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Abstract
In this study, we propose Neuro-LENS, a Neuro-Symbolic Evidence-based Logic and
Symbolic Reasoning framework, that combines incomplete symbolic knowledge with
neural learning to address ambiguity and improve the accuracy and interpretability
of the results. We explore three strategies for integrating symbolic reasoning with
deep learning and evaluate their effectiveness in practical settings: (i) applying the
symbolic component to the neural output; (ii) generating additional neural input
features through symbolic rules; (iii) creating an ensemble reasoning model. The
potential of the proposed Neuro-LENS framework is demonstrated through real-world
use cases, specifically image scene classification with abandoned object detection
and prognostic health monitoring with vehicle failure prediction.
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Introduction
Deep learning has achieved remarkable results in perception-driven tasks such as image
recognition, natural language processing, and fault detection in industrial systems.
However, deep learning methods still suffer from the lack of robustness, interpretability,
and the difficulty of directly incorporating structured background knowledge [Mar18].
Symbolic logic, on the other hand, is apt for representing structured thought and
explainable reasoning, although it struggles with scalability and perception tasks. This
long-standing trade-off has motivated the development of neuro-symbolic integration,
which aims to unify the learning capacity of neural networks with the structured
reasoning power of symbolic systems [Bes+17].

Injecting reasoning abilities in artificial intelligence remains one of the central
challenges in the field, as it would allow to enhance generalization and adaptability and
produce explainable AI models which can perform logical inference, make decisions
based on knowledge, and tackle structured problem solving [LWT25; BL04]. This
hybrid approach has shown advantages over purely symbolic or purely neural systems,
especially in real-world settings with noisy, unstructured data, as its flexibility makes it
robust and well-suited for real-world AI applications [Bes+17].

Specifically in real-world industrial applications, neuro-symbolic approaches can help
when dealing with noisy data and incomplete background knowledge. Traditionally,
probabilistic models, such as Bayesian networks and Markov decision processes, are used
to capture uncertainty and randomness in reasoning processes, while logic-based systems
are exploited to model high-level reasoning and decision making. Evidence theory
provides a bridge between the two paradigms, allowing to achieve high-level reasoning
while dealing with uncertainty and incomplete knowledge, making its combination with
deep learning approaches suited for real-world use cases.

In the current study, we propose a neuro-symbolic framework, Neuro-LENS (modal
Logic and EvideNce-based Symbolic reasoning), based on evidence fusion, which
integrates incomplete symbolic knowledge with neural learning in order to improve
both accuracy and interpretability of the obtained results. Three strategies for integrating
symbolic reasoning with deep learning in practical settings are explored:

(i) Symbolic reasoning on neural outputs: Applying symbolic rules to attributes
extracted by neural networks to perform classification tasks;

(ii) Feature augmentation via symbolic rules: Using symbolic reasoning to create
new features that extend the neural input space, enabling more robust predictions
and the integration of background knowledge/context;

(iii) Neuro-symbolic ensembles: Combining decision rules derived from both neural
and symbolic components into a hybrid, rule-based classifier, providing improved
interpretability.

This work builds upon and develops further the methodology presented in [MBT25].
In the latter, a novel neuro-symbolic approach was introduced, integrating modal logic,
evidence theory, and deep learning, for the purpose of reasoning and decision making
under ambiguity. The potential of the proposed hybrid method was validated on a
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real-world use case, more concretely, on image scene classification for surveillance
applications. In the current study, besides further enhancement and refinement of the
theoretical framework, two new additional alternative mechanisms for the integration of
modal logic, evidence theory, and deep learning are also considered. Further, the aim of
the current work is to demonstrate that the applicability of the proposed neuro-symbolic
approach is not limited to image data scenarios and can be generalized to completely
different use cases dealing with data types of very different nature, e.g., specification
records or time series sensor measurements.

Our neuro-symbolic framework, Neuro-LENS, is intended to advance the broader
goal of neuro-symbolic AI: building intelligent systems that can learn from data while
reasoning with structured knowledge in uncertain and dynamic environments [Fen+25].

The current work makes the following additional contribution with respect to the paper
[MBT25], which it extends:

• The approach presented in the original paper is inserted within a framework
integrating deep learning and symbolic reasoning

• The theoretical background of the presented approach is extended
• Two new strategies for the integration of a neural and a symbolic component are

introduced
• A completely new use case is studied for the validation of the two novel strategies

Background

Multi-valued mapping
In this section, we introduce some basic concepts from the theory of multi-valued
mappings [AF90; Ber77]. A multivalued mapping F from a universe X into a universe
Y associates to each element x of X a subset F(x) of Y . The domain of F , denoted
dom(F), is defined as

dom(F) = {x | x ∈ X ∧ F(x) ̸= ∅}.

F is called non-void if (∀x ∈ X)(F(x) ̸= ∅), i.e., if dom(F) = X .
Consider a subset A of X and a subset B of Y . The following direct and inverse images

can be defined under multi-valued mapping F :

(i) The direct image of A under F is the subset F(A) of Y , defined as

F(A) =
⋃
x∈A

F(x).

(ii) The inverse image of B under F is the subset F−(B) of X , defined as

F−(B) = {x | x ∈ X ∧ F(x) ∩B ̸= ∅}. (1)

(iii) The superinverse image of B under F is the subset F+(B) of X , defined as

F+(B) = {x | x ∈ dom(F) ∧ F(x) ⊆ B}. (2)
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(iv) The subinverse image of B under F is the subset F∼(B) of X , defined as

F∼(B) = {x | x ∈ X ∧ B ⊆ F(x)}.

(v) The pure inverse image of B under F is the subset F−1(B) of X , defined as

F−1(B) = {x | x ∈ X ∧ F(x) = B}.

A visualization of the inverse and superinverse images, used in this work, is shown in
Fig. 1.

Figure 1. A visual illustration of inverse F−(B) (left) and superinverse F+(B) (right) images
of a set B under a multi-valued mapping F from a set X into a set Y , which associates to
each element x of X a subset F (x) of Y . The figure is adapted from [MBT25].

Evidence measures
Evidence theory, also known as Dempster-Shafer theory, was initiated by Dempster with
his study of upper and lower probabilities [Dem08]. He showed that if P is a probability
measure on P(X), then a multi-valued mapping F from X into Y induces upper P ∗ and
lower P∗ probabilities on P(Y ), as follows:

P ∗(B) = P (F−(B) | dom(F))
P∗(B) = P (F+(B) | dom(F)).

