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Abstract
Large Language Models (LLMs) have shown strong performance in translating
natural language into programming languages like Python or Java. However, for niche
computer languages, where there is limited training data, fine-tuning a base model is
often necessary. A key challenge arises when the pretrained embeddings of natural
language terms interfere with the intended syntax and semantics of formal language
terms. This issue is especially pronounced in the logical language of SUO-KIF,
which is used in the Suggested Upper Merged Ontology (SUMO). SUMO contains
thousands of terms that closely resemble everyday English words or phrases. As a
result, models often produce syntactic errors or hallucinate non-existent terms due to
conflicting embeddings learned during base training.
This work introduces a tokenization-based technique to mitigate these issues.
By altering how formal terms are tokenized, we can decouple their embeddings
from similar natural language words, significantly reducing syntax errors and term
hallucinations in the generated formal language output.
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Introduction
Formalizing natural language into logic-based representations is a long-standing goal in
artificial intelligence as a way to enable machines to reason about the world. Among
other benefits, formalization is a promising avenue for verifying the accuracy of large
language model (LLM) output, detecting hallucinations, and providing provably correct
responses (Huang, Ruan, Huang, Jin, Dong, Wu, Bensalem, Mu, Qi & Zhao, 2024).
LLMs have excelled at translating natural language prompts into programming languages
such as Python or Java. However, less attention has been paid to niche formal languages
that support knowledge representation and logical inference (Xu, Alon, Neubig &
Hellendoorn, 2022). Fine-tuning is a frequent solution for adding capability to an LLM,
such as enhancing an LLM’s ability to support niche formal languages.

One such language is SUO-KIF, a higher-order logic language used in the Suggested
Upper Merged Ontology (SUMO) (Niles & Pease, 2001)*. The language and ontology
together allow for the formal specification of entities and their attributes, enabling
automated reasoning. For example, the sentence “An apple is red.” may be formalized
as:

(exists (?C)
(and

(instance ?C Apple)
(attribute ?C Red)))

Although the logical language is syntactically quite simple, with keywords for
just a few logical operators (and, or, not, forall, exists, <=>, => and
equals), we also must ensure that logical statements use the correct terms from the
SUMO library. There are approximately 20,000 of these, which have been created by
hand, each with detailed definitions in logic, over a 25 year period. These named concepts
do not necessarily mirror the set of lexicalized tokens in English or any other human
language. We cannot simply use words as though they are logical symbols since they
may not align with the inventory of concept symbols in SUMO. For example, the verb
phrase in “The money changes hands.” is expressed in SUMO with the logical concept
ChangeOfPossession†. In order to take advantage of the formulas in SUMO that
detail what happens in that action, we have to generate a formula that uses that precise
identifier and not just the surface English text. The problem may be considered similar
to not only generating the correct syntax for Python or Java, but also selecting the right
function or method names from tens of thousands of possible choices in libraries.

Another challenge that arises is that SUMO terms often resemble everyday English
words. Despite fine-tuning, LLMs frequently produce syntax errors and hallucinated

∗SUO-KIF specification, SUMO, and source code is found at https://github.com/
ontologyportal
†The formulas associated with SUMO terms can be viewed on line at e.g. https://sigma.
ontologyportal.org:8443/sigma/Browse.jsp?lang=EnglishLanguage&flang=
SUO-KIF&kb=SUMO&term=ChangeOfPossession

Prepared using sagej.cls

https://github.com/ontologyportal
https://github.com/ontologyportal
https://sigma.ontologyportal.org:8443/sigma/Browse.jsp?lang=EnglishLanguage&flang=SUO-KIF&kb=SUMO&term=ChangeOfPossession
https://sigma.ontologyportal.org:8443/sigma/Browse.jsp?lang=EnglishLanguage&flang=SUO-KIF&kb=SUMO&term=ChangeOfPossession
https://sigma.ontologyportal.org:8443/sigma/Browse.jsp?lang=EnglishLanguage&flang=SUO-KIF&kb=SUMO&term=ChangeOfPossession


Thompson et al. 3

terms due to statistical associations learned during pretraining. LLMs break input into
subword tokens and embed them in a semantic space, where related terms cluster, as
shown simplistically in Figure 2.

Figure 1. Simplistic view of an embedding space, where similar tokens are grouped together.

