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Abstract
Large language models (LLMs) have demonstrated impressive capabilities in natural lan-
guage understanding and generation, but exhibit problems with logical consistency in their
output. How can we harness LLMs’ broad-coverage parametric knowledge in formal reason-
ing despite their inconsistency? We present a method for directly integrating an LLM into
the interpretation function of the formal semantics for a paraconsistent logic. We provide
experimental evidence for the feasibility of the method by evaluating the function using
datasets created from short-form factuality benchmarks, and describe a proof-of-concept
tableau reasoner that implements the method. Unlike prior work, our method offers a
theoretical framework with a practical implementation for neurosymbolic reasoning that
leverages an LLM’s knowledge while preserving the underlying logic’s soundness and com-
pleteness properties.1

1. Introduction
Applications involving commonsense reasoning and biomedical knowledge, where inconsis-
tencies and incomplete information are commonplace, remain challenging frontiers for AI
systems. While LLMs encode vast parametric knowledge (Petroni et al., 2019), they also
suffer from inconsistency and incompleteness (Cheng et al., 2025), limiting their use as
knowledge bases for such applications. Efforts to connect logical reasoning with LLMs re-
lying on prompting strategies and external symbolic solvers (Wei et al., 2022; Cheng et al.,
2025) show potential but exhibit significant shortcomings as well (Hoppe et al., 2025), lack-
ing formal frameworks for managing LLM knowledge inconsistency and incompleteness.

Meanwhile, paraconsistent logics (Priest et al., 2025) are multi-valued non-classical log-
ics that handle inconsistent information without logical explosion, where contradictions
would make everything provable. Belnap computers (Belnap, 1977a,b) are theoretical con-
structions described by Nuel Belnap to model contexts in which machines are responsible
for reasoning in the face of incomplete or inconsistent information. This raises a natural
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Figure 1: A Belnap computer using an LLM judge as a source of knowledge. Let L be
the object language for a paraconsistent logic, and let LAT be the set of atomic
formulas. A paraconsistent reasoner (left) sends an atomic formula φ ∈ LAT to
the LLM judge (right), which returns a generalized truth value ⟨u, v⟩, such that
u indicates if the LLM judge was able to verify φ, and v indicates if the LLM
judge was able to refute φ.

question: can paraconsistent logic and Belnap computers provide a more natural framework
for using LLMs as knowledge bases, despite their inconsistency and incompleteness?

We propose a Belnap computer using an LLM judge as an external knowledge source
(Figure 1). LLM judges scale factuality evaluation of LLM output for short- or long-form
question answering tasks, returning truth valuations for statements in the LLM’s output
(Li et al., 2024). In our approach, an LLM judge responds to a query for the valuation
of an atomic formula in the context of a paraconsistent reasoner with a generalized truth
value (Shramko and Wansing, 2025, 2011). Generalized truth values allow the LLM judge to
provide information to the reasoner not only about the degree of truth of an atomic formula
given the LLM’s parametric knowledge, but also with respect to the degree of knowledge
the LLM has about the formula.

Section 2 discusses related work, and Section 3 defines a bilateral factuality evalu-
ation function (contribution i) that provides information beyond current LLM judge
approaches to factuality evaluation. Section 4 integrates the function directly into the formal
semantics of a paraconsistent logic through an LLM-grounded interpretation (contri-
bution ii) that preserves the soundness and completeness of analytic tableau systems for
reasoning in the logic. Section 5 provides empirical evidence for practical imple-
mentation (contribution iii), presenting evaluation findings using benchmarks derived
from short-form factuality benchmarks and discussing limitations. Section 6 describes a
proof-of-concept implementation of a tableau reasoner with LLM integration
(contribution iv) as described in Section 3 and 4. Section 7 discusses limitations of our
approach, and Section 8 concludes with a summary and discussion of future work.

We note that this work is an extension of Allen et al. (2025). Specifically, we add a full
open source implementation of the tableau reasoner; a deeper treatment of the verbalization
function; and additional material with respect to generalized truth values and bilateralism.

2. Related work
Logical reasoning with LLMs Current approaches to reasoning with LLMs (Hoppe
et al., 2025; Cheng et al., 2025) appear in Figure 2. In a prompt-based approach (a), an
LLM is prompted with a verbalization δ(Γ) ∈ Σ∗ of a set of formulas Γ, and performs
natural language reasoning to produce a verbalization δ(φ) of φ (Wei et al., 2022; Kojima
et al., 2022; Dhuliawala et al., 2023; Yao et al., 2023). In a solver-based approach (b), an
LLM is prompted with a verbalization of a set of formulas and produces a set of formulas
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Figure 2: Approaches to logical reasoning with LLMs. Let L be a first-order language, Γ be
a set of statements in L, φ be a statement in L, I be an interpretation for L, Π be
a set of proofs of statements in L, and δ : P(L) → Σ∗ be a verbalization function
that takes a set of formulas in L and returns a natural language translation of the
formulas. In each approach, we show how reasoning is performed in the context
of generating a formal or natural language proof showing that Γ ⊢ φ.

Γ in an object language L, which a reasoner uses to deduce φ (Pan et al., 2023; Olausson
et al., 2023; Callewaert et al., 2025). In an approach based on pre-training or fine-tuning
(c), a reasoner provides a training set of proofs Π, and the LLM learns from that to reason
as in (a) (Jiao et al., 2023; Morishita et al., 2024; Feng et al., 2024; Liu et al., 2025).
Unlike approaches (b) and (c) that use LLMs alongside reasoning systems, in our proposed
interpretation-based approach (d) we integrate LLMs directly into the formal semantics of
the reasoner’s logic itself, by using an LLM to implement an interpretation function I to
be used by the reasoner in inferring φ. This allows us to provide formal guarantees about
the soundness and completeness of the reasoning process that incorporates the LLM. In
contrast with approaches (a), (b), and (c), instead of trying to get an LLM to reason using
logic, we get a logic to reason using an LLM.
Factuality evaluation using LLM judges Factuality evaluation is the assessment of
whether the output of a language model is factually correct (Wang et al., 2023; Bang et al.,
2025). Recent work has focused on LLM judges (Zheng et al., 2023; Zhu et al., 2023) as
a means to scale factuality evaluation, by prompting an LLM to produce a truth value
assignment of the output of an LLM that is being evaluated, specifically a short- (Wei
et al., 2024) or long-form (Jacovi et al., 2025) answer to a question. We apply LLM judges
to assign generalized truth values to natural language translations of atomic formulas, taking
a single-answer grading approach (Zheng et al., 2023). In contrast with current approaches
to factuality evaluation, the use of generalized truth values provides information as to the
LLM’s epistemic stance towards the formula in question.
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Generalized truth values Generalized truth values offer significant advantages over
truth valuations provided by current approaches to factuality evaluation using LLM judges,
presenting a more sophisticated framework for handling complex evidential scenarios. These
systems enable systematic distinctions between different types of evidence, as demonstrated
by the theoretical work of Shramko and Wansing (2011) and Ferguson (2021b), allowing
evaluators to categorize and weight various forms of factual support rather than treating all
evidence as equivalent. Additionally, generalized truth values provide principled methods
for handling inconsistent and incomplete information, a critical advantage given the messy
nature of real-world factual claims where evidence may be contradictory or absent, as ex-
plored in the foundational work by Shramko and Wansing (2011), the extensions by Szmuc
(2019) and Ferguson (2021b), and the theoretical groundwork laid by Correia (2010). Per-
haps, most importantly, for practical evaluation applications, these frameworks enhance the
explanatory transparency of logical valuations through their structured nature, as noted by
Shramko and Wansing (2011), Ferguson (2021b), and Fine (2016), providing clear logical
foundations that make evaluation decisions more interpretable and allowing researchers to
understand not just whether a claim is deemed factual, but why that determination was
reached and what types of evidence contributed to the final assessment. Our work, following
Ferguson (2021b), uses truth values that are elements of the bilattice N IN E (Arieli and
Avron, 1998).
Bilateralism Bilateralism in logic (Rumfitt, 2000) holds that understanding a proposition
requires grasping both the conditions under which it can be asserted and the conditions
under which it should be denied. Meaning isn’t just about knowing when something is
true, but also explicitly understanding when it is false. This philosophical view contrasts
with unilateral approaches where only conditions for truth or assertion are primary, and
falsity or denial is treated as derivative (just the absence or negation of truth). Bilateralists
argue this misses something fundamental about meaning and inference, and that having
explicit roles for both verification and refutation leads to better logical reasoning and clearer
understanding. Our work empirically validates Rumfitt’s philosophical position: treating
assertion and denial as primitive speech acts (rather than reducing one to the other) provides
superior analytical power.
Multi-valued logics for paraconsistent reasoning Work that builds on Belnap’s four-
valued semantics has led to the development of a range of non-classical paraconsistent logics.
Patel-Schneider (1989) showed how this idea could be applied to make terminological logics
capable of performing subsumption correctly in the presence of contradictory knowledge.
Kamide (2010), Ma et al. (2007), and Maier et al. (2013) expanded on this work to define a
number of paraconsistent description logics. More recently, Ferguson (2017b) has proposed
a computational interpretation of versions of first degree entailment (FDE) and Richard
Angell’s logic of analytic containment (AC). This interpretation models reasoners using
these logics as Belnap computers, and leads to a formal framework for FDE and AC
as bilateral logics with sound and complete analytic tableau systems. We show how an
LLM judge can be used to provide an interpretation for AC that preserves the soundness
and completeness of the tableau system ACrQ, with applications to description logics as
described in (Ferguson, 2021a).
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Interpreting symbols in logical statements as natural language terms Previous
efforts have explored the degree to which meaning can be captured through the use of natural
language terms as symbols in a formal knowledge representation language. Google distance
between symbol names has been used to weight ontology matches, explicitly leveraging
that ontology concepts are often named with meaningful words (Gligorov et al., 2007).
Semantic distances between natural language representations of concepts have been used
to reason with inconsistent ontologies, selecting maximally consistent subsets based on
linguistic similarity (Huang and van Harmelen, 2008). The degree to which symbol names
carry social meaning in knowledge graphs has been quantified, providing an information-
theoretic framework for measuring the effectiveness of this symbol-language correspondence
(de Rooij et al., 2016). Most recently, work on context-aware clause selection in theorem
proving has shown that symbol names can provide valuable heuristics even in purely formal
reasoning tasks (Schon, 2025). Our approach builds on these efforts, using the linguistic
processing capabilities of LLMs to interpret the predicate and constant symbols in atomic
formulas in AC as terms in natural language. At first glance, this may seem to fly in the
face of traditional approaches to logic; however, traditional formal systems have always
required human judgment to determine what constitutes truth for atomic formulas. Our
contribution makes this interpretative act explicit by using LLMs to operationalize how
humans assess claims through language.

