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Abstract

Gestalt principles, established in the 1920s, describe how humans perceive individual
elements as cohesive wholes. These principles, including proximity, similarity,
closure, continuity, and symmetry, etc., play a fundamental role in human perception,
enabling structured visual interpretation. Despite their significance, existing Al
benchmarks fail to assess models’ ability to infer patterns at the group level,
where multiple objects following the same Gestalt principle are considered as a
group using these principles. To address this gap, we introduce Gestalt Vision, a
framework designed to evaluate Al models’ ability to not only identify groups within
patterns but also reason about the underlying logical rules governing these patterns.
Gestalt Vision provides structured visual tasks and baseline evaluations spanning
neural and neural-symbolic approaches, uncovering key limitations in current models’
ability to perform human-like visual cognition. Our findings emphasize the necessity
of incorporating richer perceptual mechanisms into Al reasoning frameworks. By
bridging the gap between human perception and computational models, Gestalt
Vision offers a crucial step toward developing Al systems with improved perceptual
organization and visual reasoning capabilities.
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Introduction

Gestalt principles such as proximity, similarity, closure, symmetry, and continuity
describe the innate ways in which human perception organizes visual information into
coherent wholes (Wertheimer 1938; Koffka 1935; Ellis 1999; Palmer 1999). These
principles allow humans to instinctively identify salient features and abstract high-level
concepts from complex scenes. For example, we instinctively perceive symmetrical
arrangements as unified structures and tend to complete incomplete shapes through
closure, enabling rapid recognition of objects and their interrelationships (see Fig. 1).
This perceptual strategy is particularly relevant in complex visual reasoning tasks, where
it is important to move beyond the focus on individual pixels or discrete objects to discern
overarching patterns and structures. Incorporating Gestalt principles enables neuro-
symbolic models to better emulate human perception, improving object relationships and
high-level reasoning.

Neuro symbolic systems typically combine deep learning models such as Mask R-
CNN (He et al. 2017) or Slot Attention (Locatello et al. 2020) to detect objects and assign
symbolic labels and bounding boxes (Shindo et al. 2023; Sha et al. 2024; Shindo et al.
2024). These symbolic abstractions then serve as the input to reasoning modules that
operate over object-level representations. However, such pipelines often overlook crucial
attributes including contours, size, color, and spatial distribution that are essential for
context-sensitive inference. As a result, existing reasoning models may fail to capture
nuanced information required for complex relational or group-level understanding.
Addressing this limitation requires benchmarks that preserve both local and global visual
features while testing models under systematic and controlled conditions.

To move toward this goal, we introduce the Gestalt Vision Benchmark (ELVIS),
a synthetic dataset designed to evaluate models on perception and reasoning guided
by Gestalt principles. Each task in ELVIS is constructed to emphasize one or more
principles, with structured visual scenes and rule-based labels. Unlike conventional visual
benchmarks, ELVIS focuses explicitly on group-level regularities in addition to isolated
object features.

We develop a systematic task generation framework that jointly considers object-level
properties such as color, shape, size, and position, group-level properties such as group
shape and color distributions, and combinations across different principles. This enables
the construction of thousands of diverse tasks per principle, ensuring statistically robust
evaluation while exposing more subtle reasoning challenges. We also evaluate several
baseline models on the benchmark, including the recent GPT-5 (OpenAl 2025).

Overall, this work makes the following contributions:

1. We introduce the Gestalt Vision Benchmark (ELVIS)*, a large scale dataset that
systematically covers object level and group level properties, as well as their
combinations across multiple Gestalt principles.

*https://github.com/ml-research/ELVIS
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2. We design the number of tasks per principle up-to thousands, offering broader
coverage and improved statistical reliability for evaluation.

3. We evaluate and analyze multiple baseline models on the dataset, highlighting both
the progress and limitations of current approaches in capturing perceptual grouping
and reasoning.

4. We release the dataset and code to serve as a comprehensive resource for advancing
research in neuro-symbolic research community.

To this end, we proceed as follows. We start off with reviewing related work and then
introduce our Gesalt Vision (ELVIS) benchmark. Before concluding, we will present the
results of our evaluation using ELVIS.

Related Work

We will now review the relevant literature focusing on two major subareas, namely visual
perception and neuro-symbolic reasoning.

Gestalt Principles and Computer Vision

Gestalt principles have a long and rich history in psychology, tracing back to seminal
works by Wertheimer, Koffka, and Palmer (Wertheimer 1938; Koffka 1935; Palmer 1999;
Ellis 1999). In recent decades, these foundational ideas have influenced a variety of
computational models in machine learning and computer vision (Lorincz et al. 2017;
Hua and Kunda 2020; Kim et al. 2021; Zhang et al. 2024), often aiming to replicate or
approximate the human capacity for grouping and structural organization.