Strong embeddings can create a problem when translating to SUO-KIF. For example,
variables begin with “?” and have no whitespace in SUO-KIF, while English treats “?”
as punctuation. Sentences translated from English often have a space incorrectly inserted
after the “?” in SUO-KIF, creating invalid syntax. For instance, when employing a
fine-tuned Flan-T5 model trained on millions of examples, variable identifiers such as
“?C” are consistently rendered as “? C”, introducing an unintended space between the
question mark and the variable label.

In addition to invalid syntax, models may confuse formal SUMO terms like
BatMammal with invalid hallucinated ones like BatAnimal, driven by natural
language co-occurrence. Table 1 shows a list of hallucinated terms generated by a fine-
tuned Flan-T5 model (Raffel, Shazeer, Roberts, Lee, Narang, Matena, Zhou, Li & Liu,
2023). Since these hallucinated formal terms are absent from the SUMO ontology, the
logical formulas generated by the LLM translation exhibit limited inferential utility and
cannot leverage the pre-existing knowledge provided by the ontology.

Table 1. List of hallucinated terms generated by a fine-tuned Flan-T5 model

Homes AtmosphericAerosol BiologicalSynthesis

CoolingEffect Productivity During

CommunicationTechnology OutputPerHourWorked AnnualReturn

UniversalTransferinstance Disarmament Habitat

To address both invalid syntax and hallucinated types, we introduce a method to
re-ground formal SUMO terms in a way that decouples them from natural language
embeddings: SUMO terms are mapped to new, unrelated tokens. During the fine-tuning
process these new terms are grouped appropriately in the embedding space, but lack
the undesired positional encodings and statistical correlations of previous tokens learned
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by LLMs from English texts. This reduces both syntax errors and term hallucinations,
significantly improving SUO-KIF generation quality.

Background

SUO-KIF

SUO-KIF (Standard Upper Ontology - Knowledge Interchange Format) is a formal
language designed for expressing ontological and logical statements in a machine-
readable way (Pease, 2009). Unlike more widely adopted languages such as the
OWL family of description logics, SUO-KIF is a more expressive higher order logic
(Benzmüller & Pease, 2010). It is particularly suited for encoding complex conceptual
knowledge (Pease, 2021).

SUMO

The Suggested Upper Merged Ontology (SUMO) is a comprehensive formal ontology
originally intended to provide a foundation for more specific domain ontologies (Niles
& Pease, 2001; Pease, 2011) but now expanded to include dozens of domain specific
ontologies (Pease & Benzmüller, 2010) supported by a mid-level ontology. Developed
to support automated reasoning, SUMO includes thousands of terms and axioms written
in SUO-KIF that describe abstract concepts (e.g., Attribute, Quantity), relations
(e.g., part, orientation) and concrete entities (e.g., Apple, Book, Talking).
The Sigma Knowledge Engineering Environment (Pease & Schulz, 2014) translates
SUMO to several languages in the TPTP family of logical languages (Sutcliffe, 2010)
used by modern automated theorem provers. These include First Order Form (FOF)
(Trac, Sutcliffe & Pease, 2008), Typed First order form with Arithmetic (TFA) (Pease,
2023) and Typed Higher Order Form (THF) (Benzmüller & Pease, 2010; Benzmüller &
Pease, 2012). These languages are used for logical deduction over SUMO in Vampire
(Kovács & Voronkov, 2013), Eprover (Schulz, 2002) and other theorem provers.

T5 and Flan-T5

T5 (Text-to-Text Transfer Transformer) and its variant Flan-T5 are transformer-based
language models that frame NLP tasks as text generation problems (Raffel, Shazeer,
Roberts, Lee, Narang, Matena, Zhou, Li & Liu, 2023). In our work, we experiment with
both T5 and Flan-T5 as the base models for translating informal English prompts into
formal SUO-KIF expressions. Trained on a wide range of tasks using a unified format,
T5 and Flan-T5 have shown strong performance across translation benchmarks, and are
considered state of the art (Longpre, Hou, Vu, Webson, Chung, Tay, Zhou, Le, Zoph,
Wei & others, 2023). Tokenization was conducted using the native T5Tokenizer, which
is based on the popular SentencePiece tokenizer (Kudo & Richardson, 2018).
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Alternative approaches
Several alternative solutions that may enhance translation accuracy exist beyond the
scope of this study. These approaches are complementary to the term re-grounding
method presented here, and exploring the synergistic benefits of their integration
represents a promising direction for future research.

