/article/pii/S107191641
4005843#:$\sim$:text=Methy
lprednisolone%20improved%2
0HF%20outcomes.,of%20patie
nts%20from%20the%20study.

Daunorubicinol 0.957 Can produce cardiotoxicity: http
s://www.sciencedirect.com/topi
cs/medicine-and-dentistry/dau
norubicinol

Adefovir dipivoxil 0.946 None
Delayed speech and
language
development

HP:0000750
Fedratinib 0.994 None
Midostaurin 0.993 None
Sunitinib 0.993 None

Scoliosis HP:0002650
Sorafenib 0.995 None
Fedratinib 0.995 None
Midostaurin 0.994 None

Progressive muscle
weakness HP:0003323

Methylprednisolone 0.999 Can cause weakness: https://pu
bmed.ncbi.nlm.nih.gov/146299
08/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413636/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413636/
https://jintensivecare.biomedcentral.com/articles/10.1186/s40560-018-0321-9
https://jintensivecare.biomedcentral.com/articles/10.1186/s40560-018-0321-9
https://jintensivecare.biomedcentral.com/articles/10.1186/s40560-018-0321-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879072/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879072/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083518
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083518
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083518
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586148/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586148/
https://pubmed.ncbi.nlm.nih.gov/7971647/
https://pubmed.ncbi.nlm.nih.gov/7971647/
https://onlinelibrary.wiley.com/doi/full/10.1002/fsn3.92
https://onlinelibrary.wiley.com/doi/full/10.1002/fsn3.92
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897302/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897302/
https://www.sciencedirect.com/science/article/pii/S1071916414005843#:$\sim $:text=Methylprednisolone%20improved%20HF%20outcomes.,of%20patients%20from%20the%20study.
https://www.sciencedirect.com/science/article/pii/S1071916414005843#:$\sim $:text=Methylprednisolone%20improved%20HF%20outcomes.,of%20patients%20from%20the%20study.
https://www.sciencedirect.com/science/article/pii/S1071916414005843#:$\sim $:text=Methylprednisolone%20improved%20HF%20outcomes.,of%20patients%20from%20the%20study.
https://www.sciencedirect.com/science/article/pii/S1071916414005843#:$\sim $:text=Methylprednisolone%20improved%20HF%20outcomes.,of%20patients%20from%20the%20study.
https://www.sciencedirect.com/science/article/pii/S1071916414005843#:$\sim $:text=Methylprednisolone%20improved%20HF%20outcomes.,of%20patients%20from%20the%20study.
https://www.sciencedirect.com/science/article/pii/S1071916414005843#:$\sim $:text=Methylprednisolone%20improved%20HF%20outcomes.,of%20patients%20from%20the%20study.
https://www.sciencedirect.com/topics/medicine-and-dentistry/daunorubicinol
https://www.sciencedirect.com/topics/medicine-and-dentistry/daunorubicinol
https://www.sciencedirect.com/topics/medicine-and-dentistry/daunorubicinol
https://www.sciencedirect.com/topics/medicine-and-dentistry/daunorubicinol
https://pubmed.ncbi.nlm.nih.gov/14629908/
https://pubmed.ncbi.nlm.nih.gov/14629908/
https://pubmed.ncbi.nlm.nih.gov/14629908/
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Resveratrol 0.985 https://pubmed.ncbi.nlm.nih.go
v/33239684/

Patisiran 0.960 None

Cognitive
impairment HP:0100543

Sunitinib 0.997 None
Ruxolitinib 0.997 Can produce cognitive impair-

ment: https://pubmed.ncbi.nl
m.nih.gov/24661373/

Bosutinib 0.997 https://pubmed.ncbi.nlm.nih.go
v/34484904/

https://pubmed.ncbi.nlm.nih.gov/33239684/
https://pubmed.ncbi.nlm.nih.gov/33239684/
https://pubmed.ncbi.nlm.nih.gov/24661373/
https://pubmed.ncbi.nlm.nih.gov/24661373/
https://pubmed.ncbi.nlm.nih.gov/34484904/
https://pubmed.ncbi.nlm.nih.gov/34484904/
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9.10. Drug Candidates AD

Table S11: Table showing the drug candidates with the highest scores for each symptom/phenotype obtained in the
AD KG. Any evidence that supports the prediction will be shown in the Supporting Evidence column. If the drug is
contraindicated for the given symptom/phenotype it will also be shown in this column.

