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Abstract

Neurosymbolic artificial intelligence (AI) systems combine neural network and classical
symbolic AT mechanisms to exploit the complementary strengths of large-scale, generaliz-
able learning and robust, verifiable reasoning. Numerous classifications of neurosymbolic
AT illustrate how these two components can be integrated in distinctly different ways. In
this work, we propose reinterpreting instruction-tuned large language models as model-
grounded symbolic AI systems—where natural language serves as the symbolic layer,
and grounding is achieved through the model’s internal representation space. Within this
framework, we investigate and develop novel learning and reasoning approaches that pre-
serve structural similarities to traditional learning and reasoning paradigms. Preliminary
evaluations across axiomatic deductive reasoning procedure of varying complexity provides
insights into the effectiveness of our approach towards learning efficiency and reasoning
reliability. We also investigate the effect of combining our approach with other prompting
techniques such as Chain-of-Thought (COT) and self-reflection. Our findings indicate that
while these methods significantly improve reasoning performance, metatuning provides no
further benefit to GPT-40 and even degrades accuracy for Gemini 1.5 Flash when used in
conjunction with them. Our findings are further explored through experiments on a video-
based physical reasoning task, revealing that the benefits of metatuning may not extend to
all domains, particularly those requiring complex spatio-temporal reasoning.

Keywords: Neurosymbolic Al, Large Language Models, Symbol Grounding

1. Introduction

Neurosymbolic Al has sought to combine the powerful and generalizable learning capa-
bilities of neural networks with the explicit and verifiable reasoning abilities in symbolic
systems. This “hybrid” approach has gained renewed attention in recent times as a way to
overcome limitations of large language models in complex reasoning tasks Fang et al. (2024);
Sheth et al. (2024). Large language models demonstrably struggle with logical consistency,
abstraction and adapting to new concepts or scenarios beyond their training distribution
Capitanelli and Mastrogiovanni (2024). Integrating symbolic knowledge and reasoning is
seen as a promising avenue to enhance large language model capabilities towards enabling
Al systems to leverage both data-driven learning and high-level knowledge representation
Colelough and Regli (2024). Various studies have demonstrated the core challenge with
neurosymbolic Al systems lies in working out the mathematical framework for achieving
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unified symbol grounding — bridging symbols grounded in discrete explicit knowledge
representations with symbols grounded in implicit continuous abstract vector spaces Xu
et al. (2022); Wagner and d’Avila Garcez (2024). We refer to the latter form of ground-
ing as model grounding. Traditionally, the symbol grounding problem involves linking
symbols to their real-world referents (usually explicitly through a knowledge representation
such as a knowledge graph) Harnad (1990). Empirical evidence suggests that large language
models may lack sufficient capabilities for such grounding, particularly in real-world con-
texts Bisk et al. (2022). However, recent studies offer alternative perspectives. Recent work
has argued that the symbol grounding problem may not apply to large language models as
previously thought by stating that grounding in pragmatic norms (grounding in abstract
vector spaces) is sufficent for obtaining robust task solutions achieved via language model
reasoning Gubelmann (2024). Other works have proposed that instruction-tuned large
language models (e.g., by reinforcement learning from human feedback) confer intrinstic
meaning to symbols through grounding in vector spaces Chan et al. (2023).

In this work, we re-interpret instruction-tuned large language models as symbolic sys-
tems in which the symbols are natural language instructions that have model-grounding in
the model’s internal representations and propose a novel learning regime:

Model-grounded Symbolic Learning Perspective

Can we conceptualize task-learning by large language models (LLMs) as an iterative
learning process through a training dataset where symbolic natural language-based
interactions characterize each training run influencing model behavior?

Rather than viewing learning solely as parameter-state updates via gra-
dient descent, we interpret it as refining the LLM’s task functionality
state—a prompt plus a structured memory of critiques. These iterative
refinements arise from repeated training dataset interactions and an exter-
nal judge that identifies prompt errors (or gradients), facilitating “learn-
ing” towards task objectives.

Under such a learning regime, there are direct analogs to the traditional learning setup —
train-validation-test splits, number of training runs through the dataset (epochs), gradient
accumulation (when to trigger a prompt revision), model saving (saving the history of
interactions and prompt-revisions, along with the final prompt), and model loading at
inference time on the test set (loading the same history and warm starting with a few
sample generations before testing begins).

We test our approach on a suite of axiomatic deductive reasoning procedure of varying
complexity. In this work, we propose reinterpreting instruction-tuned large language models
as model-grounded symbolic Al systems where natural language serves as the symbolic
layer, and grounding is achieved through the model’s internal representation space. Our
framework introduces a novel learning paradigm where iterative prompt-refinement is used
to improve reasoning reliability and sample efficiency. While our initial experiments on
axiomatic deductive reasoning demonstrated the effectiveness of this approach, we also
acknowledge that LLMs face significant challenges in other domains, such as visual and
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physical commonsense reasoning, which requires them to understand the dynamics and
interactions of objects in a continuous space.

To further explore the boundaries of our framework, we investigate its interaction with
other advanced reasoning techniques. Recently, methods like Chain-of-Thought (COT) and
self-reflection have been proposed to enhance LLM reasoning by guiding the model to pro-
duce a step-by-step reasoning trace. This raises a crucial question: Do the benefits of our
metatuning approach complement or become redundant when combined with these powerful
prompting techniques? Our experiments reveal that while COT and self-reflection signifi-
cantly boost baseline accuracy on mathematical problems, adding metatuning provides no
further benefit to GPT-40 and, in some cases, even degrades performance for Gemini 1.5
Flash.