3. Bilateral factuality evaluation of an atomic formula using an LLM
AC is a conceptivist logic (Ferguson, 2017a) that addresses hierarchical relationships be-
tween concepts. While in this work we focus on AC as a paraconsistent logic, it is also
paracomplete, i.e., it rejects the law of the excluded middle. The combination of those two
properties makes it particularly suitable for applications involving vague predicates, incom-
plete information, or situations where classical logic’s demands for both consistency and
completeness are too strong. Appendix A provides a definition of AC with restricted quan-
tification, which is necessary to support concept subsumption and existential quantification
of roles when used as a description logic (Ferguson, 2021b). This definition treats AC as a
bilateral logic, i.e., a logic which manages values for both the truth and falsity of a formula
separately. Bilateralism in philosophical logic (Rumfitt, 2000) holds that understanding a
proposition requires grasping both the conditions under which it can be asserted and the
conditions under which it should be denied. We operationalize this principle by evaluating
the factuality of atomic formulas using an LLM judge.

First, we generate a natural language verbalization of an atomic formula, then prompt
the LLM to generate two statements on the verifiability and refutability of the assertion.
The statements are then mapped into the set of truth values V3 used in weak Kleene logic
(Kleene, 1952; Szmuc, 2019), i.e., t (true), e (undefined), and f (false). Weak Kleene truth
values allow us to formalize the semantics of LLM-judge output. For example, the Sim-
pleQA grader used in the SimpleQA benchmark (Wei et al., 2024) grades an LLM’s answer
to a question as either “CORRECT”, “INCORRECT”, or “NOT ATTEMPTED”; the Pre-
ciseWikiQA Question Answerability Prompt in the HalluLens benchmark (Bang et al., 2025)
uses “UNVERIFIABLE” instead of “NOT ATTEMPTED”. We equate “CORRECT” with t
and “INCORRECT” with f; equating e with “NOT ATTEMPTED” or “UNVERIFIABLE”

5



Allen Chhikara Ferguson Ilievski Groth

LLM Judge

yearOfDiscovery(America, 1492)

Verbalization
σ = δ({φ}) =
⌜America was

discovered
in 1492 ⌝

Verification
P+(σ) = ⌜. . . The answer is contextually
accurate within the framework of Euro-
pean exploration history, but it does not

encompass the full scope of human discov-
ery of the Americas. cannot verify ⌝

=⇒ u = f

Refutation
P−(σ) = ⌜. . . While it does not account for

earlier discoveries by indigenous peoples or Norse
explorers, it is not a contradiction to state that

America was discovered in 1492 from a European
historical perspective. cannot refute ⌝

=⇒ v = f

Cartesian
product
f, f 7→ ⟨f, f⟩

⟨f, f⟩

φ σ

σ

u

vζc(φ)

Figure 3: An example of bilateral factuality evaluation ζc as performed by the LLM judge
shown in Figure 1. Let φ ∈ LAT be an assertion that the discovery of America
occurred in the year 1492. σ = δ({φ}) is the verbalization of φ (Definition 1).
The bilateral factuality evaluation of φ by an LLM judge (Definitions 2, 3, and 4)
generates the truth value ζc(φ) = ⟨f, f⟩. The LLM has in effect identified incom-
pleteness in its knowledge — based on differing perspectives on who discovered
America, it can neither verify nor refute φ.

is consistent with Kleene’s original statement that it indicates “an absence of information”
that a given formula is either t or f (Kleene, 1952, p. 333).

Finally, we pair the weak Kleene truth value u for verifiability with the weak Kleene
truth value v for refutability to yield a generalized truth value ⟨u, v⟩ ∈ V3 ×V3. Generalized
truth values offer significant advantages over truth values provided by current approaches
to factuality evaluation using LLM judges: they enable systematic distinctions between
different types of evidence (Shramko and Wansing, 2011; Ferguson, 2021b), provide princi-
pled methods for handling inconsistent and incomplete information (Shramko and Wansing,
2011; Szmuc, 2019; Ferguson, 2021b; Correia, 2010), and enhance the explanatory trans-
parency of logical valuations through their structured nature (Shramko and Wansing, 2011;
Ferguson, 2021b; Fine, 2016). Figure 3 shows an example of this process in action; a longer
example is provided in Appendix C.
Preliminaries Let Σ be a countable set of tokens and Σ∗ be the set of finite sequences
of tokens ⌜t0 . . . tk⌝, where t0≤i≤k ∈ Σ, k ∈ N. Given sequences σ, σ′ ∈ Σ∗, σ ≺ σ′ iff σ is a
proper contiguous subsequence of σ′. Let LC be an LLM trained on a corpus C ∈ P(Σ∗).

Definition 1 A verbalization function δ : P(L) → Σ∗ is a total function that maps a set
of formulas to a sequence of tokens.

The verbalization function δ thus serves as a critical bridge between formal logic and
natural language in our framework, and makes the assumption that symbols in our logical
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language can meaningfully correspond to words or phrases that an LLM can interpret. In
practice, δ can be implemented through three distinct approaches:

1. Direct syntactic mapping: Logical formulas are provided directly in their formal
syntax (e.g., yearOfDiscovery(America, 1492)). This assumes the LLM can parse
and understand logical notation. This is the approach used in the implementation
of bilateral factuality evaluation used in the evaluation in Section 5 and the tableau
reasoning system described in Section 6.

2. Template-based transformation: Formulas are converted using predefined tem-
plates (e.g., “America was discovered in 1492”). This approach provides more natural
language but requires manual template creation for each predicate type.

3. LLM-generated verbalization: An LLM generates the natural language represen-
tation of the formula. This is the most flexible approach, but it introduces another
layer of potential error and interpretation.

Definition 2 A verification function P+ : Σ∗ → Σ∗ prompts LC to take a verbalization of
an atomic formula φ ∈ LAT and generate a token sequence σ+ that states that φ is verified
or that it cannot be verified.

Definition 3 A refutation function P− : Σ∗ → Σ∗ prompts LC to take a verbalization of
an atomic formula φ ∈ LAT and generate a token sequence σ− that states that φ is refuted
or that it cannot be refuted.

Definition 4 A bilateral factuality evaluation function ζ : LAT → V3 × V3 is a total
function that given an atomic formula φ ∈ LAT yields a pair ⟨u, v⟩ where:

u =


t if ⌜VERIFIED⌝ ≺ P+(δ(φ))
f if ⌜CANNOT VERIFY⌝ ≺ P+(δ(φ))
e otherwise

v =


t if ⌜REFUTED⌝ ≺ P−(δ(φ))
f if ⌜CANNOT REFUTE⌝ ≺ P−(δ(φ))
e otherwise

The “otherwise” cases in Definition 4 reflect LLMs failing to output tokens indicating
verification or refutation state, e.g., by failing to follow instructions or timing out during API
calls. We use repeated sampling with majority vote (Brown et al., 2024) to determine truth
value components; other hallucination mitigation approaches, such as chain-of-verification
(Dhuliawala et al., 2023), are also admissible.

The definition of ζ leaves open the possibility that multiple calls over time might return
different truth values. This violates the assumption of analytic tableau reasoning that
atomic formulas have stable truth values within the scope of the reasoning process. We
ensure this by using a caching version of the bilateral evaluation function ζc where valuations
for atomic formulas are persistently and immutably stored. This type of caching is consistent
with the range of optimization techniques used in description logics tableau reasoners (Goré
and Nguyen, 2007; Nguyen, 2009).
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Definition 5 A caching bilateral factuality evaluation function ζc : LAT → V3 × V3 is a
total function defined as:

ζc(φ) =
{
c(φ) if φ ∈ dom(c)
ζ(φ) otherwise, and c := c ∪ {(φ, ζ(φ))}

where c is a persistent and immutable cache mapping atomic formulas to truth value pairs.

Having established a bilateral evaluation, we now show how this enables LLM judges to
implement interpretation functions directly.

4. LLM-grounded interpretations
We formalize how the bilateral evaluation function ζc is integrated into the definition of an
interpretation for AC, show that for every LLM-grounded AC interpretation there is an
equivalent standard AC interpretation, and then show that soundness and completeness of
the tableau-style analytic calculus ACrQ defined in Definition 18 of Ferguson (2021b) is
preserved when we adopt an LLM-grounded interpretation.

