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Abstract

Large Language Models (LLMs) frequently generate hallucinations: statements
that are syntactically plausible but lack factual grounding. This research presents
KEA (Kernel-Enriched Al) Explain, a neurosymbolic framework that detects and
explains such hallucinations by comparing knowledge graphs constructed from
LLM outputs with ground truth data from Wikidata or contextual documents. Using
graph kernels and semantic clustering, the method provides explanations for
detected hallucinations, ensuring both robustness and interpretability. Our framework
achieves competitive accuracy in detecting hallucinations across both open- and
closed-domain tasks, and is able to generate contrastive explanations, enhancing
transparency. This research advances the reliability of LLMs in high-stakes domains
and provides a foundation for future work on precision improvements and multi-
source knowledge integration.
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Introduction

Despite the impressive capabilities of Large Language Models (LLMs), they frequently
generate outputs that are grammatically correct but semantically incorrect—referred to
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as hallucinations (Huang et al. 2025). These hallucinations are a significant challenge,
particularly when language models are applied in high-stakes domains such as healthcare,
legal advice, and education, where misleading information can seriously degrade user
trust (Oelschlager 2024). Thus, developing methods to detect and explain hallucinations
is critical to ensuring the reliability and trustworthiness of LLMs.

Methods for detecting hallucinations fall under one of two categories: closed-domain
and open-domain (Chen and Yih 2020). Closed-domain hallucination detection refers
to detection of hallucinations using a specific constrained context which is supplied
alongside the LLM’s generated content. This context can take the form of a document,
dataset, or passage of text. In the closed-domain, the focus is on whether the generated
content aligns well with a specific piece of knowledge. In contrast, open-domain
hallucination detection is a class of problem that aims to detect hallucinations without
being constrained to a specific, predefined body of knowledge. In the open-domain, the
focus is on determining whether the generated content aligns with general knowledge or
truth.

In this article, we propose a neurosymbolic framework, KEA (Kernel-Enriched AI)
Explain, that achieves performance on par with state-of-the-art methods for detecting
semantic hallucinations in LLM-generated text under both open-domain (general
knowledge) and closed-domain (constrained context) settings, while offering the key
advantage of providing explanations for why statements are deemed hallucinatory. By
integrating symbolic Al methods with state-of-the-art neural techniques, our approach
combines the strengths of both paradigms to address key limitations in existing methods.
Specifically, we use graph kernels (Vishwanathan et al. 2010) to compare the structural
similarity between knowledge graphs (KGs), while semantic word embeddings (Almeida
and Xexéo 2019) are employed to cluster semantically similar labels and select relevant
triples. For the open-domain problem, these techniques are combined with structured
knowledge from Wikidata (Vrandeci¢ and Krotzsch 2014), a comprehensive and widely-
used knowledge base, to form a robust detection system. We extract entities and relations
from the LLM output and query these against the knowledge base, systematically
identifying and explaining hallucinations based on discrepancies in structural and
semantic similarity. For the closed-domain problem, we construct a KG based on both
the LLM output and the provided context in place of the Wikidata knowledge. There is
evidence that people prefer explanations that are contrastive; that is, they explain why one
outcome occurred rather than another plausible alternative (Miller 2019). By providing
why a given output was classified as a hallucination while also providing what fact would
make it not a hallucination, KEA Explain offers a more explainable and intuitive solution.

The key contributions of this work are as follows:

¢ Introduces the use of graph kernels over symbolic knowledge graphs to detect and
explain hallucinations in LLM outputs.

* Presents a novel neurosymbolic framework to enable comparison of semantic
alignment between entity and relation labels of a knowledge graph pair.

* Improves upon existing methods by introducing explainable classifications, which
are driven by the symbolic structure of the graph-based representation.
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Background and Related Work

In this section, we outline the key concepts that underpin our approach. We begin
with knowledge graphs, which provide the structural foundation for representing and
comparing factual information. We then introduce agglomerative hierarchical clustering,
a core technique used for semantic alignment in our framework. Finally, we discuss
recent work on detection of hallucinations in large language models (LLMs), which
frame the central challenge our method is designed to address.

Knowledge Graphs

A knowledge graph (KG) is a structured representation of information, where entities
are stored as nodes, and relationships between them are represented as directed edges
(Hogan et al. 2021). The information in a KG is often represented as triples in the form
(h,r,t), where h and t are entities, and r represents the relationship linking them e.g.,
(“Albert Einstein”, “was born in”, “Ulm”) (Chen et al. 2020). This structure allows KGs
to provide a relational and interpretable view of data, enabling inference of knowledge
effectively, which we rely on heavily in this project to compare information-rich textual
data. The ability of KG structure makes detected inconsistencies between multiple graphs
localizable, which we later develop into human-understandable explanations.

Agglomerative Hierarchical Clustering

Hierarchical clustering builds a hierarchy of clusters by merging or splitting data points
according to a similarity metric. In the agglomerative approach (AHC), each data point
begins in its own cluster, and clusters are successively merged based on a distance metric
(Murtagh and Contreras 2012). The process continues until all points belong to a single
cluster or until a stopping criterion is reached, typically a minimum distance threshold.

The similarity between clusters is determined using the distance metric, such as
Euclidean distance or cosine similarity, and a linkage criterion, which defines how the
distances between clusters are calculated. In our work, we use average linkage as the
criterion, where we consider the average pairwise distance between all points in the
clusters.

AHC has several advantages over alternative clustering methods, such as k-means. It
does not require a pre-defined number of clusters, does not assume clusters of a specific
size or shape, and is particularly useful for data containing nested structures, such as
graphs and taxonomies. However, it is computationally intensive for large amounts of
data, as the algorithm scales quadratically with the number of data points.

Graph Kernels

Graph kernels are a family of similarity functions that allow machine learning methods
to operate on graphs by comparing their structural patterns numerically (Vishwanathan
et al. 2010). They work by mapping graphs into a high-dimensional feature space, where
similarities can be quantified in terms of shared substructures such as walks, paths,
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or subtrees. This makes them particularly useful for tasks where relational structure is
important, such as in knowledge graphs.

A wide range of graph kernels have been proposed, each emphasizing different aspects
of graph structure. In this work, we make use of the Weisfeiler-Lehman (WL) subtree
kernel (Shervashidze et al. 2011), which is widely adopted due to its efficiency and strong
empirical performance. The WL kernel captures similarity between graphs by iteratively
refining node labels based on their neighborhoods, effectively encoding increasingly
rich structural patterns at each iteration. Its balance between computational efficiency
and expressive power makes it particularly well suited for comparing knowledge graphs
derived from natural language. Compared with triple-wise checks, WL captures subtree
context, which later lets us point to minimal graph edits rather than opaque scores.