However, the majority of prior work has relied on convolutional networks or other
purely neural techniques, which primarily capture local feature correlations but struggle
with higher-order grouping. Explicit integration of Gestalt principles into computational
systems remains relatively rare, and even fewer approaches combine neural perception
with symbolic representations to preserve holistic grouping and reasoning capabilities.
This motivates the development of benchmarks such as ELVIS, which provide systematic
tasks for evaluating how well models capture Gestalt-based organization beyond object-
level detection.

Neuro-symbolic Learning and Reasoning

Neuro-symbolic approaches have emerged as a prominent paradigm that combines
the perception strengths of neural networks with the interpretability and systematic
generalization of symbolic reasoning. Over the past years, a variety of benchmarks have
been introduced to evaluate such hybrid systems. Notable examples include CLEVR
(Johnson et al. 2017), CLEVRER (Yi et al. 2020), V-LoL (Helff et al. 2025) and visual
question answering frameworks that integrate ConceptNet and other knowledge graphs
(Yi et al. 2018; Mao et al. 2019; Amizadeh et al. 2020; Tan and Bansal 2019). These
resources have driven progress in compositional reasoning but predominantly focus on
object detection, attribute recognition, and relatively simple relational inference.
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Figure 1. Gestalt Principles Supported by ELVIS. From left to right: Proximity: Objects
that are spatially close to each other are perceived as a group. Similarity: Objects with
common attributes, such as shape or color, are grouped together. Continuity: Objects with
continue positions are grouped together. Feature Closure: Objects with aligned visual
features create an implicit, complete shape. Position Closure: Objects arranged in a manner
that suggests a closed contour are grouped. Symmetry: Objects mirrored across an axis are
perceived as a structure, each side determines a group.

More recently, several benchmarks have sought to test higher-level reasoning and
abstraction. Abstract Visual Reasoning (AVR) tasks assess how well models generalize
concepts in abstract settings, requiring compositional reasoning and transfer (Hu
et al. 2021). CLEVRER explicitly introduces causal and physics-based reasoning with
interacting objects (Yi et al. 2020). The Kandinsky Patterns benchmark (Miiller and
Holzinger 2021) and its three-dimensional extension (Sha et al. 2024) provide structured
synthetic data to study relational abstraction and perceptual grouping. Additionally, the
Alphabet Shape dataset (Sha et al. 2024) explores recognition of alphanumeric shapes
constructed from grouped objects, highlighting grouping as a fundamental principle of
cognition (Sellars 1912).

Despite these advances, most existing benchmarks do not systematically address
grouping phenomena grounded in perceptual psychology. Our work extends this line
of research by explicitly incorporating Gestalt principles such as proximity, similarity,
closure, symmetry, and continuity in CLEVR to generate a new benchmark. The Gestalt
Vision Benchmark (ELVIS) evaluates the ability of neuro-symbolic models to detect and
reason over grouping-based structures, moving beyond object-level perception toward
more holistic and human-aligned reasoning. In the extended version presented here,
we broaden the task generation process to systematically include both object-level and
group-level properties, as well as combinations across principles. This creates a richer
and more comprehensive testbed for measuring the capabilities and limitations of neuro-
symbolic reasoning in visual abstraction.

Gestalt Vision (ELVIS): A Gestalt Reasoning Benchmark

Gesalt Vision (ELVIS) is a curated collection of synthetic visual scenes that emphasize
five key Gestalt principles: Proximity, Similarity, Closure, Continuity, and Symmetry,
as illustrated in Figure 1. These principles are essential for understanding how discrete
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Table 1. Benchmark tasks summarization. The table summarizes the benchmark tasks for
each Gestalt principle. Columns report the number of categories, number of tasks, object
number range, average number of objects, group number range, and object size range. All
principles share a common pool of 150 colors and 12 shapes.

Principle |# Cat. # Task # Obj. Range # Avg. Obj. # G. Size Range

Proximity 4 588 3-90 22 2-4 5% ~ 80%
Similarity 3 872 4-196 58 1-4 2% ~ 10%
Closure 6 596 3-60 19 1-4 3% ~ 12%
Continuity | 4 432 4-68 24 1-4 3%~ 8%
Symmetry 3 900 3-49 20 2-7 5% ~ 40%

visual elements are perceived as cohesive patterns—an important challenge for neuro-
symbolic models that integrate learned perceptual features with logical reasoning
mechanisms.

Overview of ELVIS

ELVIS provides a systematic collection of synthetic visual tasks that highlight how
Gestalt principles shape perceptual grouping and reasoning. Each task is generated from
scenes composed of objects defined by core attributes such as color, shape, size, position,
and quantity. These object-level properties interact with group-level features including
collective arrangements, symmetry axes, shared color distributions, or composite group
shapes.

