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Abstract
ULLER (Unified Language for LEarning and Reasoning) offers a unified first-order logic (FOL) syntax,
enabling its knowledge bases to be used directly across a wide range of neurosymbolic systems. The
original specification endows this syntax with three pairwise independent semantics: classical, fuzzy,
and probabilistic, each accompanied by dedicated semantic rules. We show that these seemingly
disparate semantics are all instances of one categorical framework based on monads, the very
construct that models side effects in functional programming. This enables the modular addition
of new semantics and systematic translations between them. As example, we outline the addition
of generalised quantification in Logic Tensor Networks (LTN) to arbitrary (also infinite) domains
by extending the Giry monad to probability spaces. In particular, our approach allows a modular
implementation of ULLER in Python and Haskell, of which we have published initial versions on
GitHub.

Keywords
Neurosymbolic AI, Category Theory, Monad, Probability Theory, Fuzzy Logic, Semantics

1 Introduction
Neurosymbolic integration is a rapidly developing branch of AI. In the past, numerous
heterogeneous approaches have emerged, each with its own code base. Van Krieken et al.
(2024) introduces ULLER, a unified neurosymbolic library that aspires to play for neurosymbolic
systems the role that TensorFlow and PyTorch play for deep-learning workflows. Their theoretical
core is the concept of a NeSy system: standard first-order logic enriched with neural components.
In particular, formulas of the form

x := m(T1, . . . , Tn)F (Ti terms, F a formula involving x,m a neural model)
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are used to integrate neural models m into logical formulas. These formulas go beyond classical
first-order logic. Instead, they perform computations that may return multiple values and
typically involve non-determinism or probability distributions as illustrated in the following
toy example in Van Krieken et al. (2024):

∀x ∈ ImageData
(n1 := classify(x.im1)

(n2 := classify(x.im2)
(n1 + n2 = x.sum) ))

This classifies two images of digits and checks whether the sum of the resulting numbers is as
specified in the dataset. The resulting (e.g. fuzzy or probabilistic) truth value can be used in a
loss function. A shorthand notation for this is:

∀x ∈ ImageData
(
n1 := classify(x.im1), n2 := classify(x.im2) (n1 + n2 = x.sum)

)
To simplify notation and to stress the relation to dynamic logic Harel et al. (2001); Mossakowski
et al. (2010), we henceforth use the notation

∀x ∈ ImageData
[
n1 := classify(x.im1)

][
n2 := classify(x.im2)

]
n1 + n2 = x.sum

or shorthand

∀x ∈ ImageData
[
n1 := classify(x.im1), n2 := classify(x.im2)

]
n1 + n2 = x.sum

While the notion of NeSy system in Van Krieken et al. (2024) is very powerful, it also has several
shortcomings:

• There is no uniform inductive definition of truth, i.e. of the truth value of a sentence
in an interpretation. Rather, the notion of NeSy system has the inductive interpretation
function as a component, meaning that classical, probabilistic and fuzzy NeSy systems
employ three different inductive definitions of truth. Parts of these definitions of truth
are copied verbatim from one NeSy system to another, other parts need to be replaced.
This duplication of semantic rules is not modular. By contrast, we aim at a truly uniform
inductive definition of truth value that is independent of the NeSy system and hence can
be reused for different NeSy systems, such that the NeSy system itself is a parameter of
the inductive definition of truth.

• The case of continuous probability distributions (involving probability kernels or Markov
kernels) is not covered faithfully, because in this case, measurable spaces are required
to properly define the mentioned Markov kernels. However, measurable spaces are not
considered in Van Krieken et al. (2024) and probability measures are confused with density
functions in the monadic formula of the probabilistic semantics.

• The treatment of logical connectives is not uniform across NeSy systems, i.e. the different
sets of connectives are not considered as instances of a common abstract (algebraic)
notion. Also, quantifiers in probabilistic semantics are defined using possibly infinite
products, without requiring a suitable order structure on domains and without discussing
convergence.
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• The high-level concepts of semantics and computation are not properly separated.
Computation (namely sampling) is mixed into the semantics at least in two places. The first
one in the classical semantics, where the possibly multi-valued arg max can only be properly
evaluated using sampling. We conceptualise the arg max differently as a transition between
semantics. The second time is in "Sampling Semantics", which is not really semantics but
computation (sampling).

We argue that ULLER is conceptually robust and show that a monadic formulation resolves all
of the foregoing issues. In particular, ULLER formulas of the form

[x := m(T1, . . . , Tn)]F (Ti terms, F a formula involving x,m a neural model)

can be modelled using Moggi’s notion of computational monad Moggi (1991), which has been
introduced to model side effects in (functional) programming. Although monads originate in
category theory, we first present them using a set-theoretic approach that does not involve any
category theory. The generalisation to an arbitrary category, which is needed for continuous
probabilities and some aspects of infinite domains comes only in later sections. We call our
categorical approach "monadic ULLER", "modular ULLER", or simply "mULLER"1.
This paper is organised as follows. Section 2 introduces NeSy frameworks and their algebraic

prerequisites without use of category theory. Based on that, section 3 introduces the syntax
and semantics of mULLER. Section 4 discusses several examples of set-based NeSy frameworks,
including classical, fuzzy, and probabilistic ones. Section 5 discusses translations between NeSy
systems. Section 6 generalises set-based NeSy frameworks to categorical NeSy frameworks, which
is needed for continuous probability distributions and infinite domains. Section 7 defines the
categorical semantics of mULLER and provides examples of categorical NeSy systems. Section 8
discusses related work, and section 9 outlines our implementation of mULLER in Python and
Haskell. Finally, section 10 concludes the paper and outlines future work. Appendix A contains
a brief introduction to the needed concepts of category theory.

2 Set-Based NeSy Frameworks
A neurosymbolic framework (NeSy framework) is a general framework for NeSy systems
combining neural models with symbolic logic, and it provides the semantic background for the
specific logic involved. Examples are the logics behind DeepProbLog Manhaeve et al. (2021) or
Logic Tensor Networks Badreddine et al. (2022).

The notion of NeSy framework is not defined in Van Krieken et al. (2024). Rather, they define
a notion of NeSy system, which is quite ad-hoc, because it simultaneously makes two choices:
(1) a choice of a particular interpretation with functions, predicates and neural models (e.g.,
probabilities for traffic lights, or neural networks learning addition of digit images), and (2) a
choice of semantic rules for interpreting terms (which also involves a choice of the logic, e.g.
classical or probabilistic or fuzzy). This causes semantic rule duplication.

1muller : noun, a heavy tool of stone or iron used to grind and mix material.
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Our notion of NeSy framework provides a means to disentangle these two choices. Moreover,
our approach makes semantic rules independent not only of particular interpretations, but also
of the choice of logic (classical, probabilistic, or fuzzy).

In the sequel, we first introduce some background on monads, which are the key concept of
our approach, and on the algebraic structure needed to model the space of truth values. Then
we go on to define the notions of NeSy framework and NeSy system.

2.1 Set-Based Monads
We interpret formulas [x := m(T1, . . . , Tn)]F involving neural models m (= certain
computations) using Moggi’s notion of computational monad Moggi (1991) in the form of Kleisli
triples:

Definition 1. A Kleisli triple (monad) (T , η, (−)∗) consists of:

• A mapping T , mapping sets X to sets T X (of computations with values from X),

• A family of functions: ηX : X → T X for each set X (construing a value a ∈ X as stateless
computation ηX(a) ∈ T X),

• A function that assigns to each function f : X → T Y a function f∗ : T X → T Y (called
the Kleisli extension), needed for sequential composition of computations,

such that the following axioms hold:

1. (ηX)∗ = idTX ,

2. f∗ ◦ ηX = f for all f : X → T Y ,

3. (g∗ ◦ f)∗ = g∗ ◦ f∗ for all f : X → T Y and g : Y → T Z.

Given computations ma : T A and mb(x) : T B, we can compose them to (λx : A.mb(x))∗(ma)2

of type T B. In Haskell’s do-notation, this is written as do x← ma; mb(x). Categorically, the
Kleisli morphism f : A→ T B is lifted to f∗ : T A→ T B. For ma ∈ Ob(T A) and mb := f , we
then have f∗(ma) = mb∗(ma), also written as ma >>= f or ma >>= mb in fish notation.3

Example 1. Non-empty Powerset monad P6=∅ For a set X:

P6=∅X := {A ⊆ X | A 6= ∅} (non-empty subsets of X),

ηX(x) := {x}, f∗(A) :=
⋃
a∈A

f(a)
(
f : X → P6=∅Y,A ∈ P6=∅X

)
.

2In this lambda notation the variable x of type A is sent to mb(x) of type T B.
3See https://ncatlab.org/nlab/show/monad+%28in+computer+science%29#DoNotation for a comprehensive
comparison of all different notations.
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Example 2. Probability distribution monad (Kleisli triple) D.4

DX :=
{
ρ : X → [0, 1] finitely supported

∣∣∣ ∑
x∈X

ρ(x) = 1
}

(prob. distributions on X),

ηX(x) := δx, δx(y) =
{

1, x = y
0, x 6= y

f∗(ρ)(y) :=
∑
x∈X

f(x)(y) · ρ(x)
(
f : X→DY, ρ ∈ DX

)
.

δx is the probability distribution that assigns all probability mass to x. f∗(ρ) corresponds to a
two-level random process: first x is drawn from ρ, then y is drawn from f(x). This results in a
marginal distribution of Y for the joint distribution ρ̂(x, y) := f(x)(y) · ρ(x). do x← ma; mb(x)
can be interpreted as “sample x from ma and then proceed with mb(x)”.

2.2 Double Monoid Bounded Lattices (2Mon-BLat)
We need an algebraic structure to model the space of truth values. We weaken the notion of BL
algebra of Hájek (1998) from fuzzy logic as follows:

Definition 2. A double monoid bounded lattice (2Mon-BLat) R is a tuple(
S, ≤, ⊥, >, ⊗, 0, 1, ⊕, →, ¬

)
in which S is a set, L := (S,≤) a bounded lattice, while ⊥ ∈ S and > ∈ S are its bottom and
top elements.5 Also (S,⊗, 1) and (S,⊕, 0) are monoids, → is a map S × S → S, and ¬ is a map
S → S.

Also, we want to allow different aggregation operations other than infinite meet and join to
cover the quantifiers of Logic Tensor Networks Badreddine et al. (2022), motivating the following
definition:6

Definition 3. An aggregated 2Mon-BLat (aggr-2Mon-BLat) has for each set X two
order-preserving maps:

aggr∀X , aggr∃X : LX −→ L.

In case of a complete lattice, aggr∀X can be chosen as meet
∧
X and aggr∃X as join

∨
X .

4Note that the sums below are only finite if one excludes all the zero addenda.
5In many cases we have ⊥ is neutral element for ⊕ and > is neutral element for ⊗, for example inside of the unit
interval [0, 1]. In some cases, like Gödel logic, we even have ⊕ = ∨ and ⊗ = ∧. Also, → is normally chosen as
right adjoint to ⊗ or as x→ y := ¬x⊕ y. In the first case ¬ can be defined as implication to zero, in the second
one it is defined a priori. Check Table 3 for details.
6This is inspired by the notion of aggregated functions in Badreddine and Spranger (2021).
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2.3 Definition of Set-Based NeSy Framework
Given some basic notion of truth Ω, our NeSy systems work on the monadic space of truth values
T Ω, which is required to be an aggregated 2Mon-BLat. If T is the identity monad, T {0, 1} is
just the two-element set {0, 1} of classical truth values. If T is the distribution monad, T {0, 1} is
isomorphic to the unit interval [0, 1], regarded as the space of probabilistic or fuzzy truth values.

