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Abstract
Knowledge base embeddings are a widely applied technique, used for instance to
improve link prediction tasks on knowledge graphs by using the geometric regularities
occurring during learning. Techniques where ontological concepts are interpreted as
boxes have shown to be particularly useful in this context, as they are both suitably
expressive and of computational cost allowing practical implementations. However,
to use those regularities for learning, it is necessary to determine and understand
the possible biases in the approach: how do we distinguish what is learned due to
regularities in the data from what is simply based on the representational limitations
of the embedding? In this paper, we establish that there are some severe limitations
in expressivity when modeling description logic ontologies with box embeddings in
intended target languages such as ELHO(○)�. We illustrate that, under some weak
assumptions, box semantics always satisfy Helly’s Property, and is thus too weak to
semantically capture ELHO(○)� in an adequate way. We then characterize how so-
called Helly-satisfiable ELHO(○)� ontologies can be determined and discuss other
restrictions of representability arising from Helly’s property, namely the restricted
faithfulness of the embeddings.
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2 Neurosymbolic Artificial Intelligence XX(X)

Introduction
Knowledge Graphs (KGs) (Hogan et al. 2021) are a widely used representation of diverse
knowledge in form of (subject, predicate, object)-triples, e.g., (alice, loves, bob). As
KGs tend to be highly incomplete, it is necessary to predict missing triples. For this
task, various techniques for Knowledge Graph Embedding (KGE) have turned out to be
useful as they allow for using geometric regularities for learning and thus connect an
abstract graph-based view with a vector-based representation. Though these approaches
show a promising result quality, they do not incorporate background knowledge. Several
techniques have been proposed to include background knowledge in the form of an
ontology. Approaches are, e.g., based on sequence modeling, graph propagation and
Knowledge Base Embeddings (KBEs) (see (Chen et al. 2025) for a survey). The basic idea
of KBE is to model individuals as points in a geometric space, concepts as convex sets
and relations and logical operations as geometric operations between the individuals or
concepts. Subconcept relations are modeled as subset relations and an individual belongs
to a concept if its representation is a member of the respective convex set, mimicking
the set-based Tarskian semantics. This ensures that newly inferred triples adhere to the
background knowledge. There are many different KBE approaches, varying in the choice
of the representations of concepts and relations. For instance, they can be based on
representing concepts as spheres (Kulmanov et al. 2019), closed convex cones (Özçep
et al. 2020) or boxes (Xiong et al. (2022) and others). These approaches propose to use
the ontology for enhancing the result quality and interpretability. To have an interpretable
result, it is, however, necessary that the embedding actually acts in a predictable way,
e.g., with Tarskian style semantics and compositional behavior. Additionally, it needs to
be determined whether a specific ontology can be modeled at all. Even when having
a consistent and interpretable embedding of the ontology, it is necessary to ensure
that the embedding represents the geometric regularities of the training data, and not
a bias imposed by possible restrictions of the embedding approach. This leads us to two
questions that need to be answered for every KBE approach:

(1) Is the training procedure of the approach able to find an embedding where
geometric regularities precisely reflect the information of the knowledge base?

(2) Does such an embedding always exist? If not, under what conditions does it exist?

We will focus here on the more general question (2), which is a basis for particular
improvements in the training procedure considered in (1). These questions have been
discussed for some specific KBE approaches, namely by Lacerda et al. (2024) in the
context of the description logic ELH and convex sets, and by Özçep et al. (2020) in the
context of closed convex cones. Abboud et al. (2020) and Boratko et al. (2021) considered
the expressivity of box embeddings, however, boxes were used to model relations and
not concepts. Here, we are following the lines of Lacerda et al. (2024) but focus on
embeddings based on boxes. Such box embeddings are widely used as they exhibit low
computational cost and are able to represents various fragments of the description logic
ELHO(○)� (the exact expressivity varies for different approaches). Thus, they are of
higher expressivity than the approach of Lacerda et al. (2024) and of lower complexity
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Leemhuis and Kutz 3

than the one of Özçep et al. (2020). Though the box embedding approaches are widely
used, their expressivity has not been thoroughly examined.

Bourgaux et al. (2024) pointed out that box embedding approaches exhibit problems.
For instance, some approaches are not able to model consequences of axioms. This
means that whilst an axiom might hold in a geometric representation, its consequences
might not necessarily be satisfied (thus it is not a ‘full model’ of the knowledge base).
These problems are, however, problems exhibited by specific box embedding approaches.
We want to dig deeper into this problem and here extend the work of Bourgaux et al.
(2024) in order to understand the general pattern. First, we are considering an abstract
box embedding method to determine which properties need to be fulfilled by such an
embedding to simulate classical semantics to various degrees. Based on these results,
we define the concept of an optimal box embedding approach, based on some basic
assumptions about box semantics. For such an optimal box embedding we assume
that, first, the existence/findability of embeddings is a well-defined notion (without
considering their practical learnability), and second, it only imposes those restrictions
that all box embedding approaches exhibit. Is it then possible to embed each ELHO(○)�-
ontology such that the ontology is satisfiable if and only if there is a box model of it? In
other words, are the limitations of current box embedding approaches based only on the
specific (learning) approach used, or are these limitations based on general properties
of box semantics? We show in the following that, in addition to restrictions imposed
by specific box embedding techniques, also the latter is the case. Thus it is in fact not
possible to find a correct box embedding for each ELHO(○)�-ontology under some weak
and widely accepted assumptions on box semantics.* This result is based on an analysis
of Helly’s Property (going back to Helly (1923)), a well-known fact about intersections
of convex sets that can be applied to box semantics. Based on this property, we define the
notion of Helly-satisfiable ontologies. Therefore, although we show that box embeddings
have general limitations we also show that it is possible to determine whether an ontology
is problematic. Thus, our result does not argue against using box embeddings but opens
up a way to determine for which ontologies a box embedding could lead potentially to
problems. We extend this notion to Helly-faithfulness to determine not only whether an
ontology is representable in general but also whether it is possible to do so bias-free.
Both these notions can not only be used to determine problematic ontologies but also
to increase the trustworthiness of given embeddings. If an embedding is learned, then it
is possible to identify problematic parts as the ones that are incorrectly modeled due to
limitations of the approach. These parts of the result can then be handled with special
care. Additionally, we analyze how the implemented box embedding approaches can be
considered as special cases of the generalized box interpretation and thus are also affected
by these results.

The paper is structured as follows: First, we discuss the preliminaries on description
logics, ontology embeddings and box embeddings in the section “Preliminaries and

∗These general standard assumptions on box embeddings, outlined in more detail below, include that
conjunction is modeled as set-intersection and that the bottom concept is modeled as the empty set.
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Name Syntax Semantics
top ⊺ ∆
bottom � ∅
nominal {a} {aI}
conjunction C ⊓D CI ∩DI
existential restriction ∃R.C {x ∈∆ ∣ ∃y ∈∆ ∶ (x, y) ∈ RI ∧ y ∈ CI}
role concatenation (R1 ○R2)I {(a, c) ∣ ∃b ∈∆ ∶ (a, b) ∈ RI1 , (b, c) ∈ RI2 }

Table 1. Syntax and semantics of ELHO(○)� (Baader et al. 2005)

Foundations”. In the section “Towards Trustworthy and Interpretable Box Embeddings”
we introduce and motivate the problems of the lack of classical semantics, completeness
and faithfulness in detail and give an informal overview of the results of the paper.
Then, in section “A Generalized Box Interpretation”, a general box interpretation is
given and set in context of the existing box embedding methods. Next, in section
“Expressivity of Boxes”, we discuss the expressivity of box embeddings formally, both
regarding satisfiability and faithfulness. We end with conclusions and a discussion of
open problems and future work.† ‡

Preliminaries and Foundations
In the following, an overview on description logics is given. After that, knowledge graph
embeddings and ontology embeddings are introduced with a focus on geometric ontology
embeddings based on boxes.

Description Logics
Ontologies are widely used to represent structured information of the world. One way
of representing ontologies is with the help of Description Logics (DL) (Baader et al.
2007). We are focusing here on the ELHO(○)�-fragment of the well-known description
logic EL++(Baader et al. 2005) due to its computational advantages, as subsumption
is polynomial. Prominent examples for ontologies in ELHO(○)� are, e.g., SNOMED
(Donnelly 2006) for clinical documentation and the Gene Ontology (Ashburner et al.
2000) for modeling genes and their interactions.

A DL vocabulary is given by a set of individual names I, a set of role names R and
concept names C. The ELHO(○)� concepts over C ∪R are described by the grammar

C Ð→ A ∣ {a} ∣ � ∣ ⊺ ∣ C ⊓C ∣ ∃R.C

where A ∈C is an atomic concept, a ∈ I is an individual name, R ∈R is a role symbol,
and C stands for arbitrary concepts. {a} denotes a nominal concept. An ontology O

†The detailed versions of all sketched proofs can be found in the appendix.
‡This paper is an extended version of the paper (Leemhuis and Kutz 2025) presented at the 19th Conference
on Neurosymbolic Learning and Reasoning 2025.
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Figure 1. (a) Example for an embedding with TransE; (b) Example for an embedding with
TransBox;

is defined as a pair O = (T ,A) of a terminological box (Tbox) T and an assertional
box (Abox) A. A Tbox consists of general inclusion axioms (GCIs) C ⊑D (“C is
subsumed by D”) with concept descriptions C,D, role inclusions R1 ○ ⋅ ⋅ ⋅ ○Rk ⊑ R and
role hierarchies R1 ⊑ R. C ≡D is used as an abbreviation of C ⊑D and D ⊑ C. In the
following, sets of arbitrary GCIs, not necessarily part of the Tbox, are denoted as T,
sets of arbitrary individual assertions, not necessarily part of the Abox, are denoted as
A. Each ontology can be translated adhering to the following normal forms: all general
concepts inclusions can be represented as follows (for C,D ∈C,E ∈C ∪ {�})

C ⊑ E C ⊑ ∃R.D C ⊓D ⊑ E ∃R.C ⊑ E

and all role inclusions can be represented as R1 ⊑ R or R1 ○R2 ⊑ R for R,R1,R2 ∈R.
An Abox consists of a finite set of individual assertions, i.e., facts of the form

a ∶ C or of the form (a, b) ∶ R for a, b ∈ I,C ∈C and R ∈R. An interpretation is a
pair (∆, ⋅I) consisting of a set ∆, called the domain, and an interpretation function ⋅I
which maps individual names to elements in ∆, concept names to subsets of ∆, and
role names to subsets of ∆ ×∆. The semantics of arbitrary concept descriptions for a
given interpretation I is given in Table 1. A concept inclusion C ⊑D is represented
as CI ⊆DI , a role inclusion R1 ○ ⋅ ⋅ ⋅ ○Rk ⊑ R as RI1 ○ ⋅ ⋅ ⋅ ○RIk ⊆ RI . An interpretation
I models an Abox axiom a ∶ C, for short I ⊧ a ∶ C, iff aI ∈ CI and it models an Abox
axiom of the form (a, b) ∶ R iff (aI , bI) ∈ RI . An interpretation is a model of an ontology
(T ,A) iff it models all axioms appearing in T ∪A. An ontology O entails a (Tbox or
Abox) axiom ax, for short O ⊧ ax, iff all models of O are also models of ax. The set of
definable concepts in an interpretation I of O is defined as

DCIO = {A ⊆∆ ∣ I ⊧ O,A = φI for some φ ∈ ELHO(○)�}

In this paper, the focus lies on finite ontologies.
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From Knowledge Graph Embeddings to Ontology Embeddings

The raise of interest in neurosymbolic AI has led to many approaches enhancing
embedding techniques with background knowledge information. Also in the area of
knowledge graph embeddings (KGE) this gained increased attention. Knowledge graphs
(KGs) are set of (subject, predicate, object)-triples. They are especially considered in
the context of representing structured large scale data. Examples are DBpedia (Lehmann
et al. 2015) and Wikidata (Vrandecic and Krötzsch 2014). KGs are often incomplete and
error-prone. A way to tackle this issue is to use KGE to predict missing links with the
help of geometric regularities. The basic idea is to learn an embedding where subject
and object are modeled as points in a vector space and the relation is modeled as some
geometric operation, in case of TransE (Bordes et al. 2013), e.g., as a translation. If such
an embedding is trained for given data, it is then possible to predict missing links by
applying the geometric operation representing the predicate to a subject and determine
whether the resulting point is close to an object representation. In Figure 1 (a), an example
can be seen, modeling the relation r representing “is male form of” as a translation
vector. When training the embedding with several triples including this relation, e.g.,
(man,is male form of,woman), then it is possible to predict a missing link, e.g., between
uncle and aunt if uncleemb + remb ≈ auntemb. This is a heavily studied area, see, e.g.,
Hogan et al. (2021) for an overview. Though KGE allows for a vector representation of
graph data, it does not incorporate background knowledge information. Therefore, the
inferred links possibly interfere with the common knowledge. To overcome this issue,
ontology embeddings (Chen et al. 2025) can be considered.