Symptom Symptom ID Candidate Score Evidence?

Personality changes HP:0000751
flortaucipir F 18 0.986 https://www.sciencedirect.com/

science/article/abs/pii/S00063
22321015663

fedratinib 0.979 May cause: https://medlineplus.
gov/druginfo/meds/a619058.ht
ml

lansoprazole 0.978 None

Dysphagia HP:0002015
fedratinib 0.998 None
midostaurin 0.998 Causes no dysphagia ? https://

www.ons.org/cjon/23/6/midost
aurin-nursing-perspectives-m
anaging-treatment-and-adverse
-events-patients-flt3

nintedanib 0.997 None

Alzheimer disease HP:0002511
Resveratrol 0.983 https://www.ncbi.nlm.nih.gov/p

mc/articles/PMC5664214/
pexidartinib 0.980 https://www.ncbi.nlm.nih.gov/p

mc/articles/PMC8101105/
memantine 0.980 https://pubmed.ncbi.nlm.nih.go

v/16906789/

Cerebral cortical
atrophy HP:0002120

midostaurin 0.998 None
fedratinib 0.998 None
sunitinib 0.998 treats Brain Cancer: https://clin

icaltrials.gov/ct2/show/NCT0
0923117

Abnormality of
extrapyramidal
motor function

HP:0002071
midostaurin 0.991 None
fedratinib 0.990 None
bosutinib 0.989 None

Dementia HP:0000726
midostaurin 0.995 https://www.sciencedirect.com/

topics/chemistry/midostaurin
fedratinib 0.995 None
pazopanib 0.994 https://www.ncbi.nlm.nih.gov/p

mc/articles/PMC5757517/

Babinski sign HP:0003487
midostaurin 0.998 None
fedratinib 0.997 None
sunitinib 0.997 None

Lower limb
hyperreflexia HP:0002395

flortaucipir F 18 0.964 None
Donepezil 0.956 None
Clioquinol 0.956 None

Dysarthria HP:0001260
midostaurin 0.999 None
fedratinib 0.999 None

https://www.sciencedirect.com/science/article/abs/pii/S0006322321015663
https://www.sciencedirect.com/science/article/abs/pii/S0006322321015663
https://www.sciencedirect.com/science/article/abs/pii/S0006322321015663
https://medlineplus.gov/druginfo/meds/a619058.html
https://medlineplus.gov/druginfo/meds/a619058.html
https://medlineplus.gov/druginfo/meds/a619058.html
https://www.ons.org/cjon/23/6/midostaurin-nursing-perspectives-managing-treatment-and-adverse-events-patients-flt3
https://www.ons.org/cjon/23/6/midostaurin-nursing-perspectives-managing-treatment-and-adverse-events-patients-flt3
https://www.ons.org/cjon/23/6/midostaurin-nursing-perspectives-managing-treatment-and-adverse-events-patients-flt3
https://www.ons.org/cjon/23/6/midostaurin-nursing-perspectives-managing-treatment-and-adverse-events-patients-flt3
https://www.ons.org/cjon/23/6/midostaurin-nursing-perspectives-managing-treatment-and-adverse-events-patients-flt3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664214/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664214/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8101105/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8101105/
https://pubmed.ncbi.nlm.nih.gov/16906789/
https://pubmed.ncbi.nlm.nih.gov/16906789/
https://clinicaltrials.gov/ct2/show/NCT00923117
https://clinicaltrials.gov/ct2/show/NCT00923117
https://clinicaltrials.gov/ct2/show/NCT00923117
https://www.sciencedirect.com/topics/chemistry/midostaurin
https://www.sciencedirect.com/topics/chemistry/midostaurin
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757517/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757517/
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sunitinib 0.998 None

Memory impairment HP:0002354
flortaucipir F 18 0.982 https://www.ncbi.nlm.nih.gov/p

mc/articles/PMC8175307/
pexidartinib 0.977 https://www.alzdiscovery.org/u

ploads/cognitive_vitality_medi
a/Pexidartinib-Cognitive-Vital
ity-For-Researchers.pdf

sorafenib 0.974 None

Dystonia HP:0001332
fedratinib 0.997 None
midostaurin 0.997 None
bosutinib 0.995 None