(3)

It is clear that P ∗ and P∗ are only well defined if P (dom(F)) > 0. Note that P ∗ and P∗
are dual, i.e., P ∗(B) = 1− P∗(coB).

Shafer reinterpreted upper and lower probabilities as degrees of plausibility Pl and
belief Bel, abandoning Dempster’s idea that they emerge as upper and lower bounds
of Bayesian probabilities [Sha76]. Furthermore, in case of a finite universe Y , Shafer
introduced the concepts of a basic probability assignment and its focal elements.
Formally, a P(Y ) → [0, 1] mapping m is called a basic probability assignment on P(Y )
if m(∅) = 0 and ∑

B∈P(Y )

m(B) = 1.
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A subset F of Y for which m(F ) > 0 is called a focal element of m. The belief Bel
and plausibility Pl measures can be defined in terms of basic probability assignment as
follows:

Bel(B) =
∑
C⊆B

m(C) Pl(B) =
∑

C∩B ̸=∅

m(C),

where, the corresponding basic probability assignment m is given by [Dem67]:

m(B) = P (F−1(B) | dom(F)). (4)

Modal logic
Modal logic is an extension of classical propositional logic. It has been developed to
formalize arguments that involve the notions of necessity and possibility [Che80]. These
notions are often expressed using the concept of possible worlds: necessary propositions
are those that are true in all possible worlds, whereas possible propositions are those that
are true in at least one possible world. Possible worlds are abstract concepts, and it is
difficult to provide a precise definition of them. Intuitively, however, we can view them
as possible states of affairs, situations or scenarios.

The language of modal logic consists of a set of atomic propositions, logical
connectives ¬, ∧ , ∨ ,→,↔, and modal operators of possibility 3 and necessity 2.
The propositions of the language can be the atomic propositions, and if p and q are
propositions, then are so ¬p, p ∧ q, p ∨ q, p → q, p ↔ q, 2p, 3p.

The interpretations of the Dempster-Shafer theory [TBD99; TBB00] used in this study
are based on the semantics of modal logic using the concept of a standard model. A
standard model of modal logic is a triplet M = ⟨W,R, V ⟩, where W denotes a set of
possible worlds, R is a binary relation on W called accessibility relation, and V is the
value assignment function by which truth T or falsity F of each atomic proposition p in
each world w is assigned. A proposition p may have different truth-values in different
worlds. Therefore V assigns the truth-values not to proposition constants alone, but to
pairs consisting of a possible world and a proposition constant, i.e., the value V (w, p) is
to be thought of as the truth-value of p in w. The value assignment function is inductively
extended to all propositions in the usual way. The extension to possibilitations, i.e.,
propositions of the type 3p, and necessitations, i.e., propositions of the type 2p, are
defined for any proposition p and any world w ∈ W as follows:

V (w,3p) = T ⇔ (∃v ∈ W )(wRv ∧ V (v, p) = T )

V (w,2p) = T ⇔ (∀v ∈ W )(wRv ⇒ V (v, p) = T ).

Modal logic interpretations of evidence measures
Dempster-Shafer theory is closely related to the theory of multi-valued mappings as
discussed above. In several studies [BTB98; TBB00; TBD99], set-valued interpretations
of plausibility and belief measures in modal logic have been proposed. The authors
consider a model M = ⟨W,R, V, P ⟩, where P is a probability measure on P(W ).
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Furthermore, the propositions have the form eA =“a given incompletely characterized
element ϵ is classified in set A”, where ϵ ∈ X and A ∈ P(X). As atomic propositions,
they consider the propositions e{x}, for all x ∈ X . In addition, it is assumed that exactly
one e{x} is true in each world. This implies that eX and also eA ↔ ¬ecoA are always
true in M . In this context it is shown that a plausibility measure and a belief measure
can be expressed in terms of conditional probabilities of truth sets of possibilities and
necessities, i.e.

Pl(A) = P (∥3eA∥M | ∥3eX∥M )
Bel(A) = P (∥2eA∥M | ∥3eX∥M ).

Related work
Neuro-symbolic approaches in literature have been leveraged to obtain interpretable
systems that are robust to uncertainty while still being accurate. The integration
of symbolic components alleviates the downsides of deep learning-based methods,
improving their performance on reasoning tasks and providing them with explainability.

On image data, deep learning approaches have dominated the literature. However,
recent advancements have shown the potential of neuro-symbolic methods in various
applications, even outperforming traditional neural models in tasks like question
answering and image classification [Fit25].

Neuro-symbolic approaches have shown great value specifically in safety-critical
fields such as surveillance, medical imaging, or autonomous systems, where reasoning is
paramount. In [Lu+25], Logical Neural Networks (LNNs) are used to combine learnable
parameters with logical operators. The networks incorporate first-order logic and is able
to learn rule thresholds and weight from the training data.

In [Wan+23], the issue of lack of annotated image data is tackled. The work combines
a pre-trained computer vision model which extracts features from the unlabeled images,
and an inductive logic learner module inferring logic-based rules that can be exploited
for the annotation. A human in the loop is queried to confirm the labeling of uncertain
samples and to improve the derived logic-based rules. The study delivers promising
results, but the reached accuracy is not yet on par with the labeling of human experts,
on which it still relies for feedback in the active learning portion of the method pipeline.

Evidence theory is usually leveraged in the symbolic component of integrated systems
to deal with uncertainty in the data. In [Zha+23], it is used to re-label the training set,
assigning ambiguous images to a meta-category, i.e., a subset of all possible categories,
by selecting the meta-category with the highest degree of belief for each selected image.
Ambiguous images are defined as samples showing features of multiple classes. The
model is re-trained on the dataset updated with meta-categories, so that the model can
learn without overfitting to incorrect labels or misclassified examples.

The application of neuro-symbolic approaches to time series is also a challenging
task that is being extensively researched. Time-series data are central to applications
ranging from finance and healthcare to manufacturing, autonomous driving, and
traffic management. In safety critical domains such as medicine and public security,
interpretability in models is fundamental and only trustworthy approaches are likely to be
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adopted. Thus, black-box deep learning models need to be enhanced with explainability
features. Post-hoc methods such as SHAP ([LL17]) can provide an explanation of the
model’s output based on the input features that were most influential in a prediction, but
do not really aid in understanding the underlying model mechanism.