Furthermore, we extend our evaluation to a new domain: video-based physical reasoning.
Using the CLEVRER dataset, we assess whether our metatuning approach can improve an
LLM’s ability to answer descriptive, explanatory, predictive, and counterfactual questions
about object trajectories and collisions in short video clips. We find that in this dynamic and
visual domain, metatuning has a negligible effect on performance. These findings provide
valuable insights into the limitations of metatuning and suggest that its effectiveness is
highly dependent on the nature of the task and the symbolic domain (e.g., static, discrete
logical rules vs. dynamic, continuous physical laws).

Thus our main contributions are:

Main Contributions:

e Model-Grounded Symbolic Framework. Treat instruction-tuned LLMs as
symbolic systems, with natural language as symbols grounded in the model’s inter-
nal representations.

o Iterative Prompt-Refinement. Introduce a structured approach to “learning”
via iterative prompt revisions and critique-driven updates, bridging symbolic rea-
soning and gradient-based optimization.

e Empirical Validation. We show that while our iterative prompt-refinement ap-
proach (metatuning) improves reasoning on baseline problems, its effectiveness is
limited when combined with advanced prompting techniques like Chain-of-Thought
and self-reflection.

e« Boundary Conditions for Metatuning We investigate the applicability of our
metatuning approach beyond text-based domains, demonstrating its limitations in
improving performance on video-based, spatio-temporal reasoning tasks. This pro-
vides valuable insights into the types of problems where our framework is most
effective.

The rest of the paper is organized as follows [...]
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2. Model-Grounded Symbolic AI Systems

2.1. Natural Language as a Native Symbolic System

A key observation in the context of LLMs is that natural language is already a sym-
bolic representation. Words and sentences are discrete symbols governed by grammar
and endowed with meaning (through human convention and usage). Unlike pixels or au-
dio waveforms, text is a high-level, human-crafted encoding of information. In fact, the
success of LLMs demonstrates how much knowledge and reasoning patterns are latent in
language. By training on large text corpora, these models learn the syntax and semantics
of a symbolic system (human language) without explicit grounding in the physical world.
Each word can be seen as a symbol, and sentences as symbolic structures. Thus, when
we talk about combining “symbols” with “neurons,” an LLM is an interesting case: it is a
neural network that processes symbolic inputs (text tokens). It already lives partly in the
symbolic realm — just not in a formal symbolic logic, but in the informal symbolic system
of language. This leads to the argument that LLMs are, in a sense, model-grounded
symbolic AI systems by themselves. They manipulate symbols (e.g., words) using
their internal model computations. Recent research has even shown that LLMs can per-
form surprising forms of symbolic reasoning: for example, with proper prompting, LLMs can
execute chain-of-thought reasoning that resembles logical inference or step-by-step problem
solving. They can simulate rule-based reasoning if guided (e.g., translating a word problem
into equations, then solving) and even use tools like external calculators or databases when
integrated appropriately Paranjape et al. (2023); Qin et al. (2024). Fang et al. (2024) argue
that LLMs can act as symbolic planners in text-based environments, effectively choosing
high-level actions and applying a form of logical reasoning within a game world Fang et al.
(2024). All this suggests that LLMs use continuous internal representations, but the inter-
face (language) is symbolic, and they can emulate symbolic processes internally. However,
there is still a distinction between natural symbols (words) and artificial symbols (like formal
logic predicates or program variables) Blank and Piantadosi (2023). LLMs know human-
language symbols very well, but they might not natively understand, say, the symbols:
Vx(Cat(x) — Mammal(x)) unless taught via text Weng et al. (2022). The model-grounded
approach must thus consider how to leverage the LLM’s strength with linguistic symbols to
also incorporate more formal or precise symbolic knowledge Mitchell and Krakauer (2023).
One way is to express formal knowledge in natural language form (for instance, writing log-
ical rules in English sentences) so the LLM can digest them. Another way is to let the LLM
produce or critique formal symbols through appropriate interfaces (like using an LLM to
generate code or logic clauses, which are then executed by a symbolic engine — a technique
often called the “LLM + Python” or “LLM + logic” approach). The fact that language
can describe symbolic structures (you can write a logical rule in English, or describe
an ontology in sentences) means we have a common medium for symbolic expression: that
medium is natural language. We can consider natural language as a universal symbolic
inferface for learning and reasoning components within model-grounded systems.
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2.2. Natural Language Symbol Grounding in Vector Spaces