Definition 4. A NeSy framework F = (T ,R) consists of

1. a monad T ,

2. an aggr-2Mon-BLat R on T Ω for some set Ω.

Here, Ω is a set acting as truth basis,7 and T Ω is the monadic space of truth values.

Examples are given in Table 1 and discussed in more detail in section 4. Note that further
examples arise by varying the 2Mon-BLat R on [0, 1]. Examples requiring category theory are
given in Table 4.

Table 1. NeSy Framework Examples (set-based)

Logic/Theory T Ω T Ω R Subsection
Classical Identity {0, 1} {0, 1} Boolean Alg. 4.1
Three-valued LP Powerset P 6=∅ {0, 1} {0, B, 1} Kleene/Priest Alg. 4.1
Distributional Distribution D {0, 1} [0, 1] Product BL–Alg. 4.2
Finitary LTNp Distribution D {0, 1} [0, 1] Product SBL-Alg. 4.3
Classical Fuzzy Identity [0, 1] [0, 1] Classical BL–Alg. –

Proposition 1. Assume that we can lift lattices along T , i.e. for a lattice structure on X, we
can construct a lattice on T X such that η preservers ⊥ and >.
If R = (Ω,≤,⊥,>,⊗, 0, 1,⊕,→,¬) is a 2Mon-BLat, then T Ω is so, too, in a canonical way.

Proof. We define (T Ω,≤′,⊥′,>′,⊗′, 0, 1,⊕′,→′,¬′) as follows:

• ≤′ is the lifting of ≤,

• ⊥′ := η(⊥), >′ := η(>),

• 0′ := η(0),

• 1′ := η(1),

• a⊗′ b := do x← a; y ← b; η(x⊗ y),

• a⊕′ b := do x← a; y ← b; η(x⊕ y),

7Similar to the basis of a vector space.
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• a→′ b := do x← a; y ← b; η(x→ y),

• ¬′a := do x← a; η(¬x).
Associativity and unit laws of ⊗′ and ⊕′ follows from the corresponding properties of the monoids
for ⊗ and ⊕ and those of the monad.

In particular, this means that the canonical Boolean algebra structure on {T, F} can be lifted
to T {T, F} for any monad T .

3 Syntax and Semantics of mULLER
3.1 Syntax of First-Order Logic
The ULLER language of Van Krieken et al. (2024) features computational function symbols that
can be realised e.g. by neural networks. In a similar spirit, we here add computational predicate
symbols, which are also realised by neural networks, for example in Logic Tensor Networks
Badreddine et al. (2022).
Definition 5. A NeSy signature Σ consists of

• a set S of sorts of Σ,

• two disjoint sets Pred, MPred of predicate symbols and computational predicate symbols
of form p : s1, . . . , sn, where p is a name and each si ∈ S a sort,

• two disjoint sets Func, mFunc of function symbols and computational function symbols
of form f : s1, . . . , sn → s, , where f is a name and s, si ∈ S are sorts.

(Computational) predicate symbols with no arguments are called (computational) propositional
symbols (Prps and mPrps respectively). Function symbols with one argument are called properties
(Prop), those with none are called constants (Const).
Concerning syntax, we largely follow the definitions given in Van Krieken et al. (2024). That is,
given a signature Σ of non-logical symbols and set of variables V, we can define the syntax of
first-order logic (FOL) formulas over Σ and V as a context-free grammar:

Terms:
T ::= x : s [x ∈ V, s ∈ S]
T ::= c | T.prop | f(T, . . . , T ) [c ∈ Const, prop ∈ Prop, f ∈ Func]
Atomic Formulas:

F ::= R | P (T, . . . , T ) [R ∈ Prps, P ∈ Pred]
F ::= N |M(T, . . . , T ) [N ∈ mPrps,M ∈ MPred]
Compound Formulas:

F ::= ⊥ | > | F → F | ¬F | F‖F | F&F | (F )
F ::= ∃x : s (F ) | ∀x : s (F ) [x ∈ V, s ∈ S]
F ::= [x := m(T, . . . , T )]F [m ∈ mFunc]
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3.2 Tarskian Semantics
Definition 6. A NeSy interpretation I on Σ of (T ,R), for a NeSy signature Σ and a NeSy
framework (T ,R), is given by

• a set I(s) for every sort s,

• a function I(f) : I(s1)× . . .× I(sn)→ I(s) for every (normal) function symbol f :
s1, . . . , sn → s ∈ Func,

• a function I(m) : I(s1)× . . .× I(sn)→ T (I(s)) for every computational function symbol
m : s1, . . . , sn → s ∈ mFunc,

• a function I(P ) : I(s1)× . . .× I(sn)→ Ω for every predicate symbol P : s1, . . . , sn ∈ Pred,

• and a function I(M) : I(s1)× . . .× I(sn)→ T Ω for every computational predicate symbol
M : s1, . . . , sn ∈ MPred.

Definition 7. A NeSy system can be defined as a triple (T ,R, I), where (T ,R) is a NeSy
framework and I a NeSy interpretation of that same NeSy framework.
Note that in this notation the category C on which the monad T is defined, the underlying set

of basic truth values Ω, with which the aggr-2Mon-BLat R is defined, and the signature Σ on
which the interpretation I is defined, are suppressed since they are implicit.
Compared to Van Krieken et al. (2024), we have added computational predicate symbols, because
LTN and other NeSy frameworks use these. However note that for probabilistic logic and
weighted model counting, ULLER makes independence assumptions due to the nature of its
notion of interpretation.8 While computational function symbols enable the use of conditional
probabilities, computational predicate symbols are always independent of each other. Hence,
ULLER supports a certain combination of probabilistic and fuzzy logic, and so do LTNs. For
details, see section 7.1.

Also, we have dropped uniformity of the notion of interpretation—it now becomes dependent
on the monad at hand. This is necessary for faithfully distinguishing finitely supported and
continuous probability distributions and for dealing with LTN-style quantification on infinite
domains. Still, computational symbols can be realised by neural networks in all of these cases.
However, the details of the mapping from neural networks to interpretations of computational
symbols differ.

In Van Krieken et al. (2024), based on an interpretation, the notion of NeSy system provides a
Tarskian inductive definition J·K of the semantics of formulas and thus it implicitly also defines the
semantics of the logical symbols. The drawback of this approach is that the Tarskian semantics
J·K is inherently tied to the specific NeSy system.
We can modularise matters here, because we first give a semantics of the logical symbols via a

NeSy framework, and based on that, the interpretation provides the semantics of the non-logical

8As already hinted at in the original ULLER paper Van Krieken et al. (2024) and looked at in more detail in van
Krieken et al. (2024) and van Krieken et al. (2025), the independence assumption can prevent NeSy predictors
from correctly modelling uncertainty.
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symbols. Hence, the inductive definition of the Tarskian semantics J·K needs to be given only
once, and this definition holds across all NeSy frameworks and systems.

Definition 8. The Tarskian semantics J·K of a NeSy system (T ,R, I) is given by:

Formulas: JF KI : VF → T Ω, Terms: JT KI : VT → I(sT ).

Table 2. Inductive definition of the Tarskian semantics

Syntax Set Semantics J·KI,ν

Terms

Jx : sK ν(x)
JcK, JT.propK, Jf(~T )K I(c), I(prop)(JT K), I(f)

(
J~T K
)

Atomic formulas

JP K, JR(~T )K ηΩ(I(P )), ηΩ
(
I(R)(J~T K)

)
JNK, JM(~T )K I(N), I(M)

(
J~T K
)

Compound formulas

J⊥K, J>K ⊥R, >R
JF → GK, J¬F K JF K→R JGK, ¬RJF K

JF‖GK, JF&GK JF K⊕R JGK, JF K⊗R JGK

J∃x:s F K, J∀x:s F K aggr∃I(s)(λa.JF Kν[x7→a]), aggr∀I(s)(λa.JF Kν[x 7→a])

J[x := m(~T )]F K do a← I(m)(J~T K); JF Kν[x 7→a]

Here, we define VT :=
∏
x:t∈ΓT I(t), where ΓT is the context of T and sT is the (unique) sort of

the term T . Analogously VF :=
∏
x:t∈ΓF I(t). ~T stands for T1, . . . , Tn. We work with variable

valuations ν ∈ VT (or ν ∈ VF ) in local (term or formula) contexts, noting that elements of∏
x:t∈ΓT I(t) map variables x : t to values in I(t). We write JT KI,ν = JT KI(ν) and JF KI,ν =

JF KI(ν). That said, we mostly omit I and ν if clear from the context.

4 Examples of Set-Based Semantics
In the sequel, we will discuss some NeSy frameworks in more detail and spell out how the semantic
rules look when instantiated. We often implicitly define parts of the 2Mon-BLat through the
semantic rules. E.g. the aggr∃ and aggr∀ functions are implicitly defined by listing semantic
rules for the quantifiers.
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4.1 Classical and Three-valued Semantics
Classical semantics is simply given by the identity monad and the Boolean algebra on Ω = {0, 1},
which results in classical first-order logic.

Our classical semantics is deterministic, while Van Krieken et al. (2024) use probability
distributions, causing the need for selection of values with highest probability, done via argmax.
We will model this as NeSy transformation in section 5 and need a non-deterministic NeSy
framework as target of this transformation. The (non-empty) powerset monad models non-
deterministic computations, cf. multialgebras Walicki and Meldal (1994). These result in non-
deterministic truth values as in:

Logic of Paradox Semantics For the Logic of Paradox Priest (2008) with the non-empty
powerset monad P 6=∅, we have T = P6=∅, Ω = {0, 1} (equivalently {F, T}), and T Ω =
P 6=∅({0, 1}) = {{0}, {1}, {0, 1}}. The three truth values correspond to: {0} ≡ F (false only),
{1} ≡ T (true only), and {0, 1} ≡ B (both true and false). Following the uniform Tarskian
semantics:

J[x := m(~T )]F K :=
⋃

a∈I(m)(J~T K)

JF Kν[x7→a] (1)

J∃x:s F K := sup
a∈I(s)

JF Kν[x 7→a], J∀x:s F K := inf
a∈I(s)

JF Kν[x 7→a] (2)

JF‖GK := max(JF K, JGK), JF&GK := min(JF K, JGK) (3)

JF → GK := max(J¬F K, JGK), J¬F K :=
{
{0, 1} if JF K = {0, 1}
({0, 1} \ JF K) else

(4)

J⊥K := {0}, J>K := {1} (5)

where the operations implement Priest’s Logic of Paradox with the lattice ordering {0} <LP
{0, 1} <LP {1} (i.e., F < B < T).