LLM Hallucinations

Recent advances in natural language generation have been largely driven by deep learning
models, in particular transformer-based architectures used for large language models
(LLMs). These models have revolutionized tasks such as text generation and machine
translation, but alongside these successes, researchers and practitioners have become
increasingly aware of their limitations around reliably producing factual outputs (Ji
et al. 2023; Tonmoy et al. 2024). Hallucinations in LLMs have been identified to come
from four primary sources: biased training data, lack of in-built logic, vague prompts,
and insufficient data / overfitting (Perkovi¢ et al. 2024). Mitigation techniques include
fine tuning and Retrieval-Augmented Generation (RAG) (Gao et al. 2023; Arslan et al.
2024), where a kind of safety net can be implemented within the LLM by providing
current, relevant, or previously unexplored data during text generation in the hope that
this will counter-act uncertainty in the text generation process and steer the LLM away
from producing hallucinations. A downside of RAG as a mitigation technique is that the
relevancy of the retrieved documents is heavily dependent on the prompt or question
posed to the LLM. As a result, RAG may retrieve sources that are relevant enough to
answer the question, but not necessarily sufficient to provide the broader context needed
to prevent hallucinations. This implies that while RAG can guide the model toward
answering the query, it does not guarantee the retrieval of contextually rich sources that
could help avoid errors or hallucinated content (Guan et al. 2024).

The persistent issue of hallucinations is particularly concerning in high-stakes domains
such as healthcare, legal systems, and education, where inaccurate or misleading
information can have severe consequences in decision-making processes. Addressing
hallucinations is therefore not only a technical challenge but also a critical step toward
ensuring the reliability and trustworthiness of LLMs in real-world applications.

LLM-based Hallucination Detection Techniques

Many recently developed methods use LLMs or probabilistic measures to detect
hallucinations. ChainPoll (Friel and Sanyal 2023) detects hallucinations by polling
multiple instances of an LLM to arrive at an aggregated vote on whether the text
in question is hallucinatory. Although ChainPoll shows good hallucination detection
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accuracy, its reliance on prompt engineering and repeated LLM queries can make it
computationally expensive compared to simpler methods, limiting its applicability in
resource-constrained environments. Additionally, there is no ground-truth resource, so
biases in the training data of the LLMs being used could propagate through when they
are unable to detect hallucinations.

Another LLM-based method, SelfCheckGPT (Manakul et al. 2023), uses the entropy
of a sample of model responses to a query (with temperature > 0) to arrive at a probability
of hallucination, hence it can be considered an open-domain method for hallucination
detection. This is based on the hypothesis that if an LLM has knowledge of a certain
domain, then its responses are likely to be more homogeneous and contain the same
key facts. If instead the LLM has little knowledge of a topic, it is assumed to be more
likely to have noisy responses which diverge and contradict each other. SelfCheckGPT
achieves impressive performance for a simple method, but is also prone to the same
drawbacks as ChainPoll around lack of ground truth, as well as being computationally
heavy due to the need for generation of a number of LLM responses to each prompt.
Additionally, as a result of this lack of grounding, both of these methods are unable to
provide a comprehensive interpretation of exactly why a certain example is classified as
a hallucination.

Knowledge Graphs for Hallucination Detection and Prevention

Open-Domain. A prominent open-domain knowledge graph-based hallucination
detection method is AlignScore (Zha et al. 2023). This method utilizes a unified
information alignment function, a model designed to assess the alignment between two
pieces of text, and is trained on a diverse dataset spanning seven language tasks, including
paraphrasing, fact verification, and summarization.

This extensive training, amounting to 4.7 million examples, enhances AlignScore’s
ability to evaluate diverse factual inconsistency scenarios. AlignScore outperformed
many existing metrics across a wide range of language tasks, but lacks interpretability and
explainability. Additionally, AlignScore is trained on synthetic data in order to expose
the model to enough context in each domain. While usage of synthetic data increases the
model’s performance, it introduces questions around generalizability to the real world.

Knowledge Graph-based Retrofitting (KGR) (Guan et al. 2024) is another open-
domain framework designed to reduce factual hallucinations in LLMs by refining outputs
using knowledge graphs. Unlike previous methods that only retrieve facts based on
user queries, KGR is able to extract, validate, and correct facts within the LLM’s
reasoning process, enabling it to catch inaccuracies generated during intermediate
reasoning. The KGR method iteratively performs claim extraction, entity detection,
fact selection, claim verification, and response retrofitting, improving LLM accuracy on
complex question-answering benchmarks. However, KGR’s performance is bottlenecked
by the entity detection and fact selection stage, as irrelevant entities or noisy triples can
prevent accurate claim validation. This shows the need for further refinement of these
components to enhance KGR’s effectiveness across diverse reasoning tasks.
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Notably, both AlignScore and KGR methodologies are designed to produce an opaque
alignment score, and KGR’s multi-stage pipeline does not expose the specific relations
which drive corrections.

Closed-Domain. FactAlign (Rashad et al. 2024) constructs a KG from a given source
and generated text, and uses word embeddings to align individual claim triples with
source triples to identify factual misalignments, categorizing them as hallucinations if the
similarity is low. FactAlign differentiates between intrinsic hallucinations (distortions of
source information) and extrinsic hallucinations (unsupported additions) by employing
a contradiction score from a natural language inference (NLI) model. The approach
achieves high accuracy scores without requiring training or fine-tuning. However,
it excludes non-named entities in the KG, which reduces coverage, and encounters
scalability challenges due to the computational overhead of computing pairwise
similarities between each generated triplet and all source triplets. Additionally, the triple-
level comparison methodology in Rashad et al.’s approach prevents wider context from
the knowledge graph from contributing to similarity calculations, a limitation that our
graph kernel-based approach overcomes.

GraphEval (Sansford et al. 2024) aims to detect hallucinations under closed-domain
conditions by first constructing a KG from the LLM’s output and then decomposing
information into entities and relationships. Each triple is then compared against the
provided grounding context using natural language inference (NLI) models to assess
consistency. Experimental results show that the use of GraphEval improves the balanced
accuracy of hallucination detection on established benchmarks (SummEval, QAGS-C,
and QAGS-X), particularly for longer outputs where traditional methods struggle to
maintain consistency across multiple facts. For shorter texts, GraphEval’s impact is less
pronounced, as fewer facts require verification. A major limitation of this method is
that it only focuses on the closed-domain hallucination detection problem, where the
method is provided with the output alongside both the original prompt and the contextual
information that was used to arrive at that output. This limits generalizability of the
method, as in real-world detection problems the prompt and context are not readily
available. Additionally, as the method focuses on individual triple pairs, the comparison
process cannot take into account the broader structural differences of the KG.