This design moves beyond simple object recognition toward reasoning about high-
level organization. Models are expected not only to identify which objects are present
but also to infer how these objects form structured patterns under Gestalt constraints.
For example, elements that appear close to each other can be grouped by proximity,
partially occluded figures can be completed through closure, and objects aligned around
a symmetry axis can be perceived as a unified whole.

Table | shows the summarization of the tasks in the benchmark. With thousands
of tasks spanning diverse principles and property combinations, ELVIS ensures broad
coverage and statistically robust evaluation. The benchmark thus provides a challenging
yet principled environment for testing neuro-symbolic models, encouraging them to
capture the same perceptual strategies that humans naturally use when organizing visual
input into meaningful structures.

Data Generation

The ELVIS benchmark is generated under controlled conditions to systematically capture
a wide spectrum of Gestalt principles while ensuring reproducibility and clarity of
evaluation. Through these controlled yet diverse design choices, ELVIS challenges
computational models to perform context-sensitive reasoning. Rather than limiting
evaluation to low-level classification, the benchmark tests whether models can apply
logical rules to organize visual elements into coherent wholes—an ability central to
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Figure 2. Geometric Feature Scenarios. Example patterns illustrating different geometric
feature scenarios. From left to right: individual objects, object overlap, group overlap, nested
shapes, and incomplete forms, designed to assess model perception under varied spatial
configurations.

neuro-symbolic systems that aim to bridge pixel-level perception with symbolic-level
reasoning.

Diverse Objects. As shown in table 1. Scenes contain up to 12 variations of basic
shapes, with as many as 150 color variations and a size range spanning approximately
2% to 80% of the image width. This diversity provides rich input for perception and
reasoning, reducing the risk of bias and overfitting while improving robustness and
generalization across models.

Varied Complexity. The number of objects in a scene ranges from a handful in
simple settings to several hundred in complex ones. Regardless of density, each scene
is designed to clearly embody a target Gestalt principle. Objects that participate in the
same principle may still differ in shape, color, and size, ensuring that task difficulty arises
from heterogeneous attributes that models must jointly interpret .

Explicit Groupings. Object arrangements are deliberately constructed to make
grouping cues unambiguous. For example, proximity clusters are placed with
clear separation from other clusters, and symmetrical arrangements align precisely
around defined axes. This design minimizes confounding factors while ensuring that
comparisons across models remain reliable.

Features in the patterns

Although the patterns are composed of basic geometric shapes such as triangle, square,
etc. Their variations extend beyond simple shape detection. Figure 2 illustrates five
distinct scenarios designed to challenge the robustness of perception models: Individual,
the objects are placed individually without overlapping, which is the most straightforward
case; Object Overlap, the objects are overlapped with each other, which can cover part
of the features of some of the objects in the image; Group Overlap, multiple groups are
overlapped with each other, whereas the objects are still remaining individual. Inside,
the objects are completely inside another object; and Incomplete, the object is not
completely drawn in the image, which sometimes shows the features of other shapes.

These variations test the model’s ability to handle occlusion, containment, and missing
features, ensuring a deeper understanding of geometric properties.
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Figure 3. Category Base Patterns of ELVIS. Each category in ELVIS is based on a specific
Gestalt principle. The base pattern of each category serves as a foundational structure, which
can generate numerous variations by adjusting object properties.

Category

Although we provide hundreds of tasks for each Gestalt principle, we do not code
and design them individually. Instead, we introduce a base pattern called a category to
efficiently generate multiple tasks. Each category is explicitly designed around a specific
Gestalt principle. By modifying key attributes, such as the number of groups, the number
of objects within each group, and the color, shape, or size of each object, we can create
numerous variations while maintaining the same underlying principle. Figure 3 presents
examples of each category used in the ELVIS. Table 6 in Appendix presents the detailed
information for each category.
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Figure 4. Task Example of ELVIS. Left: Positive patterns illustrating the Gestalt principle of
closure, where objects collectively form a yellow-green triangle. Right: Negative patterns that
partially adhere to the rule but violate key constraints, either by not matching the required
color or by failing to complete the triangular closure.

Task Formulation

Each task in ELVIS is defined by a set of rules, which specify a combination of
logical conditions that determine the structure of valid visual patterns. These rules are
instantiated as constraints on object-level properties (e.g., shape, color, size, count)
and group-level configurations (e.g., spatial arrangement, symmetry). For example, a
rule might require that each group contains one red triangle, or several objects form a
symmetrical structure.

Using these rules, the dataset generation pipeline creates a set of positive images that
fully satisfy all constraints and a corresponding set of negative images, each of which
violates at least one constraint. Each image is assigned a binary label: positive sample has
label 1 and negative example has label 0. A task is defined as the classification problem of
distinguishing these two types of images based on their compliance with the underlying
rules. Figure 4 shows an example of a task.