Neuro-symbolic frameworks can reach intrinsic interpretability while balancing an
accuracy trade-off in the final results. Neuro-symbolic rule-based approaches, such
as [Wan+25], have been investigated in this regard. In [Wan+25], a model called
TemporalRule is proposed to automatically learn Signal Temporal Logic rules for
interpretable time series classification. The work aims at solving the discrepancy between
discrete logical rules and continuous neural networks, which might make generated
logical rules inconsistent with the decision process that needs to be carried out, while
having an approach that takes the temporal properties of the data into account. Here, the
input time series is represented in three views: raw data, frequency-domain features, and
derivative (rate of change between subsequent points), each capturing different temporal
properties. After having been binarized, the inputs are passed to a Temporal Logical
Layer, where temporal operators (Always, Eventually, Until, and their combinations) are
simulated using small neural networks. A Logical Layer combines temporal predicates
using logical connectives (AND/OR), and a final Linear Layer assigns weights to the
learned rules and generates the classification output. So far, the method has only been
tested on univariate time series.

Dhont et al. ([DMT25]), again put an emphasis on interpretability, employing a hybrid
modelling framework for traffic dynamics forecast in terms of humanly interpretable
traffic states. The work proposes three different workflows: a purely neural approach
leveraging CNNs or RNNs, a neural-to-symbolic one where a deep learning model
predicts current traffic state probabilities, which are then fed into Markov chains for the
forecast, and a symbolic-to-neural one, where the raw signals are predicted into traffic
state sequences, which form the input for a deep neural predictor performing the forecast.
The purely neural model achieved the highest accuracy; the neuro-symbolic models,
while performing slightly worse in accuracy, provide interpretability, computational
efficiency, and easier adaptability. In addition to [Wan+25], the workflows are applied
to multi-variate time series. The sequential nature of the proposed neuro-symbolic
approaches makes them subject to a possibly compounding error; in the symbolic-to-
neural models in particular, the final performance is highly dependent on the quality of
the initial state detection step.

Hogea et al. ([Hog+24]) integrated logical rules into recurrent neural networks to
improve interpretability and accuracy in fault diagnosis of gearboxes. The authors
introduced LogicLSTM, which adds an Explainability Layer and a Logic Tensor Network
(LTN) on top of a pre-trained LSTM model. The Explainability Layer reweights the
features based on feature importance, forcing the model to focus more on signals which
are relevant for the task; in the LT, logical rules derived from domain knowledge are
introduced, and the network is further trained to maximize both predictive accuracy
and logical consistency with the provided constraints. The method is best suited
for scenarios where there is prior knowledge about the relationship between classes
or numerical values. LogicLSTM performed better than the presented purely neural
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baselines, confirming the effectiveness of the addition of symbolic constraints to enhance
model robustness in noisy environments. However, the method’s performance is critically
impacted by the number of available samples within each considered sequence of data;
moreover, manual intervention seems to be required to define the leveraged logical rules.

Method: Neuro-LENS Framework
In this section, we provide a detailed explanation of the two main components (symbolic
and neural) of our neural-symbolic approach, Neuro-LENS, which was initially proposed
in [MBT25]. We also explain how these components can be integrated into a neuro-
symbolic learning framework to tackle different use case scenarios.

Neural-symbolic systems are characterized by modularity and hierarchical
organization. Modularity relates to the construction of a neural-symbolic network as
an ensemble of neural networks. As stated in [Bes+17], modularity greatly contributes
to the comprehensibility and maintenance of a framework, as it allows to work with
relatively simple components which are combined into an expressive method. Moreover,
each module can be modified or substituted on a use case basis, depending on the type of
data and task configuration, resulting in greater flexibility and generalization potential.
Hierarchical organization means that each subsequent network level uses the output of
the preceding level as input, thus increasing the abstraction level of the model [GLG09].

The proposed Neuro-LENS approach is also characterized by modularity, achieved
through the combination of neural and symbolic modules. Hierarchical organization
can also be considered in terms of how the two components (neural and symbolic) are
integrated. The two components are discussed in Sections ?? and .

Three different variations of the hierarchical organization of the two modules are
proposed. The first strategy was first presented in [MBT25]. The two additional
alternative strategies presented in the current study are novel extensions of [MBT25].
A high-level schematics of the three approaches can be seen in Fig. 2

Symbolic component
The symbolic component exploits modal logic and evidence theory in order to extract
measures to quantify the uncertainty embedded in the raw data itself or in the available
background knowledge. In brief, binary attributes of the considered samples are extracted
to construct logical constraints that need to be satisfied by a sample to belong to a certain
class, with a degree of uncertainty specified by its plausibility and belief measures. These
measures can be used as such or combined into a single score, leveraged directly for
interpretable classification, or fed to a neural network for further processing. A schematic
view of the steps followed within this component can be seen in Fig. 3.

More concretely, in this component, multi-valued interpretations of upper and lower
probabilities in modal logic are employed in order to reason within ambiguous scenarios.
Consider a set of entities (objects) Y described by a set of attributes (properties) X .
Each entity may have multiple properties, and a property may be associated with multiple
entities. In addition, the entities in Y are distributed across c different categories (classes),
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Figure 2. Three strategies for integrating neural and evidence-based (symbolic) components:
(i) The neural component extracts attributes for use by the symbolic component; (ii) The
symbolic component generates additional input features for the neural component; (iii) Both
the symbolic and the neural components are used to extract inputs for a rule-based classifier.

Figure 3. The symbolic component calculation pipeline.

i.e., Y =
⋃c

i=1 Yi, where Yi ⊂ Y and Yi ∩ Yj = ∅, for i ̸= j. In this scenario, our aim
is to interpret each class in terms of its associated properties in such a way as to enable
automatic recognition of the most probable class of a new, unseen entity described by its
properties.

In the above context, we can define a multi-valued mapping F from the set of
properties X to the set of entities Y . This mapping associates each property x ∈ X with
a set of entities F(x) ⊆ Y that possess it. The properties are defined as binary attributes
that an entity can satisfy or cannot satisfy.