Explainable Al

With the wide adoption of complex machine learning and deep learning systems in
various sectors, the field of explainable Al (XAI) is quickly growing. XAl aims to help
users understand how decisions from these complex models are made, along with the
risks of using them, which holds great benefits for crucial industries. For example, in
industries such as healthcare, finance, and education, inaccurate predictions from these
models have the potential to lead to serious consequences, sometimes with human life on
the line. Hence it is crucial to understand how these systems make their decisions through
provision of explanations to their users (Dwivedi et al. 2023).

Work by Miller (2019) explores how insights from philosophy, psychology, and social
science can enhance explainability in AL. Miller argues that, despite the recent rise in
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popularity of XAI (Arrieta et al. 2020), current methods often overlook contributions
from these fields regarding how humans understand explanations, which can lead to
poor alignment with user expectations. Key findings include that people naturally
seek explanations by comparing actual events with counterfactual alternatives, and that
explanations are selective and influenced by cognitive biases, as individuals tend to
identify only a few causes from many possibilities. These insights suggest that XAl could
benefit from a greater emphasis on contrastive explanations that account for common
cognitive biases, in order to create more intuitive explanations, although implementing
such contrastive and socially-aware models remains challenging. For this reason, in
our work we adopt a counterfactual style of explanation (see Section “Generation of
Explanations”).

Summary

Across these studies, three common limitations emerge:

1. Generalizability: The majority of methods are designed to rely on specific open-
or closed-domain conditions, but not both. In addition, many make use of synthetic
training data, limiting applicability beyond their training domain.

2. Lack of ground-truth: Many of these methods use proxies for ground truth, such as
measuring the entropy of LLM responses, or neural NLI models trained on synthetic
data, introducing biases. This carries the risk of introducing and propagating biases
within the detection method, leading to a less robust solution.

3. Lack of explainability: Neural methods alone are not transparent, making it difficult
to understand why certain outputs are classified as hallucinations, degrading user trust.

Method

Our proposed method (Figure 1) systematically detects and explains hallucinations in
LLM outputs through comparison of KG representations. Initially, an LLM is employed
for triple extraction on the text to obtain a KG representing its claims. For the open-
domain problem, this claim KG is then paired with a ground truth KG derived from
relevant triples within Wikidata, with both graphs capturing the relationships and
attributes of the identified entities. For the closed-domain problem, the claim KG is
compared with a KG constructed via the same LLM-based method applied to the
provided context.

The KGs are then compared using a Weisfeiler-Lehman subtree kernel (Shervashidze
et al. 2011), which provides a numerical measure of the structural similarity between
the graph pair. In cases where the similarity score falls below a predetermined threshold,
indicating a potential hallucination, an explanation is generated via a two-step analysis
process. First, contradictory relations between the two KGs are identified based on
embeddings of the triple entities. A modified graph edit distance algorithm is then
used to identify the specific structural differences between the claim and ground-truth
KGs. These differences are provided to an LLM to generate a contrastive explanation
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Figure 1. Visual depiction of the open-domain proposed method.

that explains why the original output qualifies as a hallucination, highlighting specific
discrepancies between the model’s claims and the established facts (Miller 2019).

Testing is conducted using publicly-available datasets. For the open-domain problem,
testing is done on the WikiBio GPT-3 Hallucination Dataset (Manakul et al. 2023).
This dataset consists of 238 long textual passages generated by GPT-3. Each passage is
broken down into multiple parts, with each part being labeled as either “accurate”, “minor
inaccurate”, or “major inaccurate”. This dataset provides enough data and granular labels
to produce a detailed analysis of the performance of the proposed method, and is widely
used by existing open-domain hallucination detection approaches, allowing for ease of
comparison. For the closed-domain problem, testing is done on the SummEval (Fabbri
et al. 2021) and QAGS-C (Wang et al. 2020) datasets, which provide LLM summaries of
given texts, making these datasets useful for evaluating hallucinations based on a source
text.

Knowledge Graph Construction

The process for converting unstructured textual data into a KG is split into three key
stages (Sansford et al. 2024):

1. Named Entity Recognition (NER): Identifying atomic entities from the text, such
as people, organizations, locations, dates, etc.;

2. Coreference resolution: Finding all mentions in the text that refer to the same
entity and relabel the detected entities accordingly; and

3. Relation extraction: Identifying relations between the detected entities.

Large language models (LLMs) have become a standard tool for constructing KGs
from text due to their ability to extract contextual features from text (Kommineni et al.
2024). AutoKG (Chen and Bertozzi 2023) demonstrates their potential for automated
KG generation. Methods like GraphEval (Sansford et al. 2024) enhance performance
via in-context learning and chain-of-thought (CoT) prompting to guide entity and
relation extraction. Building on this, our approach applies similar prompting strategies
to constrain the LLM to task-specific knowledge and reduce hallucinated triples. We
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set temperature to 0 for fully deterministic responses and support modular upgrades to
newer LLMs without modifying the core methodology. The full prompt is provided in
the Appendix, under “LLLM Prompts”.

To evaluate LLM-generated KGs in open-domain tasks, we first retrieve ground-truth
data from Wikidata, an extensive knowledge base of 114.7 million items, developed
to serve as a central repository for structured data (Vrandeci¢ and Krotzsch 2014).
Advantages of using Wikidata here are the large coverage and linkage from each entity
to a reference and qualifiers (providing additional context). Using the Spacy Entity
Linker (Gerber 2024), detected entities are aligned with corresponding Wikidata entries,
enabling SPARQL queries to extract relational triples between linked entities. These
triples form the ground-truth KG for assessing the correctness and completeness of
the LLM-generated KG. To enrich semantic depth, we also retrieve entity descriptions
from Wikidata and Wikipedia, which are parsed using the same LLM-based method
used to construct the claim KG. This added context improves coverage and strengthens
comparison robustness.

Knowledge Graph Relation Selection

Because the context or ground-truth KG often contains a significant amount of
information which is irrelevant to the claim KG, relation selection must be done
to refine it so that the two KGs can be compared using the graph kernel. For this
task, our method uses embeddings obtained from Sentence-BERT (SBERT), a popular
BERT (Bidirectional Encoder Representations from Transformers) architecture designed
specifically for tasks involving sentence similarity and semantic search (Reimers and
Gurevych 2019). SBERT provides sentence embeddings that can be compared using
cosine similarity. To obtain embeddings for KG triples, we concatenate the components
into a string, e.g., the triple (“Albert Einstein”, “was born in”, “Ulm”) is transformed
into “Albert Einstein was born in Ulm”. This concatenated string is then passed through
SBERT to generate an embedding for the triple.