In classical symbolic Al, a symbol was grounded by pointing to something outside the sym-
bol system (e.g., a sensor reading or a human-provided interpretation). In model-grounded
systems, we have an alternative: ground symbols in the model’s learned vector space
Blank and Piantadosi (2023). Concretely, when an LLM processes the word “apple,” it
activates a portion of its internal vector space (the embedding for “apple” and related con-
textual activations). The meaning of “apple” for the model is encoded in those patterns —
for example, the model “knows” an apple is a fruit, is round, can be eaten, etc., because
those associations are reflected in the vector’s position relative to other vectors (“apple” is
near “banana,” far from “office desk”, likely has certain dimensions corresponding to taste,
color, etc., captured by co-occurrence statistics). In this view, symbol grounding be-
comes a matter of aligning symbolic representations with regions or directions
in a abstract vector space. A symbol is “grounded” if the model’s usage of that symbol
correlates with consistent properties in its learned space that correspond to the human-
intended meaning. For example, consider a model-grounded system that is asserting rules
about animals (say, “All birds can fly except penguins”). In a vector-space grounding ap-
proach, we would ensure that the concept “bird” corresponds to a cluster or subspace in the
model’s vector space (perhaps by fine-tuning the model such that bird-related descriptions
map to similar vectors), and that the exception “penguin” is encoded as an outlier in that
subspace (or has an attribute vector that negates flying ability). Instead of requiring the AI
to have an ezplicit boolean flag for “canFly(x)”, the concept “can fly” could be a direction
in embedding space that most bird instances align with, and “penguin” would simply not
align with that direction. In effect, the world model of the AI (the internal representation
space shaped by training) contains implicitly what symbols mean, and symbolic statements
can be interpreted in terms of that space Mitchell and Krakauer (2023). This idea ties into
techniques like prompt-based instruction. One can use an LLM’s own language inter-
face to define new symbols or ensure they attach to certain meanings. For instance, you
could “teach” an LLM a new concept by providing a definition in natural language (which
then becomes a grounding for that term within the conversation or fine-tuned model). The
symbol is grounded by the fact that the model incorporates that definition into its internal
activations henceforth. Crucially, if we accept vector space grounding, symbols are just iden-
tifiable directions or regions in a manifold. Learning in such a system can then be viewed as
reshaping the vector space so that it respects symbolic structure. We no longer demand
that the AI have a discrete symbol table with direct physical referents; it’s enough that,
when needed, we can extract symbolic-like behavior or facts from the continuous space. In
practice, techniques like latent space vector arithmetic (where, say, vector(“King”) -
vector(“Man”) + vector(“Woman”) ~ vector(“Queen”)) show that semantic relationships
can be encoded continuously Lee et al. (2019). One could say the model has grounded the
concept of royalty and gender in the geometry of its vectors. The symbolic perspective
then is: manipulate those vectors with the guidance of natural language symbols to achieve
desired intelligent behavior. This is a different paradigm from explicitly storing symbols
and manipulating them with logic rules; instead, symbolic instruction become something
like constraints on the continuous representations.
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3. Task Learning in Model-Grounded Symbolic AI Systems

3.1. Illustrative Example

Imagine an LLM-based agent in a text-based adventure game (a simple “world”). The
agent’s policy is given by an LLM, but we also maintain a symbolic memory of facts the
agent has discovered (e.g. a natural language-based description of the game’s map, items,
etc.), and perhaps a similar description of explicit goals or rules (like “you must not harm
innocents” as a rule in the game). As the agent acts, an external prompt-based probe/judge
model (another LLM) could check its actions against these rules and the known facts of the
world. If the agent attempts something against the rules or logically inconsistent with its
knowledge, the evaluator can intervene — for instance, by giving a natural language feedback
(“You recall that harming innocents is against your code.”) or by adjusting the agent’s state
(inserting a reminder into the agent’s context window). The agent (LLM) thus receives
symbolic interactions (in this case, a textual message that encodes a rule or a fact) that
alter its subsequent processing. In this learning scenario, the agent refines its internal model
based on such interactions. Note that this does not involve directly tweaking weights each
time; it instead involves an iterative procedure where each episode of interaction produces
a trace that is used to slightly adjust the model’s state (it’s current prompt, history of
interactions, prompt-revisions, and judge critiques). Over time, the model internalizes the
rules so that it no longer needs the intervention. This viewpoint reframes symbolic learning
as training on a dataset of task-related world experiences where the experience
includes symbolic content (natural language descriptions of rules, knowledge queries) and
the learning algorithm’s job is to make the model’s behavior align with task objectives.

3.2. Task Learning Algorithm

We propose an iterative learning paradigm for model-grounded symbolic Al that mirrors
gradient-based optimization but uses symbolic feedback and intervention (expressed in nat-
ural language) to update the model. The loop can be summarized at a high level in four
steps:

1. Model Initialization: Begin with a pre-trained model (e.g., an LLM) with initial
parameters 6.

2. Evaluation via an External Judge: Present tasks to the model and assess its
responses through an evaluator that detects errors or inconsistencies.

3. Generating Symbolic Corrections: Use the feedback to generate symbolically
structured interventions (natural language), such as prompt refinements, addi-
tional demonstrations, or logical explanations.

4. Iterative Refinement: Apply the corrections iteratively to improve the model’s
output, either through context updates (natural language-based prompting).

This cycle repeats until the model converges to an improved performance level. The
process is formally described in Algorithm 1.
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Algorithm 1: Iterative Learning via Symbolic Feedback
Input: Pre-trained model with parameters 6y (e.g., LLM)
Output: Refined model with improved reasoning capabilities
Initialize model with parameters 6y for iteration =1 to N do
// Step 1: Model generates output for a given input/task
y < modely(z) ; // Generate output for task input z
// Step 2: External judge evaluates the output
feedback < Judge.evaluate(z,y) ; // Feedback contains a score or identified
errors
if feedback indicates perfect output then
‘ break ; // No correction needed, exit loop
end
// Step 3: Generate symbolic corrections
corrections < generate_corrections(feedback, z,y) ; // Corrections can be:
; // - Refined prompts/instructions
; // - Additional training examples
; // - Logical explanations for reasoning
// Apply corrections to influence the model
if corrections include prompts/instructions then
| 6 <« update_prompt_context(#, corrections)
end
// Step 4: Proceed to next iteration with updated model/state

end

Algorithm 1 details our proposed perspective on learning. This iterative cycle ensures
that the model systematically reduces reasoning errors through natural language-
based interactions and feedback based on running through the training set.