Vocabulary expansion With vocabulary expansion, whole SUMO terms are explicitly
added to the token set, and then selection of only these tokens is forced in the output.
This approach has been shown to significantly increase memory requirements, cost, and
training time (Toraman, Yilmaz, Sahinuc & Ozcelik, 2023). Additionally, many SUMO
terms align exactly with existing tokens, thus vocabulary expansion mitigates, but does
not eliminate the issue.

Retrieval-augmented generation (RAG) A RAG is an information retrieval framework
that can be populated with SUMO terms. When presented with a prompt, the LLM
queries the RAG system to fetch relevant SUMO terms, which are then integrated with
the model’s pre-existing knowledge to produce more accurate and contextually informed
responses (Gao, Xiong, Gao, Jia, Pan, Bi, Dai, Sun, Wang & Wang, 2024). While the
focus of this research is restricted to fine-tuning, RAGs have been shown to be effective
at improving output accuracy of responses and can work in conjunction with fine-tuning
(Balaguer, Benara, Cunha, Hendry, Holstein, Marsman, Mecklenburg, Malvar, Nunes,
Padilha & others, 2024). Additionally, changes in SUMO are more easily reflected in a
RAG, which can be updated without further training of the model, alleviating a weakness
of the fine-tuning approach. While a RAG would likely assist greatly with type accuracy,
it is less likely that it would alleviate syntax problems such as inserting spaces after
question marks in variables.

Related work
Researchers have shown fine-tuning to be an effective way to improve generation of
programming language statements (Shypula, Madaan, Zeng, Alon, Gardner, Hashemi,
Neubig, Ranganathan, Bastani & Yazdanbakhsh, 2024). Progress has also been made
in auto-formalization of mathematical problems that have been expressed semi-formally
(Wu, Jiang, Li, Rabe, Staats, Jamnik & Szegedy, 2022). In translating from one language
to another, improper tokenization has been shown to increase the rate of hallucinations
of terms (Wang, Li, Jiang, Ding, Luo, Jiang, Liang & Yang, 2024).

Ontology alignment and grounding have traditionally focused on matching human
concepts across knowledge bases, but not on decoupling formal representations from
their natural language counterparts within generative models. Previous work in semantic
grounding, such as retrofitting embeddings using ontology structures (Faruqui, Dodge,
Jauhar, Dyer, Hovy & Smith, 2015) or concept embeddings from WordNet (Camacho-
Collados, Pilehvar & Navigli, 2016), aligns knowledge bases based on semantic
similarity. However, these methods still preserve natural language proximity and do not
address the situations where that proximity is problematic.
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Several approaches have been proposed to handle domain-specific vocabularies in
neural language models. Vocabulary expansion techniques add domain-specific terms
directly to the model’s token vocabulary (Toraman, Yilmaz, Sahinuc & Ozcelik, 2023),
but this approach significantly increases memory requirements, computational cost, and
training time. Additionally, when domain terms closely resemble existing vocabulary (as
is often the case with SUMO terms), vocabulary expansion only mitigates the embedding
interference problem.

Methodology

Training data generation
We used training data consisting of approximately 6 million English sentences paired
with their SUO-KIF logic equivalent. Sentences were synthetically generated by iterating
over sets of appropriate SUMO terms, using the manually created SUMO-WordNet
mappings (Niles & Pease, 2003) to create a natural language English equivalent of formal
SUMO terms, and inserting them into a sentence frame structure as shown in Figure 2.
Corresponding SUO-KIF logic statements are generated by building a frame structure,
or template, for each sentence and filling in the slots of the frame from the contents
of SUMO; the objects, processes, and relationships. Because the intended semantics of
the frame is understood, precisely equivalent English and logic expressions of the frame
can be generated. Note that while we show a quite simple sentence here, our generated
training set makes use of the full expressivity of SUMO and corresponding English
syntax, including prepositions, units and quantities, temporal restrictions, conditionals
and modal expressions.

Figure 2. Example sentence frame structure used to synthetically generate training data.