Definition 6 An LLM-grounded AC interpretation I = ⟨CI ,RI⟩ is an AC interpreta-
tion such that for every function RI ∈ RI and cI

1 , . . . , c
I
n ∈ CI :

RI(cI
1 , . . . , c

I
n) = ζc(R(c1, . . . , cn))

Lemma 7 (Stability of LLM-grounded interpretations) For any LLM-grounded AC
interpretation I and atomic formula φ ∈ LAT :

1. I(φ) is well-defined and yields exactly one pair ⟨u, v⟩ ∈ V3 × V3
2. Once computed, I(φ) remains constant throughout the reasoning process

Proof The stability follows directly from Definition 5 of ζc. Let t0 be the time at which ζ
is first called to set c(φ). If ζc(φ) = ⟨u, v⟩ at time t0, then for all subsequent calls at t > t0,
ζc(φ) = ⟨u, v⟩. This ensures that once an atomic formula φ has been evaluated and the
returned pair ⟨u, v⟩ ∈ V3 × V3 has been cached, all subsequent evaluations will return the
same pair from the cache, guaranteeing stability.

Lemma 7 states that the logical validity of derivations depends on logical operator struc-
ture rather than atomic proposition content, a fundamental principle in formal logic. The
tableau method only depends on the truth-functional behavior of the logical connectives,
which remains unchanged between standard and LLM-grounded interpretations.

Lemma 8 (LLM-grounded to standard interpretation mapping) For any LLM-grounded
AC interpretation I = ⟨CI ,RI⟩, there exists a standard AC interpretation I ′ that pre-
serves the semantic behavior of I on all formulas.

Proof Given an LLM-grounded AC interpretation I = ⟨CI ,RI⟩, we define a standard
AC interpretation I ′ = ⟨CI′

,RI′⟩ such that:

1. CI′ = CI
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2. RI′ = RI

3. For all R ∈ R, RI′(cI′
1 , . . . , c

I′
n ) = RI(cI

1 , . . . , c
I
n)

4. For all c ∈ C′, cI′ = cI

We show that for any formula φ ∈ L, I(φ) = I ′(φ) by induction on the complexity of φ:
• For φ = R(c1, . . . cn) ∈ LAT , then by Definition 6, I(φ) = I(R(c1, . . . cn)) = RI(cI

1 , . . . , c
I
n) =

RI′(cI′
1 , . . . , c

I′
n ) = I ′(R(c1, . . . cn)) = I ′(φ).

• For φ = ¬ψ, by Definition 16, I(¬ψ) = ⟨I1(ψ), I0(ψ)⟩ and I ′(¬ψ) = ⟨I1(ψ), I0(ψ)⟩.
By the inductive hypothesis, I(ψ) = I ′(ψ). Therefore I(¬ψ) = I ′(¬ψ).

• For φ = ψ∧χ, by Definition 16, I(ψ∧χ) = ⟨I0(ψ) ∧̇ I0(χ), I1(ψ) ∨̇ I1(χ)⟩ and similarly
for I ′. By the inductive hypothesis, I(ψ) = I ′(ψ) and I(χ) = I ′(χ). Therefore
I(ψ ∧ χ) = I ′(ψ ∧ χ).

The same arguments apply in the cases of disjunction, restricted universal quantification,
and restricted existential quantification, again following Definition 16 in Appendix A.

Lemma 9 (Standard to LLM-grounded interpretation mapping) For any standard
AC interpretation I = ⟨CI ,RI⟩, there exists an LLM-grounded AC interpretation I ′ that
preserves the semantic behavior of I on all formulas.

Proof Let I = ⟨CI ,RI⟩ be a standard AC interpretation. Define a key-value store cI
such that for all atomic R(c1, ..., cn) ∈ AT , c(R(c1, ..., cn)) = RI(cI

1 , ..., c
I
n). Then cI induces

a caching bilateral factuality evaluation function ζcI such that the induced LLM-grounded
AC interpretation I ′ agrees with I on all atoms. Consequently, an induction along the
lines of that in Lemma 8 ensures agreement.

Note that as a corollary of Lemmas 8 and 9, Γ ⊨AC φ holds if and only if the inference
from Γ to φ is valid over all LLM-grounded AC interpretations. This allows the following
two theorems:

Theorem 10 (Preservation of soundness) Let Γ be a finite set of formulas and φ a
formula in AC. If Γ ⊢ACrQ φ, then Γ |=I φ is valid for all LLM-grounded AC interpreta-
tions I.

Proof By Theorem 3 of Ferguson (2021b), if Γ ⊢ACrQ φ, then Γ |=AC φ. Therefore
Γ |=I φ, as is the case for any AC interpretation, standard or LLM-grounded.

Theorem 11 (Preservation of completeness) Let Γ be a finite set of formulas and φ
a formula in AC. Then if for all LLM-grounded AC interpretations I, Γ |=I φ, then
Γ ⊢ACrQ φ.

Proof By Lemma 8, given I, we can construct a standard AC interpretation I ′ such
that if Γ |=I φ then Γ |=I′ φ. By the established completeness theorem for standard AC
interpretations (Theorem 4 of Ferguson (2021b)), if Γ |=I′ φ, then Γ ⊢ACrQ φ.

Section 6 presents our implementation of these theoretical concepts in a complete tableau
reasoning system, demonstrating the practical realizability of LLM-grounded interpreta-
tions.
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Bilateral (ζ) Unilateral

Dataset Model Type Macro F1 Coverage Macro F1 Coverage

GPQA flagship 0.699 (0.010) 0.589 (0.008) 0.633 (0.007) 1.000 (0.000)
distilled 0.608 (0.011) 0.504 (0.008) 0.559 (0.008) 1.000 (0.000)

SimpleQA flagship 0.736 (0.009) 0.584 (0.008) 0.657 (0.008) 1.000 (0.000)
distilled 0.624 (0.011) 0.499 (0.008) 0.570 (0.008) 1.000 (0.000)

Table 1: Summary macro F1 (given abstention) and coverage metrics for the bilateral factu-
ality evaluation function ζ and a baseline unilateral factuality evaluation function.

5. Factuality evaluation of LLM-grounded interpretations
Data and metrics To validate the factuality of LLM-grounded interpretations, we evalu-
ate the bilateral evaluation function ζ that underlies them, using question/answer pairs from
two short-form factuality benchmarks. Given our theoretical results above, this focus on the
practicality of atomic formula valuation within our framework provides a proof-of-concept
that a Belnap computer of the type described above is feasible.2 Question/answer pairs in
short-form factuality benchmarks are typically factoids providing a question together with
a short answer (Figure 3). We use these as an approximation to the verbalization δ(φ) of
an atomic formula φ. We used the short-form factuality benchmarks GPQA (Rein et al.,
2023) and SimpleQA (Wei et al., 2024) to create two test datasets (each with N=400) for
our experiments, each balanced between positive and negative examples. Test data prepa-
ration and experimental setup are discussed in Appendix D. We evaluated the performance
of ζ over the two datasets using two metrics: macro F1 against question/answer pairs that
the judge did not abstain from, i.e., where the judge provided a valuation of ζ(φ) = ⟨t, f⟩
(i.e., verified and not refuted) or ζ(φ) = ⟨f, t⟩ (i.e., not verified and refuted), and coverage,
which is the percentage of the total set of question/answer pairs where the judge did not
abstain. We also measured the time taken per evaluation, and the number of tokens used
per evaluation.
LLM judges We used three flagship LLMs (Llama 4 Maverick, GPT-4o, and Claude 3.5
Sonnet), and three distilled LLMs (Llama 4 Scout, GPT-4o Mini, and Claude 3.5 Haiku).
Each LLM was evaluated using three different pairs of prompts: direct prompts that asked
for a verification or refutation for the QA pair, zero-shot chain-of-thought prompts, and few-
shot chain-of-thought prompts. As a baseline, we also used the six models and three prompt
types to perform unilateral factuality evaluation, which asks an LLM to simply determine
whether a question/answer pair is t or f. The prompt templates used are provided in
Appendix B. Standard errors (in parentheses) presented in tables in this section and in
Appendix D were estimated by bootstrap resampling: 1000 subsamples of size N=100 were
drawn from the classification results within each model category (Politis and Romano, 1994).
Results Table 1 compares macro F1 and coverage between the unilateral and bilateral
evaluations across the two datasets, grouped by whether a model’s type was flagship or
distilled, and Table 2 does the same for mean time of execution and mean tokens used. Table

2. Code and data for the experiment is available at https://github.com/bradleypallen/
bilateral-factuality-evaluation.
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Bilateral (ζ) Unilateral

Dataset Model Type Time (s) Tokens Time (s) Tokens

GPQA flagship 36.747 (0.281) 4781.663 (45.878) 12.411 (0.140) 2212.766 (27.182)
distilled 34.771 (0.224) 4731.672 (41.661) 13.439 (0.095) 2532.153 (26.615)

SimpleQA flagship 32.789 (0.274) 4163.807 (37.704) 12.256 (0.140) 2100.465 (25.634)
distilled 30.310 (0.253) 3964.037 (39.991) 11.424 (0.120) 2167.419 (28.044)

Table 2: Summary execution time (in seconds) and total tokens used for the bilateral factu-
ality evaluation function ζ and a baseline unilateral factuality evaluation function.