To select the most relevant triples from the context/ground-truth KG, we match each
triple in the claim KG with the most semantically similar triple from the context/ground-
truth KG. Relevance is determined by maximizing the cosine similarity between the
embeddings of the current claim KG triple and a triple from the context/ground-truth
KG. Specifically, the relevant triple T+ from the context KG is identified as the one
that maximizes the cosine similarity between its embedding F;on e+ and the embedding
of the current claim KG triple Tjqm:

Econ ext * Ec atm
Tcontemt (Tclaim) = arg max( text ! ) (1)

|Econtemt| : |Eclaim|
This process results in a filtered ground-truth KG, of size at most equal to the size of

the claim KG. The ground-truth KG now only contains the most relevant triples to the
claim.
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Semantic Clustering of Knowledge Graph Labels

Since graph kernels have no knowledge of the semantic meaning of graph labels,
a mechanism for dealing with semantically similar but syntactically differing labels
between graphs is required. To achieve semantic comparison of labels, SBERT is used
again to produce word embeddings for each node and edge label across both KGs. These
embeddings are then clustered using an agglomerative hierarchical clustering algorithm.
Cosine similarity is used as the cluster metric, with average linkage as the criterion
(Ackermann et al. 2014). A distance threshold of 0.35 was chosen empirically, based
on maximization of performance on hand-created tests as well as benchmarks covered in
the Experiments section. The result allows for semantically similar labels to be clustered
together under the same label, e.g., ‘capital of France’ and ‘Paris’ would both be grouped
into the same cluster, and represented under the same label. This allows for our approach
to deal with synonyms and contextually-similar phrases, such as ‘capital of France’
and ‘Paris’, while using the symbolic graph kernel method which has no knowledge of
semanticity of labels.

Graph Kernel-based Comparison of Knowledge Graphs

Once the pre-processing steps have been applied to the KGs, the next step is to compute a
comparison score between the KG pair using the Weisfeiler-Lehman (WL) subtree kernel
(Shervashidze et al. 2011). This graph kernel is particularly useful in measuring the
structural similarity between pairs of graphs, and it is well-suited for KGs that represent
complex relationships between entities.

In general, a graph kernel is a function

k(G1,G2) = (#(G1), ¢(G2)),

where G, G are graphs, and ¢ : G — R? is a feature map embedding each graph
into a high-dimensional vector space. This formulation allows structural similarity to
be quantified through an inner product.

The WL kernel achieves this by iteratively refining node labels through neighborhood
aggregation. Initially, each node in the graph is labeled with its own numerical identity
or a basic feature. Then, at each iteration, node labels are updated by concatenating
their current label with those of their neighbors and hashing the result to form a new
compressed label. The distribution of these refined labels across all iterations defines the
feature vector ¢(G). The kernel value is then computed as the inner product between the
label count vectors of two graphs.

The WL kernel is effective for comparing KGs because it can capture graph
isomorphisms and structural patterns at different levels of abstraction (such as at the
entity level, relation level, and subtree level), while taking into account the presence
of varying node labels or relational differences. Thus, we can compare the KGs in a
manner that accounts for both the topology of the graphs and the semantic relationships
(labels) encoded within them. This method is particularly effective in identifying subtle
differences between KGs and for handling missing data, which is important in the
context of detecting hallucinations or inconsistencies in KG-based representations of text.
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Additionally, the WL kernel is efficient to run, with a time-complexity of O(hm), where
h is the number of iterations and m is the total number of edges across both graphs.

Our implementation leveraged the open-source graph kernel library, GraKeL (Siglidis
et al. 2020). This library enables the integration of kernel-based graph comparison into
our workflow without significant time-investment in implementation of the kernel. For
our method, we set the number of iterations to five and normalize the output of the kernel
to return a similarity score between zero and one.

For a concrete worked example relevant to our method, see the Appendix, under
“Weisfeiler-Lehman Graph Kernel Worked Example”.

Generation of Explanations

To generate contrastive explanations, we first identify pairs of contradictory relations
across the two original KGs (prior to relation selection). These are pairs of triples where
two of the three elements are semantically similar, but the third differs significantly.
We determine similarity using word embeddings and thresholding on cosine similarity.
For instance, (“France”, “capital city”, “Paris”) and (“France”, “capital”, “Rome”)
form a contradictory pair, as the first two elements align semantically, while the third
does not. This approach identifies key discrepancies between the graphs, rather than
simply unrelated triples. Next, a simplified graph edit distance algorithm (Algorithm
1) determines the sequence of edge operations required to transform the claim KG’s
contradictory relations into those of the ground-truth KG. In the above example, the
algorithm identifies the need to add “Paris” as France’s capital and remove “Rome”.

We treat two triples (h1, 71, t1) and (hs, T2, t2) as semantically equivalent when the
cosine similarity of all relations fall above a pre-set threshold.

Algorithm 1 Get Edit Operations Between Two KGs

Require: Two sets of triples 77, T5; thresholds 7, 7,
1: function SEMEQ((hl, 1, tl), (hQ, T2, t2))

2: return cos(hq, ha) > T, A cos(r1,r2) > 7 A cos(t1,ta) > Te
3: end function

4: Initialise an empty list operations

5: for all x € T do

6: if -3y € T5 : SEMEQ(z, y) then

7: Append (DELETE, z) to operations

8: end if

9: end for

10: for all y € 75 do
if -3x € T1 : SEMEQ(z,y) then

—
—_

12: Append (ADD, y) to operations
13: end if
14: end for

15: return operations
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[“John Russell Reynolds”, “born”, -| [“John Russell Reynolds”, “born”, -|

[John Russell Reynolds”, “occupation”, -l, [“John Russell Reynolds”, “occupation”, _]

f“j\"'\

Claim KG .
N Ident_lfy Compute Edit Genera.te
contradictory Operations > explanation
relations P with LLM

—

“The knowledge graph from the LLM's output contains significant
hallucinations about John Russell Reynolds. It incorrectly states he
was born in 1820 and died in 1876, while the factual record shows
1828-1896. It also falsely lists occupations like lawyer, judge, and

author, while he was primarily a physician.”

Ground-Truth KG

Figure 2. Explanation generation from the claim and ground-truth knowledge graphs.

Finally, an LLM (gpt-40-mini) generates a natural language explanation of the detected
hallucination based on these contradictory relations and edit operations. Unlike template-
based methods, the LLM provides more flexible, natural, and detailed explanations. This
enhances interpretability for human readers and helps to pinpoint the hallucinations. An
example of this process is shown in Figure 2.

Experiments

For evaluation of our method, we carried out three separate experiments. The first of
which focuses on the closed-domain hallucination detection problem, where the detection
method has access to a specific, constrained context which is supplied alongside the
LLM’s generated content. The second experiment focuses on detection of open-domain
hallucinations, where the detection method has access to external sources, such as a
knowledge base as used in our method. Thirdly, we run an experiment to evaluate the
efficacy of our method’s generation of explanations for detected hallucinations.