4.2 Distributional Semantics
The distributional semantics corresponds to the third row in Table 1, where we use the
distribution monad D over the classical truth basis {0, 1}, yielding the truth space [0, 1]
equipped with a Product BL-algebra structure. This framework provides the semantic foundation
for probabilistic logic programming systems and neural-symbolic approaches that work with
probability distributions over truth values. In this setting, computational predicates and function
symbols return probability distributions rather than deterministic values. We need to restrict
interpretations to finite domains. Finite quantification just iterates conjunction or disjunction.
For infinite quantifiers, check section 7.1.
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J[x := m(~T )]F K :=
∑

a∈I(sm)

JF Kν[x 7→a] · ρm(a | ~T ) (6)

J∃x:s F K := 1−
∏

a∈I(s)

(1− JF Kν[x 7→a]), J∀x:s F K :=
∏

a∈I(s)

JF Kν[x 7→a] (7)

JF‖GK := JF K + JGK− JF K · JGK, JF&GK := JF K · JGK (8)

JF → GK := max
(
1, JGK/JF K

)
, J¬F K := 1− JF K (9)

J⊥K := 0, J>K := 1. (10)

4.3 Finitary LTNp Semantics
The finitary Logic Tensor Networks (LTN) semantics corresponds to the fourth row in Table 1,
employing the distribution monad D over the classical truth basis {0, 1} with the truth space
[0, 1] equipped with a Product Real Logic structure, what we call the S-Product Algebra in
Table 3. It is the same as the Product Algebra in the distributional semantics, only that we use
S-Implication (strong implication) instead of R-Implication (residual implication). Moreover,
aggregation differs as well: following Badreddine et al. (2022), quantification is performed using
p-norms, where the parameter p controls the "softness" of the logical operations. For existential
quantification, we compute the p-norm of truth values, while for universal quantification, we use
the dual formulation 1− ‖1− ·‖p:

J∃x:s F K :=
( 1
|Is|

∑
a∈Is

JF K pν[x7→a]

)1/p
, (11)

J∀x:s F K := 1−
( 1
|Is|

∑
a∈Is

(1− JF Kν[x 7→a]) p
)1/p

, (12)

JF → GK := 1− JF K + JF K · JGK. (13)
This is however only possible for finite domains. For the infinite case and additional quantifier
variants, we refer to section 7.2.

4.4 Sampling "Semantics"
While Van Krieken et al. (2024) have introduced a sampling semantics, we think that the
semantics should define probabilities, while an implementation can work with e.g. Monte Carlo
sampling in order to obtain an approximation that is easier to implement (and, in the case of
quantification over infinite domains, unavoidable). Hence, we do not discuss sampling semantics
here. But we expect that a Monte Carlo convergence theorem can be stated and proved.

5 NeSy Transformations
The original ULLER paper Van Krieken et al. (2024) uses a uniform notion of interpretation. This
leads to the problem that classical semantics needs to extract values with maximal probability
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Crossing x

argmax[light(x)] = {•, •, •}

l = • l = • l = •

argmax[drive(x, •)] = ×

d = ×
Formula TRUE

argmax[drive(x, •)] = {×,X}

d = ×
Formula FALSE

d = X
Formula TRUE

argmax[drive(x, •)] = X

d = X
Formula TRUE

Union of Branches = BOTH

Figure 1. Argmax transformation flowchart for traffic light example from Van Krieken et al. (2024) showing
how the Logic of Paradox handles argmax operations across different light colours. The diagram illustrates
the branching logic when argmax produces multiple values (tie in amber case) and how results are combined
by the universal quantifier in the LP algebra. In this example, the traffic lights are uniformly distributed, and
the probability of continuing driving (green check mark) is 0.1, 0.5, and 0.9 for red, amber, and green light,
respectively. The formula is ∀x:Crossing [l := light(x), d := drive(x, l)](d 6= X, l = •), that is "For every
crossing, only continue driving if the light is green".

(using arg max) from a distribution, which is not possible if there is a tie9. Here, we propose an
alternative way of dealing with this problem: namely, using a NeSy transformation, we can move
e.g. from an interpretation in a probabilistic NeSy framework to one in a classical framework.
Dealing with ties can be done using a non-deterministic semantics.

Definition 9. A NeSy transformation α : F → F ′ between two NeSy frameworks is a
family of functions10 αΣ : IntpF (Σ)→ IntpF ′(Σ). Here, the interpretation function IntpF : Σ 7→
Intp(F ,Σ) sends a signature to the set of interpretations on F for that signature. We write α
for αΣ if Σ is clear from context.

9Or in case of an infinite distribution (see section 7.1)
10For those interested in category theory; this is in fact a natural transformation, hence the name.
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Argmax transformation: From distributional to non-deterministic semantics For a given
distributional interpretation I(m) of a computational function symbol m, we can define a non-
deterministic interpretation α(I)(m) of m by defining, where sm is the sort of m, and likewise,
M is a computational predicate symbol:

α(I)(m) := arg max
a∈I(sm)

[
I(m)(a)

]
, α(I)(M) := arg max

b∈Ω={0,1}

[
I(M)(b)

]
,

and for all other symbols set α(I) := I. This definition is not possible in the general probabilistic
case, because probability measures often return zero on all single values. It is also a non-
deterministic interpretation since it returns a set of values instead of a single value. The resulting
semantics is three-valued, as in section 4.1 and we apply it to the traffic light example from
Van Krieken et al. (2024) in Fig. 1. This arg max transformation is just one example of many
possible NeSy transformations.

Then, in the practical implementation of ULLER, we use random sampling (see section 4.4)
over a uniform distribution to obtain a single value from the set of values α(I)(m). This gives a
precise foundation for the use of arg max in the classical semantics in Van Krieken et al. (2024).

6 Categorical NeSy Frameworks
So far, in this paper, we have not made use of category theory. Indeed, we have introduced set-
based notions of monad and of Double monoid bounded lattice. They do not rely on category
theory, nor do the central definitions of mULLER, in particular, the notions of NeSy framework,
of signature, interpretation and formula, nor the rules of the Tarskian semantics.

By contrast, in this and the next section, we will heavily make use of category theory. (The
subsequent Sections 8 and 9 implicitly use the results of this section, but do not directly make
uses of category theory. Reader not interested in category theory may skip to Section 8.) The
main purpose of the use of category theory is the possibility to work with continuous probability
distributions.11 Another motivation is the need for quantification structures for infinite domains,
which are common in first-order logic. In these cases, we need to work with structured objects and
structure-preserving maps, like measurable spaces and measurable functions. Without organising
such spaces and maps into a category, we still can use most of the set-theoretic rules of the
semantics. However, we would need to restrict to structure-preserving maps in places like the
definition of interpretation (Def. 6), and, more severely, would need to prove that the semantic
rules in Def. 8 again yield structure-preserving maps. When using category theory, we can avoid
such proofs and base our theory on a certain structure that is required for the involved categories.

That said, we still can use the set-theoretic semantics rules for convenience, also for categories
of sets with structure12, just because the categorical version of the rules tells us that the resulting
maps will be structure-preserving. The only set-theoretic rules of the semantics that we cannot
simply re-use are the rules for quantifiers. Here, the aggregation functions aggr∃ and aggr∀

11The lack of which is described as a major shortcoming of traditional NeSy systems by Smet et al. (2023).
12Technically, these set-based categories C are constructs in the sense of Adámek et al. (1990), which means they
come with a faithful functor U : C→ Set. U maps objects of C to their underlying sets.

Prepared using sagej.cls



14 Journal Title XX(X)

generally need to make use of the extra structure that the “sets with structure” have, see e.g.
the aggregation functions for probabilistic semantics defined in section 7.1 below need to make
use of the probability distribution coming with the universe.

A brief introduction to category theory is given in Appendix A.

6.1 More (on) Monads
Definition 10. A Kleisli triple or monad on a category C involves a mapping of objects
T : Ob(C)→ Ob(C), a family of morphisms ηX : X → T X for each object X in C (called the
unit), and a function that assigns to each morphism f : X → T Y a morphism f∗ : T X → T Y
such that the axioms hold as in Def. 1. Note that a set-based Kleisli triple is then a Kleisli triple
on the category Set.

Definition 11. Strong Kleisli triple. A Kleisli triple (T , η, (−)∗) on a Cartesian category C is
called strong if there is a natural transformation

SA,B : A× T B −→ T (A×B)

satisfying the naturality condition: for any morphisms f : A→ A′ and g : B → B′,

T (f × g) ◦ SA,B = SA′,B′ ◦ (f × T g),

and such that

SA,B ◦ (idA × ηB) = ηA×B , SA,B ◦ (idA × f∗) = (id× f)∗ ◦ SA,C .

Example 3. Identity monad I on Set (category of sets and functions). For a set X:

IX := X (identity functor),

ηX(x) := x, f∗(x) := f(x)
(
f : X → Y, x ∈ X

)
.

Example 4. Powerset monad P on Set (category of sets and functions). For a set X:

PX := {A ⊆ X} (powerset of X),

ηX(x) := {x}, f∗(A) :=
⋃
a∈A

f(a)
(
f : X → PY,A ⊆ X

)
.

Example 5. Sub-Distribution Monad S. The sub-distribution monad S is similar to the
distribution monad D but it allows for finitely supported measures that do not sum up to 1,
that means:

SX :=
{
ρ : X → [0, 1]

∣∣∣ ∑
x∈X

ρ(x) ≤ 1, ρ countably additive and has finite support
}
,

ηX(x) := δx, δx(y) =
{

1, x = y
0, x 6= y

f∗(ρ)(y) :=
∑
x∈X

ρ(x)f(x)(y)
(
f : X→SY, ρ ∈ SX

)
.
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Example 6. Giry monad G on Meas, the category of measurable spaces and maps.
For a measurable space (X,ΣX) and Dirac measure δx on X for x ∈ X:

G(X,ΣX) :=
{
ρ : X → [0, 1]

∣∣∣ ρ(X) = 1, ρ countably additive
}

(prob. measures on X),

η(X,ΣX)(x) := δx, δx(A) =
{

1, x ∈ A
0, x 6∈ A

f∗(ρ)(A) :=
∫
X

f(x)(A)dρ(x)
(
f : X→GY,A ⊆ Y measurable

)
.

δx is the probability distribution that assigns all probability mass to x.

Example 7. Infinite Giry monad G∞ on Meas. For a measurable space (X,ΣX):

G∞(X,ΣX) :=
{
µ : ΣX → [−∞,∞] | µ(∅) = 0, µ countably additive

}
,

η(X,ΣX)(x) := δx, δx(A) =
{

1 x ∈ A
0 x /∈ A

,

f∗(µ)(A) :=
∫
X

f(x)(A) dµ(x)
(
f : X→SY, A ⊆ Y measurable

)
.

Here the integral is the Lebesgue–Stieltjes integral with respect to the extended signed measure µ.
Writing the Jordan decomposition µ = µ+ − µ− and using linearity of the integral, one checks
that the monad laws hold; thus S extends the Giry monad by allowing negative and (possibly)
infinite total mass.

Proposition 2. and definition of the measure-space monad M. We can define a measure
monad M as a monad (T , η, µ)13 on the category Measr of measure spaces with η, µ being the
unit and multiplication of the Giry monad G on Meas. For ρ being probability measures, we
can define a probability-space monad O on the category Prob of probability spaces. The same
construction can be applied to obtain an infinite measure-space monadM∞ on Measr.

M((X, ρ)) := (G(X), ρη),
ρη := B 7−→ ρ(η−1(B)), for B ⊆ G(X) measurable,
ηM := η, µM := µ.

Proof. If ρ is a probability measure, we know that ρη(G(X)) = ρ(η−1(G(X))) = ρ(X) = 1,
countable additivity follows alike. Now we only need to check whether ηM, µM are measure
preserving, which follows for the unit by definition:

13Here we use the traditional category theoretical definition of monad as (T , η, µ), where µ is monad
multiplication. This is however equivalent to the definition as Kleisli triple.
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ηM : (X, ρ) −→
(
G(X), ρη

)
ρ
(
(ηM)−1(B)

)
= ρ

(
η−1(B)

)
= ρη(B).