Dataset Model Type ⟨t, t⟩ ⟨t, f⟩ ⟨f, t⟩ ⟨f, f⟩

GPQA flagship 0.301 (0.008) 0.211 (0.007) 0.378 (0.008) 0.110 (0.005)
distilled 0.299 (0.007) 0.192 (0.006) 0.312 (0.007) 0.197 (0.006)

SimpleQA flagship 0.310 (0.007) 0.228 (0.007) 0.357 (0.008) 0.106 (0.005)
distilled 0.301 (0.007) 0.233 (0.007) 0.266 (0.007) 0.200 (0.006)

Table 3: Summary truth value distributions for the bilateral factuality evaluation function
ζ. Of note is the fact that the models evaluated did not produce any truth values
where u = e or v = e during the evaluation.

3 summarizes the distribution of truth values produced in bilateral evaluation. Detailed
breakouts are shown in the tables in Appendix D. Our key findings are as follows.

1. Bilateral evaluation macro F1 outperforms unilateral evaluation (p < 0.01)
at the cost of lower coverage. The mean difference between bilateral and unilateral
macro F1 is 0.062 and for coverage is -0.456.

2. Flagship models outperform distilled models (p < 0.01). Table 1 shows that
this is the case for both unilateral and bilateral approaches, though the difference is
more pronounced with bilateral evaluation (0.091 on the GPQA dataset, 0.112 on the
SimpleQA dataset) versus unilateral evaluation (0.074 on the GPQA dataset, 0.087
on the SimpleQA dataset).

3. Bilateral evaluation is more expensive than unilateral evaluation (p < 0.01).
Table 2 shows that bilateral evaluation takes roughly twice as much time and twice
as many tokens as unilateral evaluation. However, evaluation times vary widely, with
GPT-4o Mini using direct prompting taking a mean of 2.5 seconds, and Llama 4 Scout
using zero-shot prompting taking a mean of 43.4 seconds. Token consumption scales
predictably, from up to a mean of 2,008.6 tokens with direct prompting, and up to a
mean of 6,704.7 tokens with few-shot prompting.

4. Inconsistency occurs significantly more frequently than incompleteness (p <
0.05). Table 3 shows that bilateral judge models more frequently abstain by assigning
⟨t, t⟩ (both verified and refuted) as opposed to ⟨f, f⟩ (neither verified nor refuted).
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6. Proof-of-concept implementation of tableau reasoning with LLM
integration

To demonstrate the practical feasibility of our theoretical framework, we have implemented
a tableau reasoning system for ACrQ in Python, extending the ACrQ tableau calculus in
Ferguson (2021b) with LLM-grounded interpretations.

The tableau reasoning system is implemented in Python 3.9+ with type annotations
and a modular architecture separating formula representation, semantic evaluation, and
tableau construction. Development employed Claude Code (Anthropic, 2025) to accelerate
implementation while maintaining correctness through rigorous verification: the system is
supported by extensive test suites (311 tests covering compliance with Ferguson (2021b),
semantic correctness, and edge cases) with all features validated through code review by
two of the authors (BA and TF) before integration.3

The system adds to the set of tableau rules in Definition 18 in (Ferguson, 2021b) an
additional LLM evaluation rule that queries external knowledge sources during tableau
construction. The LLM evaluation rule is formally specified as:

LLM(P (a)) = ⟨u, v⟩ (llm-eval)
σ : P (a) ⊢ ∆LLM(σ, P (a), u, v)

where ∆LLM generates conclusions based on the bilateral truth value returned by the LLM.
This rule is applied with lowest priority, after all deterministic tableau rules have been ex-
hausted. The implementation of the tableau procedure uses the caching bilateral factuality
evaluation function ζc where valuations for atomic formulas are persistently and immutably
stored, ensuring the stability of truth values throughout the reasoning process, consistent
with optimization techniques used in description logic tableau reasoners (Goré and Nguyen,
2007). The tableau maintains full tree connectivity by chain-connecting initial formulas as
siblings, ensuring all properties remain observable and verifiable throughout the reasoning
process. The system preserves ACrQ’s paraconsistent properties, handling contradictions
(or ”knowledge gluts”) without logical explosion. For example, when the LLM returns
⟨t, t⟩, indicating both positive and negative evidence, the tableau construction procedure
generates nodes for both t : P (a) and t : P ∗(a), maintaining the glut without causing
branch closure, applying Norihiro Kamide’s method (Kamide, 2010) of encoding bilateral
valuations for atomic formulas with a predicate P using a predicate P ∗ that corresponds to
P ’s refutability value (Maier et al., 2013; Ferguson, 2021b).

To support interactive use of the tableau reasoner, the implementation includes a dia-
logue management system, Theory Manager, that bridges natural language input and formal
reasoning. Natural language assertions are entered by the user, translated into formulas in
AC, and added to a set of assertions stored persistently by the reasoner as a theory. The
user can issue commands to perform forward-chaining inference, and to perform satisfiability
checking of the current theory, including gap and glut detection.

As an illustration of the tableau reasoner in action, Figure 4 shows a trace of an inter-
active session with the Theory Manager. In this example, the user first specifies the use of

3. Code and data for the tableau reasoner is available at https://github.com/bradleypallen/wkrq; in
addition, the Python package used by the reasoner for the implementation of ζ and ζc is available at
https://github.com/bradleypallen/bilateral-truth.
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1 theory > llm openai gpt -4o
2 [OK] LLM evaluator enabled : openai
3

4 theory > assert all humans are mortal
5 [OK] Asserted : S0001
6 Formula : t:[ forall X Human(X)] Mortal (X)
7

8 theory > assert socrates is a human
9 [OK] Asserted : S0002

10 Formula : t:Human( socrates )
11

12 theory > infer
13 [OK] Inferred 1 new statement (s):
14 I0003: t: Mortal ( socrates ) ← logical inference
15

16 theory > assert socrates is a pig
17 [OK] Asserted : S0004
18 Formula : t:Pig( socrates )
19

20 theory > infer
21 [OK] Inferred 1 new statement (s):
22 E0005: t:Pig *( socrates ) ← LLM refutation
23

24 theory > check
25 [OK] Satisfiable
26 [!] Found 1 glut ( conflicting evidence ):
27 S0004: t:Pig( socrates ) ← glut detected
28 E0005: t:Pig *( socrates ) ← but satisfiable

Figure 4: Example interaction with the ACrQ-LLM Theory Manager demonstrating para-
consistent reasoning. The system correctly infers Mortal(socrates) through
logical deduction (line 13), then queries the LLM when a false claim is asserted.
The LLM returns ζc(Pig(socrates)) = ⟨f , t⟩ (cannot verify, can refute), resulting
in Pig*(socrates) (line 20). Despite the glut between the user assertion and
LLM evidence (lines 24-25), the system remains satisfiable, demonstrating para-
consistent handling of contradictions.

OpenAI’s GPT-4o model with the session, and then makes two assertions in natural lan-
guage, the canonical example of all humans are mortal and Socrates is a human, which the
Theory Manager translates into the AC syntax. The user then invokes the prover to apply
rules in a forward-chaining fashion, yielding the inference that Socrates is a mortal. Given
the appearance of atomic statements in the tableau being constructed, whether directly
asserted or inferred, the llm-eval rule is being applied; given it agrees with the atomic for-
mulas added to this point, the tableau construction procedure does not add any additional
nodes. Then the user asserts that Socrates is a pig, and this time the llm-eval rule yields
an assertion that Socrates is not a pig. Satisfiability checking invoked by the user identifies
that an inconsistency now exists in the set of assertions in the theory; however, as this does
not result in explosion per the definition of AC, the theory is still satisfiable. We validated
the implementation through extensive testing of both semantic correctness and observable
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properties. The implementation demonstrates that the Belnap computer architecture with
LLM judge as knowledge source discussed in Section 1 is not only theoretically sound but
also practically realizable.

7. Limitations
We have provided a theoretical framework for integrating an LLM with a paraconsistent rea-
soner, demonstrated the feasibility of providing LLM-grounded valuations of atomic formu-
las, and demonstrated a tableau reasoner that implements the framework. This framework,
however, depends on the choice of verbalization strategy embodied in the implementation
of the δ function discussed in Section 3 in two ways. First, our approach depends on the
LLM’s pre-trained associations between the verbalized symbols and their intended mean-
ings; hence, we rely on implicit grounding through the LLM’s training data. Secondly, a
given logical formula might have multiple valid verbalizations with subtly different conno-
tations that affect the LLM’s evaluation. The implementation of δ used in our evaluations
and in the tableau reasoner uses direct syntactical mapping. Investigating implementations
of δ addressing the above two questions remains future work.

The computational complexity depends on the number of atomic formulas requiring
evaluation, which could be exponential in the worst case. Each atomic formula requires
multiple API calls (2k calls for k-sample majority voting), making inference API costs
and latency immediate practical bottlenecks. Yet, we expect that caching in ζc will
amortize costs across repeated evaluations, and that standard tableau optimization tech-
niques will help keep the overall complexity manageable. Empirical validation of these
complexity expectations also remains as future work.

8. Conclusion and future work
We described a novel approach to logical reasoning using LLMs with several key contri-
butions. We defined a bilateral approach to factuality evaluation that identifies gaps and
contradictions in LLM parametric knowledge. We introduced the concept of LLM-grounded
interpretations that integrate an LLM directly into the formal semantics of the underlying
logic while preserving its soundness and completeness. We provided empirical evidence
that bilateral factuality evaluation outperforms unilateral approaches, and demonstrated
through concrete examples how the system handles contradictory information without log-
ical explosion. And finally, we implemented a tableau reasoning system that demonstrates
the practical feasibility of this approach, including an interactive dialogue management
interface that bridges natural language and formal reasoning.