Optic ataxia HP:0031868
Clioquinol 0.986 None
Donepezil 0.986 None
Memantine 0.970 Optic nerve atrophy: https://pu

bmed.ncbi.nlm.nih.gov/266668
88/

Myoclonus HP:0001336
fedratinib 0.996 None
midostaurin 0.996 None
bosutinib 0.996 None

Apraxia HP:0002186
midostaurin 0.989 None
fedratinib 0.988 None
nintedanib 0.988 None

Seizure HP:0001250
fedratinib 0.999 Can cause: https://www.mskcc.

org/cancer-care/patient-educati
on/medications/fedratinib

midostaurin 0.999 None
bosutinib 0.998 Can cause: https://www.ema.eu

ropa.eu/en/documents/product-i
nformation/bosulif-epar-produ
ct-information_en.pdf

Gait disturbance HP:0001288
fedratinib 0.986 None
bosutinib 0.977 None
midostaurin 0.973 https://www.ncbi.nlm.nih.gov/p

mc/articles/PMC8301989/

Neurofibrillary
tangles 0.973

flortaucipir F 18 0.974 https://pubchem.ncbi.nlm.nih.g
ov/compound/70957463

cycloserine 0.962 https://pubmed.ncbi.nlm.nih.go
v/36159454/

lansoprazole 0.961 https://pubmed.ncbi.nlm.nih.go
v/24900410/

Spastic tetraparesis HP:0001285
duloxetine 0.959 None
flortaucipir F 18 0.952 None
metformin 0.951 None

Agnosia HP:0010524
Donepezil 0.980 https://www.ncbi.nlm.nih.gov/p

mc/articles/PMC3504981/
Clioquinol 0.980 None
Memantine 0.967 https://pubmed.ncbi.nlm.nih.go

v/19898670/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175307/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175307/
https://www.alzdiscovery.org/uploads/cognitive_vitality_media/Pexidartinib-Cognitive-Vitality-For-Researchers.pdf
https://www.alzdiscovery.org/uploads/cognitive_vitality_media/Pexidartinib-Cognitive-Vitality-For-Researchers.pdf
https://www.alzdiscovery.org/uploads/cognitive_vitality_media/Pexidartinib-Cognitive-Vitality-For-Researchers.pdf
https://www.alzdiscovery.org/uploads/cognitive_vitality_media/Pexidartinib-Cognitive-Vitality-For-Researchers.pdf
https://pubmed.ncbi.nlm.nih.gov/26666888/
https://pubmed.ncbi.nlm.nih.gov/26666888/
https://pubmed.ncbi.nlm.nih.gov/26666888/
https://www.mskcc.org/cancer-care/patient-education/medications/fedratinib
https://www.mskcc.org/cancer-care/patient-education/medications/fedratinib
https://www.mskcc.org/cancer-care/patient-education/medications/fedratinib
https://www.ema.europa.eu/en/documents/product-information/bosulif-epar-product-information_en.pdf
https://www.ema.europa.eu/en/documents/product-information/bosulif-epar-product-information_en.pdf
https://www.ema.europa.eu/en/documents/product-information/bosulif-epar-product-information_en.pdf
https://www.ema.europa.eu/en/documents/product-information/bosulif-epar-product-information_en.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301989/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301989/
https://pubchem.ncbi.nlm.nih.gov/compound/70957463
https://pubchem.ncbi.nlm.nih.gov/compound/70957463
https://pubmed.ncbi.nlm.nih.gov/36159454/ 
https://pubmed.ncbi.nlm.nih.gov/36159454/ 
https://pubmed.ncbi.nlm.nih.gov/24900410/
https://pubmed.ncbi.nlm.nih.gov/24900410/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504981/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504981/
https://pubmed.ncbi.nlm.nih.gov/19898670/
https://pubmed.ncbi.nlm.nih.gov/19898670/
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9.11. Drug Candidates ALS

Table S12: Table showing the drug candidates with the highest scores for each symptom/phenotype obtained in the
ALS KG. Any evidence that supports the prediction will be shown in the Supporting Evidence column. If the drug
is contraindicated for the given symptom/phenotype it will also be shown in this column.