The Judge.evaluate function represents our symbolic evaluator. It could be imple-
mented in numerous ways. For instance, we might have an LLM (potentially a more ad-
vanced or specialized one) that examines the model’s output and compares it to expected
results or known constraints, outputting a “score” or textual critique.

The generate_corrections step is where symbolic intervention comes in. The judge
gives natural language feedback. For example, the judge might say: “The reasoning is flawed
because it assumed X, which contradicts known fact Y.” The algorithm then turns that into
a corrected reasoning trace or a prompt that reminds the model of Y in context. In essence,
part of the model state, i.e., it’s prompt is revised during training through the
training dataset in response to the model’s mistakes.

The update mechanism for the model is in the effective model behavior, modulated by
providing a better prompt or adding a memory of previous corrections). For example, we
can use a persistent prompt that accumulates instructions (a form of prompt tuning or using
the model in a closed-loop system). This can be interpreted as a kind of supervised training
loop where the new examples from corrections serve as training data with the judge acting
as an oracle providing the target output or loss.

4. Comparison to Conventional Backpropagation Training

We compare our paradigm to standard backpropagation-based learning as follows:
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Differentiability: Backprop requires the model and loss to be differentiable end-to-end.
Our approach uses non-differentiable feedback. The judge could be a black-box procedure
(e.g., LLM) that we cannot differentiate through Hasan and Holleman (2021). We treat the
judge as an external oracle and make model state updates via generated examples-based
prompt adjustments. This is a big advantage in incorporating arbitrary symbolic rules — we
don’t need to make the symbolic logic differentiable; we can just have it critique the model
and then adjust via examples

Data Efficiency and Curriculum: Traditional training uses a fixed dataset, and
if the model makes mistakes, it will continue to unless the data distribution covers those
mistakes. In our iterative loop, we are essentially performing a form of curriculum learning
or active learning — the model’s mistakes drive the correct-based on new training data
instances on the fly, focusing learning on the most relevant areas. This can be more data-
efficient. For example, if an LLM consistently makes a reasoning error, we go through a
few training examples demonstrating the correct reasoning and behavior-correct on them;
a small number of focused examples might correct a behavior that would otherwise require
many implicit examples in random training data to fix. Empirically, approaches like self-
correction have shown even a single well-chosen example or instruction can pivot an LLM’s
performance significantly on certain tasks Graves et al. (2017).

Limitations and Convergence: Our approach does not have the convergence guar-
antees or well-defined optimization objective that gradient descent has. It’s a more heuristic
process. The quality of the final model depends on the quality of the judge and the correc-
tions. If the judge is imperfect (e.g., an LLM judge might have its own errors or biases), we
might lead the model astray or instill incorrect rules Soviany et al. (2021). Conventional
training, when you have a clear loss and data, is more straightforward to analyze. One
could end up oscillating or not converging if, say, the prompt-based corrections don’t stick
in the model’s long-term memory.

5. Experiments and Discussion

5.1. Metatuning with Zero-shot Prompting

In this section, we evaluate the impact of metatuning on the performance of a Large Lan-
guage Model (LLM) using the Maths 500 Dataset.We begin by selecting a subsample of 100
problems from the dataset. As illustrated in Figure 3, we assess the model’s zero-shot per-
formance by prompting it to generate answers without any prior fine-tuning. The generated
responses, along with the corresponding ground-truth answers, are then evaluated by an
LLM-based judge. The subsampled dataset contains problems of various levels from level
1 to level 5 of varying difficulity. One example from each level are given in the Figure 5.1.

Following this, we implement a train-test split on the dataset. For the training set,
we identify instances where the LLM’s initial responses were incorrect. For these incorrect
cases, we construct a solution-infused chat history by incorporating the correct answers
and their corresponding solutions. This enriched context is then provided to the model
during inference on the test set.Finally, we compare the model’s zero-shot accuracy with
its performance after metatuning. The results highlight the effectiveness of metatuning in
enhancing the model’s ability to solve mathematical problems by leveraging solution-infused
contextual learning.


https://huggingface.co/datasets/HuggingFaceH4/MATH-500
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Distribution of Subjects across Levels
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Figure 1: Level of problems distribution in the dataset

Subject
Algebra
Counting & Probability
Geometry
Intermediate Algebra
Number Theory
Prealgebra
Precalculus

EXAMPLE PROBLEMS FROM DIFFERENT LEVELS:

Level 1 Level 2 Level 3 Level 4 Level 5
If a snack-size | A regular | How many | Find the con- | Let p(z) be a
tin of peaches | hexagon can | positive whole- | stant term in | polynomial of
has 40 calories | be divided into | number divisors | the expansion of | degree 5 such
and is 2% of a | six equilateral | does 196 have? . that
person’s  daily | triangles. If 1023 — 1 @
caloric require- | the perimeter 212 p(n) = n2 —1
ment, how | of one of the
many calories | triangles is 21 for n = 2, 3,
fulfill a person’s | inches, what is 4, ..., 7. Find
daily caloric | the perimeter, p(8)
requirement? in inches, of

the regular

hexagon?