Ontology embeddings try to incorporate background knowledge information in
form of ontologies into the learning process. There, different techniques are possible,
especially based on sequence modeling, graph propagation or geometric modeling. The
former two suffer from issues with interpretability, as they are mostly not able to
represent the ontological structure (Chen et al. 2025). In contrast, geometric ontology
embeddings are based on a tight connection between ontology and embedding, as
concepts are represented as regions in the embedding space and logical operations
can be represented as geometric operations between these regions. These geometric
ontology embeddings can be roughly discriminated into two types, the ones for simple
and for complex ontologies (Chen et al. 2025). Whereas the former are only able to
model concept hierarchies, the latter are able to model more complex ontologies such
as fragments of EL++ or ALC. We are interested here in models able to represent more
complex ontologies.

The basic idea of such approaches is to learn an embedding of the data and the
ontology in a low dimensional vector space such that instances are modeled as points,
concepts are modeled as convex regions and relations and logical operations are modeled
as geometric operations. Examples for such approaches are ELEmbeddings (Kulmanov
et al. 2019) and EmEL++ (Mondal et al. 2021) representing concepts as spheres, Özçep
et al. (2020) represents concepts as closed convex cones and several works considering
concepts represented as axis-aligned boxes. Concept conjunction can be modeled as
set intersection of the respective convex regions and relations can be modeled, e.g.,
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Figure 2. (a) A,B,C and D are examples for axis-aligned boxes. The intersection of two
axis-aligned boxes (e.g., A and B) results always in an axis-aligned box (in this case C).
D = BoxHull(D′), thus D is the box hull of D′; (b) Intersection with a box that is not
axis-aligned (in this case E) does not necessarily lead to a box.

via translation in style of TransE. These approaches have a high interpretability, as
they model ontological axioms directly in a geometric fashion. We will focus in the
following on embeddings based on boxes, as they are, in contrast to spheres, closed under
intersection. Thus, it is possible to model axioms of the form A ⊓B ≡ C. In contrast to
cone embeddings, the complexity of box embeddings is sufficiently lower, making them
more applicable in real-world scenarios. This is also witnessed by the number of box
embedding approaches proposed in the last years. They will be discussed in detail in the
following.

Boxes
Boxes are chosen as a basis for many embeddings due to their good computational
properties and simple representation. A box in some Rn, for n ∈ N, is defined as an
axis-aligned hyperrectangle. It can be represented by its lower corner lc ∈ Rn and upper
corner uc ∈ Rn, with lc ≤ uc, where ≤ is applied element wise. Then, Box(C) = {x ∈
Rn ∣ lc ≤ x ≤ uc}. Let BoxHull(A) be the smallest box containing all elements of a set
A. This can be defined as

BoxHull(A) ={(x1, . . . , xn)T ∣ xi ∈ ConvHull({ai ∣ a ∈ A}) for 1 ≤ i ≤ n}

where ConvHull(X) is the convex hull of X and ai is the value at the i-th dimension
of vector a. The set Bn = {BoxHull(X) ∣X ⊆ Rn}, thus the set of all boxes in Rn

including the whole space Rn and the empty set, is closed under set intersection.
Properties of boxes are widely researched, e.g., in the context of intersection graphs and
boxicity (Roberts 1969). One main advantage of axis-aligned boxes is their closure under
intersection. The intersection of two axis-aligned boxes A and B is defined as follows:

C ∶= A ∩B = {x ∈ Rn ∣ lc ≤ x ≤ uc where lic =max(lia, lib) and ui
c =min(ui

a, u
i
b)}

Thus, the intersection of two axis-aligned boxes always results in an axis-aligned box. In
Figure 2 (a), an example for such an intersection of two boxes can be seen, resulting in
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8 Neurosymbolic Artificial Intelligence XX(X)

an axis-aligned box. Box D is an example for the box hull of an arbitrary set. Figure 2 (b)
exemplifies the need of axis-aligned boxes: the intersection of a box F with a non-
axis-aligned box E leads not to a box, therefore, it is not closed under intersection.
This would be problematic, as it complicates the learning: the intersection of E and
F can not be represented by defining center and offset but needs more parameters.
Therefore, arbitrary complex representation would be necessary, interfering with the aim
of computational simplicity and potentially leading to overfitting. Therefore axis-aligned
boxes are considered and the term “box” refers in the following solely to axis-aligned
boxes. Note here that arbitrary dimensional boxes are considered, and that the examples
are restricted to the two-dimensional case for representation reasons only.

Box Embeddings
The basic principle of box embeddings is to find a mapping between an ontology and a
box representation. Concepts of the ontology are represented as boxes, whereas logical
operations in the ontology language, such as conjunctions, are represented with the help
of some geometric operation in the embedding space. Thus, we give a basic definition
of such box embeddings below, inspired by existing KBE approaches whilst abstracting
from the specifics of those approaches. The level of abstraction of our definition is chosen
primarily to support our general study of box embeddings and their theoretical properties.
A thorough examination of a broader framework for abstract embedding models and their
theoretical properties, also covering for instance other basic geometries, is left for future
work.
In the following definition, the core commonality is that concepts will be interpreted as
boxes and individuals as subsets of Rn. Note here that we can recover the simpler version
of an individual as a point in space by modeling them as singleton sets.

Definition 1. Box Embedding Method / Box Embedding. Let O = (T ,A) be an
ELHO(○)� ontology.§ Assume C,R, I are the finite sets of concepts, roles, and
individuals, respectively, that appear inO. A box embedding method SM for ELHO(○)�
in Rn for some fixed n ∈ N, provides functions for logical constants

• f⊺ ∈ Bn (interpreting ⊺ as a box)

• f� ∈ Bn (interpreting � as a box)

• f⊓ ∶ Bn × Bn → Bn (interpreting conjunction),

• f∃ ∶ (℘(Rn) × ℘(Rn)) × Bn → Bn (interpreting existential restriction, where ℘(⋅)
denotes the powerset operation), and

• f○ ∶ (℘(Rn) × ℘(Rn),℘(Rn) × ℘(Rn)) → ℘(Rn) × ℘(Rn) (interpreting role
composition)

§Note that here and in the following, we are focusing on ELHO(○)� due to the fact that actual box-based
embedding approaches are considering ELHO(○)�. It is straightforwardly possible to extend these results
and definitions to more expressive ontologies.
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It furthermore provides Boolean-valued functions for sentences

• f⊑ ∶ Bn × Bn → {0,1} (interpreting subsumption),

• fR ∶ (℘(Rn) × ℘(Rn)) × (℘(Rn) × ℘(Rn)) → {0,1} (interpreting role instantia-
tion)

• f∶ ∶ ℘(Rn) × Bn → {0,1} (interpreting instantiation)

Given a method SM , a box embedding E for O is an interpretation function that maps

• ⊺E = f⊺ and �E = f� (top and bottom concept set by method)

• each concept C ∈C to a box B ∈ Bn in Rn

• each individual name to a subset of Rn

• each role R ∈R to a subset of ℘(Rn) × ℘(Rn)

• each nominal concept {c} to a box B ∈ Bn in Rn

E can now be extended recursively to arbitrary ELHO(○)�-concepts as follows:

• (C ⊓D)E = f⊓(CE ,DE)

• (∃R.C)E = f∃(RE ,CE)

• (R ○ S)E = f○(RE , SE)

Given a method SM and a box embedding E, we can define satisfaction. We use the
notation E K ϕ to denote that a box interpretation E models, or satisfies, a certain
statement ϕ. Specifically, given a box interpretation E we define:

• For an Abox assertions a ∶ C set: E K a ∶ C ⇐⇒ f∶(aE ,CE) = 1;

• For an Abox assertions (a, b) ∶ R set: E K (a, b) ∶ R ⇐⇒ fR(aE , bE ,RE) = 1;

• For a GCI C ⊑D set: E K C ⊑D ⇐⇒ f⊑(CE ,DE) = 1.

The main idea of this embedding method is to be as general as possible. Concepts
(including the top and bottom concept) are modeled as boxes. Note that Bn includes also
Rn and the empty set, thus ⊺ can be modeled classically as Rn and � classically as∅. The
representations of conjunction of concepts and existential restriction of concepts have a
box as an outcome. To exemplify the generality of this basic box embedding definition,
different readings of E K a ∶ C thus of f∶(⋅, ⋅) can be considered. It could be, e.g., the case
that aE is interpreted as a small set in Rn. Then, E K a ∶ C could be the case if aE and
CE are overlapping, thus a is ‘somewhat’ a member of C. We can also consider the case
where aE ⊆ CE , which would be an interpretation closer to the classical interpretation.
When interpreting individuals as points, thus aE ∈ Rn and E K a ∶ C if aE ∈ CE , then we
arrive at the classical, intuitive definition of a ∶ C. Note that this box embedding deviates
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highly from classical interpretations and also from an interpretation that would have
been expected to be an interpretation of an ontology based on boxes. A more classical
interpretation based on boxes will be presented in Definition 22. These embedding
definitions presented here should make it clear that the term “box embedding” alone
does not imply anything about the actual semantics of such an embedding. The tendency
is to assume that a box embedding fulfills basic expected properties such as that the
subconcept relationship remains transitive, i.e. that E K A ⊑ B and E K B ⊑ C should
lead to E K A ⊑ C. This is, however, dependent on the definition of the embedding and
not trivially fulfilled. Therefore, we define here a box embedding as an abstract method
with the basic property of mapping concepts to boxes, and concept forming operations
such as conjunction and existential restrictions also mapping to boxes, as explained in
detail above. This is inspired by abstract description systems (Baader et al. 2002; Kutz
et al. 2002) which provided a similar syntactic and semantic abstraction of a number of
systems of modal, hybrid, and description logics, and thus enabled a systematic study of
combination methods and transfer results. Note here that in our context it is important
that ⊺E and �E are not modeled individually for every embedding E but are fixed by
the embedding method SM . Otherwise, this would lead to an even more non-standard
behavior, e.g., that E K O, O′ ⊆ O but E /K O′. In general, it would also be possible to
train a function such as f⊓(⋅, ⋅) based on the given input data. This is not considered here,
as it is not done for existing box-based KBE approaches. This abstract definition of a box
embedding is considered in the context of actual KBE approaches in the next section.

Example 2. A non-intuitive box embedding. Let SM be a box embedding method
such that each individual is mapped to a point in Rn. Let E ⊧ C ⊑D iff CE ∩DE =
∅, E K a ∶ C iff aE /∈ CE . Conjunction is defined as box hull, thus f⊓(CE ,DE) =
BoxHull(CE ∪DE). The other definitions are omitted here for simplicity. This
embedding method shows some classical behavior, e.g., (A ⊓A)E = AE but also non-
classical behavior, e.g., the subconcept relation is symmetric, thus, E K C ⊑D implies
E KD ⊑ C. The definition of the individuals and their membership in combination with
the definition of conjunction leads to the fact that if E /K a ∶ C, it could be the case that
E K a ∶ C ⊓D.

Box Embeddings in the Context of Knowledge Base Embeddings

We are focusing here on representing these convex sets as boxes, as they show a good
tradeoff between expressivity and computational properties. Especially, they are closed
under intersection (in contrast to spheres) and easy to be handled computationally
(in contrast to cones). Box embedding approaches in the context of KBE are BoxEL
(Xiong et al. 2022), ELBE (Peng et al. 2022), Box2EL (Jackermeier et al. 2024) and
TransBox (Yang et al. 2025). All these approaches model a subconcept classically as
subset relation, thus E K A ⊑ B iff AE ⊆ BE and individual assertions classically as
E K a ∶ C iff aE ⊆ CE where aE is either defined as a point or a box in Rn. ⊺E = Rn and
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�E = ∅ in all these approaches.¶ Conjunction is mostly defined as set-intersection, thus
(A ⊓B)E = AE ∩BE with exception of TransBox that offers as an additional variant
to define the conjunction as an approximation of the intersection. These approaches
mainly differ in the representation of relations. An overview on these approaches can
be found in Bourgaux et al. (2024). These approaches are able to model ELHO(○)�
ontologies or fragments of it. Note here that, though these approaches seem to have
a classical semantics on first sight (as their definition is not as abstract as the one of
Definition 1), they still do not have a classical semantics as will discussed in section
“Towards Trustworthy and Interpretable Box Embeddings” and pointed out in Example 4.

Example 3. Embedding with TransBox. An example for a box embedding based on
TransBox can be seen in Figure 1 (b). It is based on the idea of modeling relations also
as boxes and states that a triple (a, r, b) holds if aE ∈ rbox + bE . In the example, the
concept “Pizza” and the role “eats” are represented as boxes, the individual “alice” as
a point in the space. Then it is the case that “Alice eats pizza” if the point representing
Alice is part of the box representing ∃eats.P izza. This box is determined by adding up
the centers resp. the offsets of the boxes of “Pizza” and “eats”.

These approaches try to find a tradeoff between expressivity and complexity. Thus,
e.g., representing individuals as boxes eases the training but leads to unexpected behavior
as demonstrated in the following example.