Symptom Symptom ID Candidate Score Evidence?

Sleep apnea HP:0010535
Riluzole 0.808 https://pubmed.ncbi.nlm.nih.go

v/11732759/
Gabapentin 0.767 Can cause: https://pubmed.ncbi.

nlm.nih.gov/28116804/
Vitamin E 0.756 https://pubmed.ncbi.nlm.nih.go

v/23389837/

Degeneration of
anterior horn cells HP:0002398

Riluzole 0.821 Spinal muscular atrophy: https:
//pubmed.ncbi.nlm.nih.gov/14
623733/

tacrolimus 0.785 Not significant: https://www.na
ture.com/articles/sc2015172

brilliant Blue G 0.768 Can help ELA: https://peerj.co
m/articles/3064/

Dysarthria HP:0001260
hexachlorophene 0.976 None
dabrafenib 0.972 None
dichlorophen 0.954 None

Skeletal muscle
atrophy HP:0003202

hexachlorophene 0.953 None
dabrafenib 0.935 Can cause: https://pubmed.ncbi.

nlm.nih.gov/32898388/
quercetin 0.907 https://pubmed.ncbi.nlm.nih.go

v/25614714/#:$\sim$:text=Tog
ether%2C%20these%20finding
s%20suggest%20that,induced
%20muscle%20inflammation%
20and%20sarcopenia.

Muscle weakness HP:0001324
hexachlorophene 0.951 None
dabrafenib 0.944 None
quercetin 0.989 https://www.ncbi.nlm.nih.gov

/pmc/articles/PMC6356612/#:
$\sim$:text=Taken%20togethe
r%2C%20the%20findings%20
from,sarcolemmal%20action%
20potential%20propagation%
20impairment.

Muscle spasm HP:0003394
hexachlorophene 0.975 None
dabrafenib 0.958 Can cause: https://www.macmil

lan.org.uk/cancer-information
-and-support/treatments-and-d
rugs/dabrafenib-and-trametinib