In this setting, the rules capture the complete logical structure of the visual pattern,
the constraints represent the atomic predicates that compose the rules, the label indicates
whether an image satisfies all constraints, and the task refers to the binary classification
challenge associated with rules. Although some negative images may share superficial
similarities with positive ones, they are guaranteed to break at least one essential
constraint, making the task nontrivial and requiring more than low-level visual matching.

This formulation allows models to be evaluated in a focused and interpretable manner,
testing their ability to infer meaningful group-level properties from structured visual
input.

Empirical Evaluation using ELVIS

We now evaluate the ELVIS benchmark with some state-of-the-art neural and neuro-
symbolic methods to demonstrate the shortcoming(s) of current machine learning
models.
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Table 2. Large Models Comparison Five large models were used for benchmark
evaluation. The ViT refers to the ViTB16 model pretrained on ImageNet-1K, LlaVA-7B refers
to LLaVA-OneVision-Qwen2-7B-SI (a multi-modal model incorporating text-image
understanding), InternVL3-2B and InternVL3-78B are models from the InternVL3 series, and
GPT-5.

Model Pretrained Dataset Image Resolution Params (M)
ViT ImageNet-21K 224 x 224 86
LlaVA-7B Multi-modal 224 x 224 7000
InternVL3-2B Multi-modal 224 x 224 2100
InternVL3-78B Multi-modal 224 x 224 78400
GPT-5 Multi-modal 224 x 224 635000

Task Types and Evaluation Metrics

ELVIS comprises a diverse set of tasks designed to evaluate how effectively
computational models can identify and reason about Gestalt principles. Table 1
summarizes the task distribution. Each principle is associated with hundreds of tasks that
feature considerable variation in visual complexity, such as object count (ranging from
a few to several hundred), color diversity (hundreds of different colors), object shapes
(12 different shapes), and object sizes (varying between 2% and 80% of the width of
the image). These variations ensure that the benchmark tests a wide array of perceptual
scenarios.

Models were trained and evaluated independently for each task. Specifically, for a
given task, a model was trained on its corresponding labeled examples and evaluated
on its own held-out test set. This process was repeated separately for every task in the
benchmark. Performance on each task is evaluated using two metrics: accuracy and F1
score. Accuracy is defined as the proportion of correct predictions among all predictions,
providing a direct measure of how often the model outputs the right label. The F1
score complements this by combining precision and recall, offering a more balanced
assessment that is especially important when the distribution of positive and negative
examples is uneven. To obtain an overall measure of model capability, we report the
mean and standard deviation of these metrics across all tasks in the benchmark.

Baseline Models

We evaluated four representative baselines, encompassing neural and VLM approaches.
Table 2 summarizes the characteristics of the baseline models.

Vision Transformer (ViT-B/16) (Wu et al. 2020; Wightman 2019) is a purely neural
model pre-trained on ImageNet-21K and fine-tuned on ImageNet-1K, providing strong
visual perception capabilities at a resolution of 224 x 224 pixels. It is a transformer-based
vision model that represents an image as a sequence of patch tokens rather than using
convolutional features. Each image is split into 16 x 16 patches which are embedded
into vector tokens.

LLaVA-OneVision (Li et al. 2024), an advanced multimodal Large Language Model
(LLM) that extends text-based language modeling to incorporate visual inputs. Built
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upon the Qwen2 LLM as its language backbone, LLaVA-OneVision is fine-tuned on
extensive multimodal instruction data—for example, image-question-answer pairs and
vision-language dialogues.

InternVL3 (Chen et al. 2024) represents the latest generation of multimodal
foundation models that integrate visual perception and language reasoning in a unified
architecture. Unlike earlier models that relied on separate encoders, InternVL3 adopts a
shared token-based interface between vision and language, enabling tighter cross-modal
alignment. We employ two model variants as baselines: InternVL3-2B, a smaller model
suited for efficiency and fast inference, and InternVL3-78B, a large-scale model designed
for state-of-the-art multimodal reasoning. The two scales allow us to assess how model
capacity influences performance on our Gestalt reasoning tasks.

GPT-5 (OpenAl 2025) is the latest generation multimodal large language model
developed by OpenAl, supporting both image input and text output within a unified
architecture. Compared to prior models that layered vision modules on top of text-only
LLMs, GPT-5 was jointly trained on large-scale multimodal corpora, enabling integrated
reasoning over visual and linguistic information. We use the GPT-5 multimodal variant
as a baseline to examine how a state-of-the-art large model performs on our Gestalt
reasoning benchmark.

Overall Evaluation across Gestalt Principles

Table 3 reports the comparative performance of all baseline models across five Gestalt
principles. The results reveal distinct differences between purely neural models and larger
multimodal architectures in their ability to capture structural regularities.

