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Abstract

We present a method for embedding knowledge graphs (KGs) using graph neural net-
works (GNNs) enriched with a semantic loss derived from underlying ontologies, yielding
embeddings that better reflect domain knowledge. To demonstrate their utility, we predict
and interpret the effects of gene deletions in the yeast Saccharomyces cerevisiae and learn
box embeddings for KGs in the absence of a prediction task. We further show how box
embeddings can serve as the basis for evaluating KG revisions.

Our yeast KG is constructed from community databases and ontology terms. Class
hierarchies are encoded as low-dimensional box embeddings, which, combined with GNNs,
predict cell growth for double gene knockouts, demonstrating that high-level qualitative
knowledge is informative about experimental outcomes. Incorporating class hierarchy infor-
mation through box embeddings improves predictive performance compared to task-specific
features, and applying semantic loss further enhances this effect by aligning embeddings
with ontology structure. This shows that class hierarchies from ontologies can be exploited
for quantitative prediction. The model also generalises to other genetic modifications be-
yond those seen in training.

Additionally, we apply interpretability techniques to identify co-occurring edges impor-
tant for predictions. A biological experiment validates one such finding, revealing an asso-
ciation between inositol utilisation and osmotic stress resistance, highlighting the model’s
potential to guide biological discovery.

†. This is an extended version of the paper Ontology-based box embeddings and knowledge graphs for
predicting phenotypic traits in Saccharomyces cerevisiae (Kronström et al., 2025), presented at NeSy
2025.

© 2025 F. Kronström, A.H. Gower, D. Brunns̊aker, I.A. Tiukova & R.D. King.
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1. Introduction and Related work

Embeddings of ontologies or knowledge graphs (KGs) in an n-dimensional space, Rn, where
their structure is in some way maintained, have proved useful for downstream tasks such
as link and property prediction from KGs. In many fields ontologies have been carefully
designed to describe how different terms in these domains relate to each other. Hierarchical
information expressed as subClassOf relations between classes is especially prevalent. A
desirable property for embeddings of KGs is that they represent, not just the information
in the graph itself, but also the hierarchies defining the terms which describe the nodes.
Making sure the embedding complies with our knowledge about the domain can, for exam-
ple, provide additional information beneficial for prediction tasks or help generalise beyond
the observed data (Gutiérrez-Basulto and Schockaert, 2018).

KG embeddings can be generated using different approaches. TransE represents links
between entities as translations in a vector space (Bordes et al., 2013). The systemTransE
has also been extended to model hierarchical class information in EL++ ontologies to repre-
sent ‘subClassOf’ relationships as classes maintained within hyperspheres (Kulmanov et al.,
2019). Vilnis et al. (2018) introduced axis-aligned hyperrectangles, or boxes, as a way of
embedding entities in graphs and (Peng et al., 2022) combined it with the TransE model.
Gumbel boxes have been introduced, where Gumbel distributions are used to represent box
parameters, to avoid large flat regions of the loss landscape for transitive relation embed-
dings (Dasgupta et al., 2020). Instead of representing relations as translations of classes,
graph neural networks (GNNs), e.g., GraphSAGE, can be used to aggregate features from
neighbors in the graph to generate embeddings of nodes (Hamilton et al., 2017). Integrating
deep learning with symbolic reasoning has, for example, been demonstrated by Xu et al.
(2018), through the introduction of a semantic loss that can be combined with task-specific
loss functions to penalise neural networks that violate logical constraints.

Box embeddings have been combined with GNNs, for example in recommendation sys-
tems by Liang et al. (2023) and Lin et al. (2024). However, to the best of our knowledge,
they have not been used as a way of generating semantically correct KG embeddings.