Now, for the multiplication we have:

µM :
(
G2(X), ρ◦η−1◦η−1

G
)
−→

(
G(X), ρ◦η−1)

since
M2(X) = M

((
G(X), ρη

))
=
(
G2(X), (ρη)η

)
,

and that means we can write for any measurable set A ⊆ G2(X):

(ρη)η(A) = ρη
(
η−1
G (A)

)
= ρ

(
η−1 ◦ η−1

G (A)
)
.

Therefore we show the measure-preserving property as follows

ρ◦η◦η−1
G
(
µ−1(B)

)
= ρ◦η−1(η−1

G (µ−1(B))
)

= ρ◦η−1(B),

because we know the following fact from the monad laws:

A = η−1
G
(
µ−1(B)

)
⇐⇒ A = µ

(
ηG(A)

)
= B.

6.2 The 2Mon-BLat Algebra: A Comprehensive Overview
In this subsection, we provide a comprehensive overview of the different algebraic structures that
can serve as algebras on the truth space T Ω in our neurosymbolic framework, along with their
associated operations types and logical properties.

Table 3 provides a comprehensive comparison of the fundamental operations across different
algebraic structures, showing how each algebra defines its basic operations.

Table 3. Overview of aggregated 2Mon-BLat
Algebra Set ⊥ > ⊕ ⊗ → ¬ aggr∃

Boolean {0, 1} 0 1 max min IB ¬R sup
LTNp [0, 1] 0 1 SP TP ISP ¬C ‖·‖p

LTNq [0, 1] 0 1 SP TP ISP ¬C P∃q

Product [0, 1] 0 1 SP TP IP ¬R P∃
S-Prod. [0, 1] 0 1 SP TP ISP ¬C P∃
Priest {F, B, T} F T max min IKD ¬C sup

t-conorms and t-norms (⊕ and ⊗):

• SP (Probabilistic sum): xSP y = x+ y − xy

• TP (Product): xTP y = xy
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Implications (→):

• IP (Product/Goguen): IP (x, y) =
{

1 if x ≤ y
y/x otherwise

• IB (Boolean): IB(x, y) =
{

0 if x = 1, y = 0
1 otherwise

• IS (General S-implication): IS(x, y) = ¬x⊕ y

• IKD (Kleene-Dienes/Material): IKD(x, y) = max(1− x, y)

• ISP (S-Product): ISP (x, y) = 1− x+ xy

Negations (¬):

• ¬R (Residual): ¬Rx = x→ 0 (includes Heyting/intuitionistic negation)

• ¬C (Classical/1-Involutive): ¬Cx = 1− x

• ¬V (0-Involutive): ¬V x = 0− x = −x

Aggregations (aggr∃):

• P∃ (Infinitary Probabilistic Sum): P∃(x) = 1− exp
(

Ea∼µ
[
ln(1− JF Kν[x7→a])

])
• P∃q ((µ, q)-approximated P∃): P∃q(x) = 1− exp

(
Ea∼µ

[
ln
(
1− JF Kν[x 7→a]

)q] 1
q
)

for 1/2 ≤ q ≤ 1, with P∃q → P∃ as q → 1. Here µ can be any measure and it depends on
the context, in LTNq it depends on the measure space of the sort of the quantified variable
at hand.

The quantification aggregations employ logarithmic and exponential transforms because they
provide the natural generalisation of the product (or probabilistic sum) to infinitary domains.
While finite probabilistic sums can be computed directly using products, extending to infinite
domains requires the use of expectations, and the logarithmic and exponential transforms enable
this generalisation while preserving the essential structure of probabilistic aggregation.

6.3 Definition of Categorical NeSy Frameworks
Definition 12. An aggr-2Mon-BLat internal to a Cartesian category C on an object A
in C consists of a lattice on A internal14 to C, morphisms ⊕,⊗,→: A×A→ A; ⊥,>, 0, 1 : 1C →
A and for any objects B and C maps aggr∀B,C , aggr∃B,C : C(B × C,A)→ C(B,A), such that the
axioms of Def. 2 hold when appropriately interpreted in C15.

14For an explanation check https://ncatlab.org/nlab/show/internalization and https://ncatlab.org/nlab/
show/monoid+in+a+monoidal+category, since this is out of scope for this paper.
151C is a terminal object.
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Note that our categorical handling of aggregation differs from that in the set-theoretic setting.
A full analogy to the set-theoretic case would require aggregation morphisms AX → X, which
would need a Cartesian closed category. This requirement seems too strong for our purposes,
since it is not met in many examples and only is required for interpreting higher-order logics.
However, given a Cartesian closed category (like Set) with aggregation aggr : AX → X, we can
define aggregation in the sense of Def. 12 as mapping f : B × C → A to B Λ(f)→ AC

aggr→ A. Here,
Λ(f) is currying, defined as follows in Set: Λ(f)(x)(y) = f(x, y). In the sequel, we will rely
on this definition also for Set-based categories (constructs Adámek et al. (1990)) that are not
Cartesian closed, noting that the definition works even if AC is just a set and not an object in
the category. Hence, in examples, we will define aggregation mostly as in Def. 2, but in some
cases, we make use of the structure of the object C.
Definition 13. A NeSy framework (T ,R) consists of

1. a strong monad T with strength S on a Cartesian category C,16

2. an aggr-2Mon-BLat R in C on T Ω for some object Ω.
Here, Ω is a set acting as truth basis,17 and T Ω is the monadic space of truth values.
Examples are given in Table 4 and their semantics are discussed in section 7. Note that further
examples arise by varying the 2Mon-BLat R on [0, 1].

Table 4. NeSy Framework Examples (categorical)

Logic/Theory C T Ω T Ω R Sem.
Simple Prob. Meas Giry G {0, 1} [0, 1] Product BL–Alg. §7.1
Standard Borel BorelMeas Giry G|BorelMeas {0, 1} [0, 1] Product BL–Alg. §7.1
Probabilistic Measr Measr-spaceM {0, 1} [0, 1] Product BL–Alg. §7.1
Infinitary LTNp Prob Prob-space O {0, 1} [0, 1] Product SBL-Alg. §7.2
STLr Measr ∞-Measr-spaceM∞ {1} R approx. R §7.3

7 Categorical Semantics
The categorical notion of interpretation differs from the set-theoretic definition (Definition 6)
only in that sets are replaced by objects in the category C and functions are replaced by
morphisms in C. This generalisation allows the framework to work in any category with suitable
structure, not just the category of sets and functions.
Definition 14. Tarskian semantics J·K of formulas. Given a NeSy framework (T ,R) and a
NeSy interpretation I we can determine the interpretation morphisms:

Formulas: JF KI : VF → T Ω, Terms: JT KI : VT → I(sT ) :

16Note that Set is a Cartesian closed category, and every monad on Set is strong.
17Similar to the basis of a vector space.
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Table 5. Inductive definition of the Tarskian semantics

Syntax Categorical Semantics J·KI Set Semantics J·KI,ν

Terms

Jx : sK idI(s) νs(x)
JcK I(c) I(c)
JT.propK I(prop) ◦ JT K I(prop)(JT K)
Jf(~T )K I(f) ◦ 〈J~T Ki◦πi〉i I(f)

(
J~T K
)

Atomic formulas

JP K ηΩ ◦ I(P ) ηΩ(I(P ))
JNK I(N) I(N)
JR(~T )K ηΩ ◦ I(R) ◦ 〈J~T Ki◦πi〉i ηΩ

(
I(R)(J~T K)

)
JM(~T )K I(M) ◦ 〈J~T Ki◦πi〉i I(M)

(
J~T K
)

Compound formulas

J>K, J⊥K 1R, 0R 1R, 0R
J¬F K ¬R ◦ JF K ¬R(JF K)

JF → GK →R ◦〈JF K◦πF , JGK◦πG〉 JF K →R JGK

JF‖GK ⊕R◦〈JF K◦πF , JGK◦πG〉 JF K ⊕R JGK

JF&GK ⊗R◦〈JF K◦πF , JGK◦πG〉 JF K ⊗R JGK

J∃x:s F K aggr∃VF\x:s,I(s)(JF K) aggr∃I(s)(λa.JF Kν[x 7→a])

J∀x:s F K aggr∀VF\x:s,I(s)(JF K) aggr∀I(s)(λa.JF Kν[x 7→a])

J[x := m(~T )]F K JF K∗◦S◦
〈
πVF\x:s , I(m) ◦ 〈J~T Ki◦πi〉i

〉
do a← I(m)(J~T K); JF Kν[x7→a]

Remark 1. We define VT :=
∏
x:t∈ΓT I(t). Here ΓT is the context of T and sT is the

(unique) sort of the term T . Analogously VF :=
∏
x:t∈ΓF I(t). Note that if T1 is a subterm

of T2, there is a projection πT1,T2 : VT2 → VT1 , and analogously for formulas. ~T stands
for T1, . . . , Tn. Moreover, 〈J~T Ki◦πi〉i = 〈JT1K◦π1, . . . , JTnK◦πn〉 and J~T K = (JT1K, . . . , JTnK). The
categorical semantics ensures that all involved and resulting functions are morphisms in C, i.e.
are measurable in case that C = Meas, etc. With a purely set-theoretic semantics, we would need
to prove measurability (or other properties) separately for each NeSy framework.
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That said, besides the general categorical case, 18 for better understandability, we also translate
the equations to their meaning in the category of sets. We work with variable valuations ν ∈ VT
(and ν ∈ VF ), noting that elements of

∏
x:t∈ΓT I(t) map variables x : t to values in I(t). We

write JT KI,ν = JT KI(ν) and JF KI,ν = JF KI(ν). That said, we mostly omit I and ν if clear from
the context.

7.1 Probabilistic Semantics
Definition 15. A probabilistic NeSy framework is a tuple (T ,R) with T =M the Giry
monad on the category Measr of measure spaces and R a suitable 2Mon-BLat, for example the
Product BL-Algebra on [0, 1].

The interpretation of a function f of arity n is a (measure preserving) Markov kernel, which is
a measurable map X q−→M(Y ) where M denotes the measure monad on the category Measr
of measure spaces.

Our definition of a probabilistic semantics largely follows that in the original ULLER
paper Van Krieken et al. (2024). A central design decision of ULLER is the use of first-
order interpretations and the use of probability distributions to interpret computational
function symbols. This means that ULLER (and therefore also mULLER) is (like Logic Tensor
Networks) not built on weighted model counting, i.e. on probability distributions over the set
of interpretations. That said, it is still possible to capture certain aspects of weighted model
counting in ULLER and mULLER, as we will see in section 7.4 below.

Connectives in the probabilistic semantics of ULLER are interpreted assuming independence
of probabilities for atomic formulas. Hence, our distributional semantics can be seen as a special
case of a fuzzy semantics, where the t-norm is the probabilistic product and the t-conorm is the
probabilistic sum. This means that we can use the same equations as in the fuzzy semantics (and
as in LTNs), but with a different motivation. Moreover, this explains why there is no essential
difference between these probabilistic and fuzzy semantics.