The ViT baseline, despite being trained on large-scale natural images, achieves
only moderate accuracy (around 0.5 across principles) and suffers from unstable F1,
precision, and recall. This inconsistency indicates that the model fails to form robust
grouping representations and often resorts to biased predictions. The high recall score
over principle similarity indicates that the ViT is overly biased toward predicting the
positive class. LLaVA-Qwen-7B and InternVL3-2B exhibit similar limitations: while
they outperform ViT on certain principles such as closure and symmetry, their overall
performance remains unstable.

InternVL3-78B demonstrates a notable improvement over the smaller models, with
consistently higher scores across all metrics and principles. Its gains are especially visible
for similarity, closure, and continuity. This reflects the benefits of scale in capturing
higher-order structural relations. GPT-5 achieves the strongest performance overall, with
the highest accuracy and precision across nearly every principle, particularly for closure
(0.77 accuracy) and similarity (0.71 accuracy). However, GPT-5 shows relative weakness
on symmetry, where both accuracy and F1 lag behind its other results, suggesting that
certain spatial-relational cues remain challenging.

In summary, two key trends emerge: (i) purely neural vision models struggle to
generalize Gestalt rules despite their strong performance on natural image recognition,
(i1) multi-modal integration improves results but only at larger scales. These findings
quantitatively support the need for neuro-symbolic mechanisms, as even the strongest
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Table 3. Performance Comparison. The mean and standard deviation over four evaluation
metrics: accuracy, F1 score, precision, and recall. ViT-16-224 refers to the ViT-B/16 model,
and Llava-Qwen-7B denotes LLaVA-OneVision-Qwen2-7B-SI.

Met. | Model | Proximity Similarity  Closure ~ Symmetry Continuity

ViT-16-224 0.52+0.15 0.52£0.12 0.54+0.17 0.50£0.14 0.54£0.14
Llava-Qwen-7B | 0.49 £ 0.15 0.49£0.13 0.63£0.19 0.57 £0.18 0.50 £ 0.15
Acc. | InternVL3-2B [ 0.52£0.14 0.51 £0.15 0.60 £0.17 0.57 £0.17 0.54 £0.14
InternVL3-78B | 0.61 £0.17 0.61£0.21 0.73£0.20 0.62+0.18 0.65+0.18
GPT-5 0.69+0.19 0.71 £0.23 0.77 £0.19 0.60 £0.18 0.69 £ 0.20

ViT-16-224 0.30 £0.30 0.58£0.23 0.48 +£0.30 0.23+£0.30 0.33 £0.35
Llava-Qwen-7B | 0.21 £ 0.29 0.33 +£0.33 0.53 £0.33 0.46 = 0.33 0.22+0.30
F1 |InternVL3-2B |0.23£0.30 0.31 £0.31 0.33£0.35 0.36 £0.33 0.21 +£0.30
InternVL3-78B | 0.41 £0.35 0.46 £0.37 0.59£0.37 0.45+£0.36 0.51 +£0.33
GPT-5 0.65+0.29 0.63+0.35 0.67 =0.33 0.40+0.35 0.55+£0.37

ViT-16-224 0.37£0.39 0.48+0.22 048 +0.32 0.254+0.35 0.32+0.34
Llava-Qwen-7B | 0.24 £0.34 0.30 £0.31 0.55+0.37 0.46 £0.34 0.24 +0.34
Pre. | InternVL3-2B | 0.30 £0.39 0.36 £0.37 0.44 £0.45 0.42+0.40 0.28 +0.40
InternVL3-78B | 0.49 £ 0.41 0.49+£0.40 0.70£0.29 0.51+£0.41 0.61 +£0.39
GPT-5 0.65+0.31 0.66+0.34 0.76 +=0.24 0.49 £0.42 0.62 £ 0.38

ViT-16-224 0.31£0.35 0.80+0.19 0.56+0.40 0.24 £0.35 0.40+0.43
Llava-Qwen-7B | 0.22 £ 0.33 0.44 £0.46 0.57£0.40 0.55+0.41 0.244+0.34
InternVL3-2B | 0.22 £ 0.31 0.33£0.36 0.29£0.34 0.35+£0.36 0.19+£0.29
InternVL3-78B | 0.41 £ 0.38 0.50 £0.42 0.55£0.39 0.45+£0.40 0.50 £ 0.36
GPT-5 0.71 +£0.29 0.66 £0.34 0.65+0.35 0.40 £0.38 0.55+0.40

Rec.

models show principle-specific weaknesses and lack systematic compositionality across
grouping cues.