From a philosophical perspective, in this work we are taking an externalist position
(Cappelen and Dever, 2021, 2025) that LLMs, through training on vast corpora, have inter-
nalized patterns of factuality assessment reflecting collective human judgment. This exter-
nalism doesn’t guarantee truth, but provides a principled basis for treating LLM outputs
as meaningful approximations of community linguistic practices. The formal properties
(soundness and completeness) are preserved because they depend on consistency within
reasoning scope, not absolute correctness. Our work is intended as an exploration how the
consequences of this position can lead towards a future approach to knowledge engineering
that more effectively balances the use of both formal languages and natural language as
means for knowledge representation and reasoning (Stokhof, 2007).
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In addition to the future work described in Section 7, we plan to enhance the imple-
mentation of the tableau reasoner through the development of dialogical protocols that
model the tableau construction process as a game (Van Benthem, 2014), with the tableau
reasoning system playing the role of a prover and the LLM as a skeptic in a prover-skeptic
dialogue (Sørensen and Urzyczyn, 2006). We also plan to conduct a user evaluation of the
usability of the Theory Manager for ontology and knowledge graph construction, and to
extend our approach based on work in the area of generalized truth values (Shramko and
Wansing, 2005; Hornischer, 2025) to provide a multi-valued semantics for modeling factual-
ity in LLMs, with the goal of improving the theoretical framework and metrics for factuality
evaluation.
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Appendix A. Angell’s logic of analytic containment AC
Below we summarize the definitions of the object language, truth functions, and interpre-
tations for the version of AC presented in greater detail in Ferguson (2021b).
A.1. Object language
Definition 12 Let L be a first-order language built from a countable set C of constants, a
countable set of variables V, a countable set R of relation symbols, the Boolean connectives
¬, ∧, and ∨, restricted universal and existential quantifiers ∀ and ∃, and round parentheses
(as used in complex formulas) and square brackets (as used in quantified formulas) as aux-
iliary symbols. If R ∈ R and c1, . . . , cn ∈ C, then R(c1, . . . , cn) is an atomic formula. Let
LAT be the set of atomic formulas. The formulas of L are the elements of LAT , together
with the following, where φ, ψ ∈ L and x ∈ V:

¬φ | (φ ∧ ψ) | (φ ∨ ψ) | [∀xφ(x)]ψ(x) | [∃xφ(x)]ψ(x)

19



Allen Chhikara Ferguson Ilievski Groth

A.2. Truth functions
Definition 13 The weak Kleene truth tables over the set of truth values V3 = {t, e, f} are:

¬
t f
e e
f t

∧ t e f

t t e f
e e e e
f f e f

∨ t e f

t t e t
e e e e
f t e f

The weak Kleene truth tables for conjunction and disjunction induce the truth functions
∧̇ and ∨̇, respectively.

Definition 14 The restricted Kleene quantifier functions ∀̇ and ∃̇ are mappings from sets
of truth values to truth values such that:

∃̇(X) =


t if ⟨t, t⟩ ∈ X

e if for all ⟨u, v⟩, either u = e or v = e

f if ⟨t, t⟩ /∈ X and for some ⟨u, v⟩ ∈ X, u ̸= e and v ̸= e

∀̇(X) =


t if ⟨t, f⟩, ⟨t, e⟩ /∈ X and for some ⟨u, v⟩ ∈ X,u ̸= e and v ̸= e

e if for all ⟨u, v⟩ ∈ X, either u = e or v = e

f if {⟨t, t⟩, ⟨t, e⟩} ∩X ̸= ∅ and for some ⟨u, v⟩ ∈ X, either u = e or v = e

A.3. Interpretations
Definition 15 An AC interpretation I is a pair ⟨CI ,RI⟩ where CI is a domain of
individuals and RI is a set of functions where I assigns:

• every constant c ∈ C an individual cI ∈ CI

• every n-ary predicate R a function RI : (CI)n → V3 × V3

Definition 16 An AC interpretation I induces a map I : L → V3 × V3 as follows, where
I0 and I1 project the first and second coordinates respectively:

• For atomic formulas R(c1, . . . , cn) ∈ LAT , I(φ) = RI(cI
1 , . . . , c

I
n)

• I(¬φ) = ⟨I1(φ), I0(φ)⟩
• I(φ ∧ ψ) = ⟨I0(φ) ∧̇ I0(ψ), I1(φ) ∨̇ I1(ψ)⟩
• I(φ ∨ ψ) = ⟨I0(φ) ∨̇ I0(ψ), I1(φ) ∧̇ I1(ψ)⟩
• I([∀xφ(x)]ψ(x)) = ⟨∀̇({I0(φ(c)), I0(ψ(c)) | c ∈ C}), ∃̇({I0(φ(c)), I1(ψ(c)) | c ∈ C})⟩
• I([∃xφ(x)]ψ(x)) = ⟨∃̇({I0(φ(c)), I0(ψ(c)) | c ∈ C}), ∀̇({I0(φ(c)), I1(ψ(c)) | c ∈ C})⟩

Definition 17 Given an AC interpretation I, validity with respect to I is defined as truth
preservation, i.e.

Γ |=I φ if for all instances of I such that ∀ψ ∈ Γ I0(ψ) = t, I0(φ) = t.

Appendix B. Prompts
B.1. Direct verification template

Determine whether the following answer to the given question is correct.
Conclude with a single line containing ONLY one of these two phrases:
VERIFIED
CANNOT VERIFY

Question: {question}
Proposed answer: {answer}
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B.2. Direct refutation template

Determine whether the following answer to the given question can be refuted.
Conclude with a single line containing ONLY one of these two phrases:
REFUTED
CANNOT REFUTE

Question: {question}
Proposed answer: {answer}

B.3. Zero-shot verification template

I’ll provide you with a question and its proposed answer.
Your task is to verify whether this answer is correct by following these steps:

1. Analyze the exact meaning of both the question and answer,
identifying any key terms that need clarification.
2. Establish specific conditions that would make this answer true for this question.
3. Provide direct evidence supporting the answer, including specific facts, examples,
or authoritative references that confirm its accuracy.
4. Test if the answer remains valid across all contexts where the question applies,
noting any limitations or exceptions.
5. Check for consistency with established knowledge in the relevant domain.

Based on your analysis, determine whether the answer is verified and explain
your reasoning with specific supporting evidence.
Your goal is not to find fault but to determine if positive
evidence exists to confirm the answer.

After your complete analysis, conclude with a single line containing
ONLY one of these two phrases:
VERIFIED
CANNOT VERIFY

Question: {question}
Proposed answer: {answer}

B.4. Zero-shot refutation template

I’ll provide you with a question and its proposed answer.
Your task is to determine if this answer can be refuted by following these steps:

1. Analyze the exact meaning of both the question and the proposed answer.
2. Identify what specific conditions would need to be true for this answer to be false
(not merely the absence of evidence).
3. Search for direct counterexamples or contradicting evidence that
actively demonstrates why the answer is incorrect.
4. Construct specific scenarios where the answer fails to hold true,
even if the question’s premises are accepted.
5. Identify any logical inconsistencies, factual errors, or category mistakes
within the answer.

Focus on building an affirmative case for why the answer is incorrect,
rather than simply noting a lack of supporting evidence.
Provide specific counterevidence and explain precisely
how it contradicts the proposed answer.

After your complete analysis, conclude with a single line containing
ONLY one of these two phrases:
REFUTED
CANNOT REFUTE

Question: {question}
Proposed answer: {answer}
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B.5. Few-shot verification template

I’ll provide you with a question and its proposed answer.
Your task is to verify whether this answer is correct by following these steps:

1. Analyze the exact meaning of both the question and answer, identifying any key terms that need clarification.
2. Establish specific conditions that would make this answer true for this question.
3. Provide direct evidence supporting the answer, including specific facts, examples, or authoritative references that confirm
its accuracy.
4. Test if the answer remains valid across all contexts where the question applies, noting any limitations or exceptions.
5. Check for consistency with established knowledge in the relevant domain.

Based on your analysis, determine whether the answer is verified and explain your reasoning with specific supporting evidence.
Your goal is not to find fault but to determine if positive evidence exists to confirm the answer.

Here are some examples of how to approach verification:

Example 1:
Question: Who was the first man to walk on the Moon?
Proposed answer: Neil Armstrong
Let’s verify this answer systematically:
Key Terms Analysis:
"First man to walk on the Moon" requires precise historical verification
Specific date and mission details are crucial
Conditions for Verification:
Must be the first human to physically step onto lunar surface
Must have documented evidence of this historic moment
Must be part of a specific NASA mission
Direct Evidence:
Neil Armstrong stepped onto the Moon’s surface on July 20, 1969
During Apollo 11 mission
Famous quote: "That’s one small step for man, one giant leap for mankind"
Extensive NASA documentation confirms this
Broadcast live on global television
Verified by multiple independent sources including NASA, scientific records, and historical archives
Context and Limitations:
Specifically refers to first human, not first spacecraft
Specifically lunar surface, not orbital passage
Confirmed during Cold War space race
Part of NASA’s Apollo program
Consistency Check:
Matches scientific and historical consensus
No credible alternative claims exist
Extensively documented in multiple international records
This answer meets all verification criteria with robust, multi-source evidence.
VERIFIED

Example 2:
Question: Chocolate is made from material
Proposed answer: Sugar
Let’s analyze this systematically:
Key Term Analysis:
"Chocolate" refers to a food product derived from cacao/cocoa beans
"Material" suggests the fundamental ingredient or component
"Sugar" is a sweetener, not the primary material of chocolate
Conditions for Accuracy:
Sugar is an ingredient in chocolate
But sugar is NOT the primary material of chocolate
Chocolate’s primary material is cocoa/cacao solids
Direct Evidence:
Chocolate is primarily made from cocoa beans processed into cocoa solids
Cocoa solids come from cacao tree seeds/beans
Sugar is added as a sweetener, not the base material
Chocolate composition typically includes:

Cocoa solids (primary material)
Cocoa butter
Sugar (secondary ingredient)
Milk (in milk chocolate)

Context Testing:
In all chocolate production processes, cocoa is the fundamental material
Sugar is always a supplementary ingredient, not the base material
Domain Consistency:
Culinary and food science consistently define cocoa/cacao as chocolate’s primary material
Based on comprehensive analysis, the proposed answer is incorrect.
CANNOT VERIFY

After your complete analysis, conclude with a single line containing ONLY one of these two phrases:
VERIFIED
CANNOT VERIFY

Question: {question}
Proposed answer: {answer}
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B.6. Few-shot refutation template

I’ll provide you with a question and its proposed answer.
Your task is to determine if this answer can be refuted by following these steps:

1. Analyze the exact meaning of both the question and the proposed answer.
2. Identify what specific conditions would need to be true for this answer to be false (not merely the absence of evidence).
3. Search for direct counterexamples or contradicting evidence that actively demonstrates why the answer is incorrect.
4. Construct specific scenarios where the answer fails to hold true, even if the question’s premises are accepted.
5. Identify any logical inconsistencies, factual errors, or category mistakes within the answer.