In reporting the results of these experiments, we align with benchmark methods
by using the same metrics for comparison. A comprehensive report of the results for
all metrics (accuracy, balanced accuracy, precision, recall, and F1) is provided in the
Appendix, under “Full Hallucination Detection Experiment Results”. Source code for
this project can be viewed at ht tps://github.com/Reih02/hallucination_
explanation_graph_kernel_analysis.
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Benchmark No. of Examples Label Ratio Avg length

SummEval 1,600 33.2% 63
QAGS-C 235 48.1% 49

Table 1. Statistics for the two evaluation benchmarks used. The label ratio is the ratio of
consistent examples to hallucinatory examples.

Closed-Domain Hallucination Detection

Our evaluation approach employs two widely-used benchmarks for assessing closed-
domain hallucination detection in the current literature. We compare our results to
GraphEval’s, a recent similar approach for hallucination detection that also employs
KGs (Sansford et al. 2024). GraphEval’s method uses these KGs to enhance existing
Natural Language Inference (NLI) models. The first benchmark reported by GraphEval
is SummEval (Fabbri et al. 2021), which evaluates summaries of news articles generated
by language models using human ratings. The dataset incorporates 16 different language
model outputs for each of 100 articles sourced from CNN and DailyMail, producing a
dataset of 1600 total summaries. Evaluators rate these summaries from 1 to 5 across four
dimensions: consistency, coherence, fluency, and relevance. We classify summaries with
a consistency score lower than 4 as a hallucination, and higher than or equal to 4 as being
consistent.

The second benchmark used by GraphEval is the QAGS-C dataset (Wang et al.
2020), derived from 235 articles, again obtained from CNN/DailyMail sources. The
evaluation process for this benchmark involved human annotators conducting a sentence-
level analysis of each summary, evaluating factual consistency by comparing individual
sentences against the provided source article, and outputting a binary consistency rating.
Each sentence underwent review by three separate annotators, with the final score made
by taking the average of these three votes. In our analysis, we consider a sentence to be
hallucinatory if it has an average consistency label less than 0.6, and higher than or equal
to 0.6 indicates a consistent sentence. Detailed statistics for these two benchmarks can
be seen in Table |

We empirically set graph kernel similarity thresholds at 0.15 (SummEval) and 0.5
(QAGS-C) for optimal balanced accuracy. Results (Table 2) show that our method
outperforms four of six GraphEval methods on average, ranking just behind TrueTeacher,
which benefits from synthetic data in fine-tuning, a bias risk we avoid due to the criticality
of using a ground-truth source in hallucination detection. KEA Explain performs best on
the SummEval task, with a balanced accuracy of 0.761 (second out of all methods).
The performance in the QAGS-C task is slightly worse, coming in fourth overall,
behind the three knowledge-graph enhanced methods. Overall, this shows that the
performance of our method is comparable to existing closed-domain knowledge-graph
based hallucination detection methods.

The ROC curves (Figure 3) visualize the performance across different graph kernel
thresholds, with AUC values: 0.79 (SummEval) and 0.70 (QAGS-C). Both curves bend
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Method SummEval QAGS-C Average Score
HHEM (He et al. 2021) 0.660 0.635 0.648
GraphEval (HHEM) 0.715 0.722 0.714
TRUE (Honovich et al. 2022) 0.613 0.618 0.616
GraphEval (TRUE) 0.724 0.717 0.721
TrueTeacher (Gekhman et al. 2023) 0.749 0.756 0.753
GraphEval (TrueTeacher) 0.792 0.781 0.787
KEA Explain (Ours) 0.761 0.711 0.736

Table 2. Comparison of balanced accuracy results for the SummEval and QAGS-C
experiments. Bold indicates top-ranked, while underlined indicates second-ranked

Figure 3. ROC Curves for our classifier on different benchmarks.
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toward the top-left, indicating high True Positive Rates (TPR) with low False Positive
Rates (FPR). In SummEval’s ROC curve, a linear segment at higher thresholds suggests
the classifier approaches random guessing beyond a certain threshold.

There is also a significant difference in performance between the two benchmarks,
with our method achieving noticeably better results on SummEval than on QAGS-C. We
hypothesize that this difference arises from the shorter average sentence length in the
QAGS-C benchmark compared with SummEval. These shorter sentences may lead to
less informative knowledge graphs, making the graph kernel more susceptible to small
discrepancies in knowledge representation between the LLM’s summarization and the
context that are not accounted for by the label clustering process.

Open-Domain Hallucination Detection

To assess our method’s effectiveness in addressing open-domain hallucination detection,
we utilized the WikiBio GPT-3 hallucination dataset. This dataset contains 238 GPT-
3 (text-davinci-003)-generated passages that resemble Wikipedia-style content.
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Method Precision Recall F1
SelfCheckGPT 0.843 0917 0.879
AlignScore 0.809 0.981 0.886

KEA Explain (Ours) 0.734 0.984 0.841

Table 3. Comparison of Precision, Recall, and F1 results for the WikiBio dataset.

Precision-Recall Curve - WikiBio
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o
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o
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Recall

Figure 4. Precision—Recall Curve on the WikiBio benchmark.

Each passage is segmented into sentences and annotated as being either accurate,
containing minor inaccuracies, or containing major inaccuracies. Sentences labeled with
minor or major inaccuracies are considered hallucinatory, while accurate sentences are
classified as consistent. This dataset is unbalanced, with just 27.0% of the 1,908 sentences
being consistent.

We report comparisons with SelfCheckGPT (Manakul et al. 2023) and AlignScore
(Zha et al. 2023), two open-domain approaches, using the results reported by the
authors of FactAlign (Rashad et al. 2024), a closed-domain method. We follow these
papers by reporting Precision, Recall, and F1 scores, optimizing the graph kernel
similarity threshold to 0.3 in order to maximize the F1 score. Our method achieved a
similar F1 score to the other methods but had lower precision, indicating a tendency to
classify non-hallucinated responses as hallucinations (Table 3). Despite this, our method
outperformed the other benchmarks in recall suggesting that it is particularly effective at
detecting true positives (hallucinations) in open-domain settings.

Based on manual inspection of failed classifications, we hypothesize that the lower
precision stems from limitations in the knowledge base querying process, particularly
the inability to retrieve niche or highly-specific entities from Wikidata, increasing the
likelihood of false positives. While this reliance on Wikidata leads to more false positives,
it also provides a ground-truth reference for factual accuracy, which other methods lack
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(Manakul et al. 2023; Zha et al. 2023). Both SelfCheckGPT and AlignScore also showed
lower precision compared to recall, indicating that handling of false positive predictions
is a common challenge in open-domain hallucination detection.