Category Level Evaluation

Figure 5 presents the average F1 scores across task categories. The ViT baseline remains
weak overall, with scores rarely exceeding 0.5, and performs particularly poorly on
proximity, symmetry, and continuity. InternVL3-2B records the lowest performance
across most categories, with only marginal strengths in isolated cases. LLaVA-Qwen-
7B shows a more imbalanced profile, performing better on closure and symmetry but
worse on the remaining principles. InternVL3-78B achieves a clear performance gain,
exceeding 0.6 on several closure-related categories and maintaining more stable results
overall. GPT-5 delivers the best performance, surpassing 0.7 on proximity, similarity, and
closure, though symmetry continues to present challenges.

Effect of Image Resolution

We evaluate InternVL3-78B at two input sizes, 224 x 224 and 448 x 448, to examine
whether higher resolution accounts for the observed errors. The choice of these two
resolutions is motivated by the pretraining setups of our baseline models: ViT models
are conventionally trained at 224 x 224, while InternVL3-78B itself is pretrained with
448 x 448 inputs. Thus, comparing these two settings provides a fair assessment of
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Figure 5. Average F1 score by Categories Over baseline models. The chart compares
average F1 scores (y-axis) for proximity, similarity, closure, symmetry, continuity, and related
categories (x-axis).

Table 4. Performance of InternVL3-78B at two resolutions. Accuracy is nearly identical
across settings, while F1 at 448 x 448 is slightly higher, indicating resolution is not the main
factor behind the errors.

Accuracy F1 Score

224x224 448x448 224x224 448x448

Principle

Proximity 0.61 £0.17 0.61 +0.19 0.41 +£0.35 0.44+£0.35
Similarity 0.61 £0.21 0.61 +£0.20 0.46 £ 0.37 0.48 +0.36
Closure 0.73+0.20 0.74+0.20 0.59+£0.37 0.60+0.36
Symmetry 0.62+£0.18 052+0.16 045+0.36 0.35£0.30
Continuity ~ 0.65+0.18 0.65+0.18 0.514+0.33  0.51+0.33

whether resolution alone influences performance. As shown in Table 4, accuracy remains
nearly identical across both input sizes, while F1 shows a small but consistent gain at
448 x 448 for most principles. The only exception is symmetry, where both accuracy and
F1 decrease at higher resolution, suggesting that increased detail may even amplify the
weakness of the model in capturing axis-based structural relations. Overall, these results
indicate that limited resolution is not the main bottleneck on this benchmark, and the
remaining gap is more plausibly explained by the model’s limited capacity for structured
perception and reasoning.

Effect of Training Number

We further test the impact of training image number using ViT-B/16 with two settings:
ViT-16-224/3 trained with three images per class (positive and negative), and ViT-16-
224/100 trained with one hundred images per class (positive and negative). As shown
in Table 5, the three-shot model achieves slightly above-chance accuracy (around 0.5)
and F1 scores that vary across principles (e.g., 0.58 on similarity but only 0.23 on
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. Accuracy F1 Score
Principle
ViT-16-224/3 ViT-16-224/100  ViT-16-224/3 ViT-16-224/100

Proximity 0.52£0.15 0.50 £ 0.00 0.30 £0.30 0.00 £0.05
Similarity 0.52 £0.12 0.50 £0.08 0.58 £0.23 0.00 £0.04
Closure 0.54 £0.17 0.50 £0.02 0.48 £0.30 0.01 £0.09
Symmetry 0.50 £0.14 0.50 £ 0.00 0.23£0.30 0.00 £0.02
Continuity 0.54 £0.14 0.50 £0.33 0.33£0.35 0.01 £0.08

Table 5. Effect of number of training images over ViT-B/16. ViT-B/16 trained with three
images retains weak generalization, while training with one hundred images collapses to
constant predictions, yielding random-level accuracy and near-zero F1 score.
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Figure 6. Average accuracy by concept relevance. Average performance of five baseline
models across different task types. From M1 to M5: ViT, Llava-OneVision, InternVL3-2B,
InternVL3-78B and GPT-5. Each subfigure shows results for one concept dimension (color,
shape, size), comparing cases where the concept is related (used in the target rules) or
irrelated (not used in the rules and thus irrelevant for distinguishing positives and negatives).

symmetry), reflecting weak but non-trivial generalization. In contrast, the hundred-shot
model collapses during training, producing almost constant predictions that result in
accuracy near 0.50 and F1 scores close to zero across all principles. This indicates that
the model does not benefit from larger training sets but instead over-fits to spurious
correlations, underscoring the difficulty of learning generalizable rules in this benchmark
with a purely neural baseline.