Example 4. Assume an ontology O = (T ,A) is given and let T = {A ⊓B ⊑ �} and let
A = {a ∶ A,a ∶ B}. This ontology is clearly not satisfiable. Let an embedding method SM

be defined by interpreting conjunction as set intersection, � as empty set and individuals
as boxes. The rest can be defined classically, as it is not considered here. Now, a possible
embedding E such that E K A ⊓B ⊑ � could be trivially modeled by using two non-
intersecting boxes in Rn to represent the two concepts. Let aE be now the empty box.
This is a box, thus the definition is in line with the definition of the embedding method.
Then, clearly, E K a ∶ A and E K a ∶ B. This example is an adapted version of (Bourgaux
et al. 2024, Example 1) and ELBE (Peng et al. 2022) suffers from a similar problem. This
shows that such problems are not only easily to be made up with artificial examples but
also based on real-world KBE approaches.

An embedding is not constructed by hand but learned based on the given definition
of the embedding method and the training data. For given input data, thus a KG
with an underlying ontology, some neural network based learning method is used to
learn an embedding based on a loss function. The ontology is first transformed to
normal form to ease the training process. The dimensionality n of the embedding is
set as a hyperparameter. The choice is based on a trade off between representability
and learnability. Then, all concepts are initialized as some (random) boxes in the n-
dimensional vector space and individuals and relations are instantiated depending on the

¶Note here that representing � as empty set, though copying the classical interpretation, is not self-evident.
In the work of Özçep et al. (2020), e.g., � is interpreted as the point of origin in the context of interpreting
concepts as closed convex cones.
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exact embedding approach used. After this initialization, the representation of concepts,
individuals and relations is stepwise optimized via the loss function. An axiom of type
A ⊑ B is, e.g., modeled via a loss function that rewards short distance between A and B
and is zero if the box representing A is part of the box representing B. The overall loss
function is a weighted sum of the losses for each of the normal forms. A global optimum
is found if the loss equals zero. Otherwise some axioms have not been modeled correctly.
Our main question is whether for a general box embedding approach, it is always possible
to find for a given ontology such an embedding where the loss is zero. Additionally, the
question is whether such a zero-loss-embedding then has an interpretable semantics and
allows for statements about the satisfiability of the ontology. Note here that the goal is
not to find the one perfect embedding approach but to analyze the pitfalls and restrictions
of existing approaches, especially as the assumption of classical behavior could lead to
overlooking problematic unexpected behavior of the embedding.

Towards Trustworthy and Interpretable Box Embeddings
Knowledge base embeddings evolved out of the need of including background
knowledge information in form of an ontology into a link prediction process. In contrast
to other ontology embedding approaches, they rely on a tight connection between
ontological information and data and are especially not based on a post-processing
step. But how tight is this connection? In the last section we exemplified in Example 4
that a small adaptation of the embedding approach could lead to a loss of soundness
and to unexpected behavior. A trustworthy embedding approach needs to have an
understandable and intuitive semantics. The ontology is based on Tarskian semantics,
thus, e.g., when the axioms of an ontology are satisfied in an interpretation, then also their
entailments are satisfied. This leads especially to the question whether there is some kind
of correspondence between classical models based on interpretations (of an description
logic ontology) and geometric models based on some embedding method. Thus, is there
are Tarskian semantic for the box embedding (and also for the other KBE methods)? This
discussion was started in Bourgaux et al. (2024).

They define several steps to determine to what extend an embedding resp. an
embedding method follows a classical semantics. Here, they are slightly adapted to
focus on box embeddings. In the following, we will give the definition of (Bourgaux
et al. 2024), discuss them in detail and show what needs to be fulfilled to have an
understandable Tarskian style semantics or what needs to be tested to understand
regarding which aspects the embedding method might deviate from a classical semantics.

Definition 5. (Bourgaux et al. 2024, Def. 3) Let O = (T ,A). The embedding E
interpreted under the embedding method SM as defined in Definition 1 is a shallow
model of

• A if for every individual assertion α of A, E K α,

• T if for every axiom τ of T , E K τ ,
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• O if it is a shallow model of A and T .

Although, this resembles the classical interpretation of a model in the DL-sense,
in contrast to classical models, fulfillment of Tbox and Abox does neither imply that
the entailments of the ontology are also modeled nor that the ontology is satisfiable
classically. Therefore, they are called “shallow” here, as they are only enforced to
fulfill the surface of the ontology, namely only the axioms and individual assertions.
Entailments of the ontology are not necessarily represented in a shallow model. Models
of this type are highly dependent on the representation of Abox and Tbox and their
existence does not even state whether an ontology is satisfiable. Examples have been
given in Example 2 showing that a shallow model could have a non-intuitive semantics
and in Example 4 showing that the existence of a shallow model does not imply that the
ontology is satisfiable, thus the presented embedding method is not sound. Therefore, in
the following, soundness and completeness of shallow models are defined.

Definition 6. (Bourgaux et al. 2024, Prop. 1,2)

• We say that SM is sound if the existence of a shallow model (under SM ) for an
ontology O implies that O is satisfiable.

• We say that SM is complete if for every satisfiable ontology O, there is a shallow
model (under SM ) for O.

The existence of a sound and/or complete shallow model still does not guarantee that
the shallow model resembles a classical interpretation. It is possible that, e.g., entailments
are not modeled correctly or that the embedding is inconsistent. It only depicts that there
is a correspondence between existence of some shallow model and satisfiability of an
ontology. A trivial example for such a sound model would be based on an embedding
method including a satisfiability checker where an embedding is only produced if the
ontology is proven to be satisfiable.

Therefore, as a next step, entailment closure should be enforced, thus an embedding
that satisfies axioms and assertions of the ontology should also satisfy their entailments.
This reduces the dependence of the embedding from the exact definition of the ontology.
Missing entailment closure is a problem of many box-based KBE approaches: though
they are able to model axioms and assertions, the entailments are, especially when they
are more complex, often not modeled properly.

Example 7. A sound but not entailment closed embedding. Let SM be an arbitrary
embedding method such that f⊑ is not transitive. Let O = (T ,A) be an ELHO(○)�
ontology with T = {A ⊑ B,B ⊑ C} and A = {}. Let E be a shallow model of O under
SM such that E K A ⊑ B and E K B ⊑ C. As f⊑ is not transitive, E K A ⊑ C would
not necessarily be the case in E, though it follows trivially from the ontology. Another
example would be to interpret f⊓ of SM as f⊓(AE ,BE) = BoxHull(AE/BE). Then
E /K A ⊓A ≡ A, a trivial tautology in SM , namely idempotence. This, though, does not
need to have any impact on soundness and completeness of SM .

Therefore, entailment closure is introduced.
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Definition 8. (Bourgaux et al. 2024, Def. 4) Let O be a classically consistent (DL)
ontology. We say that a shallow model E is

• Tbox-entailment closed if for every GCI τ if O ⊧ τ , then E K τ ;

• Abox-entailment closed if for every assertion α, if O ⊧ α, then E K α;

• KB-entailment closed if it is Tbox-entailment closed and Abox-entailment closed.

Instead of demanding closure over all entailments, it would also be possible to examine
the depth up to which the entailments are modeled correctly. The depth could be, e.g.,
approximated by considering the minimal depth of a tableau used to prove an entailment.
Such strategies are not considered further here but could be interesting to consider for
real-world use cases. An embedding modeling only GCIs directly entailed by the Tbox
would be of lower quality than one able to model entailments of depth n for some n > 1.
This could ease the training procedure by still modeling a sufficient correctness.

As box embeddings methods, especially KBE methods are not only used to model the
information entailed by the ontology correctly but are also used to infer new facts, e.g.,
by doing link prediction, it is not sufficient to model the ontology and its entailments
correctly, it is also necessary that all GCIs or assertions modeled in the embedding are
consistent with the ontology. Thus, an assertion learned based on the data should be in
line with the ontology. This is called weak faithfulness.

Example 9. An embedding not weakly faithful. Let O = (T ,A) be an ELHO(○)�
ontology with T = {} and A = {a ∶ ∃R.C}. Let the embedding method SM such that
individuals be represented as points in Rn, let E K a ∶ C iff aE ∈ CE , let R be
represented as translation, thus E K (a, b) ∶ R iff aE +RE = bE and assume that
∃R.C is defined classically. Let additionally �E = ∅. Now consider as domain the
one dimensional space R and a shallow model E under SM . Let aE = 1 and CE = 0,
thus E K C ⊑ �. Assume that RE = −1. Then E K a ∶ ∃R.C, as aE +RE = 0 and thus,
E K a ∶ ∃R.� which is clearly unsatisfiable in a classical interpretation of an ontology.
Note that for cone embeddings exactly this problem occurred and needed to be actively
circumvented (see (Leemhuis et al. 2022) for an in-depth discussion).

Thus, we define weak faithfulness.

Definition 10. (Özçep et al. 2020). LetO be a classically consistent (DL) ontology. We
say that a shallow model E of O is

• weakly Tbox-faithful|| if for every GCI τ : if E K τ , then O ∪ {τ} is satisfiable.

• weakly Abox-faithful if for every assertion α: if E K α, then O ∪ {α} is
satisfiable.

∥In line with the literature, we stick here to the names of “Tbox-” and “Abox-”faithful. Note, though, that not
only Tbox axioms and Abox assertions are checked but GCIs and assertions in general.
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• weakly faithful if it is weakly Abox and weakly Tbox faithful.

Note that in the definitions of weak faithfulness, both by Özçep et al. (2020) and by
Bourgaux et al. (2024), it is stated that O ∪ {τ} (resp. O ∪ {α}) needs to be satisfiable
for every α, τ . In the following, it is argued that this restriction is not sufficient to
gain a meaningful semantics. For weak faithfulness, the GCIs are tested separately,
however, they could interfere with each other. Thus, the ontology should be satisfiable
by considering all newly inferred GCIs and assertions at the same time. Therefore, we
define global faithfulness:

Definition 11. Let O be a classically consistent (DL) ontology. We say that a shallow
model E of O is

• globally Tbox-faithful if for every set of GCIs T: if E K T, then O ∪T is
satisfiable.

• globally Abox-faithful if for every set of assertions A: if E K A, then O ∪A is
satisfiable.

• globally faithful if for every set of GCIs and assertions T ∪A: if E K T ∪A, then
O ∪T ∪A is satisfiable.

Note that this means that for a globally faithful shallow model E, there is a classical
interpretation I such that if E K T ∪A, then I ⊧ T ∪A.

Proposition 12. Let O = (T ,A) be an ontology and SM an embedding method. There
exists a shallow model E of O under SM such that E is weakly but not globally faithful.

Proof. Let O = (T ,A) be an ontology with T = {} and A = {a1 ∶ A,a2 ∶ B}. The
ontology is clearly satisfiable. Let E be a shallow model such that E K A ⊓B ⊑ �
and E K a1 ∶ B. E is entailment closed (as there aren’t any non-trivial entailments).
O ∪ {A ⊓B ⊑ �} is satisfiable, same as O ∪ {a1 ∶ B} is satisfiable. Thus, E is weakly
faithful. However, O ∪ {A ⊓B ⊑ �, a1 ∶ B} is clearly not satisfiable. Thus, E is not
globally faithful. An embedding method can be constructed as done in Example 4 by
interpreting individuals as boxes and therefore allowing an individual to be represented
by the empty box.

When now considering an KB-entailment closed and globally faithful shallow model
E, we can guarantee that E is consistent in a classical semantics. However, it still does
not resembles classical semantics in the sense exemplified in the following example.

Example 13. Let O = (T ,A) be an ELHO(○)�-ontology with T = {} and A = {}
and C = {A,B,C}, I = {a1, a2} and R = {}. Let SM be an embedding method and
E a shallow model such that E K T ∪A for T = {A ⊑ B,B ⊑ C} and A = {a1 ∶ A,a1 ∶
B,a2 ∶ B,a2 ∶ C}. Note that this embedding is trivially entailment closed (as there is
nothing entailed by the ontology except tautologies such as A ≡ A which we assume
to hold in the embedding). It is also weakly (and globally) faithful, as O ∪T ∪A is
satisfiable. Now assume that T ∪A are the only (non-trivial) statements satisfied in E.
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Let the subconcept relation f⊑ be defined as being non-transitive, thus E /K A ⊑ C. In
each classical model I of O ∪ {A ⊑ B,B ⊑ C}, it is the case that I ⊧ A ⊑ C. Thus, it
is necessary to consider entailment closure not only based on the entailments of the
ontology but also based on the expected entailments of the embedding.

Therefore, we introduce embedding-entailment closure as a notion of entailment
closure on embedding level.

Definition 14. Let O be a classically consistent (DL) ontology. We say that a shallow
model E is embedding-entailment closed if for every set of GCIs T and assertions A if
E K T ∪A and O ∪T ∪A ⊧ T, then E K T.

Note that every shallow model E that is embedding-entailment closed is also KB-
entailment closed (that follows immediately when choosing T = A = ∅). Up to now we
have defined faithfulness and entailment closure based on one shallow model E of an
ontology. Thus, it was sufficient that the embedding method SM had the ability to
model an entailment closed/faithful embedding of an ontology. A stronger constraint
is to enforce the embedding method SM to produce only KB-entailment closed/weakly
faithful shallow models. Thus, a guarantee needs to be given.

Definition 15. (Bourgaux et al. 2024, Property 5) We say that SM is guaranteed to
be weakly faithful resp. KB-entailment closed if, for every satisfiable ontology O, SM

always produces a shallow model E of O such that E is weakly faithful resp. entailment
closed.