Let us derive from our general semantic in definition 8 the interpretation of monadic formulas
in probabilistic semantics. For the probabilistic NeSy framework, we define the aggregation
morphisms aggr∀B,C , aggr∃B,C required by Def. 12 as follows: for any measure spaces B and C,

aggr∀B,C(f) := exp ◦ Ec∼µC [ln ◦f(·, c)]
aggr∃B,C(f) := (1− exp) ◦ Ec∼µC [1− ln ◦f(·, c)]

where f : B × C → [0, 1] and µC is the measure on C. In the following examples, we provide
implicit definitions of these aggregation operations through their concrete realisations. In set-
theoretic notation, the semantics of computational formulas can be written as, where we use the

18Logician’s note: We don’t differentiate properly between additive and multiplicative connec-
tives/units/quantifiers for an easier presentation coherent with the NeSy literature. However, this could
easily be adapted to obtain something like Girad’s linear logic Girard (1995), following the Zeitgeist of his
transcendental syntax.
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notation ρm(·|~T ) := I(m)(J~T K):

J[x := m(~T )]F K = do a← I(m)(J~T K); JF Kν[x 7→a]

=
∫
a∈I(sm)

JF Kν[x 7→a] dI(m)(J~T K)(a)

=
∫
a∈I(sm)

JF Kν[x 7→a] dρm(a|~T )

= Ea∼ρm(·|~T )
[
JF Kν[x 7→a]

]
=

∑
a∈I(sm)

JF Kν[x 7→a] · ρm(a|~T ) (if I(sm) is finite)

We evaluate in the Product Algebra to obtain, where µs is the measure given by the measure
space of I(s)

J[x := m(~T )]F K := Ea∼ρm(·|~T )
[
JF Kν[x 7→a]

]
(14)

J∃x:s F K := 1− exp
(
Ea∼µs

[
ln
(
1− JF Kν[x 7→a]

)])
(15)

J∀x:s F K = exp Ea∼µs
[
lnJF Kν[x 7→a]

]
(16)

JF‖GK := JF K + JGK− JF K · JGK, JF&GK := JF K · JGK, (17)

JF → GK := max
(
1, JGK/JF K

)
, J¬F K := 1− JF K (18)

J⊥K := 0, J>K := 1. (19)

∀ as weighted products (finite case). Let I(s) be finite and define the random variable
X(a) := JF Kν[x 7→a]. The infinitary probabilistic ∀ (Eq. (16)) evaluated on F with a weighted
counting measure on X yields

J∀x:s F K = exp
( ∑
a∈I(s)

wa lnX(a)
)

=
( ∏
a∈I(s)

exp(ln(X(a)wa))
)

=
∏

a∈I(s)

X(a)wa .

By contrast, the finite product aggregator of the original ULLER semantics is obtained by setting
wa = 1 for all a ∈ I(s):

J∀x:s F K =
∏

a∈I(s)

X(a)1.

However, our definition of the ∀ quantifier is more general even in the finite case, as it allows for
meaningful examples like the weighted counting measure on I(s) yielding the geometric mean
with n := #I(s), the number of elements in I(s), yielding

J∀x:s F K =
n∏
i=1

X(ai)1/n.

In the case above of the geometric mean and also in many other (continuous) cases, one actually
does choose only one universal quantifier to be constant on all sorts, as for the existential
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quantifier. In this case one can actually work within a simpler framework using the normal Giry
monad on the category Meas of measurable spaces:

Definition 16. A simple probabilistic NeSy framework is a tuple (T ,R) with T =M
the Giry monad on the category Meas of measurable spaces and Ω the truth basis, normally
Ω = {0, 1}.

Now, if one works in standard Borel spaces19 (as one most often does in practice), one obtains
an even more practical version of this simple probabilistic NeSy framework. This is very useful in
practice since one can see an uncountable standard Borel space just as a set that is canonically
equipped with the Borel sigma-algebra and Lebesgue measure. Also a finite or countable standard
Borel space can be seen as a set that is canonically equipped with the discrete sigma-algebra
and counting measure.

Definition 17. A simple standard Borel NeSy framework is a tuple (T ,R) with T =M
the Giry monad on the category BorelMeas of standard Borel spaces and Ω the truth basis,
normally Ω = {0, 1}.

Additionally, if one chooses the measures for universal and existential quantification to be given
by a density functions f (most often the case in practice), one obtains an implementation-friendly
Lebesgue-probabilistic NeSy semantics for the quantifiers ∀ and ∃:

J∀x:s F K = exp
∫
a∈I(s)

lnJF Kν[x 7→a] f(a) da (20)

J∃x:s F K = 1− exp
∫
a∈I(s)

ln(1− JF Kν[x 7→a]) f(a) da (21)

In the same spirit, if the semantics of the monadic formula 14 should only use probability
measures admitting a density w.r.t. the Lebesgue measure20, one can work with a simplified
Giry monad on the category BorelMeas, sending a standard Borel space to the standard Borel
space of probability measures on that space admitting a density w.r.t. the Lebesgue measure.
Combined with the quantifiers defined w.r.t Lebesgue densities from eq. (20) and eq. (21), this
makes the implementation simpler and more efficient and is the default choice in practice anyway.

Actually, depending on the use case, one might want to use a probability monad on one of the
following categories21, listed in increasing complexity in Table 6 summarising typical suitability.

19Standard Borel spaces are measurable spaces where the underlying set is isomorphic to R or is finite or countable.
All finite powers of the real line and all intervals, as measurable spaces, are isomorphic to the real line, as explained
at https://ncatlab.org/nlab/show/standard+Borel+space. Also a measure space (or probability space) is called
a standard Borel measure space (BorelMeas) (standard Borel probability space (BorelProb)) if and only if its
underlying measurable space is standard Borel as above.
20This is hidden in the notation of the semantics of the monadic formula in the original ULLER semantics in
Van Krieken et al. (2024), Eq. 20; although there the density is mistakenly confused with the corresponding
measure.
21Which are by far not all, see https://ncatlab.org/nlab/show/monads+of+probability,+measures,+and+
valuations for more examples.
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Table 6. Suitability of base categories for probability monads

Category FS Finite ∼= Z ∼= R +DQ +DPQ +HO

Set X X X X × × X
BorelMeas ◦ ◦ X X × × ×
BorelMeasr ◦ ◦ ◦ ◦ X ◦ ×
BorelProb ◦ ◦ ◦ ◦ ◦ X ×
Meas ◦ ◦ X X × × ×
Measr ◦ ◦ ◦ ◦ X ◦ ×
Prob ◦ ◦ ◦ ◦ ◦ X ×
QBS ◦ ◦ X X × × X

Here, × stands for incompatible, ◦ for compatible but generally not recommended and X for
compatible and generally recommended. Also, the short form “FS” stands for “finitely supported”,
“DQ” for “sort-dependent quantifiers”, “DPQ” for “sort-dependent probability quantifiers” and
“HO” for “higher-order logic”. Hence the “FS” columns denotes that the monad only constructs
finitely-supported probability measures, the “Finite” column denotes that the monad constructs
probability measures on finite measurable spaces, the “∼= Z” column denotes that the monad
constructs probability measures on measurable spaces isomorphic to Z, the “∼= R” column denotes
that the monad constructs probability measures on measurable spaces isomorphic to R, the
“+DQ” column denotes that the monad allows for sort-dependent quantifiers via measures, the
“+DPQ” column denotes that the monad allows for sort-dependent quantifiers via probability
measures and the “+HO” column denotes that the monad allows for higher-order logic in
Cartesian closed categories.

7.2 Infinitary LTNp Semantics
Definition 18. A LTN-like NeSy framework is a tuple (T ,R) with T = O the probability
monad on the category Prob of probability spaces and Ω the truth basis, normally Ω = {0, 1},
and R a suitable 2Mon-BLat, for example the Product Real Algebra from Product Real Logic as
in Badreddine et al. (2022).

Setting Stable product real logic of Logic Tensor Networks Badreddine et al. (2022) uses
p-means for finite quantification. The hyperparameter p is usually increased during training,
because this moves from mean (tolerant to outliers) towards the maximum22 (logically stricter).
However, since domains are generally infinite, we also need to aggregate infinite many
truth–scores (xi)i∈I ⊆ [0, 1]. The power–mean extends from the finite case to an integral form
that is well defined whenever the data are Lp-integrable. Let (X,A, ρ) be a probability space
and f : X→ [0, 1] ⊆ R a measurable map with

∫
X

f dρ ≤ 1. Because 0 ≤ f ≤ 1, one automatically
has f ∈ Lp(ρ) for every real p, so p-means are always defined. This bounded–by–one assumption
reflects the fact that in our logical reading a truth-score never exceeds 1.

22This holds for existential quantification. Universal quantification ∀ is defined through ¬∃x:s¬, and converges
to the minimum.
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The infinitary LTNp semantics is a modification of the probabilistic semantics, which is
motivated by replacing the quantifiers in equation (15) and (16). We generalise this: by working
in the category Prob, for any sort s we have to provide a probability measure ρs on I(s). This
enables us to obtain a p-means for infinite23 domains:

Mp(a1, . . . , an) :=
( 1
n

n∑
i=1

a pi

)1/p
, Mp(f ; ρs) :=

(∫
x∈X

f(x)p dρs(x)
)1/p

, (22)

and these extend toM0(a1, . . . , an) :=
(∏n

i=1 ai

) 1
n andM0(f ; ρs) := exp

(∫
ln f dρs

)
. For p→∞

we recover the supremum. Take X = {1, . . . , N} with counting measure 1/N , then Mp(f ; ρs)
reduces to Mp(a1, . . . , an) or choose weights wi summing up to 1 for i = 1, . . . , N to obtain
the weighted p-mean. The aggregated 2Mon-BLat is similar to the probabilistic one, except
for the Reichenbach implication as implication and the following aggregation functions. For
a hyperparameter 1 ≤ p <∞ of LTNp, let aggr∃I(s)(f) := Mp(f ; ρs) and aggr∀I(s)(f) := 1−
Mp(λx.f(1− x); ρs). As a result, equation (22) now becomes:

J∃x:s F K =
(∫

a∈I(s)

(
JF Kν[x7→a]

)p
dρs(a)

)1/p
.

As in Badreddine et al. (2022), this is for 1 ≤ p <∞, where for p→∞ we recover the supremum.
However, we also propose a different pair of quantifiers with 1/2 ≤ q ≤ 1, where for q → 1
the universal quantifier converges to the product mean (geometric mean), while the existential
quantifier converges to the probabilistic sum:

J∀x:s F K := exp
((∫

a∈I(s)

(
lnJF Kν[x 7→a]

)q
dρs(a)

)1/q)
, J∃x:s F K := J¬∀x:s ¬F K.

It is worth noting that our probability measure ρs depend on the sort s of the variable x in
the quantifier, since it is given by the probability measure of the probability space of I(s). This
stands in contrast to Ślusarz et al. (2023), where the probability measure depends directly on
the variable x.

In practice, just as in the case of the simple probabilistic NeSy framework, one can also work
with a simple Lebesgue NeSy framework, and choose the measures for universal and existential
quantification to be given by a Lebesgue-density function f to obtain:

J∀x:s F K := exp
((∫

a∈I(s)

(
lnJF Kν[x 7→a]

)q
f(a) da

)1/q)
, J∃x:s F K := J¬∀x:s ¬F K,

or in the case of the original LTN quantifiers:

J∃x:s F K =
(∫

a∈I(s)

(
JF Kν[x7→a]

)p
f(a) da

)1/p
, J∀x:s F K := J¬∃x:s ¬F K.

23This defends the idea of LTN against the criticism of Ślusarz et al. (2023), that the domains are finite.
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7.3 Infinitary STL Semantics
Signal Temporal Logic (STL) is a temporal logic for expressing properties of signals. STL is
particularly useful for modelling and analysing the temporal aspects of real-time systems, such
as the timing and sequencing of events.