Concept Level Analysis

Object Level Concepts Analysis Figure 6 shows the average accuracy across color,
shape, and size, contrasting cases where the concept is related or irrelated to the task
rules. Across all models and principles, the performance on related and irrelated tasks
remains highly similar, with only marginal differences. The ViT baseline stays close to
chance, and later models such as Llava-OneVision and InternVL3-2B show only minor
improvements without developing clear sensitivity to concept relevance. InternVL3-
78B achieves higher overall accuracy, while GPT-5 reaches around 0.7, yet both still
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Figure 7. Baseline performance across gestalt groups for five principles. Each panel shows
all baseline models for one principle.

display nearly identical trends for related and irrelated conditions. This consistency
across settings indicates that none of the models systematically leverage concept-specific
cues, underscoring the need for neuro-symbolic methods that enforce explicit grounding
of color, shape, and size in reasoning.

Group Level Concepts Analysis Figure 7 compares performance across the group-level
concepts group number and group size. Unlike the object-level concepts analysis, here
the focus is on how accuracy changes with varying numbers of groups and with different
group sizes.

A clear trend emerges for the closure and continuity principles: accuracy decreases as
the group number increases, but improves with larger group sizes. Larger groups include
more objects, making group-level features (like a line of objects) easier to identify, while
fewer groups simplify the scene and make rules easier to detect. In contrast, tasks with
many groups often require objects to align into lines or connected structures to exhibit
closure or continuity, which substantially raises the difficulty. This reflects a complexity
effect: models perform better on simpler scenes with fewer and larger groups, but their
performance declines as visual complexity grows with many small groups.

Limitations and Insights

ELVIS inherently contains biases from synthetic image generation, potentially limiting
generalizability to real-world scenarios. Additionally, simplified object shapes and
discrete principle-based patterns, while facilitating controlled experimentation, might not
fully capture the complexity of natural visual cognition. Models exhibiting high variance
in performance across different Gestalt principles suggest opportunities for further
optimization and deeper integration of symbolic reasoning with advanced perceptual
models.
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Conclusion and Future Work

We introduced the Gestalt Vision (ELVIS) benchmark, designed to evaluate neuro-
symbolic systems on five core Gestalt principles: Proximity, Similarity, Closure,
Continuity, and Symmetry. ELVIS systematically varies object- and group-level
properties such as color, shape, size, group number, and group size, requiring models to
move beyond object recognition toward structured relational reasoning. Our evaluation
shows that purely neural baselines remain close to chance and show little sensitivity
to concept relevance, while larger multimodal models such as InternVL3-78B achieve
notable gains but still lack principle-specific generalization. GPT-5 achieves the strongest
overall performance, reaching around 0.7 accuracy across several settings, yet it
continues to struggle on some symmetry tasks.

Future work should focus on advancing neuro-symbolic frameworks that explicitly
encode object- and group-level rules to overcome the reliance on statistical correlations
observed in current systems. Extending ELVIS toward more naturalistic scenes and
video-based tasks will further bridge the gap to real-world reasoning. Ultimately, ELVIS
serves as both a diagnostic tool and a catalyst for building perceptual reasoning systems
that integrate accurate perception with structured, concept-grounded inference.
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Table 6. Coverage of logical concepts across task categories. Column abbreviations: Col
= color, Shp = shape, Cnt = count, Siz = size, Bkg = background, Ovl = overlap, Grp = group
number. Fill cells with vor X.

Category | Principle | Col Shp Cnt Siz Bkg Ovl Grp
Red Triangle Proximity v v X v X X v
Grid Proximity 4 v X v X X v
Fixed Props Proximity v v X v X X 4
Circle Features Proximity v v X v v v v
Fixed Number Similarity v v v v X X v
Pacman Similarity v X v v X X v
Palette Similarity 4 v X v X X v
Big Triangle Closure v v X v X X v
Big Square Closure v v X v X X v
Big Circle Closure v v X v X X v
Feature Square Closure v X X v X X v
Feature Circle Closure v v X v X X v
Feature Triangle Closure v X X v X X v
One Spline N Continuity | v v X v X X v
Intersected Splines Continuity | v v X v X X v
No Touching Splines Continuity | v v X v X X v
Overlap Splines Continuity | v v X v X v v
Radial Symmetry Symmetry | v v X v X X v
Axis Symmetry Symmetry v v v v X X v
Axis Symmetry with Bkg | Symmetry | v v v v v 4 4

Concept Coverage Analysis

Table 6 summarizes how different logical concepts are distributed across task categories
in the benchmark. Each category is grounded in one of the Gestalt principles, and the
presence or absence of object- and group-level concepts is marked. The covered concepts
include fundamental visual attributes (color, shape, size), structural properties (count,
background, overlap), and grouping information (principle, group number).

Most categories involve core visual attributes such as color, shape, size, and group
number, while certain categories incorporate additional dimensions. For example, some
of the similarity and symmetry tasks require reasoning over object count. Some of the
proximity and symmetry patterns involve overlap features. This systematic coverage
ensures that the benchmark spans both simple attribute-level reasoning and more
complex multi-concept integration across Gestalt principles.