Under a guaranteed condition, weak faithfulness implies global faithfulness and
entailment closure implies embedding-entailment closure. These two stronger conditions
are therefore only necessary when considering specific embeddings.

Corollary 16. Let O be a classically consistent (DL) ontology.

1. Let SM be guaranteed to be weakly faithful. Then SM is also guaranteed to be
globally faithful.

2. Let SM be guaranteed to be KB-entailment closed. Then SM is also embedding-
entailment closed.

Proof. Let O be a classically consistent (DL) ontology.

1. Let SM guaranteed to be weakly faithful. Assume for contradiction that there
is a shallow model E of O under SM such that E is not globally faithful but
weakly faithful. Let E K T ∪A and assume T ∪A has some enumeration. Due to
weak faithfulness, for γ1 ∈ T ∪A, O ∪ γ1 is satisfiable. Let O1 = O ∪ γ1. Then E
is also a shallow model of O1 and due to guaranteed faithfulness, it is also weakly
faithful. This can now be repeated inductively: As E is a shallow model ofOn and
On is satisfiable, due to weak faithfulness, with E K γn+1 for γn+1 ∈ T it follows
thatOn ∪ γn+1 is satisfiable. ThenOn+1 = On ∪ γn+1. And thereforeO ∪T ∪A is
satisfiable, thus global faithfulness follows, a contradiction to the assumption.
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2. The proof follows analogously.

As proven in the following Theorem 17, such a guarantee enables a close connection to
a classical semantics. When additionally assuming that SM is sound and complete, then
it is not only the case that O is satisfiable by a classical interpretation if and only if it is
satisfiable by a shallow model E under SM . Additionally, it can be stated that there is a
model I ofO such that for all γ it is the case that I ⊧ γ if and only if E K γ. Thus, there
is an interpretation exactly resembling what E represents. Note that this is not equivalent
to E being a classical interpretation.

Theorem 17. Let O = (T ,A) be a satisfiable ELHO(○)� ontology.
Assume the following condition:

Pseudo-Tarski SM is guaranteed to be weakly faithful and guaranteed to be KB-
entailment closed.

Then for any shallow model E of O under SM , there exists a classical interpretation I
with I ⊧ O such that for all GCIs and assertions γ in language ELHO(○)�:

I ⊧ γ if and only if E K γ

Proof. Let O = (T ,A) be an ELHO(○)� ontology. Let SM be a guaranteed weakly
faithful and guaranteed entailment closed. Due to the guarantee of faithfulness and
entailment closure and with Corollary 16, each shallow model E is KB- and embedding-
entailment closed and globally faithful. Let E K T ∪A and let T ∪A be maximal, thus
for all γ with E K γ, γ ∈ T ∪A. Due to global faithfulness, with E K T ∪A it follows
that O′ ∶= O ∪T ∪A is satisfiable. Due to KB-entailment closure, E K O and due to
embedding entailment closure E K γ if O′ ⊧ γ. Let I be the minimal model of O′,
minimal in the sense that I ⊧ γ implies O′ ⊧ γ for all γ. Now let γ be an arbitrary GCI
or assertion. If E K γ, then by definition, γ ∈ O′ and thus I ⊧ γ, as I is a model of O′.
If I ⊧ γ, then by definition of I, it is the case that O′ ⊧ γ and thus, due to entailment
closure, E K γ.

As will be discussed in section “Expressivity of Boxes”, box embedding methods
(based on some weak assumptions) can never be complete. Additionally, KBE
approaches should be of a sufficiently low computational cost and especially not every
ontology is needed to be represented correctly. It would be sufficient to focus on
specific, widely used ontologies and to enforce that there is at least one adequate,
thus entailment closed and weakly faithful embedding. Enforcing guaranteed properties
would be therefore a too severe restriction. A second variant is to consider again a specific
shallow model E based on some SM for a specific ontology O. Independent of whether
SM has some guaranteed properties, it is necessary to be able to determine whether this
shallow model E resembles the properties of a classical interpretation in a sufficient way
(thus, that there is a model I of O such that for all γ it is the case that I ⊧ γ if and
only if E K γ). In the following, we show that if E is globally faithful and embedding-
entailment closed, then this is actually the case. This result allows for defining procedures
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to test for specific KBE approaches and specific embeddings of these approaches whether
these embeddings resemble a classical semantics. Such a procedure would allow to
increase the trustworthiness of the KBE approaches, as it allows for clearly stating the
expressivity not only of the approach in general but also based on the exact ontology and
embedding modeled. That this can be defined follows directly out of Theorem 17.

Corollary 18. Let O = (T ,A) be a satisfiable ELHO(○)� ontology.
Assume the following condition:

Weak Pseudo-Tarski E is a shallow model of O that is embedding entailment closed
and globally faithful.

Then there exists a classical interpretation I with I ⊧ O such that for all GCIs and
assertions γ in language ELHO(○)�:

I ⊧ γ if and only if E K γ

Proof. The statement follows directly with Theorem 17 as the pseudo-Tarski property
implies the weak pseudo-Tarski property.

To summarize: a KBE approach can only then be used in a trustworthy fashion if
it has a trustworthy (and known) semantics. By Bourgaux et al. (2024), the existing
KBE approaches have been examined based on their ability for soundness, completeness,
guaranteed and possible weak faithfulness and entailment closure. We extend this
consideration in the following: we are not only interested in the fact that most of the
embedding approaches are neither sound, complete, faithful nor entailment closed. We
want to determine whether it is possible to define such an embedding method as defined
in Theorem 17 that simulates a classical semantics. In section “Expressivity of Boxes”
we show that this is impossible when assuming some straightforward semantics for a box
embedding method. Having this negative result, we want to determine the positive: which
ontologies are representable by a box embedding method in a pseudo-Tarski fashion? Is it
possible to restrict the ontologies in such a way that box embedding methods can handle
them?

This is discussed in the following from different angles: (i) as a starting point, a
general box interpretation is defined to present a general, expressive embedding as a
starting point that is closer to a classical interpretation than the general embedding
method presented in Definition 1. (ii) Based on this interpretation, we discuss which
ontologies are actually representable (in a pseudo-Tarski fashion), thus not influenced
by the missing completeness. (iii) The learnability is considered: does the geometric
construction introduce a bias into the learning approach?

Point (ii) and (iii) are introduced in the following and discussed in detail in section
“ELHO(○)� under HP-Semantics”.

Completeness
When looking at Table 4 in (Bourgaux et al. 2024), it turns out that there are sound
box embedding approaches (especially BoxEL (Xiong et al. 2022)) but none of the
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box embeddings is complete. The proofs of this fact in Bourgaux et al. (2024) are
based on individual properties of the respective box embedding approaches. This opens
up one of the main questions of this paper: is it possible to find a box embedding
approach that is complete? As this question is especially interesting for embedding
methods of a sufficiently classical semantics, the question can be changed to: Is there
a guaranteed entailment closed, weakly faithful embedding method SM that is sound and
complete? We are focusing here on one specific embedding method based on some basic
assumptions. In section “Expressivity of Boxes” it turns out that this question has to
be answered partly negatively. Though, that specific box embedding method is sound,
it is not complete, meaning there are always ELHO(○)� ontologies (and even EL�
ontologies) that can’t be modeled by such a box embedding. As the specific interpretation
considered for this result shares many properties of classical KBE approaches, this result
is also directly applicable to standard KBE approaches and shows that they can not be
complete, even if their specific problems of completeness would not have been the case.

This result is vital on the way towards a trustworthy (and high quality) KBE approach.
Assume data and ontology are given and an embedding has been trained. If the loss of the
trained model is greater than zero, then not all axioms and assertions of the ontology have
been modeled correctly. This could happen out of several reasons and is not necessarily
problematic. It could be, e.g., the case that the learning scheme is unable to find a perfect
embedding and is stuck in a local minima. It could also be the case that the dimension of
the embedding has been chosen too small and therefore the ontology is not representable.

Another point, where an advantage of the embedding comes into play is when handling
erroneous assertions. Due to the effort of the embedding to model a regular, low
dimensional embedding, such outliers are implicitly detected and corrected, leading to
a non-problematic non-zero loss.

This is in principle nice to have, however, has the downside that it is not obvious
whether such a corrected outlier was actually erroneous or not. At this point, it is
necessary to determine whether the ontology was embeddable consistently at all. Due
to the non-completeness of the approaches, it could be the case that even based on
a perfect learning scheme and an appropriate dimensionality, an embedding being a
shallow model of the ontology is not found. In this case, assertions (and also GCIs)
are modeled incorrectly but not due to data regularities but solely due to a lack of
representational ability. It is still possible that the embedding has the weak-pseudo-Tarski
property based on some ontology. The embedded ontology is, however, not the ontology
that should have been modeled but an ontology modeling some other facts. In that case
improvements in data quality or the learning approach or a higher dimension do not solve
the issue. Problems due to non-completeness need to be determined before considering
other problems of the embedding approach.

Non-complete embedding approaches are still useful: first, they can be used for the
ontologies that can be modeled. We determine these in section “Helly-Satisfiability”.
Additionally, this information can be used as a post-processing step: if a result, e.g., a
predicted link, seems implausible, it can be tested whether this link has any connection
to a non-representable part of the ontology.
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Faithfulness
Assume now that an embedding approach exists that constructs for each ontology
representable by a method SM a weakly pseudo-Tarski shallow model. Due to
interpreting the domain as real-valued vector space, it is possible to argue about similarity
of individuals or concepts by considering distances between them. This is the so-
called geometric regularity principle, a basic principle of models such as word2vec
(Mikolov et al. 2013) and used ever since. In KGE-approaches, this principle is only valid
to a limited extent, as modeling relations geometrically influences the representation
(Paulheim et al. 2025). By introducing conceptual information in form of geometric
constraints, the tight connection between data regularities and geometric regularities
is even more relaxed, as the modeling is restricted by box-shaped constraints. This
leads to a trade off: on the one hand, data could incorporate a bias that hints towards
a specific assertion that seems to be plausible but still is incorrect, e.g., if there is only
correlation and not causality. Then, the embedding should ignore this similarity and inject
the ontological information to overcome this issue. On the other hand, the embedding
approach should be bias-free in the sense that it is able to build a geometric model without
being influenced by geometric restrictions.

Example 19. Consider an ontology O = (T ,A) with T = {} and A = {a ∶ A, b ∶ B}.
Now, assume a primitive embedding approach SM is given, that is only able to model
exactly one box. Let E under SM be a shallow model ofO. Then, AE = BE , thus the box
representing A equals the box representing B, and it can be inferred that aE ∈ BE and
bE ∈ AE . This is in line with the ontology, thus the embedding is consistent. However,
it seems not to be reasonable as there is no hint in the data pointing towards such an
equivalence. In this case, the restrictions of the embedding approach prevent from finding
a good solution.

Therefore, we want to determine whether it is in theory possible to find a bias-
free embedding, thus an embedding that is not restricted by geometric regularities
but solely models the data. If such an embedding exists, then the trustworthiness of
the embedding approach increases: The risk of inferring knowledge solely based on
geometric regularities and not based on data regularities decreases. Note, however, that
this does not guarantee for a totally geometric-bias free approach: it is still possible that
the learning approach prefers the biased version over the unbiased one due to lower
training complexity. It could also be the case that the chosen dimension introduces such
a geometric bias. The level of bias of the approach can be described via the notion of
strong faithfulness:

Definition 20. (Özçep et al. 2020). LetO be a classically consistent (DL) ontology. We
say that a shallow model E of O under SM is

• strongly Tbox-faithful if for every GCI τ : if E K τ , then O ⊧ τ .

• strongly Abox-faithful if for every assertion α: if E K α, then O ⊧ α.

• strongly faithful if it is strongly Abox-faithful and strongly Tbox-faithful.
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Corollary 21. Let O be a classically consistent DL ontology. If a shallow model E of O
is strongly faithful, then it is also globally faithful (and thus also weakly faithful).

The existence of a strongly faithful shallow model E of O means that the underlying
embedding method SM has the ability to model exclusively the axioms and assertions
that are entailed by the ontology. Such an embedding is extremely large and can be
considered as the most overfitted embedding possible: nothing new can be inferred, as
exactly the existing information is modeled. Therefore, such an embedding is not relevant
for usage in practice. It is, however, necessary for determining whether it is in theory
possible, as then the actually learned embedding does not suffer from this type of bias.

Whereas Bourgaux et al. (2024) states that all box-based KBE approaches approaches
considered are not strongly faithful, we are again interested in the question on regaining
strong faithfulness: what is the influence of the restriction of box embeddings on
modeling strongly faithful embeddings? Are there any ontologies that can be modeled
strongly faithful despite the restricted expressivity of box embedding methods? This will
is discussed in detail in section “Helly-Faithfulness”.

After this informal introduction to the topic, in the following we discuss the
three mentioned aspects in detail: in section “A Generalized Box Interpretation”, a
generalized box interpretation is presented, after that, in section “Expressivity of Boxes”
general restrictions of box embeddings are discussed. Their influence to completeness
and faithfulness is then discussed in the sections “Helly-Satisfiability” and “Helly-
Faithfulness”, resp.