Due to the class imbalance in the WikiBio dataset, we report a Precision-Recall curve
(Figure 4). We observe an AUC of 0.77 for this PR curve. The curve shows an initial
sharp precision drop as recall increases from O to 0.1 when the graph kernel threshold
decreases. Precision then stabilizes around 0.75-0.8 across most recall values (0.1 to
0.9). With 73% of examples being hallucinatory (our positive class), this majority helps
maintain relatively high precision throughout the curve. As thresholds decrease further,
the model captures more true hallucinations while precision remains steady because
correctly identifying the abundant positive class offsets the increasing false positives.
The AUC of 0.77 reflects this balanced performance.

Hallucination Explanations

To evaluate the effectiveness of our method for generating explanations of detected
hallucinations, we adopt a set of criteria for assessing the “goodness” of an explanation,
inspired by the “Explanation Goodness Checklist” proposed by (Johs 2024) (see Table 4
for qualitative rating descriptions of the four criteria). For our evaluation, we randomly
selected 20 entries with a consistency label < 3 from the SummEval dataset (see
Appendix, under “Example Explanations,” for examples of generated explanations).
Each explanation was evaluated against the corresponding original article and generated
summary using these criteria to determine how well it captured the hallucination(s)
present. We focus on the closed-domain setting for this evaluation, as it allows for more
straightforward manual assessment using the provided ground truth.

We defined three groups based on the consistency rating label of the LLM output for
which the explanation was generated: Group 1 contains consistency ratings between 0
and 1; Group 2 ratings between 1 and 2; and Group 3 ratings between 2 and 3, such that
Group 1 contains the most severe hallucinations, and Group 3 the least.

In Group 1, the average score based on the rating criteria was 4.85, while Group
2 received 4.15, and Group 3 scored 3.15. These results reveal a clear trend: as
the consistency of the output increases (indicating a less-significant hallucination),
explanation quality declined. This monotonic pattern held across all four evaluation
criteria (Figure 5). Notably, while the accuracy and reliability of the explanations
remained relatively close across the groups, the most significant decline in ratings was
observed in the “Level of Detail” criterion. This suggests that, as the significance of
the hallucination in the LLM’s output decreases, more details are omitted from the
explanation that could have enhanced its quality. We hypothesize that this effect is due
to the decreased likelihood of finding relevant conflicting triples to guide the explanation
generation process when the hallucinations are more sparse and nuanced. In this case, the
explanation-generation process has less guidance as to exactly where the hallucination
occurred, and crucial details could get left out of the generated explanation.
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Criteria Rating descriptions

: Too brief, lacks necessary detail.

: Somewhat detailed

: Adequate detail, could be deeper.

: Well-detailed, covers most aspects.
: Comprehensive, in-depth.

: Incomplete, misses major aspects.
: Some key components missing.

: Mostly complete, with minor gaps.
: Almost complete.

: Fully complete, covers all aspects.
: Inaccurate, major errors.

: Some inaccuracy or missing context.
: Mostly accurate, small errors.

: Very accurate, minor issues.

: Fully accurate and reliable.

: No supporting evidence.

: Lacking sufficient evidence.

: May lack evidence.

: Well-supported claims.

: Trustworthy, solid evidence.

Level of Detail

Completeness of Explanation

Accuracy and Reliability

Trustworthiness

A WD =B WD =0 WND =0 WN —

W

Table 4. Criteria for rating generated explanations.

Figure 5. Average ratings across all four features.

~Group 1 - Group 2 ~ Group 3

Accuracy & Reliability

Group 1 Completeness Trustworthiness
Group 2
Group 3
0 1 2 3 4 5 Detail
(a) For each group. (b) Across each consistency range.
Discussion

Key Findings and Advantages

In our closed-domain hallucination detection experiment, our method achieved a

balanced accuracy of 0.736, outperforming four of the six methods reported in GraphEval
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(Sansford et al. 2024) and exceeding their average score of 0.707. We also observed
here that our method seemed to achieve a significantly higher score on the SummEval
benchmark compared to the QAGS-C benchmark, which we hypothesize is due to the
longer sentences supplied in the SummEval benchmark. Longer sentences yield denser
and more informative knowledge graphs, which our graph kernel approach can exploit
more effectively. By considering the surrounding subgraph structure rather than relying
on individual triples, the method remains robust when some information is missing or
noisy—an advantage over triple-matching methods such as FactAlign (Rashad et al.
2024) and GraphEval (Sansford et al. 2024). Shorter sentences tend to provide less
informative knowledge graphs, which can make the graph kernel similarity calculation
more sensitive to minor discrepancies, potentially leading to false predictions.

For the open-domain tests, we compared our method to two benchmarked approaches,
SelfCheckGPT (Manakul et al. 2023) and AlignScore (Zha et al. 2023), reporting
precision, recall, and F1. Our method achieved a lower precision (0.734) but a higher
recall (0.984) than both baselines, resulting in an F1 score of 0.841. This strong recall
can be explained by the reliance on Wikidata as a structured factual source: niche or
highly specific entities may be missed (lowering precision), but the use of entity linking
to a broad knowledge base ensures that hallucinations are rarely overlooked. This is
comparable to the state of the art and supports our claim of similar performance in
hallucination detection. The high recall and lower precision suggest that our method
tends to falsely label some non-hallucinatory examples as hallucinations. We attribute
this to its reliance on entity matching against the Wikidata knowledge base, as niche or
highly specific entities are less likely to have matches, increasing the chance of false
positives. Conversely, using Wikidata as a ground-truth source does enable our method
to outperform others in recall, making it the best at correctly identifying hallucinations
when they occur. This reflects a trade-off inherent in ground-truth methods that require
entity matching.

Although we have shown performance close to state-of-the-art detection methods, our
key contribution is represented in our method’s ability to add interpretability through
the use of graph-based knowledge representation. Here, KEA Explain’s neurosymbolic
design is crucial: by combining symbolic techniques (KGs, graph kernels, clustering)
with neural techniques (word embeddings, transformers), the system not only achieves
competitive detection performance but also produces explanations. These explanations
provide contrastive evidence of why and where a hallucination occurred, something
not offered by LLM-polling or strictly neural methods such as AlignScore, ChainPoll
(Friel and Sanyal 2023), or SelfCheckGPT. In this experiment, we observed a monotonic
decrease in explanation quality ratings across all four evaluation features (completeness,
accuracy & reliability, trustworthiness, and detail) as consistency of the explanations
increased. This suggests an inherent trade-off: while severe hallucinations are easier
to explain with detailed conflicting triples, subtler ones provide fewer cues, reducing
explanation richness.

Across both closed-domain and open-domain evaluations, these findings show that our
method achieves results comparable to state-of-the-art approaches, while additionally
offering a degree of interpretability that most other methods lack. The advantages of

Prepared using sagej.cls



Haskins and Adams 19

structural comparison through graph kernels and neurosymbolic integration directly
account for the method’s robustness and explanatory power.