In the general case of multi-class classification, the mapping F is exploited to
characterize each class Yi, for i = 1, 2, . . . , c, in terms of its possibility and necessity
conditions, by constructing inverse and superinverse images of the class as defined in (1)
and (2). Formally, the necessity and possibility conditions referring to class Yi can be
described by the following two expressions:
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2Yi =
∨

xj∈F+(Yi)

xj and 3Yi =
∨

xj∈F−(Yi)

xj . (5)

Intuitively, a property xj contributes to the possibility condition of a class Yi, if at
least one entity in its direct image F(xj) satisfies this property of class Yi. Similarly,
a property xj contributes to the necessity condition of class Yi if all entities in its direct
image under the function F satisfy this property of class Yi. This reasoning is repeated
for all defined properties and the final possibility and necessity conditions for class Yi

are defined as the disjunction of all single properties contributing to each of them.
The inferred possibility and necessity conditions of the classes defined in (5) can be

used to reason about, and eventually predict, the most probable class of unseen entities,
based on their properties.

In addition, we can compute the plausibility and belief that each new unseen entity
belongs to each class Yi, for i = 1, 2, . . . , c. The plausibility (Pli) and belief (Beli) that
an entity presented by a set of properties Xj belongs to class Yi are computed as the ratio
of instances that satisfy the possibility and necessity conditions of the class, as follows:

Pli(Xj) = | 3Yi(Xj) | / | 3Yi | and Beli(Xj) = | 2Yi(Xj) | / | 2Yi |. (6)

The calculated plausibility and belief values can be used to extend the feature set in the
proposed integration strategy (ii) discussed in Section .

These values can also be combined to calculate a single score for each entity-class pair.
Namely, a scoring function S can be defined which combines the plausibility and belief
measures for all classes, producing a value in the interval [0, 1] that can be interpreted as
the likelihood of an entity Xj to belong to a certain class.

Two alternative approaches for constructing S are proposed in [MBT25], see (7)
and (8) below, where they are applied to a binary classification task. Specifically,
the calculated beliefs and plausibilities for a given entity Xj with respect to two
classes, positive (+) and negative (−), can form two intervals, [Bel+(Xj), Pl+(Xj)]
and [Bel−(Xj),Pl−(Xj)]. The width of these intervals is correlated with the uncertainty
associated with Xj . Inspired by the work of [BD04], S can be based on the degree to
which the two intervals overlap.

S(Xj) =


1 if Bel+(Xj) ≥ Pl−(Xj)

0 if Bel−(Xj) ≥ Pl+(Xj)

Pl+(Xj)−Bel−(Xj)(
Pl+(Xj)−Bel−(Xj)

)
+
(
Pl−(Xj)−Bel+(Xj)

) otherwise .

(7)

Alternatively, S can defined as ratio of available evidence supporting the positive class:

S(Xj) =
Pl+(Xj) + Bel+(Xj)(

Pl+(Xj) + Bel+(Xj)
)
+
(
Pl−(Xj) + Bel−(Xj)

) . (8)

The definition of the scoring function of (8) is used in the new applications presented in
the current paper.
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Neural component
The symbolic component, which is based on modal logic interpretations of evidence
theory, can be combined with a deep learning model following one of the integration
strategies depicted in Fig. 1. The neural paradigm to be used needs to be selected based
on the type of data to be processed, the scope, and requirements of the considered use
case. Pre-trained, off-the-shelves models or customized models can be employed.

The first integration strategy (see Section ?? and [MBT25] for more details), employs
the neural component to extract attributes from the raw data. The strategy was validated
on image data, for the purpose of abandoned object detection. Subsequently, the chosen
neural components are: 1) a pre-trained OneFormer model [Jai+23], returning the classes
of the detected objects together with the coordinates of the bounding boxes indicating
where each object can be found in the image; 2) the Depth Anything V2 model [Yan+24],
used to estimate the depth of the detected objects.

In the second integration strategy, the neural component is used to process the raw
data and at the same time is fed with the output of the symbolic component, containing
information about the available partial background knowledge. Again, the specific neural
model can be chosen based on the data type and use case at hand, as the approaches are
made to be modular. As the use case presented in the current paper deals with time series
data, a Long Short-Term Memory (LSTM) network is used, able to effectively learn long-
term dependencies in sequential data.

The third integration strategy leverages both symbolic and neural components to
extract features on which a rule-based classifier will pose constraints to obtain the final
results. In the presented use case, again the deep learning model is applied to time
series data. Thus, an autoencoder LSTM is applied to the data, in order to obtain a
reconstruction error for each sample, indicating how anomalous the recorded sensor
data are at each given point in time. In our specific application, this also allows to
overcome the discrepancy between the discrete labels provided in the ground truth, and
the continuous nature of the observed phenomenon.

Neuro-LENS: Neuro-symbolic integration
In the current section, we discuss the different ways in which background knowledge can
be expressed in an evidence-based language and integrated into a neural / deep learning
(DL) component to improve model performance. The proposed Neuro-LENS framework
considers three different ways of combining the two components (symbolic and neural)
as described in the foregoing subsection and further formalized below:

(i) Neural-to-symbolic chaining: Applying the symbolic component to the neural
output. This approach is relevant when the type of data available cannot be
immediately used by the symbolic component as such (e.g., images), and needs
to be transformed into a suitable representation first. The neural component can be
used for this purpose. Practically, the two components are chained one after the
other. A DL model suited for the use case in question is initially applied to the raw
data, with the aim of extracting features that can be used as input for the symbolic
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model described in Subsection . The symbolic model produces both logical rule
and a score, that can be used to perform either rule- or score-based classification,
as demonstrated in [MBT25].

(ii) Symbolic-to-neural chaining: Generating additional neural input features through
symbolic rules. This strategy is valuable when the use case requires the integration
of information coming from different types of data, e.g., time series sensor
measurements complemented with some background knowledge as configuration
specifications or log events. In a real-world industrial setting, background
knowledge datasets contain very relevant information about the phenomenon of
interest, but unfortunately their actual usage is often compromised by the difficulty
of integration or by the high degree of ambiguity typically present in such datasets.
Our symbolic model, being based on the interpretation of evidence theory in modal
logic, can be of use for the integration, while efficiently dealing with uncertainty
and ambiguity. Here, the symbolic component is initially applied to background
knowledge datasets in order to derive relevant features, which can be subsequently
used to enhance the already existing features to be fed to a suitable DL model for
training. Our validation study on the Scania use case supported the potential of this
integration scheme.

(iii) Parallel symbolic-neural integration: Creating an ensemble reasoning model. In
this integration scheme, both components extract features from the data in parallel.
The features are subsequently used to construct decision rules. This allows to
handle the different data types in a differential fashion by employing the most
suitable modeling paradigm, to obtain a composite model which still benefits from
the interpretability of the symbolic component.