In the semantics of STL, we do not have any implication connective, nor neutral elements. We
still need to interpret the syntactic implication connective as some form of semantical implication
and the syntactic ⊥ and > as −∞ and∞, the latter as in Ślusarz et al. (2023). Also keep in mind,
that this does not touch the truth designations of −∞ as absolute falsity and ∞ as absolute
truth. That is, STL works with these degrees of truth and falsity, which could be taken together
to form one single degree (of probability), and which the absolute degrees are infinite. Therefore
we model STL with a truth basis containing only one element: {1}, a basis element which is then
scaled by to form the extended real numbers as truth space. A consequence of this that there
are no meaningful non-computational predicates in STL.

What also can not be ignored is that STL does not directly uses a 2Mon-BLat, but only
approximates one. It works within the normal extended real numbers algebra (R̃,max,min,+, ∗)
and then goes on to approximate the min and max operations. The are many different ways to
do this, but one of the most recent ones is to use the Ar and Or operators as defined in Varnai
and Dimarogonas (2020). Additionally, STL is not concerned with the operations ⊗ and ⊕ of
the 2Mon-BLat, these are not used in the semantics of STL, and are just kept to be the standard
operations +, ∗ of the extended real numbers algebra.

For these reasons, in order to faithfully model STL, in a way that makes it comparable to
other semantics, we would need to extend our syntax and semantics, and we would also need
to allow to approximate 2Mon-BLats. This however, is out of scope for this paper, and will be
discussed in a future work, and yet we still give a first sketch:

J[x := m(~T )]F K := Ea∼µm(·|~T )
[
JF Kν[x7→a]

]
(23)

J∃x:s F K := Or
a∈I(s)

(
JF Kν[x 7→a]

)
, J∀x:s F K := Ara∈I(s)

(
JF Kν[x 7→a]

)
, (24)

JF‖GK := Or(JF K, JGK), JF&GK := Ar(JF K, JGK) (25)

JF → GK := J¬F‖GK = O(−JF K, JGK), J¬F K := −JF K (26)
J⊥K := −∞, J>K :=∞. (27)

The STL robustness metrics are defined as in Ślusarz et al. (2023) and originally in Varnai and
Dimarogonas (2020):

Ara∈M (a) =



∑
a
amine

ãerã∑
a
erã

if amin < 0∑
a
ae−rã∑
a
e−rã

if amin > 0

0 if amin = 0

where r ∈ R+ (constant), amin = mina∈M (a), and ã = a−amin
amin

. Ar is an approximation of the min
operation, and for r →∞ it converges to it. Therefore, its notation is similar to the notation of
the min operation, with Arb∈N (f(b)) := Ar(im(f)) := Ara∈im(f)(a). The operator Or

a∈M is defined
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as −Ara∈M (−a).24 For infinite domains, the minimum is replaced by the infimum infa∈M (a), and
the summations

∑
a∈M are replaced by integrals

∫
a∈M dµs(a), where µs is the measure given by

the measure space of I(s).

7.4 Weighted Model Counting and Weighted Model Integration
ULLER can model certain aspects of weighted model counting (WMC) in a probabilistic
semantics. However, instead of summing up literal or model weights, one needs to sum up
weights of variable valuations. In the case of ULLER Van Krieken et al. (2024), we have the
following definition. Given an interpretation I and a formula F that is classical (i.e. without
computational symbols) with context ΓF := {x1 : s1, . . . , xn : sn}, the domains of the variables
are given by I(s1), . . . , I(sn)25. This yields the weighted model count (WMC) as follows:

WMC(F,w) =
∑

~a∈I(s1)×···×I(sn)

w(~a)JF Kν[x1 7→a1, ..., xn 7→an]

=
∑

a1∈I(s1)

· · ·
∑

an∈I(sn)

w(a1, . . . , an) JF Kν[x1 7→a1, ..., xn 7→an]

If the weight function factorises, i.e. the random variables x1, . . . , xn are assumed independent26

—then for every assignment (a1, . . . , an) ∈ I(s1)× · · · × I(sn):

w(a1, . . . , an) =
n∏
i=1

ρfi(ai).

Consequently, the weighted model count becomes

WMC(F, f1, . . . , fn) =
∑

a1∈I(s1)

· · ·
∑

an∈I(sn)

( n∏
i=1

ρfi(ai)
)

JF Kν[x1 7→a1,...,xn 7→an].

This WMC can be expressed in the language of NeSy systems as follows (Van Krieken et al.
(2024), p. 234):

[x1 := f1(), . . . , xn := fn()]F

In the linearly dependent case, rewrite it via the chain rule,

w(a1, . . . , an) =
n∏
i=1

ρfi
(
ai | a1, . . . , ai−1

)
,

24See Varnai and Dimarogonas (2020) for details.
25In the original ULLER paper these were written as Ω1 := I(s1), . . . ,Ωn := I(sn).
26As in Van Krieken et al. (2024) (p. 16).
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to make the conditional dependencies explicit. In this case, the WMC becomes

∑
a1∈I(s1)

· · ·
∑

an∈I(sn)

( n∏
i=1

ρfi
(
ai | a1, . . . , ai−1

))
JF Kν[x1 7→a1,...,xn 7→an].

In the continuous case we obtain weighted model integration27 (WMI) as follows:

∫
a1∈I(s1)

· · ·
∫
an∈I(sn)

JF Kν[x1 7→a1,...,xn 7→an]dρfn
(
an | a1, . . . , an−1

)
· · · dρf1

(
a1
)

Finally, we can also express even more general dependencies than linear ones. Given any Bayesian
network with a set of variables x1, . . . , xn, we can express this in ULLER as follows:

∑
a1∈I(s1)

· · ·
∑

an∈I(sn)

( n∏
i=1

ρfi
(
ai | parents(ai)

))
JF Kν[x1 7→a1,...,xn 7→an].

and in ULLER, this is expressed as (assuming that the xi are topologically ordered, i.e. xi can
only a parent of xj if i < j):

[x1 := f1(), x2 := f2(parents(x2)), . . . , xn := fn(parents(xn))]F.

8 Related Work and Their Examples
Monad-based dynamic logic Mossakowski et al. (2010) is similar to our approach, but differs in
some important aspects. In Mossakowski et al. (2010), not the whole of T Ω is used as the space of
truth values, but only a subset of it, namely the pure computations p with truth-valued result.
These are discardible, i.e. they can be left out in a sequence of computations, and copyable,
i.e. deterministic. The latter means that [x := p, y := p]x = y holds. In the non-empty powerset
monad, the distribution and the Giry monads, all computations are discardible, but only those
in the image of η are copyable. That is, only T and F (in the non-empty non-determinism
monad) and δT and δF (in the distribution and Giry monads) are copyable. However, in the non-
determinism monad, we clearly want B ≡ {T, F} as a truth value, and in the distribution and
the Giry monads, we want all probabilities [0, 1] as a truth values (and this space is isomorphic
to probability distributions over {T, F}). Hence, we do not want a copyability assumption in
our semantics. It seems that this is common in monads used for knowledge representation, as
opposed to monads used for programming language semantics as in Mossakowski et al. (2010).
Note that both views may even be useful for one and the same monad (e.g. the non-empty
powerset monad), depending on its use.

27Compare with Morettin et al. (2017).
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8.1 Example: Weather Prediction of DeepSeaProbLog
As an illustration of how existing neurosymbolic systems using continuous probability
distributions28 can be expressed in mULLER, consider the following weather prediction example
from DeepSeaProbLog Smet et al. (2023). The original DeepSeaProbLog program uses neural
distributional facts to model humidity detection and temperature prediction:

humid(Data) ~ bernoulli(humid_detector(Data)).
temp(Data, T) ~ normal(temperature_predictor(Data)).

good_weather(Data) :- humid(Data) =:= 1, temp(Data) < 0.
good_weather(Data) :- humid(Data) =:= 0, temp(Data) > 15.

query(good_weather(world)).

Here, humid_detector and temperature_predictor output distribution parameters, while
world represents a specific dataset. In mULLER syntax, this last query becomes the following
formula (later denoted by F ) with world := I(data1):

[h := bernoulli(humid_detector(data1))]
[t := normal(temperature_predictor(data1))]

(h = 1 ∧ t < 0) ∨ (h = 0 ∧ t > 15)

where humid_detector is a function returning parameters for a Bernoulli distribution, and
temperature_predictor returns parameters (µ, σ) for a normal distribution.29 The nested
monadic assignments capture the same probabilistic dependencies as the original program,
demonstrating how mULLER’s uniform syntax can express diverse neurosymbolic paradigms.
The semantic evaluation JF KI,ν of this formula yields the probability distribution over truth
values, corresponding to the query result in DeepSeaProbLog.

DeepSeaProbLog semantics vs mULLER (same query). Given the signature

Worlds, Unit_Interval, Reals2 ∈ Σ,
data1 ∈ Const
humid_detector, temperature_predictor ∈ Func
Bernoulli, Normal ∈ mFunc,

28Note that a proper treatment of these requires category theory, see sections 6.1 and 6.
29In Smet et al. (2023) the humid_detector returns a probability distribution over [0, 1] and
temperature_predictor returns a probability distribution over R2, that is that they are also monadic functions,
that are composed in the Kleisli category with the monadic functions Bernoulli and Normal, respectively. For
simplicity of presentation, we do not explicitly mention this in the syntax and assume they are just deterministic
functions.
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define the interpretation function

world := I(data1) ∈Worlds := I(Data)
I(temperature_predictor) : Worlds→ R2, I(humid_detector) : Worlds→ [0, 1];
N := I(Normal) : R2 → G([0, 1]), B := I(Bernoulli) : [0, 1]→ G([0, 1]).

and label

(µ, σ) = I(temperature_predictor)(world), p = I(humid_detector)(world);
T ∼ N (µ, σ2), H ∼ B(p).

Then define eventsA := {H = 1, T < 0} andB := {H = 0, T > 15} (disjoint). DeepSeaProbLog
assigns the query probability as an expectation of an indicator under the joint measure (here
product measure by independence of PCFs):

PDSP(good_weather) = E[1A + 1B ] = p

∫
R

1(t < 0)ϕµ,σ(t) dt+ (1− p)
∫

R
1(t > 15)ϕµ,σ(t) dt,

where ϕµ,σ(t) := 1√
2π σ

exp
(
− (t− µ)2

2σ2

)
is the normal density. In mULLER, the monadic rule

for [x := m(·)]F evaluates to an expectation (Eq. (14)), hence for F above

JF K = EH
[
ET
[
1{H=1,T<0} + 1{H=0,T>15}

∣∣H]]
= EH

[
1{H=1} ET [1{T<0}] + 1{H=0} ET [1{T>15}]

]
= EH [1{H=1}]

∫ 0

−∞
ϕµ,σ(t) dt+ EH [1{H=0}]

∫ ∞
15
ϕµ,σ(t) dt

= p

∫ 0

−∞
ϕµ,σ(t) dt+ (1− p)

∫ ∞
15
ϕµ,σ(t) dt

= pΦ
(

0− µ
σ

)
+ (1− p)

(
1− Φ

(
15− µ
σ

))
= PDSP(good_weather).

Here, Φ denotes the standard normal cumulative distribution function. Thus, for this program
our semantics coincides with DeepSeaProbLog’s possible-world semantics while avoiding world
enumeration.

Beyond single-instance queries, the distributional quantifiers from Table 2 are meaningful in
this setting. Three typical use cases are:

• All stations (universal aggregation). Probability that all weather stations have good
weather:

∀s ∈WeatherStations
[h := bernoulli(humid_detector(Worlds))]

[t := normal(temperature_predictor(Worlds))]
(h = 1 ∧ t < 0) ∨ (h = 0 ∧ t > 15)

which evaluates via
∏
s(·) in the Product algebra.
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• Exists a region (existential aggregation). Probability that at least one region has
good weather:

∃r ∈ Regions
[h := bernoulli(humid_detector(Worldr))]

[t := normal(temperature_predictor(Worldr))]
(h = 1 ∧ t < 0) ∨ (h = 0 ∧ t > 15)

which evaluates via 1−
∏
r(1− ·) (probabilistic sum).