Limitations and Future Research

Despite its strong results, our method has some limitations that point toward valuable
directions for future research.

The first limitation of our proposed method lies in the graph kernel similarity
calculation. As observed in our experiments, different domains and tasks can lead to
differing optimal graph kernel similarity thresholds being used. For example, we arrived
at 0.15 for SummEval, 0.50 for QAGS-C, and 0.30 for WikiBio. This sensitivity to
different domains and tasks adds complexity for real-world implementation, as it may be
required to optimize the threshold before use. A practical solution is to develop adaptive
or automated threshold selection methods, for example by leveraging labeled datasets
from the target domain or by exploring unsupervised approaches that learn thresholds
dynamically.

The second limitation concerns the method’s reliance on a knowledge base such as
Wikidata, which can increase false-positive predictions. This occurs when the entity-
linking process fails to accurately identify highly specific or obscure entities that are
poorly represented in the knowledge base. In such cases, entities with no direct match
may be incorrectly linked to more general or irrelevant entries, leading to inaccurate
predictions. This limitation is an inherent trade-off of relying on an external ground-
truth source: while it enables predictions based on structured data and improves the
true positive rate, it also raises the risk of false positives for underrepresented entities.
Despite this, Wikidata and similar resources remain valuable overall, as they provide a
strong factual basis for hallucination detection. Moreover, it is generally more important
for hallucination detection systems to maintain strong recall than high precision, as false
negatives (i.e., hallucinations that are predicted as being factually correct) can undermine
trust in the system. Future work could mitigate this limitation by broadening the ground-
truth sources—for instance, integrating multiple knowledge bases or supplementing
them with large-scale web corpora to increase coverage and improve precision. Such
an approach would directly address the current trade-off between strong recall and lower
precision.

Third, the requirements of having to construct ground truth KGs can induce a
significant computational burden, which may make our method less effective in time-
constrained applications and domains. This is especially prevalent in the open-domain,
where many relevant entities must first be retrieved from Wikidata via SPARQL queries.

Finally, our approach to explanation generation has its own limitations. The
method, which relies on a simplified graph edit distance algorithm, contradictory-triple
identification, and an LLM, showed limitations when hallucinations were more subtle
(i.e., when consistency was higher). Future research could explore alternative explanation
and correction strategies, such as through generation of follow-up queries to the LLM
that generated the hallucinated sentence, which would further enhance the method’s
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transparency and practical utility, as well as have the potential to correct hallucinated
facts.
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Definition of the Weisfeiler-Lehman Graph Kernel

A graph kernel is a function k : G x G — R that measures the similarity between two
graphs, where G denotes the set of graphs. Graph kernels are a type of kernel function
used in machine learning to enable the application of algorithms, such as Support Vector
Machines (SVMs), to structured data like graphs. They compute the similarity between
graphs by comparing their structural and attribute-based features Vishwanathan et al.
(2010).

Mathematically, a graph kernel can be expressed as an inner product in a high-
dimensional feature space:

k(G1,Ga) = (6(G1), 9(G2)) 2

Where G| and G, are graphs, and ¢ : G — R? is a feature mapping that embeds graphs
into a d-dimensional vector space. These kernels provide a way to quantify how ‘similar’
two graphs are by capturing structural patterns at different levels of abstraction, such as
common subgraphs, paths, and tree structures present across the pair.

In this project, we utilize the Weisfeiler-Lehman Subtree Kernel Shervashidze et al.
(2011), which leverages the Weisfeiler-Lehman graph isomorphism test to generate
subtree patterns for comparison. To define the Weisfeiler-Lehman Subtree Kernel, let
us assume the following:

* G, G’ are two graphs

* ¥; C ¥ are the set of letters that occur as node labels at least once in G or G’ at
the end of the i'" iteration of the Weisfeiler-Lehman algorithm

* Xy is the set of original node labels of G and G’

* We define a map, ¢; : {G, G’} x £; — N such that ¢;(G, 0y;) is the number of
occurrences of the letter o;; in the graph G.

The Weisfeiler-Lehman subtree kernel on two graphs G and G’ with h iterations is
then defined as the following:

k(G G") = (¢(G), ¢(G")) ©)
where
P(G) = (c0(G,001); -+ €o(G, 00535 ); o3 1 (G On1), s n (G Onymy () (4)
and
A(G") = (co(G',001) -+, €o(G', 0154 ), oo en (G Tn1) ooy (G oy, ) (5)

It can be shown that the Weisfeiler-Lehman Subtree Kernel can be computed in O(hm)
time, where h is the number of iterations and m is the total number of edges across all
graphs.
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Weisfeiler-Lehman Graph Kernel Worked Example

Here, we illustrate how the Weisfeiler-Lehman (WL) kernel compares two small KGs
using node-label counts across iterations, to serve as a concrete example relevant to our
methodology.

Graphs.
G1: (France, capital, Paris), (France, currency, Euro)
Go: (France, capital, Paris), (France, currency, Franc)

We run the WL graph kernel for h = 2 iterations. Let 3; be the set of node labels after
iteration 4, and let ¢; (G, o) count occurrences of label o € ¥; in G.

Iteration ¢ = 0 (original labels).

Label multisets:

G1:{France, capital, Paris, currency, Euro},
Go: {France, capital, Paris, currency, Franc}.
Shared labels: 4 (France, capital, Paris, currency).

Iteration ¢ = 1 (1-hop aggregation).

Each node is relabeled by hashing its current label with the multiset of its neighbors’
labels. Nodes capital and Paris receive identical new labels in both graphs;
currency differs because its neighbor is Euro versus Franc; France matches at
1=1. Shared new labels: 3.

Iteration ¢ = 2 (propagation).

Now France aggregates neighbors’ updated labels (capital® and currency?®).
Since currency® already diverged at t=1, France also diverges at :=2; capital
and Paris remain matched. Shared new labels: 2.

The WL feature map concatenates the label-count vectors across iterations, ¢(G) =
(co(G,-),c1(G,+), ..., cn(G,-)), and the kernel is k(G1, G2) = (¢(G1), ¢(G2)). With
one occurrence per node label here, the cross-kernel sums the number of shared labels
per iteration:

k(G1,Ga) = 4 (i=0) + 3 (i=1) + 2 (i=2) = 9.