Experiments and evaluation
In our experiments, we have used real-world datasets to simulate two use case scenarios:
image scene classification with abandoned object detection, and prognostic health
monitoring with vehicle failure prediction.

Datasets
Image scene classification use case
The first integration strategy, presented in [MBT25] and evaluated on image data, is
validated on the datasets PETS2006 and AVS2007, both containing videos depicting
abandoned luggage scenarios.

The PETS2006 dataset contains videos with multi-sensor sequences depicting scenes
of a luggage being abandoned inside a train station. Static frames are extracted from the
videos in order to apply the proposed approach. Ground truth is not available, neither
for the object detection task or the abandoned bag scene classification task. Labels
indicating whether the represented scene contains an abandoned bag have been manually
identified and created. The dataset consists of 1325 images, of which 95% do not depict
an abandoned object, while in the remaining 5% an abandoned bag can be detected.
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The AVS2007 dataset (Advanced Video and Signal Based Surveillance) provides
benchmark datasets for testing and evaluating detection and tracking algorithms. The
i-LIDS bag subset of AVS2007 is considered, as it consists of abandoned luggage
scenarios. The dataset comprises of 161 images, 14% of which shows an abandoned
object. Again, labels indicating whether an abandoned bag is present in the image have
been manually added to the data.

Truck failure prediction use case
The remaining two integration strategies are applied on time series data and validated on
the Scania dataset [Kha+25]. The Scania dataset is a real-world, multivariate dataset of
time series collected from a single engine component across a fleet of SCANIA trucks.
All data is anonymized. The dataset contains: operational data collected by onboard
sensors; repair records, which include information about maintenance, repairs, and
servicing performed on the vehicles; specifications of the analyzed component, collected
with the production system, such as engine type, weight capacities, dimensions, and other
technical details. The operational data are stored as multi-variate time series where the
time steps are chronologically sequential but do not have a specified duration, and the
amount of time they encompass can vary from one truck to another. In the data collection
process, 14 attributes were selected and anonymized. The variables are organized into
single numerical counters and histograms with several bins, each bin representing certain
conditions linked to the values observed within the measured features. The dataset is
highly unbalanced, as most featured trucks do not experience a fault. The table below
shows the percentage of trucks that did or did not require maintenance in the training,
validation, and test set. The high imbalance of the set constitutes a challenge when
training a model on the data.

Dataset Healthy trucks (%) Faulty trucks (%)
Train set 90.4 9.6

Validation set 97.3 2.7
Test set 97.2 2.8

Table 1. Percentage of healthy and faulty trucks.

The measures taken to anonymize the dataset make working with the data cumbersome
at times, a challenge that is added to the high unbalance between failing and non-failing
trucks, and to the intrinsic complexity and uncertainty present in all real-world data
from industrial contexts. A schematic example of the characterization of a truck with
anonymized specifications and categories is shown in Fig. 4.

The class labels provided for the dataset distinguish 5 classes, depending on how much
time is left until failure:

• Class 0: more than 48 hours left until failure
• Class 1: between 48 and 24 hours until failure
• Class 2: between 24 and 12 hours until failure
• Class 3: between 12 and 6 hours until failure
• Class 4: less than 6 hours until failure
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Figure 4. Specifications characterizing a single vehicle.

Below, the distribution of the last readouts of the trucks in the training set is shown.
Again, the the dataset appears to be highly imbalanced.

Figure 5. Distribution among classes of the last readouts of the trucks in the training set.

Image scene classification: Neural-to-symbolic chaining
The current section describes the application of a framework exploiting the neural-
symbolic chaining strategy, which was evaluated on the two presented image datasets,
in the context of an abandoned luggage detection use case [MBT25]. We consider a
binary image scene classification task, aimed at understanding whether a frame taken
from surveillance videos contains an abandoned luggage. Thus, a set of positively-
and negatively-labeled images is given, representing, respectively, images in which an
abandoned luggage is not depicted, or images in which it is. The proposed framework
first characterizes the two classes by extracting attributes (also called instances in the
cited paper) through the neural component; then, the symbolic component builds a
classification model by learning a mapping from the extracted attributes to the set of
possible labels. The process can be summarized in three stages, as seen in Fig. 6:

1. The given set of labeled images is initially fed to an object detection and a depth
estimation models, both pre-trained; this constitutes the neural component. The
object detection model returns the classes and bounding boxes of the objects of
interest that were detected in the images; the depth estimation model provides a
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pixel-wise measure for the depth of the object in the images. From these outputs,
we can derive attributes meaningful for the use case at hand, which characterize
the input images and form a set of instances.

2. A multi-valued mapping between the set of instances and the images to be
categorized is constructed, by associating each instance with the set of images
in which it appears.

3. Each class is described in terms of its necessity and possibility conditions or its
plausibility and belief values, computed through the multi-valued mapping. To
exemplify, the necessity conditions for the positive class describe the attributes an
image has when it depicts a scene necessarily containing an abandoned luggage.
The possibility conditions for the positive class specify the attributes an image has
if it depicts a scene possibly containing an abandoned luggage. The plausibility
and belief measures are computed as indicated in (6). Necessity and possibility
conditions are exploited to define decision rules in a rule-base classifier, while
plausibility and belief are used to construct a scoring function and perform a score-
based classification.

Figure 6. A schematic illustration of the first integration strategy as applied for image scene
classification.

A schematic illustration of the strategy workflow is provided in Fig. 6. More
concretely, in the first phase of the framework, the neural component is applied to the
raw input data (images). Within this component, two pre-trained DL models are used to
detect the objects of interest (in this case, people and bags) and obtain an estimation of
their depth in the image. A pre-trained OneFormer model [Jai+23] returns the classes
all objects detected in each image, together with the coordinates of the bounding boxes
indicating the location of each object; a pre-trained Depth Anything V2 model [Yan+24]
then estimates the depth of each pixel in the image, allowing to more accurately place
objects in a 2D image. Fig. 7 shows the output of the two deep learning models on an
example image.