Figure 2: Dataset Examples
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Initial experiments were conducted with smaller language models (SLMs), such as
LLaMA 3.2 (1B parameters), inferenced via Ollama. However, these models exhibited
extremely low baseline accuracy, making them unsuitable for the study. Furthermore, given
the critical role of the Judge LLM, we found that employing a large, state-of-the-art (SOTA)
model as the judge is essential. If the Judge LLM’s evaluations lack high fidelity, the entire
metatuning process becomes unreliable.

Therefore, this study focuses exclusively on SOTA models. Future work could explore
the impact of metatuning on reasoning-focused models compared to non-reasoning models,
using both as candidate and judge LLMs. In this study, all models used are non-reasoning
models, but the candidate LLMs are explicitly prompted to provide both a reasoning process
and a final solution. In the experimentation the candidate LLMs used are GPT-40 and
Gemini-1.5-Flash and the judge model used is Gemini-2.0-Flash.

judges the lim solution
with the correct solution

{ JudgeLLm

sample 100 zero shot problem to candidate LLM ] /_\
{ Math 500 }—) e | | ® e |

Math 500 | | Response | &/
- pS —

\ Compare
test data on LLM
o I Accuracy
Split
| Chat | |r LLM wﬂh] |
train | History | | tuned context | | Test Set Accuracy |
- \
Infused solution for problems
the candidate lim got incorrect
in zeroshot
{ JudgeLLm { JudgeLLm

Judges the lim solution

with the correct solution Judges the lim solution

with the correct solution

Figure 3: Workflow for Evaluating Metatuning on MATH500

Benchmarking Results We conducted experiments on GPT-40 and Gemini 1.5 Flash
using different train-test splits and evaluated their performance with and without metatun-
ing. Train Context Size of x means there are x problems used for metatuning and rest 100-x
problems are used for testing the metatuned model. The results are summarized in Tables
1 and 2.

10
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Table 1: Performance of GPT-40 with and without metatuning

Train Context Size Setting Correct | Incorrect | Accuracy | Delta
5 Without Metatuning 62 33 65.26% -
With Metatuning 64 31 67.37% | +2.11%
10 Without Metatuning 59 31 65.56% -
With Metatuning 64 26 71.11% +5.56%
20 Without Metatuning 52 28 65.00% -
With Metatuning 52 28 65.00% 0.00%
30 Without Metatuning 47 23 67.14% -
With Metatuning 45 25 64.29% -2.86%
m Without Metatuning 40 20 66.67% -
With Metatuning 40 20 66.67% 0.00%
Table 2: Performance of Gemini 1.5 Flash with and without metatuning
Train Context Size Setting Correct | Incorrect | Accuracy | Delta
5 Without Metatuning 41 54 43.16% -
With Metatuning 40 55 42.11% -1.05%
5 Without Metatuning 39 51 43.33% -
With Metatuning 45 45 50.00% | +6.67%
5 Without Metatuning 35 45 43.75% -
With Metatuning 40 40 50.00% +6.25%
5 Without Metatuning 30 40 42.86% -
With Metatuning 33 37 47.14% | +4.29%
5 Without Metatuning 23 37 38.33% -
With Metatuning 26 34 43.33% | +5.00%

Analysis From the results, we observe that metatuning improves the accuracy of both
models in most cases. GPT-40 benefits significantly at smaller context sizes (e.g., +5.56%
at context size 10), but shows no improvement at larger context sizes. In contrast, Gemini
1.5 Flash exhibits consistent improvements across all context sizes except for context size
5, where accuracy slightly decreases (-1.05%). The largest improvement for Gemini occurs
at context size 10, with a +6.67% accuracy boost.

These results highlight that metatuning can be beneficial for improving model accuracy
but may exhibit diminishing returns or even slight regressions depending on context size
and model architecture.

5.2. Metatuning with Advanced Prompting

In this section, we extend the experimentation on the same subsection of dataset with
advance prompting instead of using zeroshot prompting as baseline. We use a Chain Of
Thought with 2 steps i.e. asking the LLM to think step by step and then in the second step
asking it to reflect on its own answer from stepl. What we find is a high jump in accuracy
from zero-shot to this new COT based prompting but negligible change in accuracy or

11
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degrading accuracy when metatuning is incorporated with COT as can be seen in the table
1 and 2. Possible reasons could be as follows:

1. Redundancy: The solved examples provided during metatuning might be redundant
with the rich, step-by-step reasoning that COT already induces. The model might not have
gained new information from the context.

2. Context Overload: For Gemini, the added context might be ”confusing” the model
or pushing it past an optimal context size, leading to a performance drop.

3. Model-specific Behavior: There is a significant difference in performance between
GPT-40 and Gemini 1.5 Flash. This suggests that the interaction between metatuning and
advanced prompting is model-architecture-dependent.