dichlorophen 0.945 None

Amyotrophic lateral
sclerosis HP:0007354

hexachlorophene 0.911 https://pubmed.ncbi.nlm.nih.go
v/25987361/

https://pubmed.ncbi.nlm.nih.gov/11732759/ 
https://pubmed.ncbi.nlm.nih.gov/11732759/ 
https://pubmed.ncbi.nlm.nih.gov/28116804/
https://pubmed.ncbi.nlm.nih.gov/28116804/
https://pubmed.ncbi.nlm.nih.gov/23389837/ 
https://pubmed.ncbi.nlm.nih.gov/23389837/ 
https://pubmed.ncbi.nlm.nih.gov/14623733/
https://pubmed.ncbi.nlm.nih.gov/14623733/
https://pubmed.ncbi.nlm.nih.gov/14623733/
https://www.nature.com/articles/sc2015172 
https://www.nature.com/articles/sc2015172 
https://peerj.com/articles/3064/ 
https://peerj.com/articles/3064/ 
https://pubmed.ncbi.nlm.nih.gov/32898388/
https://pubmed.ncbi.nlm.nih.gov/32898388/
https://pubmed.ncbi.nlm.nih.gov/25614714/#:$\sim $:text=Together%2C%20these%20findings%20suggest%20that,induced%20muscle%20inflammation%20and%20sarcopenia.
https://pubmed.ncbi.nlm.nih.gov/25614714/#:$\sim $:text=Together%2C%20these%20findings%20suggest%20that,induced%20muscle%20inflammation%20and%20sarcopenia.
https://pubmed.ncbi.nlm.nih.gov/25614714/#:$\sim $:text=Together%2C%20these%20findings%20suggest%20that,induced%20muscle%20inflammation%20and%20sarcopenia.
https://pubmed.ncbi.nlm.nih.gov/25614714/#:$\sim $:text=Together%2C%20these%20findings%20suggest%20that,induced%20muscle%20inflammation%20and%20sarcopenia.
https://pubmed.ncbi.nlm.nih.gov/25614714/#:$\sim $:text=Together%2C%20these%20findings%20suggest%20that,induced%20muscle%20inflammation%20and%20sarcopenia.
https://pubmed.ncbi.nlm.nih.gov/25614714/#:$\sim $:text=Together%2C%20these%20findings%20suggest%20that,induced%20muscle%20inflammation%20and%20sarcopenia.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356612/#:$\sim $:text=Taken%20together%2C%20the%20findings%20from,sarcolemmal%20action%20potential%20propagation%20impairment.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356612/#:$\sim $:text=Taken%20together%2C%20the%20findings%20from,sarcolemmal%20action%20potential%20propagation%20impairment.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356612/#:$\sim $:text=Taken%20together%2C%20the%20findings%20from,sarcolemmal%20action%20potential%20propagation%20impairment.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356612/#:$\sim $:text=Taken%20together%2C%20the%20findings%20from,sarcolemmal%20action%20potential%20propagation%20impairment.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356612/#:$\sim $:text=Taken%20together%2C%20the%20findings%20from,sarcolemmal%20action%20potential%20propagation%20impairment.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356612/#:$\sim $:text=Taken%20together%2C%20the%20findings%20from,sarcolemmal%20action%20potential%20propagation%20impairment.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356612/#:$\sim $:text=Taken%20together%2C%20the%20findings%20from,sarcolemmal%20action%20potential%20propagation%20impairment.
https://www.macmillan.org.uk/cancer-information-and-support/treatments-and-drugs/dabrafenib-and-trametinib 
https://www.macmillan.org.uk/cancer-information-and-support/treatments-and-drugs/dabrafenib-and-trametinib 
https://www.macmillan.org.uk/cancer-information-and-support/treatments-and-drugs/dabrafenib-and-trametinib 
https://www.macmillan.org.uk/cancer-information-and-support/treatments-and-drugs/dabrafenib-and-trametinib 
https://pubmed.ncbi.nlm.nih.gov/25987361/
https://pubmed.ncbi.nlm.nih.gov/25987361/
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oleic acid 0.884 https://pubmed.ncbi.nlm.nih.go
v/29760648/

dabrafenib 0.881 None

Dysphagia HP:0002015
hexachlorophene 0.987 None
dabrafenib 0.980 None
dichlorophen 0.968 None

Fasciculations HP:0002380
hexachlorophene 0.920 None
oleic acid 0.891 Can increase: https://www.scie

ncedirect.com/science/article/
pii/S0006899314005861?via%
3Dihub

dabrafenib 0.998 None
Degeneration of the
lateral corticospinal
tracts

HP:0002314
hexachlorophene 0.829 None
dabrafenib 0.787 None
celecoxib 0.787 None

Pseudobulbar
paralysis HP:0007024

Riluzole 0.788 https://www.nejm.org/doi/full/
10.1056/NEJM199403033300
901

Gabapentin 0.727 None
celecoxib 0.720 None

Hyperreflexia HP:0001347
hexachlorophene 0.983 Can cause: https://pubchem.nc

bi.nlm.nih.gov/compound/Hexa
chlorophene#section=Human-T
oxicity-Excerpts

dabrafenib 0.977 None
dichlorophen 0.963 None

Spasticity HP:0001257
hexachlorophene 0.989 None
dabrafenib 0.986 None
sotorasib 0.970 None

https://pubmed.ncbi.nlm.nih.gov/29760648/
https://pubmed.ncbi.nlm.nih.gov/29760648/
https://www.sciencedirect.com/science/article/pii/S0006899314005861?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0006899314005861?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0006899314005861?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0006899314005861?via%3Dihub
https://www.nejm.org/doi/full/10.1056/NEJM199403033300901
https://www.nejm.org/doi/full/10.1056/NEJM199403033300901
https://www.nejm.org/doi/full/10.1056/NEJM199403033300901
https://pubchem.ncbi.nlm.nih.gov/compound/Hexachlorophene#section=Human-Toxicity-Excerpts
https://pubchem.ncbi.nlm.nih.gov/compound/Hexachlorophene#section=Human-Toxicity-Excerpts
https://pubchem.ncbi.nlm.nih.gov/compound/Hexachlorophene#section=Human-Toxicity-Excerpts
https://pubchem.ncbi.nlm.nih.gov/compound/Hexachlorophene#section=Human-Toxicity-Excerpts
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