The outputs of the neural components are used to derive attributes characterizing
the images in a meaningful manner for the use case of abandoned luggage detection.
Information about the people and luggage depicted in the image and the relationship
between them need to be extracted to be fed to the symbolic component for reasoning.
The overlap between bounding boxes and the distance between a bag and the person
closest to it are computed. Here, the distance between two objects is intended as the
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Figure 7. Example of object detection (left) and depth estimation (right) results, taken from
[MBT25]

Figure 8. Overlap types and distance calculation for a selected bag, taken from [MBT25]
.

distance between the centers of their bounding boxes while considering the estimated
depth of each object, i.e., a 3-dimensional Euclidean distance is calculated. The
calculated distances are binned into five overlapping ranges formed by increasing the
radius of concentric circles with the bag of interest in their center. A visualization of the
distance calculation and the attributes indicating the possible overlap options between a
detected bag and person is provided in Fig. 8.

All extracted attributes are binary, to be suited for usage by the symbolic component.
Within the symbolic component, a multi-valued mapping F is constructed between

each attribute, or instance x in X and a subset of images in Y which satisfy that instance.
For instance, F maps the instance ”has no overlap” with all the images in the dataset
where no overlap is present between the bounding box of a person and the bounding box
of a bag. Then, the inverse and superinverse images of the positive and negative classes
under F are constructed to define their necessity and possibility conditions. The obtained
conditions can be seen in Table 2.

As shown in Table 2, eight instances contribute to the discrimination between the two
classes in the PETS2006 dataset (one fewer in the AVS2007 dataset). The ambiguity
aspect is captured by the instances which are common to the two classes, indicated
below by their index: ambiguous evidence = 3{abandoned} ∩3{non-abandoned} =
{0, 1, 5, 7, 8}. Thus, we can represent the possibilities of the two classes as shown below.

3{abandoned} = 2{abandoned} ∨ ambiguous evidence
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Table 2. Inverse (poss+ and poss−) and superinverse (nec+ and nec−) images for the two
classes.

attributes poss+ poss− nec+ nec−
0: contains bag True True False False
1: contains person True True False False
2: contains person but no bag False True False True
3: has partial overlap True∗ | False True False False∗ | True
4: has total overlap False True False True
5: has no overlap True True False False
6: min distance below 0.1 False True False True
7: min distance above 0.1 True True False False
8: min distance above 0.25 True True False False
9: min distance above 0.5 True False True False
10: min distance above 0.75 True False True False

∗ These are the values for the AVS2007 data set. All other values are the same for both datasets.

3{non-abandoned} = 2{non-abandoned} ∨ ambiguous evidence.

Then, the decision rules exploited by the rule-based classifier are defined. Below, in (9),
the decision rule for the positive class is shown. An image is assigned to the positive
(negative) class if the instances representing it satisfy the necessity conditions for the
positive (negative) class.

IF 2X+(Xi) THEN Xi ∈ positive class
IF 2X−(Xi) THEN Xi ∈ negative class, (9)

where 2X+ and 2X− are the possibility and necessity conditions of the two classes,
respectively. Consequently, in the context of our use case, Table 2 can be used to define
the decision rules for the two classes as follows:

IF (9 ∨ 10) THEN x ∈ {abandoned}
IF (2 ∨ 3 ∨ 4 ∨ 6) THEN x ∈ {non-abandoned}.

If an image does not satisfy either decision rule, it is assigned to a ”none of known” class,
in order to avoid misclassifications.

The necessity and possibility are further exploited to compute the plausibility and
belief values for the two classes, using (6). These values are then combined into a single
score using either (7) or (8). The computed scores focus on the positive class, indicating
the likelyhood of an image to contain an abandoned luggage.

Truck failure prediction
In this section, the applications of symbolic-to-neural and the parallel neural-symbolic
integration strategies are presented. Both are evaluated on the SCANIA dataset, with the
aim of predicting failures in heavy vehicles.

The same symbolic component is used in the two strategies; thus, it is only presented
once, in the paragraphs that follow.
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The symbolic component aims at deriving the predisposition to failure of a vehicle
from its technical characteristics. Each vehicle is described by 8 specifications; for each
specifications, a category is indicated. An example can be seen in Fig. 4. Within the
symbolic component, the performed classification is seen as a binary task: the negative
class includes all vehicles which did not encounter a failure during the observed time; the
positive class includes vehicles which encountered a failure. The difference between the
5 classes listed when presenting the dataset is not considered here. The predisposition
to failure is computed for the test set based on the training and validation sets of
the SCANIA dataset. The results obtained by the component are further validated by
comparing the obtained score with the risk analysis bias reported in [FTB24]. The paper
performs survival risk analysis on the dataset; in particular, it extracts a risk score based
on specification data which computes the failure predisposition of a vehicle using Cox
Proportional Hazard analysis and survival trees. As the authors do not compute the bias
on the test data, this comparison was only possible on the training set. Similarly to
the already seen neural-to-symbolic strategy, the steps carried out within the symbolic
component are those seen in Fig. 3.

The binary attributes needed for the approach are extracted by listing all possible
combinations of specification and category. Each combination represents a technical
characteristic that a vehicle can either have or not have. In order to take into
account interactions between different specifications, all possible pairs and triplets
of specifications are also included in the attributes. The process can theoretically
be extended to bigger groups of specifications, but the needed computational time
quickly explodes. Examples of attributes satisfied by a vehicle for single and pairs of
specifications are shown in Fig. 9.

Figure 9. Example of binary instances leveraging a single specification or pairs of
specifications

Subsequently, the multi-valued mapping described in ?? is constructed between the
set of extracted attributes and the set of vehicles in the training dataset. The inverse
and superinverse images of the constructed mapping specify which attributes need to be
satisfied by a vehicle for it to be possibly or necessarily predisposed for failure.

Based on the ratio of discovered possibility and necessity rules that are satisfied by a
sample, plausibility and belief measures, respectively, can be computed. These measures
convey the information provided by the possibility and necessity rules, in a more granular
manner.

The plausibility and belief measures can directly be taken as output of the symbolic
component and exploited in the following steps of the pipeline; alternatively, they can be
combined into a single score, using (8).
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Experiments are performed using either plausibility and belief for the positive class
(trucks presenting a failure) or using the combined score, indicating a vehicle’s likelihood
to have a failure based on its characteristics. The discriminatory potential of the measures
is first verified by predicting failing and non failing trucks in both training and test set
by using only the information from the specification data; then, their contribution to the
overall performance of the approach in which they are used.