KGs have successfully been used to describe heterogeneous data from various domains
by combining instantiated facts with semantically meaningful concepts from ontologies.
For example they have been used to model information on the internet in the Google
Knowledge Graph1 and Wikidata (Vrandečić and Krötzsch, 2014), or by Netflix to improve
user recommendations (Huang et al., 2023). In the biomedical domain, KGs such as BioKG
(Walsh et al., 2020) and SPOKE (Morris et al., 2023) combine information from different
databases to create one large heterogeneous graph with information about, for example,
genes and drugs. There are also graphs describing more narrow phenomenon such as the
protein-protein associations and the drug-drug interactions in the Open Graph Benchmark
(Hu et al., 2020).

A deeper understanding of cellular function and the roles of individual genes is central
to biological research and critical for applications such as drug development. The yeast
Saccharomyces cerevisiae (baker’s yeast) is among the most extensively studied organisms.
It has attracted research interest, not only due to its industrial applications, such as the
production of beer, wine, and biofuels, but more importantly because it serves as a model

1. https://blog.google/products/search/introducing-knowledge-graph-things-not/
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eukaryotic organism. Through this role it helps our understanding of higher eukaryotes,
such as humans and plants (Parapouli et al., 2020). Despite decades of research, our un-
derstanding of yeast biology is still incomplete: many genes remain unannotated (Wood
et al., 2019), and interactions between genes can lead to complex and unexpected pheno-
typic outcomes (Costanzo et al., 2019). To improve our knowledge about any organism,
actual experiments in the lab play a crucial role. However, given the complexity of biological
systems, the number of experiments needed to fully explore even the simplest of organisms
is incredibly large. Because of this, methods supporting hypothesis generation at scale are
highly useful to speed up new discoveries (King et al., 2004; Brunns̊aker et al., 2025).

The results of decades of research on S. cerevisiae are available both in literature and
in more structured formats, such as databases. Saccharomyces Genome Database (SGD)
aggregates curated information about S. cerevisiae genes. It includes Gene Ontology an-
notations, observed phenotypes, and information on regulatory relationships and genetic
interactions (Engel et al., 2024). Information about reactions (biochemical events where a
substrate is converted into a product) and pathways (a series of interconnected reactions
that collectively drive cellular functions) is available in, among others, BioCyc (Karp et al.,
2019).

Information in such databases is often represented and communicated using ontologies
and controlled vocabularies. The Gene Ontology (GO) defines classes describing processes,
functions, and components in cells (Ashburner et al., 2000). To properly represent pheno-
types in SGD the Ascomycete Phenotype Ontology (APO) was developed (Costanzo et al.,
2009). Phenotypes describe observed characteristics resulting from the interaction between
a genotype and an environment, such as growth characteristics or resistances to environ-
mental or chemical perturbants. Chemical compounds are specified in Chemical Entities
of Biological Interest (ChEBI) (Hastings et al., 2016). The Interaction Network Ontology
(INO) (Hur et al., 2015) and Molecular Interactions (MI) (Hermjakob et al., 2004) defines
genetic, physical and regulatory interactions between genes and proteins. Commonly used
relations between classes are introduced in the Relations Ontology (RO) (Mungall et al.,
2020). The Basic Formal Ontology (BFO) is a top-level ontology developed to simplify
alignment of terms from different ontologies (Arp et al., 2015).

Predicting biological properties from structured background knowledge can be done in
different ways. Ma et al. (2018) encode GO-annotations together with the GO hierarchy in a
neural network to predict cellular growth in S. cerevisiae. By predicting protein abundances
using mined patterns from a Datalog knowledgebase containing facts from databases such
as SGD, Brunns̊aker et al. (2024) connected qualitative concepts to quantified intracellular
measurements. KG embeddings have, for example, been used by Gualdi et al. (2024) to
predict genes associated with diseases from a protein interaction KG.