Term and key word regrounding
SUO-KIF keywords, variables, and unique SUMO terms were extracted from the training
data and assigned a corresponding label composed of five random capital letters. An
example is shown in Table 2. For example, the SUMO term Historian was mapped
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to AJOFN. In this way, we semantically separate the SUMO term from its English token,
without a strong grounding in the model. During training, the new mappings are moved
to appropriate locations in the embedding space. Characters such as parentheses and
whitespace were not translated, as the base model already handles them properly.

Table 2. An example of re-grounding

English sentence The historian is not awake right now.

Logic translation (not
(exists (?H)
(and
(attribute ?H Historian)
(equal ?T Now)
(holdsDuring ?T
(attribute ?H Awake)))))

Re-grounded translation (SIRQJ
(LOAXA (UGQJQ)
(QAGRM
(RJGUO UGQJQ AJOFN)
(ANNFF KABBQ OFHBH)
(ILEGC KABBQ
(RJGUO UGQJQ LZEJO)))))

Fine-tuning is conducted using both the Flan-T5 and T5 models. A baseline model
was fine-tuned for each, using the English sentences and the normal logic translations for
training data. Re-grounded models were also trained for both Flan-T5 and the T5 models,
using the English sentences and the re-grounded translations.

Evaluation metric Testing was conducted on a standard, static set of 100 test sentences,
chosen for their grammatical diversity that remained constant through the experiment.
Additionally, testing was conducted with 100 sentences randomly chosen from a corpus
of policy documents comprising approximately 60,000 sentences. For the models
trained using re-grounded SUMO terms, postprocessing was conducted to translate the
model output back to the corresponding SUMO terms. A translation was considered
syntactically correct if it followed the SUO-KIF grammar rules, without regard to type
accuracy. A translation was considered type correct if all terms in the translation had a
corresponding term in SUMO.

Baseline data was gathered using models that did not employ the re-grounding
technique and compared with models that used re-grounding. The percent of correct
translations was calculated using the following formula:

Percent Correct =
Number Correct
Total Sentences

× 100%

Prepared using sagej.cls



8 Journal Title XX(X)

Results
Results using a static set of sentences are shown in Table 3. Results with sentences pulled
randomly from a large corpus are shown in Table 4.

Table 3. Percent of sentences translated correctly on standard test set.
Baseline

T5 Flan-T5

Syntax correct 45% 72%
Types correct 8% 9%
Both correct 7% 8%

SUMO Terms Re-grounded
T5 Flan-T5

Syntax correct 94% 93%
Types correct 66% 74%
Both correct 61% 70%

Table 4. Percent of sentences translated correctly on randomized test set.
Baseline

T5 Flan-T5

Syntax correct 53% 58%
Types correct 3% 4%
Both correct 3% 4%

SUMO Terms Re-grounded
T5 Flan-T5

Syntax correct 90% 85%
Types correct 63% 74%
Both correct 59% 62%

An important caveat to the baseline data is that the syntactic accuracy was only
achieved with postprocessing by ensuring there was white space before the “?”
character, and removing any white space between it and the variable name. Without this
postprocessing step, not a single sentence would be syntactically correct when using
either baseline model. This postprocessing step is not conducted (or needed) for the re-
grounded models.

Re-grounding SUMO terms had a significant positive impact in both the T5 and Flan-
T5 models. Type accuracy improved greatly, and fewer terms were hallucinated. It is
hypothesized that greater grammar and vocabulary diversity in the training data will
further reduce remaining type errors. Future work should include a study on how the
extent of term re-grounding affects the semantic accuracy of the translation. While re-
grounding did not appear to have had much influence on semantic accuracy, the impact
will become clearer as the diversity of the training set grows.

Conclusion
This study demonstrates that formal terms that overlap semantically or syntactically
with everyday English significantly hinder the accurate translation of natural language
into formal languages like SUO-KIF using LLMs. We introduced a simple yet effective
tokenization-based re-grounding technique that disconnects formal SUMO terms from
their natural language embeddings. By mapping these terms to randomized token
sequences, we reduce the influence of pretrained embeddings and improve both syntactic
and type accuracy. Our experiments with T5 and Flan-T5 models show that this approach
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dramatically outperforms baseline fine-tuning in terms of correctness and robustness.
This method itself is model agnostic, adds minimal computational overhead to the fine-
tuning, and requires no vocabulary expansion. Future work will explore its effects on
semantic fidelity and extend its application to more diverse language inputs.
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