Table 3: Performance of GPT-40 with and without metatuning with COT

Train Context Size Setting Correct | Incorrect | Accuracy | Delta
5 Without Metatuning 75 20 78.95% -
With Metatuning 79 16 83.16% +4.21%
10 Without Metatuning 71 19 78.89% -
With Metatuning 72 18 80.00% +1.11%
20 Without Metatuning 67 13 83.75% -
With Metatuning 68 12 85.00% | +1.25%
30 Without Metatuning 59 11 84.29% -
With Metatuning 60 10 85.71% | +1.43%
40 Without Metatuning 51 19 72.86% -
With Metatuning 51 19 72.86% 0.00%

Table 4: Performance of Gemini 1.5 Flash with and without metatuning with COT

Train Context Size Setting Correct | Incorrect | Accuracy | Delta
5 Without Metatuning 75 20 78.95% -
With Metatuning 62 33 65.26% | -13.68%
5 Without Metatuning 71 19 78.89% -
With Metatuning 63 27 70.00% -8.89%
5 Without Metatuning 67 13 83.75% -
With Metatuning 42 38 52.50% | -31.25%
5 Without Metatuning 59 11 84.29% -
With Metatuning 36 34 51.43% | -32.86%
5 Without Metatuning 51 19 72.86% -
With Metatuning 31 29 51.67% | -21.19%

5.3. Evaluation on Video-Based Physical Reasoning

To assess the generalizability of our metatuning approach beyond text-based mathematical
problems, we conducted an experiment on a video-based physical reasoning task. For this,
we used the CLEVRER dataset, which consists of short video clips depicting interactions
between various 3D objects (e.g., cubes, spheres) and a set of associated questions for

12
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each video. The questions fall into four categories: descriptive (e.g., "How many spheres
are moving?”), explanatory (e.g., "Which of the following is responsible for the collision
between the gray object and the cube?”), predictive (e.g., "What will happen next?”), and
counterfactual (e.g., "What will happen if the gray sphere is removed?”).

For our methodology, we selected a total of 50 videos from the dataset, each containing
multiple questions, for a total of 620 questions. We used Gemini 2.0 Flash as the candidate
model. In the baseline condition, we provided the video and its questions to the model
without any additional examples in the prompt. For the metatuning condition, we added
two example questions and their correct solutions from the same video to the prompt before
asking the remaining questions. The model’s answers were then evaluated by a judge against
the ground-truth solutions.

The results of this experiment are summarized in Table 5 and in the Figure 4

Table 5: Performance on CLEVRER Video Reasoning Task

Setting Correct | Incorrect | Accuracy | Delta
Without Metatuning 319 301 51.45% -
With Metatuning 320 300 51.61% | +0.16%
Model Accuracy by Question Type Sample Size by Question Type
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Figure 4: Celever data distribution and accuracy across each question type
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Analysis The central finding from this experiment is that metatuning had a negligible
impact on the model’s performance, resulting in only a marginal improvement of +0.16%.
This outcome stands in stark contrast to our findings on the mathematical reasoning tasks,
where metatuning consistently improved accuracy.

This result leads us to a key insight regarding the limitations of our metatuning frame-
work. Our initial hypothesis was that providing solved examples would help the LLM
identify patterns and improve its reasoning, much like it did for the logical and arithmetic
problems. However, the nature of the "symbols” and "rules” in the video domain is fun-
damentally different. In mathematical reasoning, the symbols (e.g., numbers, variables)
are discrete, and the rules (e.g., logical identities, algebraic formulas) are static and well-
defined. The model can effectively learn to apply these explicit, high-level rules from a few
examples in the context window.

In contrast, the symbols in the CLEVRER dataset (e.g., the position, velocity, and
interactions of objects) are continuous and dynamic. The underlying "rules” are the laws
of physics, which are far more complex and implicitly encoded in the model’s internal
representations. The two examples provided via metatuning are likely insufficient to teach
the model a complex new physical law or to correct a fundamental misunderstanding of
spatio-temporal dynamics. This suggests that the symbol grounding achieved through the
model’s internal vector space, while effective for discrete linguistic symbols, may be too
weak or noisy for metatuning to be effective in domains requiring complex, continuous
reasoning. The context-based learning of our approach appears to be most effective when
the task-relevant knowledge can be distilled into clear, symbolic, and rule-based examples.

6. Conclusion

In this work, we introduced a novel framework for reinterpreting instruction-tuned LLMs as
model-grounded symbolic Al systems. Our proposed approach, which we termed metatun-
ing, leverages iterative prompt-based refinements and symbolic feedback to improve the
model’s reasoning capabilities without the need for traditional, end-to-end backpropaga-
tion. The framework posits that natural language serves as a native symbolic system, with
symbols grounded in the model’s internal representations.

Our initial empirical evaluation on the Maths 500 dataset showed that metatuning
effectively improved accuracy on axiomatic deductive reasoning tasks, particularly at smaller
context sizes. The results suggested that providing a small number of carefully curated,
solved examples could significantly enhance a model’s ability to apply logical rules, offering
a data-efficient alternative to fine-tuning.

However, our extended experiments reveal a more complex picture. When we combined
metatuning with advanced prompting techniques like Chain-of-Thought and self-reflection,
the expected additive benefits did not materialize. For GPT-40, metatuning offered no
further improvement beyond the gains achieved by these methods alone, while for Gemini
1.5 Flash, it even led to a degradation in performance. This suggests that the symbolic
information provided via metatuning may become redundant or even confusing when the
model is already guided by a rich, step-by-step reasoning process.