• Always over time (universal over time). Probability that the weather is good for all
time slots:

∀τ ∈ TimeSlots
[h := bernoulli(humid_detector(Worldτ ))]

[t := normal(temperature_predictor(Worldτ ))]
(h = 1 ∧ t < 0) ∨ (h = 0 ∧ t > 15)

again aggregating with a product over τ .

On ∀-aggregation: product vs. infimum vs. LTN. For distributional semantics there are several
meaningful choices for aggregating universal quantification:

• Product (probabilistic ∀) as in (16): J∀x : s F K =
∏
a∈I(s)JF Kν[x 7→a]. This reads as

"probability that all independent30 events hold". It is however extremely sensitive: a single
zero (e.g., one faulty station reporting bad weather) collapses the product to 0 and, even
without zeros, the value decays exponentially with the number of stations, at least for
continuous values.

• Infimum/min (classical fuzzy ∀): infaJF Kν[x7→a]. This captures a strict worst-case reading
and does not shrink when many stations are near 1, but it is still killed by a single zero
and ignores the distribution of the other values.

• LTN-style p-mean of complements (Sec. 4.3, App. 7.2): J∀x : s F K = 1−( 1
|I(s)|

∑
a

(1− JF Kν[x 7→a])p
)1/p

(or its measure-theoretic analogue). This provides a

tunable continuum between averaging (p small) and the infimum (p→∞), and is typically
more robust to isolated outliers. A weighted variant

∑
a wa(1− JF Ka)p with

∑
a wa = 1

can encode station reliability.

In sensor networks with occasional false alarms (one station outputs 0 while thousands report
values near 1), product and infimum both collapse to 0. A moderate-p LTN aggregator (optionally
weighted) avoids single-sensor catastrophic failure while still converging to the strict infimum as
p→∞. When a strict “all must hold” interpretation is intended and measurements are trusted
as independent, the product is appropriate.

30See paragraph 7.1 for a critical discussion of independence.
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Infinite (time) domains. For countably or uncountably infinite sets of (time) points T , instead of
the finite set of TimeSlots from the previous example, we use the measure-theoretic aggregations
from Sec. 7.1 (Eqs. (15)–(16)) or the infinitary LTN aggregations from Sec. 7.2. Given a
(probability) measure ρT on T and writing φ(τ) := JF Kν[τ 7→τ ] ∈ [0, 1]:

J∀τ :T F K = exp
(

Eτ∼ρT [lnφ(τ)]
)
, J∃τ :T F K = 1− exp

(
Eτ∼ρT [ln(1− φ(τ))]

)
.

These reduce to certain (depending on the measure ρT ) finite products/probabilistic sums when
T is finite with the counting measure. Zeros at isolated times yield ln 0 = −∞ and therefore a
value 0 for ∀ (consistent with the convention 0 · ∞ = 0).

Alternatively, the infinitary LTN scheme provides a robust family of aggregators:

J∀τ :T F K = 1−
(∫

T

(1− φ(τ))p dρT (τ)
)1/p

, J∃τ :T F K =
(∫

T

φ(τ)p dρT (τ)
)1/p

.

For rare glitches (bad weather reported at a few time instants), these aggregators with moderate
p (or with ρT down-weighting unlikely times) avoid collapse to 0, while p→∞ recovers the
strict infimum. When a “almost everywhere” reading is desired, one may also use the essential
infimum/supremum w.r.t. ρT to ignore measure-zero anomalies.

8.2 Comparison to LDL (Logic of Differentiable Logics)
The Logic of Differentiable Logics (LDL) approach Ślusarz et al. (2023) differs from our
framework in several fundamental aspects. First, LDL incorporates comparison operators directly
into their syntax, whereas our approach treats them as part of the non-logical signature,
providing greater flexibility in language design. Second, LDL restricts their type system to Bool,
Real, Vector, and Index types, while our framework maintains a more general type-theoretic
foundation. Third, LDL’s syntax includes constructs such as lambda-terms, let-terms, repetitions
of expressions, vector constructors, and vector look-ups, which introduces complexity that our
approach avoids through a more streamlined logical structure.

While both approaches employ typed languages, LDL does not utilise an abstract signature
to achieve language generality. Furthermore, LDL lacks the algebraic structure provided by
our 2Mon-BLat framework, which endows our semantics with a clearly defined mathematical
structure while maintaining sufficient flexibility to accommodate different logical semantics (STL
as an approximation). Additionally, LDL makes the restrictive assumption that all distinct
random variables are independent, limiting its applicability to scenarios where this independence
assumption holds.

A key distinction lies in the quantification mechanisms: LDL employs variable-dependent
quantification, whereas our framework utilises sort-dependent quantification, which furthermore
reduces complexity by providing all the (sort-dependent) information necessary for quantification
by defining the interpretation function.

Finally, LDL does not require associativity of the logical operators, enabling the use of
non-associative and/or operators characteristic of Signal Temporal Logic (STL). This non-
associativity requirement constitutes another reason why STL does not naturally fit into our
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2Mon-BLat model and should instead be modelled as approximating a 2Mon-BLat structure, a
topic to be addressed in subsequent work.

Actually, it is not absolutely necessary to require associativity, as we did in Def. 2 of our 2Mon-
BLat. However unifying nearly all semantics under this algebraic umbrella and seeing STL (and
potentially others) as approximations of the 2Mon-BLat algebra, gives us a richer structure of
our semantics and reveals otherwise suppressed algebraic laws.

LDL quantifiers Recall Defs. 3 and 12 and this discussion following the latter: an aggregated
2Mon-BLat provides maps aggr∀X , aggr∃X : LX → L, where additionally, a structure on X may
be used. In LDL, the context Q maps a bound variable x:s to a random variable Q[x] on I(s)
with density pX . For a measurable g : I(s)→ R write

xmin := arg min
a∈I(s)

g(a), xmax := arg max
a∈I(s)

g(a).

For a random variable X with density pX , LDL defines in Ślusarz et al. (2023)(p. 9) (and we
adopt) the quantifier aggregations exactly as

Emin[g(X)] := lim
γ→0

∫
x∈Bxmin

γ

pX(x) g(x) dx, Emax[g(X)] := lim
γ→0

∫
x∈Bxmax

γ

pX(x) g(x) dx.

Hence we set

aggr∀I(s),Q[x](g) := Emin
[
g
(
Q[x]

)]
, aggr∃I(s),Q[x](g) := Emax

[
g
(
Q[x]

)]
.

Consequently, for any F and valuation ν, this is coherent with the definition of the quantifiers
from Table 2:

J∀x:s F Kν = aggr∀I(s),Q[x]
(
λa.JF Kν[x 7→a]

)
, J∃x:s F Kν = aggr∃I(s),Q[x]

(
λa.JF Kν[x 7→a]

)
.

Variable–dependent vs. sort–dependent quantification. In our probabilistic semantics (Sec. 7.1),
each sort s comes with a fixed measure µs and quantification integrates with respect to µs
(independent of the variable name). LDL instead equips each bound variable x:s with its own
random variable Q[x] (which has a density and may differ between variables of the same sort).
This design choice serves two purposes:

• It allows simultaneous use of different distributions on the same sort in one formula, e.g.
x:s drawn from a data distribution Q[x] and y:s drawn from an adversarial or reweighted
distribution Q[y].

• It enables contextual or conditional sampling: Q[x] can depend on the surrounding bound
context Γ or external parameters, effectively acting as a Markov kernel ρx(· | Γ).

By contrast, our sort–based variant fixes a measure µs and uses the same aggregator for every
variable x:s: for the chosen aggregation operators (product/infimum/LTN, etc.). This is much
simpler, since it avoids the complexity of managing multiple distributions for different variables
of the same sort. Moreover, it seems natural to associate the carrier sets of an interpretation with
probability distributions. However, mULLER still fulfils all 3 goals stated in Sec. 1 of Ślusarz
et al. (2023) and is even more modular and well-separated:

Prepared using sagej.cls



Romero Schellhorn and Mossakowski 33

1. mULLER formally covers a sufficient fragment of first-order logic to express key properties
in machine learning verification, such as robustness.

2. The syntax, semantics and pragmatics of mULLER are well-separated. And even more so
than in LDL, since we clearly disentangle the concepts of signature, syntax as context-free
grammar, interpretation of a NeSy framework, and Tarskian semantics of a NeSy system
in an 2Mon-BLat algebra.

3. mULLER has a unified, general syntax and semantics able to express multiple different
DLs and is modular on the choice of DL, by introducing the modularity of choosing the
monad, the truth space, and the 2Mon-BLat algebra by choosing a NeSy framework.

mULLER encoding of the LDL robustness example. Following (Ślusarz et al. 2023, Ex. 3.1),
we consider an image-classification setting where inputs are 28× 28 grayscale images flattened
to vectors in R784. Hence our input sort is Vec784 with I(Vec784) = R784. A classifier typically
outputs a vector of class scores/logits in Rm (e.g., m = 10 for MNIST). Accordingly, we take the
network as a function

f : R784 −→ Rm (m ≥ 1 fixed).
The robustness property we encode states `∞-robustness around a reference image x̂: whenever
an input x lies in the `∞-ball B∞(x̂, ε), the output f(x) must lie in the `∞-ball B∞(f(x̂), δ).
This is exactly what our predicate bounded(·, ·, ·) and the formula Φε,δ,x̂ capture below.
Regarding the first goal mentioned above, we can encode the LDL robustness example
as follows: Fix sorts Vec784, Index784, Vecm, Indexm, Real with interpretations I(Vec784) =
R784, I(Index784) = {0, . . . , 783}, I(Vecm) = Rm, I(Indexm) = {0, . . . ,m− 1}, I(Real) = R. Let
normal function symbols

at784 : Vec784 × Index784 → Real, atm : Vecm × Indexm → Real,
abs : Real→ Real, leq : Real× Real→ Ω,

be given, where at784(v, i) and atm(w, j) read components, abs is absolute value, and leq(a, b)
is the crisp predicate [a ≤ b]. Let f :Vec784 → Vecm be a computational function symbol (the
network). Define the derived predicates

bounded_in(v, u, a) := ∀i:Index784 leq
(
abs(at784(v, i)− at784(u, i)), a

)
,

bounded_out(w, z, a) := ∀j:Indexm leq
(
abs(atm(w, j)− atm(z, j)), a

)
.

For parameters ε, δ ∈ R and a fixed input x̂ ∈ R784, the LDL robustness property of f is encoded
in mULLER as the family of formulas

Φε,δ,x̂ := ∀x:Vec784

(
bounded_in(x, x̂, ε) → bounded_out

(
f(x), f(x̂), δ

))
.

Under the LDL quantifier aggregator (par. 8.2) for the bound variable x, its semantics is

JΦε,δ,x̂Kν = aggr∀I(Vec784), Q[x]
(
λa.Jbounded_in(x, x̂, ε)→ bounded_out(f(x), f(x̂), δ)Kν[x7→a]

)
= Emin

[
g(Q[x])

]
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where the semantics of g(a) := λa.Jbounded_in(x, x̂, ε)→ bounded_out(f(x), f(x̂), δ)Kν[x 7→a] is
given by the semantics of the implication operator in a certain 2Mon-BLat. In conclusion we
have modelled our example to coincide with the LDL semantics.