3



Kronström Gower Brunns̊aker Tiukova King

2. Preliminaries

Box representations

Axis-aligned hyperrectangles, or “boxes” as they often are referred to, are defined as the
Cartesian product of closed intervals,

Box =
n∏

i=1

[zi, Zi], (1)

where zi and Zi correspond the lower and upper coordinate along dimension i. To fulfil the
criteria that the upper coordinate should be greater than or equal to the lower coordinate,
Zi ≥ zi, boxes are often generated by applying some transformation on a latent variable.
In this work, we create boxes from latent variables, θ, using the MinDeltaBoxTensors

constructor introduced by Chheda et al. (2021), where the upper and lower box coordinates
are defined as follows:

zi = θzi , Zi = zi + softplus(θZi ) (2)

Boxes can also be represented by their centre-point, ci, and offset, oi, along dimension i,
found from z and Z as follows:

ci =
zi + Zi

2
, oi = Zi − ci (3)

Semantic losses

In this work we want to embed and make predictions from KGs with rich concept hierarchies.
Box embeddings, where each class is represented by a box, presents a natural interpretation
of the subClassOf relation2, where the class-box of a subclass is contained within its super-
class. To learn box embeddings we consider two different types of loss functions for concept
inclusions on the form C ⊑ D. The first loss, here called Ldistance, has previously been used
by, for example, Peng et al. (2022) and Jackermeier et al. (2024). Using the nomenclature
presented above it is calculated by first finding the element-wise distance between the two
boxes,

d(Ci, Di) = |cCi − cDi | − oCi − oDi (4)

In the loss function we use this to find the distance from the subclass being completely
contained within the superclass,

Ldistance(C,D) =
∣∣∣∣∣∣(max(0, d(Ci, Di) + 2oCi )

)n

i=1

∣∣∣∣∣∣ (5)

To keep disjoint classes, C ⊓D ⊑ ⊥, apart we penalise overlap of the boxes by the following
loss:

L−distance(C,D) =
∣∣∣∣∣∣(max(0,−d(Ci, Di))

)n

i=1

∣∣∣∣∣∣ (6)

The second loss type considers the overlap between boxes and for the subsumption
C ⊑ D it is calculated as

Loverlap = − log
(Vol(Box(C) ∩ Box(D))

Vol(Box(C))

)
(7)

2. The same interpretation holds for any other transitive relation as well.
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For disjoint classes we instead use the following loss:

L−overlap = − log
(
1− Vol(Box(C) ∩ Box(D))

Vol(Box(C))

)
(8)

To avoid large flat regions in the loss landscape, for example when two boxes are com-
pletely disjoint, Dasgupta et al. (2020) proposes that boxes and intersections of boxes are
interpreted as Gumbel random variables. They show that the volume of such boxes and
intersections are determined by Bessel functions which can be reasonably approximated
by softplus functions. In practice, this produces smooth intersections between boxes and
ensures non-zero gradients, also in cases such as disjoint boxes.

Throughout this work we use L⊑ and L−⊑ as placeholders for either of the inclusion and
disjointness losses introduced above. To learn box embeddings the positive and negative
losses are simply added together, possibly weighted differently. We present ways of doing
this in more detail in Sections 3.3 and 3.4.

Regularisation losses

Patel et al. (2020) proposes to regularise the volume of boxes when training box embeddings,
we use the implementation by Chheda et al. (2021) which does this by applying the L2-norm
to all sides of the box,

R =
n∑
i

∥Zi − zi∥2 (9)

We also found that regularising too small boxes can be beneficial in some cases. This was
implemented as

R =
n∑
i

max
(
0,

1

∥Zi − zi∥
− l0

)
, (10)

with l0 being a threshold determining below what size the box is penalised.

3. Material and methods

3.1. Box embeddings

The losses presented in Section 2 can be used to train shallow embeddings of class hierar-
chies, but they can also be used for training of GNNs. Each layer l = 1, . . . , L of the GNN
learns weights wl that parametrise a function Bl : Rnl−1 −→ Rnl . Treating the output of
each layer in a GNN, θl = Bl(θl−1;wl), as the latent variable for a box embedding, boxes
can be generated using the transformation in (2) and fed to the loss functions in (5-8). An
illustration of this can be seen in Figure 1. Heterogeneous KGs, with different domains
made up of classes we do not want to embed together, can have separate embeddings for
each domain, which are trained using separate class hierarchies.