Furthermore, we demonstrated that the effectiveness of metatuning is highly dependent
on the nature of the task. Our evaluation on a video-based physical reasoning dataset
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showed that metatuning had a negligible impact on performance. This highlights a crit-
ical boundary for our framework: while it is effective for domains with discrete, static,
and explicit symbolic rules (e.g., mathematics), it fails to generalize to tasks that require
understanding complex, dynamic, and continuous physical laws.

In summary, our research provides a refined understanding of prompt-based symbolic
learning. We conclude that while metatuning is a powerful tool for improving baseline
performance on specific reasoning tasks, it is not a universal solution. Its utility diminishes
when a model is already using sophisticated reasoning methods and may not be suitable
for domains where symbols are not well-defined or are grounded in continuous, dynamic
phenomena. Future work should focus on understanding the optimal conditions for applying
different neurosymbolic techniques and exploring hybrid approaches that can seamlessly
integrate symbolic knowledge from both static and dynamic domains.
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Appendix A. LLM Reasoning: Pre and Post Metatuning

This appendix presents examples of problems along with the corresponding reasoning and
answers generated by GPT-40 and Gemini 1.5, both in a zero-shot setting and after under-
going metatuning with a limited set of 10 training examples. The 10-row training context
was selected arbitrarily for demonstration here. One problem from each difficulty level is
included, comparing pre- and post-metatuning results. Specifically, examples from Levels
1, 3, and 5 are taken from GPT-40, while Levels 2 and 4 are taken from Gemini-1.5-flash.
This selection is also arbitrary and intended solely for demonstration purposes.

The distribution of problems where a 10 row context training produced the correct result
only after metatuning is shown here in Figure 5.

Percentage of problems where Meta-Tuning improves performance at each level: GPT-4 vs Gemini
4/15

GPT-4

Gemini
25 1 5/21

N}
o

3/21 3/21

-
«

11 2/22

Improvement Percentage (%)
-
o

1/15
1/22 121

T T T T T
1 2 3 4 5
Problem Level

Note: Results shown for training context size of 10 problems
The fraction of the absolute problems improved is shown on top of each bar

Figure 5: Metatuning Improvement at 10 problems context training

Note that none of GPT40 or Gemini are reasoning models. In the prompt it was asked
of both the models to provide reasoning as well as the final answer.
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Level 1 - GPT-40

Problem: Compute 992 + 99 + 1 in your head.
Zero-shot LLM solution: 10000
Zero-shot LLM reasoning:

The expression can be simplified using the identity for a perfect square plus
the next two numbers: 992 +99 +1 = (99 + 1) = 100? = 10000 — 2(25) =
10000 — 50 = 9950.

Metatuned LLM answer: 9901
Metatuned LLM reasoning:

Using the formula for a sum of consecutive powers, noting (992 + 99 + 1) is
(99 + 1) — 99, simplify it as (100? — 99) = 10000 — 99 = 9901.

Level 2 - Gemini
Problem: Compute |(1 —7)%|.
Zero-shot LLM solution: 256
Zero-shot LLM reasoning:
We are asked to compute the magnitude of (1 —i)%. We have that:
](1 - 2‘)8| =1 -

We compute:

11 —i| = /124 (-1)2 = V2.

Then:

-0 = (V2)* = (2V3)F = 2* = 16,

However, we can also compute:

1-)=((1-))=1-2i+D)*=(1—-2i—1)*
(—2i)* = 16i* = 16(1) = 16.

Then:

](1 - i)g‘ = |16| = 16.

Let’s write 1 — 4 in polar form. We have that:

oo ()
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Then:
(1—1i)%=(v2)8 (COS (—81) + 7sin (—4))
= 16(cos(—2m) + isin(—27))
= 16(1 + 0i) = 16
Therefore:

](1 —i)g‘ = |16] = 16.

There must be a mistake in my calculation. Let’s use the property that |2"| =

|z|™ for any complex number z and positive integer n. Then:
(=i =1—iff = (/12 + (-1)2)° = (V2)* =2 = 16.

Let’s use the polar form of 1 —i. We have:
1—17= \/§ <cos <—Z) + ¢sin (—Z)) .

(1 —14)% = (v/2)® (cos(—27) + isin(—27))
— 16(1 + 0i) = 16.

Then:

Therefore:
(1 —1)%| = 16.

I must have made a mistake. Let’s try again. We have:

11 —i| = /12 + (-1)2 = V2.

(=i =i = (V2! =2¥2 =2 = 16.

Then:

There was an error in the previous response. The magnitude is 16.

Metatuned LLM answer: 16
Metatuned LLM reasoning:

We have
1 1
1—i=+2 <\/§ — \/51> =2 <cos <—Z) + ¢sin (—Z)) .
Then by DeMoivre’s theorem,

(2] ()

= 16 (cos(—2m) + isin(—2m))
= 16.
Therefore,

|(1—14)8 = |16] = 16.
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Level 3 - GPT-40
Problem: Given f(z) = Y21 find the smallest integer = for which f(z) is real.

=2

Zero-shot LLM solution: 3
Zero-shot LLM reasoning:

The function

fla) =Y

requires x — 1 > 0 for the square root to be defined, and x — 2 # 0 to avoid
division by zero. Thus, z > 1 and = # 2.