Focus on building an affirmative case for why the answer is incorrect, rather than simply noting a lack of supporting evidence.
Provide specific counterevidence and explain precisely how it contradicts the proposed answer.

Here are some examples of how to approach refutation:

Example 1:
Question: Are penguins birds?
Proposed answer: No
Let’s analyze this systematically:
Meaning Analysis:
Question asks about the taxonomic classification of penguins
Proposed answer claims penguins are NOT birds
Conditions for Falsity:
Penguins must meet standard biological criteria for birds
Must share key avian characteristics
Counterevidence:
Penguins have ALL classic bird characteristics:

Feathered body
Lay eggs
Warm-blooded
Have beaks
Descended from dinosaur lineage
Classified in scientific taxonomy under Class Aves
Specifically, penguins belong to the order Sphenisciformes, which is a recognized bird order
Biological and genetic evidence conclusively places penguins within bird classification

Specific Scenarios Contradicting Answer:
Penguins have wing-like flippers adapted for swimming
They have respiratory and skeletal structures identical to other bird species
Genetic sequencing confirms their bird lineage
Logical Inconsistencies:
Rejecting penguins as birds would require rejecting fundamental biological classification systems
No scientific basis exists for excluding penguins from bird category
REFUTED

Example 2:
Question: Who was the first man to walk on the Moon?
Proposed answer: Neil Armstrong
Let’s analyze this systematically:
Meaning Analysis:
Question seeks the definitive first human male to set foot on lunar surface
Proposed answer: Neil Armstrong (Apollo 11 mission, July 20, 1969)
Potential Conditions for Falsity:
Documented evidence of another person walking on Moon before Armstrong
Proof that Armstrong was not actually the first
Historical record showing a different individual preceded him
Counterevidence Search:
No credible historical evidence exists contradicting Armstrong’s first Moon walk
NASA records and global documentation consistently confirm Armstrong as first
Extensive photographic and video evidence supports this claim
Scenario Testing:
No alternative scenarios emerge that could plausibly replace Armstrong’s achievement
Extensive verification by multiple nations and independent researchers confirms his primacy
Logical Consistency Check:
Armstrong’s Moon walk is extensively documented
Multiple witnesses and technological records corroborate the event
No logical inconsistencies detected in the claim
The proposed answer is completely accurate and supported by overwhelming historical evidence.
CANNOT REFUTE

After your complete analysis, conclude with a single line containing ONLY one of these two phrases:
REFUTED
CANNOT REFUTE

Question: {question}
Proposed answer: {answer}
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B.7. Prompt template for generating negative examples for SimpleQA-derived
benchmark

You are an expert synthetic data generator. Your task is to generate three plausible but
incorrect answers to a given question that will serve as challenging distractors.

Guidelines for generating high-quality wrong answers:
1. Each answer must be factually incorrect but highly plausible within the context

- Draw from the same domain/topic as the correct answer
- Use answers that could reasonably be mistaken for the truth
- Avoid obviously wrong or nonsensical options

2. Strictly match the answer type and format
- For dates: Use the same date format and plausible timeframe
- For people: Match profession, era, and relevance
- For numbers: Stay within reasonable orders of magnitude
- For places: Use locations of similar type/scale

3. Ensure clear differentiation
- Make each wrong answer distinct from the correct answer
- Avoid overlap between wrong answers
- Space out numerical answers appropriately

4. Maintain consistent specificity
- Match the level of detail in the correct answer
- If the answer is detailed, provide equally detailed wrong options
- If the answer is brief, keep wrong answers similarly concise

5. Optimize for realism and difficulty
- Wrong answers should feel natural, not contrived
- Target common misconceptions when possible
- Make the options challenging enough to test real knowledge
- Avoid answers that are too obviously incorrect

Example 1:
Question: Who was the first president of the United States?
Answer: George Washington
Wrong Answers:
- John Adams
- Thomas Jefferson
- Benjamin Franklin
Reason: All are founding fathers but not the first president

Example 2:
Question: What is the largest planet in our solar system?
Answer: Jupiter
Wrong Answers:
- Saturn
- Neptune
- Uranus
Reason: All are gas giant planets, but smaller than Jupiter

Example 3:
Question: Who wrote Romeo and Juliet?
Answer: William Shakespeare
Wrong Answers:
- Christopher Marlowe
- Ben Jonson
- John Webster
Reason: All are prominent Elizabethan playwrights

Return only three wrong answers as a list in JSON format with the following requirements:
- Each wrong answer should be a string
- The output should be a single JSON object with key "negative_answers"
- The value should be an array of exactly 3 wrong answers
- No explanations or additional text should be included
- The answers should maintain consistent formatting with the correct answer

Example format:
{{

"negative_answers": ["Wrong Answer 1", "Wrong Answer 2", "Wrong Answer 3"]
}}
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B.8. Direct prompt template for unilateral factuality evaluation

Determine whether the following answer to the given question is TRUE or FALSE.

Conclude with a single line containing ONLY one of these two words:
TRUE
FALSE

Question: {question}
Proposed answer: {answer}

B.9. Zero-shot prompt template for unilateral factuality evaluation

I’ll provide you with a question and its proposed answer.
Your task is to evaluate whether this answer is correct by following these steps:

1. Analyze the exact meaning of both the question and answer, identifying any key terms that need clarification.
2. Establish specific conditions that would make this answer true for this question.
3. Provide direct evidence supporting the answer, including specific facts, examples, or
authoritative references that confirm its accuracy.
4. Test if the answer remains valid across all contexts where the question applies, noting any limitations or exceptions.
5. Check for consistency with established knowledge in the relevant domain.
6. Search for direct counterexamples or contradicting evidence that actively demonstrates why the answer is incorrect.
7. Construct specific scenarios where the answer fails to hold true, even if the question’s premises are accepted.
8. Identify any logical inconsistencies, factual errors, or category mistakes within the answer.

After analyzing the question and answer, provide a single line containing ONLY one of these two words:
TRUE
FALSE

Question: {question}
Proposed answer: {answer}
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B.10. Few-shot prompt template for unilateral factuality evaluation

I’ll provide you with a question and its proposed answer.
Your task is to evaluate whether this answer is correct by following these steps:

1. Analyze the exact meaning of both the question and answer, identifying any key terms that need clarification.
2. Establish specific conditions that would make this answer true for this question.
3. Provide direct evidence supporting the answer, including specific facts, examples, or
authoritative references that confirm its accuracy.
4. Test if the answer remains valid across all contexts where the question applies, noting any limitations or exceptions.
5. Check for consistency with established knowledge in the relevant domain.
6. Search for direct counterexamples or contradicting evidence that actively demonstrates why the answer is incorrect.
7. Construct specific scenarios where the answer fails to hold true, even if the question’s premises are accepted.
8. Identify any logical inconsistencies, factual errors, or category mistakes within the answer.