Symbolic-to-neural chaining
This section presents the second integration strategy in Fig.2. Within this strategy, the
output(s) of the symbolic component is used as additional feature(s) for the neural
component. The additional features aim to provide the neural component with the
background information contained in the data which are not directly fed to the neural
network. As anticipated, the strategy is applied to the SCANIA dataset, with the goal
of predicting failures in trucks. In the use case at hand, the features are extracted from
the specifications dataset, where the technical characteristics of the observed vehicles are
indicated. The output of the symbolic component, thus, provides the deep learning model
with information about the predisposition of a truck to failure, based on its technical
characteristics. The characteristics of a vehicle are not the only factor at play when
leading to a possible failure, thus introducing uncertainty and ambiguity in the provided
information, dealt with by the usage of evidence theory. The sensor data, in the form of
time series, are processed directly by the neural component. The extended set of features
including the raw time series data and the features conveying background knowledge
information are fed to the neural component in order to obtain a more accurate final
prediction.

In the considered use case, the neural component exploits an LSTM model, suited
for handling sequential data. The model takes windows of 12 time steps as input and
predicts one of the 5 class labels for each of the 12 future time steps. The missing data
in the training set are handled by performing forward filling, and the training and test
set are defined in the same way as for the symbolic component. In order to validate the
contribution of the symbolic component’s output, the model is first trained on the sensor
data only, including 105 features per timestep. In Fig. 13 in the Results section, this
model is indicated with the label ”Sensor data”.

The experiment is then repeated by adding the features produced by the symbolic
component, describing the predisposition of a vehicle to failure through its plausibility,
belief, and combined score measures. The usage of plausibility and belief or the
combined score is investigated. The addition of the features is done in two alternative
ways:

• The features are simply concatenated to the input of the model; the same value is
repeated at each time steps, as the outputs of the symbolic model represent a static
property of the vehicles. The models where this approach was used are indicated
with ”concatenated” in Fig. 13;

• The features are used to set the LSTM initial state, allowing to treat them as a
context rather than features replicated across all time steps. Additionally, a gate is
added to the static features in order to avoid their influence to dominate over the
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time-series signal. In this manner, the network can learn how much weight to give
the static features. The models indicated with ”gated” in Fig. 13 have been trained
in this way.

Parallel symbolic-neural integration
In the third explored strategy for the integration of a neural and a symbolic, evidence-
based component, both components are used to generate features, which are then
combined in a rule-based model exploiting logical rules to detected failures in the
observed vehicles. The symbolic component is the same as the previous strategy. Within
the neural component, an LSTM-autoencoder is employed to individuate anomalous
trucks. The model is trained on entire data sequences from normal vehicles, i.e.
vehicles that do not experience a failure during the monitored time period. Data from
80% of normal vehicles in the training set are used for training set; the data from
the remaining 20% of non-failing trucks is joined with the data from trucks which
underwent maintenance at the end of the monitored period, to form the validation set.
The autoencoder is trained to reconstruct sequences of sensor data. It takes windows of
48 time steps as input. In Fig. 10 the average evolution of the reconstruction error on
the thus defined validation set, is shown. The plot distinguishes between failing and non
failing vehicles; moreover, the 5 classes defined in the dataset labels can be seen in the
graph. It can be noted how the difference between failing and non failing trucks can be
seen already at about 60 hours from a failure. Moreover, the reconstruction error of non-
failing trucks also tends to increase in time. This confirms the inconsistency between
the used discrete class labels and the phenomenon of health degradation in a vehicle.
However, it must be noted that although the difference between failing and non-failing
vehicles can be clearly seen when looking at the average values per time step, there is a
significant overlap between the two classes when looking at the values for single trucks.

Figure 10. Evolution of the LSTM-autoencoder reconstruction error over time.

Once the reconstruction error has been obtained, together with the evidence metrics
returned by the symbolic component, the following logic rule is leveraged by the
classifier:

IF reconstruction error > x and (Pl+ > y or Bel+ > 0) THEN failure detected,

where x and y are chosen based on the validation data distribution.
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Results and discussion

Image scene classification
The strategy is applied to the two presented image datasets: AVS2007 and PETS2006.
The datasets are split into training and test sets with proportion 80/20, with the ratio of
images belonging to each class kept fixed in the division. The extracted decision rules
are leverages to construct a rule-based classifier which assigns every image to its class
according to the decision rule it satisfies. A ”none of known” class is also created for
ambiguous images which do not satisfy either decision rule. In Table 3, the averaged
results of the classifier over 20 iterations are shown. No sample is misclassified; thus,
we report as metric the percentage of samples which are considered ambiguous by the
model.
Table 3. Performance of the rule-based classifier on the two datasets.

Metric (%) AVS2007 PETS2006
Detected positives 50 76.7
Detected negatives 60.2 97.7

Positives in ”none of known” 50 23.3
Negatives in ”none of known” 39.8 2.3
Overall in ”none of known” 41 3.5

The scores obtained by combining plausibility and belief using Eq. 7 and Eq 8 are
exploited by a score-based classifier. The scores are named Interval-based Abandonment
Risk (IAR) and Abandonment Risk (AR) in the shown results. The computed scores
quantify the likelihood of an image to depict abandoned luggage. In Fig. 11 the ROC
curves of the classifiers on the two datasets are shown, illustrating the variation in the
model’s performance when varying the threshold.

As it can be seen, both IAR and AR perform well on the PETS2006 dataset. However,
AR performs better on the AVS2007, appearing to be more robust to data scarcity and
complexity. In fact, the AVS2007 dataset is much smaller than the PETS2006 dataset and
contains more complex scenarios.

In both rule-based and score-based classifiers, the proposed approach shows to have
discrimination potential in distinguishing between scenes depicting abandoned luggage
or not. The rule-based classifier allows to avoid misclassifications and signals uncertain
scenarios which cannot be assigned to a class due to lack of evidence. The score-based
classifier quantifies the risk of an abandoned object being present in a scene, providing
a more granular expression of the level of risk of a depicted situation and the possibility
of setting a threshold to trigger alarms for high-risk scenarios. The neural-to-symbolic
chaining in the framework allows to leverage pre-trained DL models to extract attributes
from images, used to obtain robust logical rules through the usage of modal logic and
evidence theory. The resulting approach is significantly less sensitive to data scarcity
and imbalance than fully DL-based methods, validating the value of neural and symbolic
integration. As the performance of the object detection DL model poses an upper bound
to the performance of the overall framework, it is important to ensure that the models
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Figure 11. ROC curve of the score-based classifier for the two datasets (IAR and AR
scores).

perform sufficiently well on the considered dataset. If labels for object detection are
available in the training set, the ground truth can be exploited when extracting attributes,
to avoid adding uncertainty due to incorrect or missed detections to the framework’s
results.