A Generalized Box Interpretation
First, the question is tackled whether there is a specific embedding method SM that is
entailment closed, weakly faithful and possibly sound and complete and thus resembles a
classical semantics as discussed in Theorem 17. This embedding should be also general
enough to be able to act as a generalization of existing box-based KBE approaches or at
least to allow for adapting the insights that are based on this embedding method to the
KBE methods. This is particularly relevant to discriminate between issues with specific
embedding approaches and problems inherent to box-based embeddings in general. Our
first aim is to gain insights into the commonalities of all these approaches to find a
generalized box embedding that can be (i) used as a basis for further considerations on
the general ability of box embeddings and (ii) clarifies which fragments of the ontologies
can be represented with the help of a Tarskian-style semantics. Starting with the general
embedding method as defined in Definition 1, it is now considered how this can be
specified.

Classically, the domain is Rn for some predefined n. All concepts are interpreted as
boxes: the top concept as the whole space Rn, the bottom concept as the empty set,
and other concepts as specific boxes. Furthermore, conjunction of concepts is typically
defined as set-intersection, with the exception of TransBox (Yang et al. 2025) where
an approximated intersection is considered. We use here the classical intersection, as it
is more often used and closer to an intuitive semantics. The main difference between
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the various approaches lies in the definition of relations used. To define a well-behaved
semantics for relations, we interpret them as sets over Rn ×Rn, however with the added
condition that existential role restrictions always transform boxes into boxes. As the main
feature of representations of relations is to model exactly this (or a subset of this) relation,
it can be considered as general. This is exemplified in Example 25. We arrive at the
following definition.

Definition 22. A box interpretation ξ is a structure (Ξ, ⋅ξ), where Ξ = Rn for some
n ∈ N, and where ⋅ξ maps each concept name A ∈C to some box in Bn, each individual
name c ∈ I to a point cξ ∈ Ξ, each nominal concept {c} to the box {cξ}, and each
role R ∈R to a subset Rξ ⊆ Ξ ×Ξ such that for every B ∈ Bn: R−1(B) ∈ Bn. A box
interpretation for arbitrary ELHO(○)�-concepts is defined recursively as

(⊺)ξ = Ξ (�)ξ = ∅ (C ⊓D)ξ = Cξ ∩Dξ

(∃R.C)ξ = {x ∈ Ξ ∣ there is y ∈ Ξ with (x, y) ∈ Rξ and y ∈ Cξ}
(R ○ S)ξ = {(a, c) ∣ ∃b ∈ Ξ ∶ (a, b) ∈ Rξ, (b, c) ∈ Sξ}

A box interpretation ξ models an Abox axiom a ∶ C for short ξ ⊪ a ∶ C iff aξ ∈ Cξ and it
models an Abox axiom of the form (a, b) ∶ R iff (aξ, bξ) ∈ Rξ.

Clearly the structure (Ξ, ⋅ξ) can be considered as an instance of the embedding method
SM defined in Definition 1. When talking about box interpretations in the following, we
are referring to the one defined here. Note, that this can be directly adapted to weaker
ontologies such as in EL� or even in ontologies not considering roles at all. Thus, this
interpretation and its semantic can also be used as a building block for understanding
other approaches based on box embeddings, e.g., the ones considering solely hierarchical
structures. This interpretation is inspired by classical interpretations as defined in Table 1.
It differs only in the assertion that classical interpretations consider concepts as arbitrary
sets whereas in a box interpretation each concept is represented as a box. The definition
of the roles ensures that each (∃R.C)ξ results in a box, independent of the choice of
C. In contrast to classical interpretations, the box interpretation allows for the notion of
convexity and dimensionality.

The box interpretations of Definition 22 can be interpreted as a special type of classical
interpretation in the following sense:

Proposition 23. Let ξ be a box interpretation of an ELHO(○)�-ontology O such that
ξ ⊪ O. Then

1. ξ is entailment closed,

2. ξ is weakly faithful, and

3. O is satisfiable in standard DL semantics

Proof. Let O be an ELHO(○)�-ontology. Let ξ ⊧ T ∪A. First, it is shown that each
concept in ξ is a box. Each concept symbol is interpreted as a box. (∃R.C)ξ is defined
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as R−1(Cξ) and as Cξ is a box, by definition also (∃R.C)ξ is a box. Boxes are closed
under intersection. Therefore, also (C ⊓D)ξ is a box for arbitrary concepts C,D. Note
that ∅ ∈ Bn, thus by definition (C ⊓D)ξ = ∅ also results in a box. �ξ,⊺ξ and {c}ξ for
nominals {c} are boxes by definition.

In the following, it is shown that the box interpretation is a special case of a classical
interpretation. As classical interpretations are entailment-closed and weakly faithful, the
proposition follows.

Let I be a classical interpretation and let ξ be a box interpretation that models all
Tbox and Abox axioms. Let ∆ = Ξ, cI = cξ for c ∈ I. Let CI = {a ∣ a ∈ Cξ} for C ∈C
and RI = {(a, b) ∣ (a, b) ∈ Rξ} for R ∈R. Thus, I ⊧ ax iff ξ ⊪ ax for all assertions ax.
Therefore, ξ can be interpreted as classical interpretation and thus is entailment closed
and weakly faithful. As I is a classical interpretation, (3) follows trivially.

Corollary 24. The embedding method (Ξ, ⋅ξ) is guaranteed to be entailment closed and
weakly faithful and sound and thus fulfills the pseudo-Tarski property.

This box interpretation is not only interesting on its own but also strongly connected
to the existing embedding approaches, as exemplified in detail for TransBox in the
following example.

Example 25. This box interpretation is general in the sense that it allows for interpreting
some of the existing box embedding methods as special cases. Consider, e.g., TransBox
and especially the example mentioned in Figure 1 (b). There, individuals are defined as
points in Rn, concepts as boxes, and � and ⊺ can be interpreted as the empty space
and Rn, resp. A direct translation of Rbox to Rξ is the following: Rξ = {(aξ, bξ) ∣ aξ ∈
Rbox + bξ and bξ ∈ Ξ}. As Rbox is a box, also Rbox + bξ is a box. As translation with
Rbox is linear, also each translation of an arbitrary box results in a box. With C =
{Pizza},R = {eats} and I = {alice}, this definition leads to the example mentioned
in Figure 1 (b).

Now, after showing that this general box interpretation is useful as a generalization of
existing approaches, the expressivity of this interpretation is discussed.

Expressivity of Boxes
Now, assume that a perfect learning approach and an arbitrary high dimensional
embedding space are given. In the following, it is shown that even under these ideal
circumstances, there exists not always an embedding as defined in Definition 22 that
models the ontology. Therefore, these box representations ease the training but come
to the prize of a restricted expressivity, as not every satisfiable ELHO(○)�-ontology
has a box interpretation that satisfies O: there is a satisfiable ELHO(○)�-ontology not
having any box interpretation. Thus, box embedding methods, introduced also to improve
trustworthiness of the approaches, by themselves add a source of lack of trustworthiness
due to limits in expressivity. The problem can be visualized with the following example:
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Figure 3. (a) a classical interpretation not fulfilling Helly’s property; (b) a box interpretation
with ξ /⊪ A ⊓B ⊓C = � (as the shaded region represents Aξ

∩Bξ
∩Cξ)

Example 26. Given the ontology O = (T ,A) with T = {A ⊓B ⊓C = �} and A = {a1 ∶
A ⊓B,a2 ∶ B ⊓C,a3 ∶ A ⊓C}. A possible DL-interpretation satisfyingO can be seen in
Figure 3 (a). However, the attempt to find a box interpretation leads to interpretations
such as the one shown in Figure 3 (b). With boxes, it is necessary to dismiss either the
axiom A ⊓B ⊓C = � or to model one of the individuals incorrectly.

This property is well-known and is called Helly’s Property (HP).

Definition 27. Helly’s Property. (adapted from (Eckhoff 1988)) A family B fulfills
Helly’s Property if it is the case that: ⋂b∈B b /= ∅ if and only if for all b1, b2 ∈ B:
b1 ∩ b2 /= ∅.

It is in fact a long-standing result that boxes need to fulfill Helly’s property.

Proposition 28. (adapted from (Eckhoff 1988)) Each finite family B ⊂ Bn of axis-
parallel boxes in Rn fulfills Helly’s property, for any n ∈ N.

This property is not to be confused with the commonly known Helly’s Theorem (Helly
1923) about the intersection of convex sets in Rn for fixed n ∈ N. Helly’s property is
independent of the dimensionality of the boxes, thus using a higher dimension does not
solve the issue. Examples that interfere with Helly’s property can be found in many real
world problems, e.g., in project management.

Example 29. Project Management Triangle (Van Wyngaard et al. 2012). The project
management triangle depicts a basic economic principle. The main aim of a production
system is to optimize production cost, production time and scope (thus, the number of
features of the product) at the same time to have a cheap, quickly produced but complex
product. This is, however, not possible. Each two of the features can be optimized at
the same time, coming to the cost of neglecting the third. Thus, it is possible to produce
a cheap product fast but then without complex features. Producing a complex product
cheaply is time consuming and producing a complex product fast is costly (see Figure 4
for a visualization). Note that this triangle resembles the shape of the counterexample for
Helly’s property in Figure 3.
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Cost Scope

Time

Figure 4. Project management triangle (Van Wyngaard et al. 2012)

Next to this well-known example, where the main aim is to optimize three features
against each other, this property is also of importance in other use cases, where the focus
is on pairwise intersection directly.

Example 30. Real-world example. Other real-world examples can be found, e.g., in
the animal domain when considering attributes of animals, e.g., “flying”, “aquatic” and
“mammal”. There are aquatic mammals such as dolphins, there are flying mammals
such as bats and (at least somehow) flying aquatic animals, namely flying fish. There are,
however, no flying aquatic mammals, thus Helly’s property is not fulfilled.

Also in some of the standard real-world ontologies those problems can be found at
least implicitly.

Example 31. Real-world ontologies. When considering Helly’s property on ontology
level, interference with this property is only possible if disjointness axioms are modeled.
An ontology of the animals of the last example would, e.g., consists of three concepts
aquatic animal, mammal and flying animal where each of the two are pairwise
intersecting. Such an ontology is not in line with Helly’s property, as the Tbox contains
an axioms stating that aquatic animal ⊓mammal ⊓ flying animal ⊑ �. Many real-
world ontologies such as GALEN (Rector et al. 1996) and SNOMED (Donnelly 2006)
are not modeling disjointness axioms at all and thus always fulfilling Helly’s property.
Therefore, in context of these ontologies it seems that at first sight, adherence to Helly’s
property is not problematic and therefore is not of any relevance. These axioms are,
however, often not missing due to the fact that the concepts are allowed to intersect
but due to the fact that the modeling of disjointness axioms has been neglected by
the ontology developers, as hierarchies are mostly considered more important than
disjointness axioms. Even if such a disjointness axiom is not modeled, it could exist
both based on implicit knowledge and based on data regularities. One especially fatal
problem occurring due to Helly’s property is the consideration of contraindications of
drugs. Thus, there could be three drugs being all pairwise compatible having severe side
effects given all together.

These three examples exemplify real-world use cases interfering with Helly’s property.
This necessitates further considerations on this property: what implications does it have
that an embedding approach is not able to model something interfering with Helly’s
property?
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In the following, the intuition of the restrictions of box interpretations given in
Example 26 is proven formally with the help of box interpretations.

Proposition 32. There exists a classically satisfiable ELHO(○)� ontology O such that
no box interpretation in Rn, for arbitrary n ∈ N, satisfies O.

Proof. The proof is based on Example 26. Given the ontology O = (T ,A) with T =
{A ⊓B ⊓C = �} andA = {a1 ∶ A, a1 ∶ B,a2 ∶ B,a2 ∶ C,a3 ∶ C,a3 ∶ A}.O is satisfiable,
see Figure 3 (a) for a possible model. The box interpretation as defined in Definition 22
models concepts as axis-parallel boxes. Therefore, it is due to Proposition 28 necessary
that each interpretation fulfills Helly’s property. As due toA, the boxes representing A,B
and C need to intersect pairwise (and are especially non-empty) with Proposition 28 it
follows that Aξ ∩Bξ ∩Cξ /= ∅. Therefore, ξ /⊪ A ⊓B ⊓C ⊑ � and therefore ξ /⊪ O.

This proof directly leads to the following corollary stating that not only ELHO(○)�
ontologies are suffering from this issue but all structures that are at least able to model
concept conjunction and disjointness. The structure defined in Proposition 32 is a Helly
antipattern, i.e. a collection of sentences that can not be satisfied in structures satisfying
Helly’s property. Obviously, this does not require the full expressivity of ELHO(○)� as
recorded in the following corollary:

Corollary 33. Let L ⊆ ELHO(○)� be any sublanguage of ELHO(○)� that contains
conjunctions, disjointness, and allows instantiations (expressing non-emptiness of
concepts). Then L admits Helly antipatterns.