The smallest integer = satisfying these conditions is x = 1. However, f(x) at
x = 1 would result in a zero denominator, which is not allowed.

So the next smallest integer z that satisfies x > 1 and x # 2 is x = 3. At z = 3,
f(x) is defined.

Metatuned LLM answer: 1
Metatuned LLM reasoning:

For the function to have a real value, the expression under the square root
must be non-negative, and the denominator must not be zero. This gives the
conditions:

x—1>0, thus z>1, and =z #2.

Considering these inequalities, the smallest integer x satisfying > 1 and x # 2
isx=1.
Substituting z = 1 into the function:

1-1 0

f@)=F— =3~

0,
which is real, confirming that z = 1 is a valid choice.

Level 4 - Gemini

Problem: Two 6-sided dice are rolled. What is the probability that their product is a
multiple of 57

Zero-shot LLM solution: % (incorrect)

Zero-shot LLM reasoning:

Let X and Y be the outcomes of the two dice. The sample space has size 6*6=36.
The product XY is a multiple of 5 if either X or Y is 5. The pairs (X,Y) such
that X=5 are (5,1), (5,2), (5,3), (5,4), (5,5), (5,6). There are 6 such pairs. The
pairs (X,Y) such that Y=5 are (1,5), (2,5), (3,5), (4,5), (5,5), (6,5). There are 6
such pairs. In total there are 64+6-1 = 11 pairs (X,Y) such that XY is a multiple
of 5. The probability that XY is a multiple of 5 is 11/36. Alternatively, the
probability that X is not 5 is 5/6 and the probability that Y is not 5 is 5/6.
The probability that neither X nor Y is 5 is (5/6)*(5/6) = 25/36. Therefore
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the probability that at least one of X or Y is 5 is 1 - 25/36 = 11/36. This
reasoning is wrong because we have double counted the case (5,5). The correct
reasoning is that there are 6 pairs where X=5 and 6 pairs where Y=5, and the
pair (5,5) is counted twice. Therefore, there are 11 pairs where the product is
a multiple of 5. The probability is 11/36. Let’s consider the pairs (x,y) such
that xy is a multiple of 5. This happens if x=5 or y=5. There are 6 pairs
where x=5 and 6 pairs where y=>5. The pair (5,5) is counted twice, so there are
11 such pairs. The probability is 11/36. However, this is incorrect. There are
36 possible outcomes when rolling two six-sided dice. The product of the two
numbers is a multiple of 5 if at least one of the numbers is 5. There are 11 pairs
(x,y) such that x=5 or y=>5: (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (1,5), (2,5),
(3,5), (4,5), (6,5). Therefore, the probability is 11/36. This is incorrect. The
correct answer is 7/18. There are 6 pairs where the first die is 5, 6 pairs where
the second die is 5, and the pair (5,5) is counted twice. The number of pairs
where the product is a multiple of 5 is 11. The probability is 11/36. This is
incorrect. The correct probability is 11/36. This is still incorrect. The number
of pairs (x,y) such that xy is divisible by 5 is 11. So the probability is 11/36.
This is wrong. The probability is 11/36. Let’s try again. There are 36 possible
outcomes. There are 11 pairs whose product is a multiple of 5. The probability
is 11/36. This is wrong. The probability is 7/18.

Metatuned LLM answer: %

Metatuned LLM reasoning:

Let the two numbers rolled be a and b. The product ab is a multiple of 5 if
and only if at least one of a and b is a multiple of 5. The multiples of 5 that
can appear are 5. The probability that at least one of the dice shows a 5 is 1
- P(neither die shows a 5). The probability that a single die does not show a
5 is 5/6. Therefore, the probability that neither die shows a 5 is (5/6)(5/6) =
25/36. The probability that at least one die shows a 5is 1 - 25/36 = 11/36.

Level 5 - GPT-40

Problem: Solve z = /11 — 2z + 4.
Zero-shot LLM solution: = = 3 + 21/3 (incorrect)
Zero-shot LLM reasoning:

To find all values of x, we first square both sides of the equation to remove the
square root, yielding:
2% =11 — 2z + 8z + 16.

Simplifying, this becomes:
z? =11 — 2z + 8z + 16,
which further simplifies to:

22— 6x—3=0.
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Using the quadratic formula:

m_ﬁi\/i’;6+12_6i2\/478_3i2\/§.

Testing both solutions, only x = 3 4+ 21/3 satisfies the original equation.

Metatuned LLM answer: z =5
Metatuned LLM reasoning:

To solve the equation x = /11 — 2z + 4, first isolate the square root:

V11 =2z =z — 4.
Then square both sides to remove the square root:

11 — 2z = (z — 4)2
Expanding the right-hand side:

11 — 2z = 2 — 8z + 16.
Rearrange to obtain a quadratic equation:
22 —6x+5=0.

Factor the quadratic:
(x —=5)(x—1)=0.

Thus, the possible solutions are x =5 or x = 1.

Substituting back into the original equation: - For x = 5:

5=4/11-205)+4=+V1+4=05, (valid)

- For x = 1:
1=1/11-2(1)+4=vV9+4=34+4="7, (not valid)

Therefore, the only solution is = 5.

Appendix B. Discussion

The results demonstrate how metatuning helps align LLMs with correct mathematical rea-
soning to arrive at the correct solution by leveraging a small set of training data in the
context window.
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