The self-kernels are k(G1,G1) = k(G2,G2) =5+ 5+ 5 = 15. A cosine-style normal-
ization gives a similarity of 9/4/15-15 = 0.6. This quantifies how a local change
(Euro—Franc) ripples one hop further at =2, lowering the similarity as WL depth
increases. Importantly, in our methodology, we set ¢ = 5, which will have the effect of
propagating local information further around the graph. This was a decision based on
empirical performance, and should be adjusted depending on the domain and average
graph size.
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Explanations

Example Explanations

Sample 1 The knowledge graph generated from the LLM’s output contains several
key inaccuracies that highlight its hallucinatory nature. Notably, it incorrectly asserts
a relationship between ‘Space Invaders’ and the year ‘1970°, suggesting that the game
was developed in that specific year. However, this claim is not supported by factual data,
as the actual development period is more accurately described as occurring in the late
1970s. This discrepancy indicates a significant misunderstanding or misrepresentation
of the timeline associated with the game’s creation. Furthermore, the absence of the
correct relationship linking ‘Space Invaders’ to the late 1970s in the LLM’s output further
emphasizes the inaccuracies present in the generated knowledge graph. Together, these
false claims illustrate how the LLM’s output diverges from established facts, leading to a
misleading representation of the game’s historical context.

Sample 2 The knowledge graph generated from the LLM’s output contains several
significant hallucinations that misrepresent the facts surrounding Ben Stokes and his
experiences in cricket. Firstly, the LLM incorrectly states that Stokes “broke his neck”
during the Ashes series, which is a serious misrepresentation; in reality, he broke his
wrist after punching a locker, an incident that occurred the previous year. This error not
only alters the nature of the injury but also misplaces the context of his struggles, as
the original text emphasizes his need to manage his aggression rather than suggesting a
severe injury like a broken neck. Additionally, the LLM’s output inaccurately implies that
Stokes is currently at the Kensington Oval, when in fact, the context suggests he is back
in the England team and preparing for a match in Barbados. The relationship between
Kensington Oval and England is also misrepresented, as the original context indicates a
more nuanced connection, specifically that the Oval is a venue where Stokes has faced
challenges. These inaccuracies collectively distort the narrative of Stokes’s character and
his journey, leading to a misleading portrayal of his situation in the England cricket team.

Full Hallucination Detection Experiment Results

Benchmark Accuracy Balanced Accuracy Precision Recall F1

SummEval 0.782 0.761 0.276 0.736  0.401
QAGS-C 0.738 0.711 0.492 0.656 0.562
WikiBio 0.730 0.523 0.734 0984 0.841

Table 5. Full hallucination-detection experiment results of our method across each
benchmark. Metrics are marked in bold where they were the main focus of the benchmark
comparison, and hence were optimised for in the graph kernel threshold selection process.

Prepared using sagej.cls



26 Neurosymbolic Artificial Intelligence XX(X)

LLM Prompts
Knowledge Graph Construction

The following is the detailed prompt used for generating knowledge graphs from
unstructured text. It was heavily inspired by Sansford et al. (2024):

messages=[{"role": "system", "content": "You are an expert at
creating knowledge graphs based on text.\n"

"You will receive two separate pieces of text, and you must
perform the following steps on each piece of text:\n"

"l. Entity detection: Select key and crucial entities from
the text. Keep these entities short and concise and skip less

important details of the text\n"

"2. Coreference resolution: Across both texts, ensure that
you use the same entity name for the same concept. For
example, \"He\" may actually refer to the entity \"Peter\".
Also apply this step between texts, so that the two knowledge

graphs can be compared as easily as possible without
confusion.\n"

"3. Relation extraction: Identify semantic relationships
between detected entities. These relationships should be
encapsulated as a simple and concise relation such as \"began

in\", or \"will simulcast\", for example.\n"

"4 . Knowledge Graph refinement: Once the two knowledge
graphs have been created, try to ensure that similar triples
between the two texts / knowledge graphs are represented the
same way, to avoid confusion. For example, if two different
entities refer to a similar event or concept, relabel them to

be the same across the two knowledge graphs.\n\n"

"Format your response as a JSON object that can be directly
parsed without any edits to your response. This means that
you are not allowed to include any text not part of the
knowledge graphs.\n"

"In the JSON object, one element should be the knowledge
graph for the first text, and another element should be the
knowledge graph for the second text.\n"

"Each knowledge graph should be a list of triples, with each

triple being a python list of the form [\"Peter\", \"height
\", \"180cm\"]\n\n"

"See below for some examples:\n\n"

f"TEXT1: \n{sample_textl}\n\nTEXT2:\n{sample_text2}\n\n"

"YOUR OUTPUT:\n"

n { \n"

" \"knowledge_graphl\": [\n"

" [\"A&E Networks\", \"will simulcast in 2016\", \"
Roots\"],\n"

" [\"Roots\", \"premiered in\", \"1977\"],\n"

" [\"Roots\", \"ran for\", \"four seasons\"],\n"

" [\"Roots\", \"instance of\", \"miniseries\"],\n"

" [\"Roots\", \"followed\", \"Kunta Kinte\"],\n"
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" [\"Kunta Kinte\", \"was sold into\", \"slavery\"],\n"

" [\"Kunta Kinte\", \"was a\", \"free black man\"]\n"

n J ,\n"

" \"knowledge_graph2\": [\n"

" [\"Roots\", \"one of the\", \"biggest TV events of
all time\"],\n"

" [\"Roots\", \"had a staggering audience of\", \"over
100 million viewers\"],\n"

" [\"Roots\", \"being\", \"reimagined for new audiences
\ll] , \nn

" [\"Roots\", \"was about\", \"an African-American
slave and his descendants\"], \n"

" [\"Roots\", \"premiered\", \"1977\"]\n"

n J\n"

"I\n\n ..."

{"role": "user", "content": f"TEXT1l: \n{textl}\n\nTEXT2:\n{
text2}"}]

Natural Language Explanation

Below is the full prompt used to instruct the LLM to generate natural language
explanations for detected hallucinations, guided by the extracted graph edit distance
operations.

messages = [
{

"role": "system",
"content": (

"Your task is to generate a contrastive explanation as to
why a knowledge "

"graph produced from an LLM's output contains an
hallucination.\n"

"To achieve this task, you will receive a list of
explanations obtained from "

"running a graph edit distance algorithm between the LLM's
output knowledge graph "

"and a ground truth knowledge graph.\n"

"This list of explanations shows the steps needed to
transform the LLM's output "

"knowledge graph into the ground truth knowledge graph,
effectively capturing the "

"hallucinatory components of the LLM's output.\n"

"Instead of listing off each hallucination, try to tie it
together into a paragraph "

"to discuss the key false claims that the LLM's output
knowledge graph contains.\n"

"You will also receive the LLM's output text, and the
original context that the "
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"LLM used to generate the summary of. Use context and
common sense from these "
"three pieces of information to guide your explanation."
)
}I
{

"role": "user",

"content": f"###Context###:\n{context}\n\n###LLM summary/

output###:\n{summary}\n\n###Explanations###:\n{explanations}"
}
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