Not every ontology suffer from restrictions due to Helly’s property. There are many
ontologies that can be modeled correctly. Therefore, it is necessary to be able to
determine whether an ontology suffer from problems with Helly’s property or not.
Thus: (i) Is it possible to effectively check, for a given ontology O, whether it has
one interpretation fulfilling Helly’s property, thus whether it has a box interpretation
satisfying O? The theoretical existence of such an interpretation does not state that it is
constructable, thus of practical relevance for an embedding approach. Thus: (ii) when it
exists, can we effectively construct a Helly-satisfying interpretation?

Due to Corollary 33, all the following considerations are not only relevant for box-
based KBE-approaches but for all approaches modeling conceptual information, concept
conjunction and disjointness. It is not even necessary to state this information explicitly,
also implicit disjointness can not be modeled due to the restriction of box embedding
methods to fulfill Helly’s property. Thus, these problems are also occurring in query
embedding with boxes (see, e.g., (Ren et al. 2020)) or when modeling relations as boxes
(Abboud et al. 2020) and in many other related areas.

ELHO(○)
� under HP-Semantics

First, in the following, Helly-satisfiability is considered, thus the question of how to
determine for a given ontology whether there is at least one box interpretation fulfilling
HP, thus whether (in theory) there is a box embedding being a model of the ontology.
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After that, Helly-faithfulness is considered, thus the question of what influence HP has
on the faithfulness of the embedding.

Helly-Satisfiability
As shown in Proposition 32, not every classically satisfiable ontology is representable
by a box embedding based on some general assumptions as defined in Definition 22.
Therefore, we now want to consider Helly’s property in ontologies further: What does
it mean that an ontology “does not fulfill HP”? Can we determine the fragment of
ontologies efficiently that fulfill HP?

First note that HP is tested on interpretation level.

Definition 34. An interpretation I of an ELHO(○)�-ontology O is Helly-closed if for
all AI ,BI ,CI ∈DCIO, the set of definable concepts, Helly’s property (Definition 27) is
fulfilled. Thus if AI ,BI ,CI are pairwise intersecting, then also AI ∩BI ∩CI /= ∅.

One challenge here is that it is not sufficient to test HP for all concept symbols
or elements of the Abox but it needs to be tested for every definable concept in the
interpretation.

An ontology thus “fulfills HP” if it has at least one Helly-closed model. This leads to
the notion of Helly-satisfiability.

Definition 35. An ELHO(○)�-ontology O is Helly-satisfiable if it has a model I that
is Helly-closed.

In the following, properties of Helly-satisfiable ontologies are discussed. Note that
Helly’s property relies on the Abox-level: Consider an ontology O = (T ,A) with T =
{A ⊓B ⊓C = �} and A = {}. A Helly-closed interpretation of O can be seen, e.g., in
Figure 5 (a) (Page 32). This ontology has, however, the same Tbox as the ontology
defined in Example 26 that does not have a Helly-closed interpretation. Therefore, it
is not possible to define a rule on Tbox-level to capture adherence to HP.

Thus, the Abox needs to be considered. As a first step towards a procedure for checking
whether an ontology is Helly-satisfiable, an Abox closure rule is defined as a closure
procedure. It is based on the straightforward idea to enforce a Helly-closed interpretation
by adding a new individual witnessing the intersection of three concepts every time
when the premise of HP is fulfilled by the Abox, thus these three concepts are pairwise
intersecting. Such an individual can be added, as it needs to exist in every Helly-closed
model of the ontology.

Definition 36. Helly-Abox closure rule. For all concept descriptions A,B,C: if A
contains {a ∶ A,a ∶ B, b ∶ B, b ∶ C, c ∶ A, c ∶ C} but there is no individual d with {d ∶ A,d ∶
B, d ∶ C} ∈ A. Then, add a new individual e to I and A′ = A ∪ {e ∶ A, e ∶ B, e ∶ C}.

Now, let a satisfiable ontology O = (T ,A) be given. The Helly-Abox closure rule
is applied until no new element is added. This rule checks whether there is a case
where three concepts are pairwise intersecting. Then a new individual is added at the
intersection of all three to circumvent contradictions to HP. If the resulting ontology
O′ = (T ,A′) is not satisfiable anymore, then the ontology is not Helly-satisfiable.
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Corollary 37. Let O = (T ,A) be a satisfiable ontology. Let O′ = (T ,A′) be the
ontology after applying the Abox-closure rule until termination. If O′ is not satisfiable
then the ontology is not Helly-satisfiable.

The other direction of this statement, however, does not follow: Even if the extended
ontology O′ is satisfiable, it is not necessarily Helly-satisfiable. This is due to the fact
that, as mentioned in Definition 34, HP needs to be tested on each definable concept in
an interpretation. Especially due to existential restrictions, it is possible that individuals
interfering with HP are implicitly enforced to exist in every possible model of the
ontology but are not explicitly stated in the set of individuals I.

Proposition 38. There is a satisfiable ontologyO = (T ,A) withO′ = (T ,A′) being the
Helly-Abox closed version of O such that O′ is satisfiable but not Helly-satisfiable.

Proof. LetO = (T ,A)with T = {A ⊓B ⊓C ⊑ �,D ⊑ ∃R.(A ⊓C)} andA = {a ∶ A,a ∶
B, b ∶ B, b ∶ C, c ∶D}. This ontology is Abox-closed, thus O′ = O, and satisfiable. As
O ⊧D ⊑ ∃R.(A ⊓C) and O ⊧ c ∶D, it follows that O ∪ {A ⊓C ⊑ �} is not satisfiable.
In each model I of O, there must be an element dI with (cI , dI) ∈ RI and dI ∈
(A ⊓C)I . Therefore, the concepts A,B and C are pairwise intersecting in each model
of O but not intersecting all three due to the Tbox axiom and thus interference with HP.

Therefore, a more in-depth strategy is needed to test for Helly-satisfiability. One idea is
to create an interpretation and check for this interpretation whether it is Helly-closed. If it
is Helly-closed, then the ontology is Helly-satisfiable. However, if not, then there could
be a different Helly-closed interpretation. Therefore, we need to test the Helly-closure
for an interpretation that is generic in the sense that this interpretation is Helly-closed
if and only if the ontology is Helly-satisfiable. The idea is to find a Helly-companion of
this ontology. This Helly-companion extends the ontology in such a way that all possibly
Helly-incompatible aspects are incorporated in the Abox and thus, the Abox-closure rule
is sufficient to test for Helly-satisfiability. This companion then trivially leads to a Helly-
closed interpretation if the ontology is Helly-satisfiable.

A Helly-companion O′ is an extension of the ontology O, where the set of concept
and role symbols remain unchanged, only individuals are potentially added to include
the implicit instances that could lead to problems with Helly-satisfiability (see the proof
of Proposition 38 for an example). These potentially added individuals are enforced by
condition 2. of the definition. This condition adds for each necessary non-empty concept
a witness. Then it is sufficient to apply the Helly-Abox closure. Note here that “concept
C” is condition 2 again considers arbitrary concept descriptions and not only concepts in
C.

Definition 39. An ontology (T ′,A′) = O′ ⊇ O = (T ,A), with the sets T ′ and A′ finite,
is a Helly-companion of O if

1. I(O′) ⊇ I(O),C(O′) =C(O),R(O′) =R(O); (Signature extends only ind.
names)
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2. If for some concept C we haveO′ ∪ {C ⊑ �} is inconsistent, then there exists a d ∈
I(O′) such that O′ ⊧ d ∶ C; (Every necessarily non-empty concept is witnessed.)

3. A′ is Helly-Abox closed for I(O′). (All Helly scenarios are witnessed.)

This is exemplified in the following example.

Example 40. Helly companion. Consider the ontology O = (T ,A) with T = {} and
A = {a1 ∶ A,a1 ∶ B,a2 ∶ B,a2 ∶ C,a3 ∶ ∃R.(A ⊓C)}. This is an ontology similar to the
one in the proof of Proposition 32 but with an empty Tbox. The ontology is Helly-Abox
closed, however O′ = O is not a Helly-companion, as O′ ∪ {A ⊓C ⊑ �} is inconsistent.
To define O′ as a Helly-companion of O a new individual a4 needs to be added,
thus I′ = I ∪ {a4}. As O ∪ {A ⊓C ⊑ �} is inconsistent, the Abox A is extended to
A′ = A ∪ {a4 ∶ A,a4 ∶ C, (a3, a4) ∶ R}. As a next step, the Helly-Abox-closure needs
to be applied to O′. Thus, an individual a5 is added to I′, thus I′′ = I′ ∪ {a5} and
A′′ = A′ ∪ {a5 ∶ A,a5 ∶ B,a5 ∶ C}. As every necessarily non-empty concept is witnessed
in O′′ and A′′ is Helly-Abox closed, O′′ is a Helly-companion of O. With the help of
this Helly-companion, the definition of a Helly-closed interpretation of the ontology is
trivially possible. As an interpretation satisfying O′′ also satisfies O, there is a Helly-
closed interpretation of O. Therefore, O is Helly-satisfiable.

The notion of an Helly-companion now allows for identifying the Helly-satisfiable
ontologies as exactly the ones that have a consistent Helly-companion.

Proposition 41. A satisfiable ELHO(○)�-ontology O = (T ,A) is Helly-satisfiable if
and only if there exists a consistent Helly-companion O′ of O.

Proof sketch. Let O = (T ,A) be a satisfiable ELHO(○)� ontology.

→ Let O be Helly-satisfiable. A Helly-companion can be constructed by applying a
tableau-like algorithm to the Abox. If, e.g., {a ∶ A} ⊆ A and {A ⊑ B} ⊆ T , then
A′ = A ∪ {a ∶ B}. Then, the Abox-closure rule is applied. This makes it necessary
to apply the tableau-like algorithm again to witness every necessarily non-empty
concept. These two steps are repeated until nothing new is added. Next, it is
discussed whether O′ is satisfiable. Assume for the sake of contradiction that
O′ is not satisfiable. O is satisfiable by definition. Fulfilling condition 2 does
not change the satisfiability of an ontology O′ compared to O, as it only makes
implicitly existing individuals explicit. Thus, the Abox-closure needs to cause the
loss of satisfiability of O′. This, however, could only be the case if O would not
be Helly-satisfiable. This is a contradiction to the assumption and therefore, O′ is
a satisfiable Helly-companion.

← Let O′ be a consistent Helly-companion of O. Thus, there is an interpretation I
such that O′ ⊧ I. As O ⊆ O′, it follows that I is also a model of O. It remains to
show that there is a model I ofO′ that is Helly-closed. AsA′ is Helly-Abox closed
and every necessarily non-empty concept is witnessed, a trivial interpretation of
O′ can be used (thus the interpretation resembling the Abox). This is by definition
Helly-closed.
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The detailed proof and especially the proof of termination of the construction of a Helly-
companion can be found in the appendix.

This shows that it is (i) possible to determine whether an ontology is not Helly-
satisfiable, thus whether there can’t be a box embedding approach relying on the standard
assumptions correctly modeling this ontology. In the detailed proof, it turns out that for
a Helly-satisfiable ontology O, not only a Helly-companion exist but also always a finite
one. Thus, it also shows (ii) that if an ontology is Helly-satisfiable then a finite Helly-
satisfiable model exists, thus there is (at least a theoretical) possibility to construct such
a model.

Proposition 42. Given a Helly-satisfiable ELHO(○)�-ontology O, a finite model
fulfilling HP can be found in finite time.

Proof. This follows directly out of the proof of Proposition 41, as such a model can be
directly defined with the help of the Helly-companion.

The previous results lead directly to the following theorem:

Theorem 43. Let O = (T ,A) be an ELHO(○)� ontology. It is in finite time possible to
test whether O is Helly-satisfiable and, if it is the case, a finite Helly-closed model of O
can be found in finite time.

In this section it was shown that Helly’s property is a relevant restriction of box
embedding approaches. These approaches can’t be complete and independent of the exact
modeling strategy, there will be always ELHO(○)� ontologies that can’t be modeled. It
turned out that Helly’s property acts especially on Abox-level. In the following example,
the relevance of this result is discussed for those real-world ontologies that have an empty
Abox and thus seem, on first sight, not influenced by Helly’s property.

Example 44. HP for an empty Abox. Many real world ontologies such as the Gene
Ontology have an empty Abox. Are these ontologies not influenced by problems emerging
from Helly’s property, as ontologies with an empty Abox are always Helly-satisfiable?
Also for these ontologies, HP is relevant, due to two reasons: first, it is plausible to
assume that axioms of the form A ⊓B ⊑ C are implying that A ⊓B /⊑ �, as otherwise the
axiom A ⊓B ⊑ � could have been stated directly (see, e.g., (Jackermeier et al. 2024)).
This goes in line with the coherence principle for ontologies (see, e.g., Osman et al.
(2021)) stating that each concept defined in an ontology should also be satisfiable, thus
should have non-empty interpretations. Therefore, it is possible to make this coherence
explicitly by extending I by individuals and the Abox by instantiations of the respective
concepts. Then, the Abox is populated and therefore, Helly’s property need to be
considered. One even more relevant problem occurs in the context of faithfulness: The
adherence to HP enforces the embedding to model specific GCIs and assertions that are
neither following from the ontology nor from the data but solely from the restrictions of
the embedding. This is discussed in detail in the next section in Example 49.
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These considerations are a first step towards a characterization of the exact
representability of box embeddings: Is Helly’s property not only a necessary but also a
sufficient condition? Thus, is every Helly-satisfiable ELHO(○)�-ontology representable
via box embeddings? This is, up to our knowledge, still an open question and topic of
future work. We continue in the following to focus on Helly’s property and discuss how
it not only influences the completeness of the box embeddings but also its faithfulness.