Concept-wise Performance per Principle

Figure 8 reports the accuracy of the baseline models across all Gestalt principles, with
performance broken down by concept relevance. Each sub-figure corresponds to one
principle and separates results by concept dimension (color, shape, size).

The plots highlight that performance differs across principles and concept types. In
some principles, such as similarity and continuity, accuracy increases substantially when
the related concept is included in the target rules, while in others, like symmetry, models

Prepared using sagej.cls



18 Journal Title XX(X)

100 proximity similarity closure symmetry continuity

L)

Accuracy
u
=)
,

o

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

color color color color color

=
o
o

Accuracy
u
=)

o

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
shape shape shape shape shape

=
o
o

Accuracy
u
o

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

size size size size size

related irrelated

Figure 8. Principle-wise accuracy by concept relevance. Accuracy of five baseline
models (ViT, Llava-OneVision-7B, InternVL3-2B, InternVL3-78B, GPT-5) across all Gestalt
principles. Each sub-figure shows results for one principle, with performance broken down by
concept dimension (color, shape, size) when the concept is related (used in the target rules)
or irrelated (not used in the rules and thus irrelevant for distinguishing positives and
negatives).

remain closer to chance regardless of concept condition. The comparison also shows
how larger multi-modal models (InternVL3-78B, GPT-5) achieve higher scores across
more settings, whereas smaller models (ViT-3, Llava-OneVion-7B, InternVL3-2B) tend
to hover around baseline levels. Together, these results provide a detailed breakdown of
how concept relevance interacts with each Gestalt principle within the benchmark.

Task Examples

For each Gestalt principle in ELVIS, we present one or two representative task categories
to illustrate the underlying design. The category names serve as intuitive references, but
they do not always reflect the full range of variations. Due to controlled perturbations,
some task variants may differ significantly from their original category name.

For instance, the category Red Triangle is initially designed around the idea that
each group contains one red triangle. However, certain variations derived from this
category may disregard color in the rule, resulting in tasks where the correct answer
is determined solely by the presence of a triangle—regardless of its color. These variants
are still formally associated with the Red Triangle category, though their governing
logic differs. Other categories follow the same behavior.
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Proximity: Red Triangle

The pattern Red Triangle follows the Gestalt principle of proximity. The base pattern
is structured with multiple object groups, where each group consists of at least one red
triangle and several smaller ones placed closely together.

Fig. 9 presents a task where the rule is defined by color and shape. In the positive
pattern, each group contains at least one object with red color and triangle shape, with
the rest being random properties.

Fig. 10 illustrates another task variation, incorporating color only. In the positive
pattern, each group contains at least one red object; the shape of the red object is
randomly determined.
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Figure 9. Red Triangle: Each proximity group has at least one red triangle.
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Figure 10. Red Triangle: Each proximity group has at least one red object.
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Similarity: Fixed Number

The category Fixed Number is based on the Gestalt principle of similarity. The base
pattern consists of an equal number of objects in different colors, with up to four
color variations. Additionally, object size and shape can vary to introduce further task
variations.

Fig. ?? illustrates a task where the rule involves counting objects of two colors.

Fig. 12 presents a variation where the task requires counting objects among four colors.
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Figure 11. Fixed Number: Same amount of yellow circles and blue circles.
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Figure 12. Fixed Number: Same amount of red, yellow, blue, and green circles.
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Closure: Feature Square

The category Feature Square follows the Gestalt principle of closure. Its base pattern
consists of four 3/4 circles arranged to outline a square. Fig. 13 illustrates a task where
object colors are limited to red or blue. Fig. 14 presents a variation where all circles
are of equal size. Each task includes a counterfactual pattern that disrupts closure while
maintaining all other rules.
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Figure 13. Feature Square: Closure square, obj color is either red or blue
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Figure 14. Feature Square: Closure square, all objects have same size.
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Symmetry: Axis Symmetry

The category axis sys is based on the Gestalt principle of symmetry. Its base pattern
places a random axis with objects arranged symmetrically around it.

Fig. 15 shows a task where object shapes are symmetric along the axis, with colors and
sizes assigned randomly. Fig. 16 shows a variant where shapes remain symmetric but all
objects share the same color and size.
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Figure 15. Axis Symmetry: Symmetry shape, random color and size
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Figure 16. Axis Symmetry: Symmetry shape, color, and size
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Continuity: Intersected Splines

The category Intersected Splines follows the Gestalt principle of continuity. Its base

pattern consists of n intersecting splines formed by small objects.
Fig. 17 illustrates a task where all objects share the same shape. Fig. 18 presents a
variation where both the colors and shapes of the objects are identical.
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Figure 17. Intersected Splines: Each spline is consists of same shape of objects.
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Figure 18. Intersected Splines: Two splines of objects. The color of the objects can be either
yellow or green.
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