9 Implementation of NeSy Frameworks
We have implemented NeSy frameworks in the mULLER library, which is available at https:
//github.com/cherryfunk/mULLER. We provide implementations in Haskell and Python. The
library comes with predefined NeSy frameworks, but also allows users to define their own
frameworks, by providing a monad, a truth value space and a double monoid bounded lattice.
The library also supports the definition of interpretations. A parser transforms formulas into an
abstract syntax tree. There is a function implementing Tarskian semantics, i.e. the evaluation of
formulas in a given interpretation. The library also includes a module for NeSy transformations,
allowing users to apply transformations between different NeSy frameworks. For simplicity, we
have not implemented a sort system, which means that the implementation is untyped.31 Also,
the integration of neural networks into interpretations has not been implemented yet, but we
plan to do so in the future.

The rich Haskell type system allows us to express the semantics of NeSy frameworks in a type-
safe way. The Python implementation takes this as a role model, but less type-safe, because
Python is dynamically typed. We start with describing the Haskell implementation. We first
introduce a type class for double monoid bounded lattices. Note that for simplicity, we have not
implemented the lattice structure, because it is not used in the semantics.32

class TwoMonBLat a where
top, bot :: a
neg :: a -> a
conj, disj, implies :: a -> a -> a

Based on this, we define a type class for aggregated double monoid bounded lattices:

class TwoMonBLat a => Aggr2MonBLat s a where
-- for a structure on b and a predicate on b, aggregate truth values a
aggrE, aggrA :: s b -> (b -> a) -> a

Note that aggregation takes into account the structure of our category C of sets with structure,
represented as s b here. Usually, we use finite lists, and then aggregation is just iteration of
disjunction or conjunction:

-- the mainly used Aggr2MonBLat: no additional structure (just lists) + Booleans
instance Monad t => Aggr2MonBLat [] (t Bool) where

31In Haskell, we could use type families and heterogeneous lists to implement sorted interpretations.
32In the future, this needs to be added. LDL quantifiers use the lattice structure. Also, to use ULLER for neuro-
symbolic learning and reasoning, we need the lattice structure, because we need to be able maximise and minimise
over the truth values as described in Van Krieken et al. (2024).
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aggrE s f = foldr disj bot $ map f s
aggrA s f = foldr conj top $ map f s

For infinite aggregation, we need s b to be some (probability) measure. For example, for
implementing the Giry monad, we can use the Integrator monad Tobin (2018) from the
monad-bayes package, which represents measure spaces in a very faithful way. the Giry monad
can be defined as a submonad. Values of this monad can be constructed from values of the
Integrator monad by normalising them:

newtype Giry a = Giry { runGiry :: Integrator a }
fromIntegrator :: Integrator a -> Giry a
fromIntegrator m = Giry $ normalize $ lift m

Then, aggregation can be defined as in equation 15 and 16. Note that we need a double
integral (runIntegrator) here, because the integrand is itself an element of T Bool, and we
need to employ the isomorphism Giry Bool ∼= [0, 1] for the Giry monad.

instance Aggr2MonBLat Integrator (Giry Bool) where
aggrA meas f =

Giry $ integrator $ \meas_fun ->
exp $ runIntegrator (runIntegrator (log . meas_fun) . runGiry . f) meas

aggrE meas f =
neg (aggrA meas (neg . f))

However, the Integrator monad is not very efficient and does not provide sampling. Therefore,
we also provide an instance for the SamplerIO monad from the same package, which implements
the Giry monad using sampling. Here, using Monte Carlo integration, we can compute the
infinite aggregation up to any given precision by increasing the number of samples. Note that
first a value in the domain is sampled, then the computational predicate is applied to the value,
resulting in an element of T Bool, and finally a Boolean value is sampled from that. In the case
of universal quantification, we aggregate the sampled Boolean values using logical conjunction.
The probability of obtaining True in all cases is the product of the probabilities of obtaining
True for each case. This finite product approximates the infinite product (expressed using exp
and ln) in equation 15. A similar reasoning holds for existential quantification.

-- Expectation-style aggregation over a distribution
-- Here we approximate via Monte Carlo with no_samples samples
no_samples = 1000
aggregation :: Monad m => ([a] -> a) -> m b -> (b -> m a) -> m a
aggregation connective dist f = do

samples <- sequence (replicate no_samples dist)
vals <- mapM f samples
return (connective vals)

instance Aggr2MonBLat SamplerIO (SamplerIO Bool) where
aggrE = aggregation or
aggrA = aggregation and
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Based on this type class and the predefined type constructor class for monads, we define a
type class for NeSy frameworks, as well as various instances. The instances do not to define any
methods, because these have already been defined in the superclasses.

class (Monad t, Aggr2MonBLat s (t omega)) => NeSyFramework t s omega
-- Classical instance using identity monad, Omega is Bool
instance NeSyFramework Identity [] Bool
-- Distribution instance, Omega is Bool
instance Num prob => NeSyFramework (Dist.T prob) [] Bool
-- Non-empty powerset instance (non-determinism)
instance NeSyFramework SM.Set [] Bool
-- Giry monad instance, using SamplerIO for both aggregation and the monad
instance NeSyFramework SamplerIO SamplerIO Bool
-- Giry monad instance, using Integrator for aggregation and Giry for the monad
instance NeSyFramework Giry Integrator Bool

Next, we show the type definition for NeSy interpretations, which is parameterised by the
monad t, the structure s of the category C, the truth value space omega and a type a for the
universe of discourse.

data Interpretation t s omega a =
Interpretation { universe :: s a,

funcs :: Map.Map Ident ([a] -> a),
mFuncs :: Map.Map Ident ([a] -> t a),
preds :: Map.Map Ident ([a] -> omega),
mpreds :: Map.Map Ident ([a] -> t omega) }

We refrain from showing the same number of details of the Python implementation here, because
it is much more verbose than the Haskell implementation. The Python implementation follows a
structure similar to that of the Haskell implementation, but uses Python’s dynamic typing and
built-in data structures, building on the pymonad package. Here is the Python code snippet for
the NeSy framework type class:

class NeSyFramework[_T: ParametrizedMonad, _O, _R: Aggr2MonBLat]:
"""
Class to represent a monadic NeSy framework consisting of a monad (T),
a set Omega acting as truth basis (O),
and an aggregated double monoid bounded lattice (R).
This class ensures the following runtime constraint which is not
representable in Pythons type system:
- _R: Aggr2MonBLat[_T[_O]]
"""
_monad: Type[_T]
_logic: _R
...
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As in the case of Haskell, also for Python, we provide two versions of the Giry monad, one
based on integration and one based on sampling. Again, the integration version is more faithful
to the mathematical definition of the Giry monad, but the sampling version is more efficient.
The sampling version is based on the numpy library. An idea for a more abstract version would
be to use the PyMC library, such that Bayesian inference becomes possible. However, a principal
problem arises. For PyMC, only an internal monad can be defined, providing monadic lifting for
functions depending on TensorVariables. However, in order to obtain a monad in Python, we
would need to lift functions depending on normal Python variables. This is a topic for future
work.

Once the code base of the original ULLER paper Van Krieken et al. (2024) is available, our code
base could be used to enhance the ULLER implementation with our modular abstractions.

10 Conclusion
The ULLER language Van Krieken et al. (2024) aims at a unifying foundation for neurosymbolic
systems. In this paper, we have developed a new semantics for ULLER, based on Moggi’s
formalisation of computational effects as monads. In contrast to the original semantics, our
semantics is truly modular. It is based on a notion of NeSy framework that provides the
structure of the computational effects and the space of truth values. This modularity will enable
a cleaner, more modular implementation of ULLER in Python and an easier integration of
new frameworks, as well as a structured method of translating between different frameworks.
First implementations of our mULLER framework are available in Python and Haskell, see
https://github.com/cherryfunk/mULLER. Note that the distributional and probabilistic NeSy
frameworks will make parameterized interpretations in the sense of Van Krieken et al. (2024)
differentiable and that this can be integrated by using a category of differentiable manifolds and
functions.

Our work suggests an analogy between ULLER’s formulas [x := m(T1, . . . , Tn)]F and Haskell’s
do-notation do x← m(T1, . . . , Tn);F for computational effects. Inspired by this analogy, one
could extend ULLER to a language with computational terms and formulas that may be nested.
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A Brief Introduction to Category Theory
We recall some basic notions of category theory. See Spivak (2014) for an introduction with a
focus on application in database theory, Awodey (2010) for a logical and type-theoretic overview,
and Mac Lane (1978) as a general reference.
Definition 19. A Category C consists of

• a class |C| of objects,

• for any two objects A,B ∈ |C| a set C(A,B) of morphisms from A to B. f ∈ C(A,B) is
written as f : A→ B (not necessarily a function),

• for any object A ∈ |C| an identity morphism idA ∈ C(A,A), i.e. idA : A→ A,

• for any A,B,C ∈ |C| a composition operation ◦ : C(B,C)×C(A,B)→ C(A,C), i.e. for
f : A→ B, g : B → C, we have g ◦ f : A→ C,

such that

• identities are neutral elements for composition, i.e. f ◦ idA = f = idB ◦ f , and

• composition is associative, i.e. (f ◦ g) ◦ h = f ◦ (g ◦ h).

Examples of categories are:

• Set: Sets and functions.

– |Set| = {M |M is a set}
– Set(A,B) = {f | f : A→ B is a function}
– Compositions and identities of functions.

• Meas: measurable spaces and measurable functions.33

33More details at https://ncatlab.org/nlab/show/measurable+space.
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– |Meas| = {(X,ΣX) | ΣX is a σ-algebra on X}
– Meas((X,ΣX), (Y,ΣY )) = {f : X → Y | f−1(B) ∈ ΣX for all B ∈ ΣY }
– Compositions and identities of measurable functions.

• Measr: measure spaces and measure preserving functions.34

– |Measr| = {(X,ΣX , µX) | µX is a measure on (ΣX , X)}
– Measr((X,ΣX , µX), (Y,ΣY , µY )) = {f : X → Y | f is measure preserving}
– Compositions and identities of measure preserving functions.

• Prob: probability spaces and measure preserving functions.35

– |Prob| = {(X,ΣX , ρX) | ρX is a probability measure on (ΣX , X)}
– Prob((X,ΣX , ρX), (Y,ΣY , ρY )) = {f : X → Y | f is measure preserving}
– Compositions and identities of measure preserving functions.

Commutative diagrams are often used to visualise equalities between (compositions of)
morphisms in categories. For example, the following diagram shows the composition of
morphisms f : A→ B and g : B → C:

A

B

C

f g

g ◦ f

Definition 20. An object 1 ∈ |C| is called terminal, if for each A ∈ |C| there exists a unique
morphism !A : A→ 1C.
Examples of terminal objects in Set are all singleton sets.

Definition 21. Products. Let C be a category and let A,B be objects in C. A product of A
and B is an object A×B together with two morphisms (called projections) πA : A×B → A and
πB : A×B → B such that for any object X with morphisms f : X → A and g : X → B, there
exists a unique morphism u : X → A×B such that πA ◦ u = f and πB ◦ u = g. This unique u
is noted as 〈f, g〉 and is called the pairing of f and g.
This universal property can be depicted by the following commutative diagram:

X

A A×B B

u=〈f,g〉

gf

πA πB

This easily generalises to products of finitely many objects. A category having a terminal
object and binary products is called Cartesian category.

34More details at https://ncatlab.org/nlab/show/measure+space.
35More details at https://ncatlab.org/nlab/show/Prob.
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