Helly-Faithfulness
As argued in section “Towards Trustworthy and Interpretable Box Embeddings”, not
only satisfiability but also faithfulness** is relevant for discussing the expressivity of box
embedding approaches. The basic idea of faithfulness is to allow the embedding approach
to be solely based on data regularities and not on restrictions of the geometric embedding.
Therefore, e.g., a new link should be predicted based on the data regularities and not
because the embedding is not able to represent the case where this link does not exists.
A faithful embedding thus is an embedding where exactly and only the information is
represented that is stated in the ontology. The definition can be found in Definition 20. It
has been shown for the DL EL based on modeling concepts as convex regions (Lacerda
et al. 2024) and also for ALC based on modeling concepts as closed convex cones
(Özçep et al. 2023) that each EL resp. ALC ontology is satisfiable if and only if it has a
faithful model based on the resp. representation. First note, that each ontology trivially
has a faithful model (when not considering HP). Now the question is whether and how
HP influences the existence of such a model. Obviously, an ontology that is not Helly-
satisfiable can’t have a faithful Helly-closed model, as it has no Helly-closed model at
all. Therefore, we relax the question: can every Helly-satisfiable ontology be satisfied
by a faithful box interpretation? This question has to be answered negatively: Helly’s
property does not only influence the completeness, it also influences the faithfulness
even for Helly-satisfiable ontologies. Consider the following example:

Example 45. Consider an ontology O = (T ,A). Assume that I = {a1, a2} and let
T = {A ⊓B ⊓C = �} and A = {a1 ∶ A ⊓B,a2 ∶ B ⊓C}. This is representable by a box
interpretation ξ by assuming that ξ ⊪ A ⊓C = �. An example for ξ can be seen in
Figure 5 (a). Thus, the ontology is Helly-satisfiable. The interpretation is, however, not
a Tbox-faithful one, as ξ ⊪ A ⊓C ⊑ � but O /⊧ A ⊓C ⊑ �. A Tbox-faithful interpretation
(but without considering boxes) can be seen in Figure 5 (b). There, AI and CI are
intersecting, which shows the missing knowledge on whether the conjunction of A and C
is empty or not.

This can also be exemplified by a real-world example:

Example 46. Problems with faithfulness in a real-world setting. Consider the ontology
of Example 45 in the context of the animal example of Example 30. Let A be the concept
aquatic animal, B be mammal and C be flying animal. Then, every embedding ξ of

∗∗In the following, the term “faithfulness” refers to strong faithfulness.
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Bξ
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aξ1

aξ2

(a)

AIBI

CI

aI1

aI2
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Figure 5. (a) a Helly-closed box interpretation, enforcing Aξ
∩Cξ

⊆ ∅; (b) a non Helly-closed
but faithful classical interpretation of the ontology defined in Example 19.

this ontology would model that there aren’t any aquatic animal that can fly. Though,
this is plausible based on the ontology, it is also plausible that there are flying aquatic
animals. Box embeddings would therefore decrease the expressive capabilities even when
the ontology is in principle representable.

Thus, if a Helly-satisfiable ontology also has models not fulfilling HP, then faithfulness
is lost: to be in line with Helly’s property, implicit assumptions on the geometry need to
be taken. In the example, it is assumed that A ⊓C ⊑ �. This is, however, not due to data
regularities but solely due to the fact that it could not be modeled otherwise. In reality, it
could be possible that the data hints towards the fact that A and C should be combineable.
The following proposition states in which cases Helly’s property leads to problems with
gaining a strongly faithful interpretation. An ontologyO could have a model I that is not
Helly-closed, therefore, some three concepts are pairwise intersecting but not all three.
This could be due to two reasons: either the non-intersection is an axiom of the ontology
or this non-intersection is only entailed by this specific interpretation. The second case
is not a problem, as such an interpretation would not be a strongly faithful interpretation
anyway, also not in a non-restricted setting: there is a disjointness entailed by I that is
not entailed by O. The first case, however, is problematic: it states that it is not possible
to model that all of the three concepts are pairwise intersecting and therefore, there can’t
be any strongly faithful model (see also Example 45).

Proposition 47. Given an ontology O = (T ,A). Let I be a model of O such that

1. I is not Helly-closed and

2. O ∪A is not Helly-satisfiable for some set A of individual assertions with I ⊧ A

If at least one such model of O exists, then O has no strongly faithful Helly-closed
interpretation.

Proof. Let O = (T ,A) be an ontology. Let I be a model of O such that I is not Helly-
closed and O ∪A is not Helly-satisfiable for some set A of individual assertions with
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I ⊧ A. As I ⊧ A and I is a model of O, O ∪A is also satisfiable. Let O′ = O ∪A. O′
has a model but not a Helly-closed model. Thus, for all models I of O′ by definition of
Helly-closure, it follows that there are AI ,BI ,CI ∈DCIO that are pairwise intersecting
but AI ∩BI ∩CI = ∅. Thus I ⊧ A ⊓B ⊓C ⊑ � for all I. As T = T ′, thus the Tbox
of O′ remained unchanged from the Tbox of O, that means that O ⊧ A ⊓B ⊓C ⊑ �.
Therefore, there can’t be any Helly-closed model I of O such that I /⊧ A ⊓B ⊑ � and
I ⊧ B ⊓C ⊑ � and I /⊧ A ⊓C ⊑ �. Therefore, there can’t be a Helly-closed interpretation
of O that is strongly faithful.

It is not the case that all Helly-satisfiable models have a faithful model. Therefore, we
are defining Helly-faithfulness in the style of Helly-satisfiabilty to determine the type of
ontologies that are faithfully satisfiable with box interpretations.

Definition 48. An ELHO(○)�-ontology O is Helly-faithful if there is no model of O
that fulfills the properties as defined in Proposition 47.

Helly-faithfulness in this context does not mean that the specific model is actually
faithful. It means that Helly’s property does not influence the considerations of the
faithfulness. Thus, it is a necessary but not sufficient condition.

Example 49. Example 44 continued. As discussed in Example 44, real-world ontologies
often have an empty Abox. This, however, does not influence the considerations on
faithfulness. Also for an empty Abox, the same problem as discussed in Example 19 can
occur. Let ξ be a box interpretation of an ontology O = (T ,A) with T = {A ⊓B ⊓C ⊑
�},A = {}. Then all three intersections (A ⊓B)ξ, (B ⊓C)ξ and (A ⊓C)ξ can be either
empty or not. As the Tbox includes A ⊓B ⊓C ⊑ �, at least one of these three intersections
needs to be empty. Then, e.g., ξ ⊧ A ⊓B ⊑ �, however, O /⊧ A ⊓B ⊑ � and no faithful
Helly-closed model of O exists, even for an empty Abox.

In this section, the influence of Helly’s property on strong faithfulness of box
embeddings has been discussed. This is a first step towards defining for which ontologies
a faithful model based on box interpretations can be found. Faithfulness is a hard
to accomplish goal, as has been shown, e.g., by Özçep et al. (2023) where strong
faithfulness for cone-based interpretation in ALC has been discussed. There, an infinite
dimensional space was needed for such a definition. Whereas ALC is of higher
expressivity than ELHO(○)�, one of the main problems remains also in simpler
ontologies: when modeling existential restrictions faithfully, it is necessary to model
for each role R with ∃R.⊺ /⊑ � that (∃R.∃R.⊺)I ⊂ (∃R.⊺)I , that (∃R.∃R.∃R.⊺)I ⊂
(∃R.∃R⊺)I and so on to gain a faithful interpretation I of the ontologyO. The classical
example for this problem is Narcissus who loves himself but also loves someone who
loves themselves and so on (Baader and Küsters 2006). These and other questions need
to be tackled to consider strong faithfulness for box interpretation. This is the topic of
future work. Here, we have been able to show some necessary restrictions of the ontology,
as without a Helly-faithful ontology, a faithful model definitely does not exists.
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Conclusion and Outlook

KBE approaches are useful tools for inference tasks. However, a KBE approach is
only trustworthy and transparent if the bias of the approach is known, thus if we are
able to detect and distinguish whether an inference is based on regularities in the
data or restrictions of the model. We showed that KBE approaches based on boxes
introduce a structural bias in the form of Helly’s property imposed on the learned
embedding. This bias has influence both on whether the interpretation is consistent and
whether the inferences are based on geometric regularities. These results are not only
relevant for the case of KBE but need to be considered in all approaches considering
boxes for representing structured information based on conjunctions, disjointness,
and instantiation. In future work, it is necessary to consider the dimensionality of
interpretations in order to determine whether an ontology can not only be modeled in
theory but also in a restricted low-dimensionality environment. Additionally, efficient
tools and implementations needs to be developed that allow to be able to detect for an
ontology in practice whether it suffers from problems with Helly’s property. This would
provide the basis to develop strategies to actively circumvent certain problems before
starting the training process. Another interesting question is whether there are axioms
that are preferably learned: for disjointness of concepts, it is, e.g., enough if the two
respective boxes are disjoint in one dimension. In contrast, for non-disjointness, it is
necessary that two boxes intersect in every dimension. There are use cases where it is
appropriate to search for interpretations that only partially model the given ontology.
Examples can include cases where the ontology is inconsistent, contains ‘non-essential’
axioms, or idiosyncratic individuals that could be omitted. Thus it will be essential
to understand the deeper interplay between constraints imposed by the embedding
semantics, restrictions imposed by the learning approach, and requirements imposed by
the ontology languages. Therefore, the capabilities for representation of existing KBE-
approaches could be considered further, thus, e.g., for which ontologies they allow for
weakly/strongly faithful or entailment closed embeddings. Additionally, the abstract
box embedding method could be used to find constraints as necessary and sufficient
conditions for faithful, entailment closed, sound or complete models.
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Proofs of Section “Helly-Satisfiability”
The basic idea is to define an algorithm that constructs a Helly-companion by iteratively
extending the Abox of the ontology with the concepts that need to be populated in every
model of the ontology. This is done based on a construction principle similar to a tableau-
algorithm. Therefore, first, the transformation rules are given. They are adapted from the
ALC-tableau, see, e.g., (Baader and Sattler 2001). Assume in the following for simplicity
that the ontology is given in normal form.

The →⊓-rule
Condition: A contains x ∶ (C1 ⊓C2), but not both x ∶ C1 and x ∶ C2.
Action: A′ ∶= A ∪ {x ∶ C1, x ∶ C2}.

The →⊑-rule
Condition: T contains C ⊑D, A contains x ∶ C (resp. x ∶ C1 and x ∶ C2 if C =
C1 ⊓C2), but not x ∶D.
Action: A′ = A ∪ {x ∶D}.

The →∃⊑-rule
Condition: T contains ∃R.C ⊑D, A contains (x, y) ∶ R,y ∶ C, but not x ∶D.
Action: A′ = A ∪ {x ∶D}.

The →R⊑S-rule
Condition: T contains R ⊑ S, A contains (x, y) ∶ R, but not (x, y) ∶ S.
Action: A′ = A ∪ {(x, y) ∶ S}.

Prepared using sagej.cls



38 Neurosymbolic Artificial Intelligence XX(X)

The →○-rule
Condition: T contains R1 ○R2 ⊑ S, A contains (x, y) ∶ R1, (y, z) ∶ R2, but not
(x, z) ∶ S.
Action: A′ = A ∪ {(x, z) ∶ S}.

The →∃-rule
Condition: A contains x ∶ ∃R.C, but there is no individual name z such that z ∶ C
and (x, z) ∶ R are in A.
Action: A′ ∶= A ∪ {y ∶ C, (x, y) ∶ R} where y is an individual name not occurring
in A.

With these transformation rules, a tableau-inspired algorithm can be defined.

Definition 50. Adapted tableau algorithm for ELHO(○)�. Let O = (T ,A) be an
ELHO(○)�-ontology. Apply the transformation rules iteratively to A by preferring all
other rules over the →∃-rule. The blocking condition is defined as usual (see (Baader
and Sattler 2001)): the application of the rule →∃ to an individual x is blocked by an
individual y in an Abox A iff {D ∣ x ∶D ∈ A} ⊑ {D′ ∣ y ∶D′ ∈ A}.

Based on classical tableau algorithms and due to the simplicity of ELHO(○)�, it
can be proven that the algorithm terminates and that O′ = (T ,A′) is satisfiable if O
is satisfiable. The tableau algorithm allows for constructing a canonical interpretation.

Definition 51. Baader and Sattler (2001). The canonical interpretation IA of A is
defined as follows:

• the domain AIA consists of the individual names occurring in A

• for all concept names P we define P IA ∶= {x ∣ x ∶ P ∈ A}

• for all role names R we define RIA ∶= {(x, y) ∣ (x, y) ∶ R ∈ A}

This algorithm is now extended by including the Abox closure rule of Definition 36.
Therefore, first the application of the Abox closure rule is considered independently
of the tableau. Observe that for a given interpretation I all concepts in I (thus DCIO)
need to fulfill HP. Therefore, it is not sufficient to test only for concepts occurring in A.
Especially, it is necessary to construct a Helly-companion for O that fulfills HP. Special
problems arise due to the consideration of roles: If (a, a) ∶ R ∈ A, then it is necessary to
test HP for each ∃R.⊺,∃R.∃R.⊺ etc. To circumvent this problem, a graph-based view is
applied to the concepts.