Here are examples of how to approach evaluation:

Example 1:
Question: Who was the first man to walk on the Moon?
Proposed answer: Neil Armstrong
Analyze the question and answer:
Question: "Who was the first man to walk on the Moon?" This is a straightforward factual question seeking the identity of
the first human to set foot on the lunar surface.
Proposed answer: "Neil Armstrong" This is a name, presumably offered as the answer to the question.
Establish conditions for truth:
The answer is true if Neil Armstrong was indeed the first human to walk on the Moon.
Provide supporting evidence:
Historical records, NASA documentation, and countless reliable sources confirm that Neil Armstrong was the first person to
walk on the Moon on July 20, 1969, during the Apollo 11 mission.
Test validity across contexts:
The answer holds true in all historical contexts related to the first Moon landing.
Check for consistency with established knowledge:
The answer aligns perfectly with established historical and scientific knowledge.
Search for counterexamples:
There are no credible counterexamples. No other individual is historically recognized as the first person to walk on the Moon.
Construct failure scenarios:
There are no scenarios where the answer fails, assuming the question refers to the generally accepted historical event.
Identify logical inconsistencies:
There are no logical inconsistencies or factual errors.
TRUE

Example 2:
Question: What is the main ingredient in chocolate?
Proposed answer: Sugar
Analyze the question and answer:
Question: "Chocolate is made from material" - This is an incomplete sentence. The question is implicitly asking "What material is
chocolate made from?" or "What is a key material used to make chocolate?".
Proposed answer: "Sugar" - This suggests that sugar is the material chocolate is made from.
Establish conditions for truth:
The answer would be true if sugar was the only ingredient in chocolate, or
if the question was interpreted as "Is sugar a material used to make chocolate?".
Provide supporting evidence:
Sugar is a common and significant ingredient in most chocolate recipes.
Test validity across contexts:
This answer fails in many contexts. Chocolate is not only made from sugar.
Check for consistency with established knowledge:
Chocolate is made from cacao beans, sugar, and often other ingredients like milk solids, cocoa butter, lecithin, and flavorings.
Search for counterexamples:
Dark chocolate often contains a higher percentage of cacao and less sugar.
Sugar-free chocolate exists, using artificial sweeteners instead.
Cacao beans are essential for chocolate, and chocolate cannot be made without them.
Construct failure scenarios:
Imagine a recipe for 100% cacao chocolate. It would contain no sugar.
Imagine a sugar-free chocolate bar. It would contain no sugar.
Identify logical inconsistencies:
The answer implies sugar is the only ingredient, which is false.
FALSE

Question: {question}
Proposed answer: {answer}

Appendix C. Example
To illustrate bilateral evaluation, we present an example with statements about penguins
in the context of a knowledge base with a universally quantified statement that all birds
can fly:

1. C = {penguin, eagle, sparrow, ...}
2. φ0 = [ ∀x bird(x) ] flies(x)
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3. φ1 = bird(penguin)
4. φ2 = flies(penguin)
5. φ3 = ¬φ2
6. δ(φ1) = ⌈Penguins are birds⌉
7. P+(δ(φ1)) = ⌈. . .Penguins are scientifically classified as birds. They belong to

the family Spheniscidae . . .Conclusion: VERIFIED⌉
8. P−(δ(φ1)) = ⌈. . .All evolutionary biologists classify penguins as birds. This is

supported by molecular evidence, fossil records, and anatomical features.
There is no reasonable alternative classification. Conclusion: CANNOT REFUTE⌉

9. ζ(φ1) = ⟨t, f⟩
10. δ(φ2) = ⌈Penguins fly⌉
11. P+(δ(φ2)) = ⌈. . .While penguins have wings, they cannot achieve aerial flight.

Their wings are adapted for swimming rather than flying. They flap their
wings underwater to “fly” through water. From a strict biological perspective,
penguins do not fly through air. Conclusion: CANNOT VERIFY⌉

12. P−(δ(φ2)) = ⌈. . .Penguins are flightless birds. Their wings have evolved into
flippers for aquatic propulsion rather than aerial flight. This is well-established
in ornithology. Conclusion: REFUTED⌉

13. ζ(φ2) = ⟨f, t⟩
14. I(φ0) = ⟨∀̇({I0(bird(c)), I0(flies(c)) | c ∈ C}), ∃̇({I0(bird(c)), I1(flies(c)) | c ∈ C})⟩

= ⟨f, t⟩
15. I(φ3) = ⟨I1(φ2), I0(φ2)⟩ = ⟨t, f⟩

This bilateral evaluation reveals the inconsistency. The universal statement φ0 evaluates to
false when considering penguins, and φ3 evaluates to true, but both statements can coexist
in AC without causing explosion. This demonstrates how the system handles the classic
penguin problem through paraconsistent reasoning.

Appendix D. Experiments
D.1. Datasets
We used the short-form factuality benchmarks GPQA (Rein et al., 2023) and SimpleQA
(Wei et al., 2024) to create the benchmarks for our experiments. GPQA consists of 448
multiple-choice questions, written by domain experts in biology, physics, and chemistry.
SimpleQA consists of 4,326 question/answer pairs addressing a range of general topic ar-
eas, including history, science and technology, art, geography, TV shows, and video games.
From these two benchmarks we created a balanced set of positive and negative examples.
From SimpleQA, we sampled without replacement 200 question/answer pairs to be positive
examples, and 200 questions to be negative examples, where we substituted false answers
synthetically generated using GPT-4o Mini using the prompt shown in Appendix B.7. From
GPQA, we sampled 200 existing question/answer pairs as positive examples, and 200 ques-
tions paired with the first incorrect answer for that question provided as part of the dataset.
D.2. Experimental setup
Following Wei et al. (2024), we evaluated our implementation of ζ on a selective classification
with a binary abstention task (El-Yaniv and Wiener, 2010) using the above two datasets,
measuring an LLM judge’s grading of a given question/answer pair. The standard pattern
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in LLM judges in factuality evaluation is to prompt the LLM judge to evaluate the answer
to the question as either correct, incorrect, or not attempted. This, again, has a natural
mapping to the values of V3; to derive a single truth value v ∈ V3 for the evaluation, we use
the following projection p : V3 × V3 → V3 such that for a pair ⟨u, v⟩:

p(⟨u, v⟩) =


t if ⟨u, v⟩ = ⟨t, f⟩
f if ⟨u, v⟩ = ⟨f, t⟩
e otherwise

Calls to the public inference APIs for the models used a temperature of 0.1. Re-
peated sampling (N=3) with majority vote was used in both the verification and refutation
processes. Statistical significance was assessed using paired t-tests (ttest rel from the
scipy.stats Python package) to compare performance metrics between different model
and prompt combinations. The experiments were conducted in the first half of May 2025
using calls to the public inference APIs for each of the models.

D.3. Performance metrics

Judge Model Prompt Macro F1 Coverage Time (s) Tokens

Claude 3.5 Sonnet direct 0.712 (0.023) 0.748 (0.02) 34.22 (6.08) 2914.80 (778.99)
zero 0.738 (0.029) 0.542 (0.024) 53.91 (6.41) 4863.48 (731.27)
few 0.716 (0.028) 0.54 (0.023) 52.92 (6.41) 8079.40 (745.71)

Claude 3.5 Haiku direct 0.578 (0.027) 0.778 (0.02) 30.52 (4.09) 2641.07 (704.48)
zero 0.648 (0.034) 0.412 (0.023) 43.12 (3.60) 4221.73 (685.85)
few 0.604 (0.034) 0.438 (0.024) 47.44 (4.69) 7673.44 (700.47)

Llama 4 Maverick direct 0.774 (0.021) 0.852 (0.016) 65.91 (52.53) 6225.19 (1526.74)
zero 0.765 (0.025) 0.618 (0.022) 75.95 (44.90) 7492.54 (1357.27)
few 0.751 (0.023) 0.805 (0.018) 65.08 (41.43) 9945.70 (1444.02)

Llama 4 Scout direct 0.702 (0.025) 0.712 (0.021) 63.24 (28.92) 5403.00 (1833.85)
zero 0.712 (0.031) 0.46 (0.024) 93.43 (51.27) 7062.05 (1430.96)
few 0.694 (0.027) 0.642 (0.022) 69.27 (37.27) 9540.89 (1362.86)

GPT-4o direct 0.592 (0.027) 0.705 (0.021) 5.61 (8.41) 1133.92 (556.51)
zero 0.603 (0.035) 0.48 (0.022) 36.29 (9.44) 6041.24 (1256.13)
few 0.69 (0.031) 0.518 (0.023) 42.01 (18.48) 8662.78 (1398.93)

GPT-4o Mini direct 0.536 (0.028) 0.69 (0.022) 16.25 (12.91) 2863.86 (1716.43)
zero 0.4 (0.025) 0.438 (0.023) 32.88 (7.54) 5851.67 (959.41)
few 0.428 (0.028) 0.488 (0.023) 47.99 (15.90) 8787.62 (1120.93)

Table 4: Performance metrics for ζ using different judge models and evaluation prompts on
GPQA question/answer pairs (N=400).
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Judge Model Prompt Macro F1 Coverage Time (s) Tokens

Claude 3.5 Sonnet direct 0.667 (0.021) 1.0 (0.0) 14.52 (2.92) 1360.21 (386.44)
zero 0.664 (0.022) 1.0 (0.0) 19.29 (2.80) 2161.70 (369.97)
few 0.66 (0.022) 1.0 (0.0) 23.64 (2.85) 5055.46 (382.93)

Claude 3.5 Haiku direct 0.533 (0.023) 1.0 (0.0) 14.25 (2.23) 1346.54 (377.10)
zero 0.556 (0.024) 1.0 (0.0) 19.70 (2.44) 2070.33 (328.06)
few 0.577 (0.023) 0.998 (0.002) 19.48 (1.55) 4829.19 (327.03)

Llama 4 Maverick direct 0.722 (0.021) 1.0 (0.0) 26.83 (21.83) 2919.78 (825.91)
zero 0.694 (0.02) 0.998 (0.002) 25.20 (10.44) 3462.93 (665.47)
few 0.717 (0.021) 0.99 (0.005) 24.49 (11.06) 5756.76 (602.70)

Llama 4 Scout direct 0.636 (0.023) 1.0 (0.0) 30.07 (19.93) 2467.57 (1096.58)
zero 0.577 (0.024) 0.998 (0.002) 24.74 (18.10) 2689.86 (1180.22)
few 0.568 (0.023) 1.0 (0.0) 24.38 (18.08) 4955.30 (1124.60)

GPT-4o direct 0.572 (0.023) 1.0 (0.0) 2.92 (7.85) 546.73 (276.40)
zero 0.497 (0.024) 1.0 (0.0) 3.89 (4.92) 1059.73 (276.40)
few 0.484 (0.024) 1.0 (0.0) 8.00 (8.50) 3446.44 (343.78)

GPT-4o Mini direct 0.543 (0.023) 1.0 (0.0) 9.52 (6.61) 1543.24 (848.31)
zero 0.444 (0.021) 1.0 (0.0) 6.60 (6.96) 1722.51 (945.13)
few 0.538 (0.024) 1.0 (0.0) 11.41 (2.60) 4949.93 (477.92)

Table 5: Performance metrics for unilateral factuality evaluation using different judge mod-
els and evaluation prompts on GPQA question/answer pairs (N=400).