Truck failure prediction
Symbolic component
The ROC curves in Fig. 12 visualize the discriminatory power of the metrics calculated
in individual vehicles in which a failure was recorded during the observed time interval.
The performance of the metrics is computed when considering single specifications only,
or when adding pairs or triplets of specifications. A comparison is performed with a
Random Classifier as a baseline, and with the values from the work in [FTB24].

The plausibility and the single score computed considering pairs and triplets of
specifications, perform better than all other methods on the datasets. The belief measures,
the performance of which is not included in the figure, do not seem to contribute much
in distinguishing between the classes. This can be explained by considering that the
technical characteristic of a truck only contain limited information about its future
failure, and that it is highly unlikely that one (or a combination of) specific technical
characteristic alone will necessarily lead to failure. In other words, decisions taken when
considering the specification data by itself are too uncertain in order to have significant
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Figure 12. Discriminatory power of the single score and plausibility measure on the training
and test set.

values for the belief score. This also justify the limited overall discriminatory potential
of the measures, as they only contain partial knowledge about the use case.

Symbolic-to-neural chaining
The results of the experiments conducted with the 5 presented models is shown in Fig. 13.
First, the LSTM model trained on sensor data only is applied to the test set. As explained,
the input of the model consists of 12 consecutive time steps, while the model predict a
class label for 12 time steps into the future. Subsequently, the plausibility and belief of
the positive class are added as extra features to the model, either by simply concatenating
them to the input, or providing them as initial context and letting the model learn how
much weight they should have in the final prediction, through the usage of a gate placed
before the first layer of the model. Finally, the single score obtained by all the evidence
measures computed by the symbolic component is added to the sensor data as an extra
features, fed to the model in two different ways, as with plausibility and belief.

All tested models obtained a very high accuracy (over 95%); however, as the dataset
is highly imbalanced, and predicting correctly the higher classes is more important for
the use case at hand than correctly individuating normal conditions, the F1-score and
precision metrics are used to compare the performance of the models.

In Fig. 13, the evolution of the two metrics across all time steps is shown, for class
0 (normal operation) and class 4 (imminent failure). The difference in performance
between class 0 and class 4 is striking, highlighting once again the challenge of dealing
with an imbalanced dataset. All models perform strongly when predicting normal
operation, maintaining high F1-score and precision across all time steps. In this case,
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augmenting the LSTM’s input with the symbolic measures doesn’t provide measurable
improvement, although this is not surprising as class 0 constitutes the vast majority of
samples in the dataset.

The performance of all models is substantially lower for class 4, reflecting the difficulty
in identifying failing trucks. Here, the model trained with the addition of the single
score (gated) outperforms all the others. The outperforming of the model trained with
plausibility and belief of the positive class shows that useful information might also
be contained in the plausibility and belief of the negative class, which is included in
the formula for the computation of the single score, see (8). It might also reflect the
added difficulty of the model to deal with multiple static features, which could create
redundancy and noise. The fact that feeding the single score as a separate gated input
to the network performs better than simply concatenating the score to the sensor data,
supports the idea that a more context-aware integration yields better results than naive
concatenation.

Figure 13. Comparison of F1-score and precision evolution across timesteps for the tested
models.

Parallel symbolic-neural integration
In this strategy, the neural and symbolic components work in parallel to extract features
from the data. The extracted features are then passed to a rule classifier exploiting logical
rules to individuate failing trucks. The symbolic component is the same as in the previous
strategy, thus its results have already been presented.

where y is a threshold on the plausibility score set as the minimum plausibility score
of a positive sample from the training set, and x is a threshold set on the reconstruction
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error. The performance of the rule-based classifier was evaluated with several thresholds,
as seen in Fig 14.

Figure 14. Performance of the rule-based classifier when varying the threshold on the
reconstruction error.

As seen with the symbolic-to-neural chaining application, obtaining a high accuracy
on the dataset is not a challenge, as the data is heavily skewed toward samples operating
in normal conditions (class 0). However, what matters the most in the use case at hand
is the number of failing trucks correctly identified. Thus,a threshold of 0.2 is selected
to optimize this metric (best represented by the recall), while the overall accuracy stays
over 80%. In Fig. 15, the cumulative percentage of failing vehicles correctly detected
is plotted. Three temporal horizons are considered: classifications made 1 time step
in advance, 6 time steps in advance, or 12 time steps in advance. As expected, the
performance of the model decreases for longer time horizons.

Conclusion

The study presented Neuro-LENS, a neuro-symbolic framework exploring different
integrations of a neural model with a symbolic reasoning component. The symbolic
component is based on modal logic and evidence theory. The Neuro-LENS framework
is modular, allowing great flexibility and generalizability to various use cases and
data types. The usage of evidence-based logic provides interpretability and robustness
to the uncertainty and ambiguity intrinsic in the data, making the approach suitable
to be applied in real-world scenarios where only incomplete knowledge is available.
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Figure 15. Cumulative percentage of failing vehicles correctly detected.

Three complementary strategies integrating symbolic reasoning and deep learning were
investigated:

• Neural-to-symbolic chaining, validated on an image scene classification use case
aimed at recognizing abandoned luggage scenarios. The approach demonstrated
interpretability and robustness to uncertainty in the data, additionally to being able
to deal with scarce and imbalanced datasets.

• Symbolic-to-neural chaining, applied to truck failure prediction. The results
showed how symbolic reasoning can produce features to augment neural
inputs with incomplete background knowledge, while embedding the uncertainty
contained in the limited available information. The integration of the two
paradigms yielded improvements in the predictive performance and specifically
in spotting failing vehicles in a highly imbalanced dataset.

• Parallel integration, again validated to truck failure prediction. By combining the
neural and symbolic components in a parallel manner and applying logical rules
to their joined outputs, the approach is able to provide a high interpretability and
distinguish between the contribution of the single outputs to a failure.

Validating the Neuro-LENS framework across different use cases and data types (e.g.,
images and tabular data) highlights its generalizability and practical relevance in real-
world use cases and in industrial settings, where explainability, robustness, and trust are
fundamental.
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