Definition 52. Let O = (T ,A) be a ELHO(○)�-ontology. Let a be an individual in A.
For a, a directed graph Ga = (Va,Ea) representing its relations is modeled as follows:

V 0
a = {a0}

E0
a = {(a0, x) ∣ (a, x) ∶ R ∈ A for R ∈R}
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If V i−1
a ,Ei−1

a are given, construct V i
a ,E

i
a as follows:

V i
a = ⋃{y ∣ ∃x ∶ (x, y) ∈ Ei−1

a and y /∈ V j
a for some 0 ≤ j < i and R ∈R}

Ei
a = ⋃{(x, y) ∣ (x, y) ∶ R ∈ A and x ∈ V i

a}

The procedure stops when V i
a = ∅ thus no new nodes are added. Then Va = ⋃i V

i
a ,

Ea = ⋃iE
i
a This construction terminates, as I and A are finite and it is checked for

duplicates.

Note that such a graph can be directly translated into an assertion by considering the
paths in the graph. For example let there be a v ∈ Va with (a, v) ∈ Ea and C ∈ C(v) for
C(v) = {A ∣ v ∶ A ∈ A} ∪ ⊺ (thus C(v) represents the concepts asserted to v in the Abox).
Then, O ⊧ a ∶ ∃R.C.

With the help of this graph, the Abox closure rule can be applied.

Definition 53. Let O = (T ,A) be a satisfiable ELHO(○)�-ontology. The Abox closure
rule as defined in Definition 36 is applied to ontology O for all individual names a, b, c
occurring in A as follows:

First, create for each of a, b, c the relation graph Ga,Gb,Gc as defined in
Definition 52. For each v,w ∈ {a, b, c} now the combined relation graph Gv∩w is defined,
thus the graph representing only concept representations asserted to both v and w. Let
Gv∩w = (Vv∩w,Ev∩w).

V 0
v∩w = {{v0,w0}}

E0
v∩w = {({v0,w0},{x, y}) ∣ (v, x) ∶ R, (w,y) ∶ R ∈ A for R ∈R}

The rest is defined analogously to Definition 52. Based on the same argument as above,
Gv∩w is finite.

If for some v,w Ev∩w = ∅ and C(v) ∩ C(w) = ⊺, then there is no non-trivial concept
description A with v ∶ A,w ∶ A ∈ A and no R ∈R with (v, x) ∶ R, (w,y) ∶ R ∈ A for
some individuals x, y. Thus, the closure rule is trivially fulfilled in this case.

Therefore, assume that for each of v,w ∈ {a, b, c}, Ev∩w /= ∅ or C(v) ∩ C(w) ⊃ {⊺}.
Then, the premise of the Abox closure rule is non-trivially fulfilled and the conclusion
needs to be tested and possibly a new individual needs to be added.

Thus, test whether there is an individual d such that:

• (C(a) ∩ C(b)) ∪ (C(b) ∩ C(c)) ∪ (C(a) ∩ C(c)) ⊆ C(d) (thus d shares all con-
cepts that a, b and b, c and a, c respectively share) and

• for each v,w ∈ {a, b, c}: Iteratively test for each edge and each node in Gv∩w
whether an individual mimicking the modeled relation can be found. Therefore,
construct the graph Gd and find for each edge in Gd matching edges in Gv∩w. Start
with edges (d, z) ∈ Ed. (d, z) can be matched with ({v,w},{x, y}) ∈ Ev∩w, if
R(v, x) ∩R(w,y) ⊆ R(d, z) where R(a, b) = {R ∣ R ∈R and R(a, b) ∈ A} and
if C(x) ∩ C(y) ⊆ C(z). Thus, (d, z) needs to have all relations that (v, x) and
(w,y) share and z needs to have all concepts that x and y share. This
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procedure is continued stepwise (thus, e.g., for edges (z, u) ∈ Ed as match with
all ({x, y},{s, t}) ∈ Ev∩w for which in the last step a match has been found). If
for all edges in Ev∩w a match is found, then d has also a witness for each concept
that v and w share.

If this is the case, then the Abox closure rule does not need to be applied. Otherwise,
new individuals need to be defined Add a new individual di for 0 < i ≤ ∣Va∩b∣ + ∣Vb∩c∣ +
∣Va∩c∣ − 3 for each node in Ga∩b,Gb∩c and Ga∩c except for the root nodes. For the root
nodes add one individual d0. For each di add the corresponding concepts and roles to the
Abox. For a di corresponding to node {x, y} of the graph, let C(di) = C(x) ∩ C(y) and
add C(di) toA for all C ∈ C(di). For d0 add ⋃A∈(C(a)∩C(b))∪(C(b)∩C(b))∪(C(a)∩C(c)) d0 ∶
A to A. For i, j ≥ 0, add (di, dj) ∶ R to A if the corresponding {x, y},{t, u} have
(x, t) ∶ R and (y, u) ∶ R in A. Now, as new individuals have been added, the process
is started again. This is repeated until nothing is added.

Note that this construction is highly inefficient, as many individuals are added
unnecessarily. These are, however, only finitely many and therefore not problematic as
will be proven later on. This construction does not only apply the Abox closure rule but
additionally considers the relational part. The relational part is, however, necessary to
consider to gain an interpretation fulfilling HP. The process of Definition 53 is applied
to all individuals in A, thus also to the individuals newly added during the process.
Therefore, it needs to be proven that this process terminates.

Corollary 54. The application of the (extended) Abox closure rule as stated in
Definition 53 to an Abox A of an ELHO(○)�-ontology O terminates.

Proof. 1. First, consider the case where Ea∩b = ∅,Eb∩c = ∅,Ea∩c = ∅ for all
individuals a, b, c considered during the process. In this case only concepts are
considered. Assume n is the number of different concepts occurring in A, as A
is finite by definition. Then, there are worst-case 2n individuals to be added, as
worst-case only 2n different concept combinations are possible. If worst-case 2n

individuals have been added, then for each case when the premise of the Abox
closure rule is fulfilled, there is an individual fulfilling the conclusion.

2. Now, consider the case where at least one of Ea∩b /= ∅,Eb∩c /= ∅,Ea∩c /= ∅ for
some individuals a, b, c.

Observe the following facts: for each group of newly added individuals di, all of
these elements except d0 are not able to introduce new situations on which the
Abox closure needs to be applied. This is the case, as each di mimics the concepts
represented in some subgraph of Ga∩b,Gb∩c or Ga∩c.

Thus, only d0 needs to be considered. Note that d0 does not have an incoming
edge. Therefore, the same argument as for the case solely based on concepts can
be used: There are finitely many graphs Gv , one for each individual in A. There
are only finitely many variants to combine these graphs. Therefore, only finitely
many individuals can be added.

Prepared using sagej.cls



Leemhuis and Kutz 41

Until now, the process applies the Abox closure only to a given Abox.
As HP needs to be valid not only for the Abox but for an interpretation, it is additionally

necessary to consider HP for concepts not present in the Abox but present in each possible
interpretation satisfying an ontology. Thus, the Helly companion of an ontology needs to
be defined (see Definition 39).

Therefore, in the following, the tableau algorithm is combined with the Abox closure
rule to define a Helly-companion. Note that this is not the only possible Helly-
companion. After that, it is shown that this approach terminates and leads to a model
that fulfills HP.

Definition 55. In the following, a tableau algorithm incorporating the Abox closure rule
is defined. Let O = (T ,A) be a satisfiable ELHO(○)�-ontology. Repeat the following
two steps until the application of the Abox closure rule does not introduce any new
individuals.

1. Apply the tableau algorithm as defined in Definition 50 on O until a blocking
condition is reached. Then, materialize the blocking, thus add for each a blocked
by b, for a the successors of b.

2. Apply the Abox closure as defined in Definition 53.

Now, it is shown that this adapted tableau algorithm terminates.

Corollary 56. The algorithm as defined in Definition 55 terminates.

Proof. Each application of the tableau algorithm terminates and each application of
the Abox closure terminates. Therefore, it remains to show that the combination of
both terminates. It is again sufficient to consider the newly added d0. All other added
individuals represent concept descriptions that already exist in A. If these would not be
complete regarding the application of the transformation rules, then also the concepts
used to construct the individuals would not have been complete.

However, for a new individual d0 it can be the case that for d0 ∶ A ⊓B ⊓C there is a
Tbox axiom A ⊓B ⊓C ⊑D (in its corresponding normal form). However, the Tbox is by
definition finite. Therefore, there are only finitely many axioms of this type. Therefore,
the algorithm terminates.

Now, it can be shown that this construction leads to a Helly-companion.

Corollary 57. Let O = (T ,A) be a satisfiable ELHO(○)�-ontology. Let O′ = (T ′,A′)
be the result of the application of the modified tableau as defined in Definition 55. Then,
O′ is a Helly-companion.

Proof. Let O = (T ,A) be a satisfiable ELHO(○)�-ontology. Let O′ = (T ′,A′) be the
result of the application of the modified tableau as defined in Definition 55. It is shown
that O′ is a Helly-companion.

1. O ⊆ O′, I(O′) ⊇ I(O),C(O′) =C(O),R(O′) =R(O) follows trivially based
on the definition.
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2. Every necessarily non-empty concept is witnessed due to the transformation rules
of the standard tableau and due to the fact that the tableau is sound and complete.

3. The process of Definition 55 terminates and directly models the Abox closure rule.
Additionally, it due to the graph-based view, all complex concept descriptions
including relations are considered and checked for HP. This means that A′ is
Helly-closed.

Corollary 58. LetO be a Helly-satisfiable ELHO(○)�-ontology and letO′ be the result
of the application of Definition 55. The interpretation as defined in Definition 51 is a
model of O.

Proof. Let O be a Helly-satisfiable ELHO(○)�-ontology and let O′ be the result of
the application of Definition 55. Let IA be the canonic interpretation of O′. Assume
by contradiction that IA is not a model of O. Therefore, there must be a dIA ∈ (A ⊓
B ⊓C)IA with O ⊧ A ⊓B ⊓C = �. When applying the standard tableau algorithm to
a satisfiable ontology, a concept description A is only added to A′ if O ∪ {A ⊑ �} is
inconsistent. Therefore, for all of these added concepts and same for all added roles, the
Abox closure rule needs to be applied and thus HP needs to be tested. By definition, for
fulfilling HP, always the least specific concept is added. Therefore such a dIA would
directly interfere with HP, thus, the ontology can’t be Helly-satisfiable, a contradiction.

Corollary 59. LetO be a Helly-satisfiable ELHO(○)�-ontology and letO′ be the result
of the application of Definition 55. The canonic interpretation IA of O′ as defined in
Definition 51 fulfills HP.

Proof. Let O be a Helly-satisfiable ELHO(○)�-ontology and let O′ be the result of the
application of Definition 55.O′ is a Helly-companion ofO (see Corollary 57). Therefore,
it is Helly-closed. The canonic model of O′ can be defined without the need to infer new
conceptual information and without adding new relations or individuals. Therefore, the
canonic model of O′ is also Helly-closed and thus fulfills HP.

Now, Proposition 42 can be proven. Thus, if an ontology is Helly-satisfiable, then there
is a construction procedure for a finite model that satisfies HP.

Proof of Proposition 42. Let O = (T ,A) be a Helly-satisfiable ontology in normal
form.

Let IA be the canonic model of O′ constructed based on O with the adapted tableau
as defined in Definition 55.
IA is constructable in finite time, as proven in Corollary 56. It is a model of O due to

Corollary 58 and it fulfills HP due to Corollary 59. Thus, a finite model of O fulfilling
HP can be found in finite time.

With this result, the proof of Proposition 41 follows.
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Proof of Proposition 41. → Let O = (T ,A) be a Helly-satisfiable ELHO(○)�-
ontology. Then apply the adapted tableau algorithm as defined in Definition 55
to get O′ that is a Helly-companion as proven in Corollary 57. As proven in
Corollary 58, a model can be defined, therefore, O′ is satisfiable.

← Let O not be Helly-satisfiable. Consider an arbitrary Helly-companion O′ of O.
It is shown that the resulting ontology O′ is not satisfiable. As O is not Helly-
satisfiable, there is in each model I of O, aI , bI , cI ∈∆ with aI ∈ (A ⊓B)I , bI ∈
(B ⊓C)I , cI ∈ (A ⊓C)I but AI ∩BI ∩CI = ∅ for some concept descriptions
A,B,C.

Assume for the sake of contradiction that the Helly-companion is satisfiable. Each
Helly-companion contains witnesses for each concept description that is known to
be non-empty. Therefore, the canonic interpretation IA ofO′ would be a model of
O′ (as O′ is assumed to be satisfiable). But this model fulfills by definition of the
Helly-companion HP and therefore,O would be Helly-satisfiable. A contradiction
to the assumption.
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