Judge Model Prompt Macro F1 Coverage Time (s) Tokens

Claude 3.5 Sonnet direct 0.81 (0.025) 0.502 (0.024) 19.22 (4.49) 1190.43 (174.00)
zero 0.733 (0.027) 0.615 (0.022) 43.35 (6.44) 3444.22 (171.12)
few 0.654 (0.031) 0.65 (0.022) 43.19 (5.45) 6704.68 (161.86)

Claude 3.5 Haiku direct 0.667 (0.033) 0.458 (0.024) 15.81 (3.07) 1014.98 (149.24)
zero 0.673 (0.036) 0.385 (0.022) 38.92 (3.14) 3095.57 (131.72)
few 0.653 (0.033) 0.45 (0.023) 40.01 (4.09) 6435.11 (158.40)

Llama 4 Maverick direct 0.673 (0.026) 0.768 (0.02) 21.84 (13.56) 2008.57 (754.99)
zero 0.746 (0.029) 0.528 (0.024) 36.17 (10.85) 4421.40 (448.00)
few 0.692 (0.026) 0.715 (0.021) 41.29 (31.55) 6665.58 (512.60)

Llama 4 Scout direct 0.58 (0.031) 0.572 (0.023) 17.02 (9.05) 1392.07 (434.73)
zero 0.677 (0.038) 0.358 (0.022) 43.41 (16.12) 4049.26 (380.54)
few 0.558 (0.031) 0.632 (0.023) 36.90 (27.20) 6267.85 (437.70)

GPT-4o direct 0.67 (0.026) 0.74 (0.021) 5.11 (5.49) 477.22 (60.34)
zero 0.738 (0.032) 0.44 (0.024) 22.18 (3.49) 3720.07 (314.42)
few 0.833 (0.026) 0.482 (0.024) 21.00 (4.86) 6079.94 (292.95)

GPT-4o Mini direct 0.604 (0.027) 0.718 (0.021) 2.53 (0.72) 483.86 (68.15)
zero 0.525 (0.038) 0.378 (0.023) 23.75 (10.23) 3812.08 (829.15)
few 0.586 (0.034) 0.472 (0.023) 30.69 (16.02) 6298.49 (254.71)

Table 6: Performance metrics for ζ using different judge models and evaluation prompts on
SimpleQA question/answer pairs (N=400).
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Judge Model Prompt Macro F1 Coverage Time (s) Tokens

Claude 3.5 Sonnet direct 0.705 (0.022) 1.0 (0.0) 6.34 (1.59) 453.53 (80.98)
zero 0.682 (0.022) 1.0 (0.0) 16.28 (5.05) 1499.60 (112.18)
few 0.661 (0.023) 1.0 (0.0) 16.82 (1.99) 4331.51 (89.63)

Claude 3.5 Haiku direct 0.595 (0.023) 1.0 (0.0) 6.69 (1.60) 489.73 (91.76)
zero 0.55 (0.025) 1.0 (0.0) 16.29 (3.87) 1505.90 (93.60)
few 0.523 (0.024) 1.0 (0.0) 17.02 (1.55) 4332.01 (63.46)

Llama 4 Maverick direct 0.643 (0.023) 1.0 (0.0) 6.71 (4.20) 814.69 (350.94)
zero 0.663 (0.023) 0.992 (0.004) 14.88 (8.78) 2097.99 (230.58)
few 0.648 (0.023) 0.992 (0.004) 16.97 (10.19) 4524.26 (265.16)

Llama 4 Scout direct 0.578 (0.023) 1.0 (0.0) 5.73 (4.96) 511.43 (286.82)
zero 0.559 (0.025) 1.0 (0.0) 8.62 (8.44) 1192.79 (516.58)
few 0.552 (0.024) 1.0 (0.0) 5.08 (6.68) 3306.05 (376.05)

GPT-4o direct 0.62 (0.023) 1.0 (0.0) 2.55 (5.42) 220.40 (30.07)
zero 0.614 (0.024) 1.0 (0.0) 3.49 (3.70) 733.39 (30.07)
few 0.632 (0.023) 1.0 (0.0) 7.38 (9.60) 3088.39 (30.07)

GPT-4o Mini direct 0.587 (0.023) 1.0 (0.0) 1.08 (0.19) 220.58 (30.79)
zero 0.528 (0.023) 1.0 (0.0) 1.56 (1.52) 788.69 (185.84)
few 0.572 (0.022) 1.0 (0.0) 6.75 (2.37) 3923.80 (318.41)

Table 7: Performance metrics for unilateral factuality evaluation using different judge mod-
els and evaluation prompts on SimpleQA question/answer pairs (N=400).
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D.4. Truth value distributions

Judge Model Prompt ⟨t, t⟩ ⟨t, f⟩ ⟨f, t⟩ ⟨f, f⟩

Claude 3.5 Sonnet direct 0.202 (0.018) 0.392 (0.022) 0.355 (0.022) 0.05 (0.011)
zero 0.435 (0.023) 0.218 (0.02) 0.325 (0.021) 0.022 (0.007)
few 0.448 (0.023) 0.18 (0.018) 0.36 (0.022) 0.012 (0.005)

Claude 3.5 Haiku direct 0.11 (0.015) 0.53 (0.023) 0.248 (0.02) 0.112 (0.015)
zero 0.53 (0.023) 0.208 (0.019) 0.205 (0.019) 0.058 (0.011)
few 0.502 (0.024) 0.212 (0.02) 0.225 (0.02) 0.06 (0.011)

Llama 4 Maverick direct 0.04 (0.009) 0.442 (0.023) 0.41 (0.023) 0.108 (0.015)
zero 0.37 (0.022) 0.245 (0.02) 0.372 (0.023) 0.012 (0.005)
few 0.155 (0.017) 0.438 (0.023) 0.368 (0.022) 0.04 (0.009)

Llama 4 Scout direct 0.072 (0.013) 0.368 (0.023) 0.345 (0.022) 0.215 (0.019)
zero 0.525 (0.024) 0.245 (0.021) 0.215 (0.019) 0.015 (0.006)
few 0.33 (0.022) 0.385 (0.024) 0.258 (0.02) 0.028 (0.007)

GPT-4o direct 0.082 (0.013) 0.358 (0.022) 0.348 (0.023) 0.212 (0.018)
zero 0.502 (0.023) 0.108 (0.015) 0.372 (0.022) 0.018 (0.006)
few 0.468 (0.024) 0.155 (0.017) 0.362 (0.022) 0.015 (0.006)

GPT-4o Mini direct 0.172 (0.018) 0.145 (0.017) 0.545 (0.023) 0.138 (0.016)
zero 0.555 (0.023) 0.018 (0.006) 0.42 (0.023) 0.008 (0.004)
few 0.51 (0.023) 0.028 (0.007) 0.46 (0.022) 0.002 (0.002)

Table 8: Truth value probabilities for ζ using different judge models and evaluation prompts
for GPQA.
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Judge Model Prompt ⟨t, t⟩ ⟨t, f⟩ ⟨f, t⟩ ⟨f, f⟩

Claude 3.5 Sonnet direct 0.052 (0.01) 0.218 (0.02) 0.285 (0.021) 0.445 (0.024)
zero 0.245 (0.02) 0.152 (0.016) 0.462 (0.022) 0.14 (0.016)
few 0.278 (0.021) 0.118 (0.014) 0.532 (0.023) 0.072 (0.012)

Claude 3.5 Haiku direct 0.035 (0.008) 0.282 (0.022) 0.175 (0.018) 0.507 (0.024)
zero 0.148 (0.016) 0.145 (0.016) 0.24 (0.02) 0.468 (0.023)
few 0.132 (0.016) 0.162 (0.017) 0.288 (0.021) 0.418 (0.023)

Llama 4 Maverick direct 0.088 (0.013) 0.588 (0.022) 0.18 (0.018) 0.145 (0.016)
zero 0.438 (0.024) 0.35 (0.022) 0.178 (0.018) 0.032 (0.008)
few 0.218 (0.019) 0.525 (0.023) 0.19 (0.019) 0.068 (0.012)

Llama 4 Scout direct 0.125 (0.015) 0.368 (0.022) 0.205 (0.018) 0.302 (0.021)
zero 0.62 (0.022) 0.245 (0.02) 0.112 (0.015) 0.022 (0.007)
few 0.232 (0.02) 0.53 (0.023) 0.102 (0.014) 0.132 (0.016)

GPT-4o direct 0.058 (0.011) 0.462 (0.023) 0.278 (0.022) 0.202 (0.019)
zero 0.56 (0.024) 0.105 (0.014) 0.335 (0.023) 0.0 (0.0)
few 0.51 (0.024) 0.205 (0.018) 0.278 (0.021) 0.008 (0.004)

GPT-4o Mini direct 0.145 (0.017) 0.228 (0.019) 0.49 (0.023) 0.138 (0.016)
zero 0.62 (0.023) 0.055 (0.01) 0.322 (0.022) 0.002 (0.002)
few 0.488 (0.022) 0.272 (0.02) 0.2 (0.018) 0.038 (0.009)

Table 9: Truth value probabilities for ζ using different judge models and evaluation prompts
for SimpleQA.
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