The approach is flexible in the sense that it is architecture agnostic and can be used either
on its own for box embeddings of KGs using GNNs, or as a semantic loss together together
with another loss term, for example, when training prediction models. The rationale behind
this approach is that class hierarchies often contain information that is not necessarily
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Figure 1: Illustration of how we use box embeddings to represent the class hierarchies
throughout GNNs. The output of each message passing layer, which aggregates
information between neighbors in the KG, is treated as a latent variable that
is converted into boxes through the box transformation in (2). The boxes are
trained to fulfil specified class hierarchies using the losses in (5-8), which can also
be applied to the prior node embedding.

modelled in the graph edges, and can be especially useful to improve the representation of
poorly connected nodes in the graph.

To prevent the embeddings from collapsing into the same boxes for all classes, negative
examples can be drawn randomly and used as disjoint classes in the losses in (6) and (8).

To represent boxes and implement box-related operations, such as intersection and vol-
ume calculations, we use the box-embeddings Python package (v0.1.0) (Chheda et al.,
2021).

3.2. Knowledge graph

We have created a heterogeneous knowledge graph describing genes in the yeast Saccha-
romyces cerevisiae, by combining facts expressed in classes and relations from multiple
ontologies. The graph is specified in description logic, only using TBox statements by
rewriting class assertions, C(a), as {a} ⊑ C and role assertions, r(a, b), as {a} ⊑ ∃r.{b}.
In this way, we get the same representation of asserted facts from databases as we have for
terminological statements from ontologies, like GO or ChEBI. This simplifies the interface
between KG, box embeddings, and GNN, introduced in Sections 3.1 and 3.3.

The knowledge graph is created from data in SGD, where the information is defined
using terms from several different ontologies.A high level overview of the graph, showing
how different node types are connected, can be seen in Figure 2a. Figure 2b shows examples
of the hierarchies classes instantiating these nodes are represented in.

The GO-annotations in SGD are naturally described by classes in the Gene Ontology and
relations from the OBO Relations Ontology, which are specified in the database. Phenotypes
are described using terms from APO where a phenotype is represented by an ‘observable’,
for example ‘heat sensitivity’, and possibly a ‘qualifier’, for example ‘increased’. We
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Figure 2: An overview of the different types of classes and how they are connected in the
knowledge graph is shown in a. The color of the nodes specifies where the classes
are defined. b shows examples from the hierarchies defining classes in the domains
introduced in Section 3.3.

represent the phenotype as the subclass of the intersection of these two types of classes, and
phenotypes are linked to genes using the RO relation ‘has phenotype’. Some phenotypes
describe observables related to specific chemicals, in such cases the chemical class in ChEBI
is linked with a custom relation, ‘aboutChemical’. To form a closer connection between
genes and chemicals related to phenotypes, which proved useful for downstream tasks (see
Section 3.3), a link specific to the type of observable was added between the gene and the
chemical. An example of how this is implemented in description logic can be seen in (14)
in Appendix A.

Gene regulation in SGD is a directed relationship between two genes that can be positive,
negative, or unspecified, and of different types, for example, regulation of protein activity
or expression. In some instances, a biological process from GO specifies under which condi-
tions the regulation occurs. We introduce custom relations describing regulation type and
direction, which we use to link the two genes in the graph. When a biological process is
specified we also link the genes to a gene-specific subclass of the ‘regulation’ class from
INO, which in turn is linked to the GO-term. The description logic implementation of such
a regulation can be seen in (15) in Appendix A.
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Interactions between genes are represented as undirected relationships, which may also
be associated with a phenotype observed alongside the interaction. Similarly to regulation
this is modelled as a link between the involved genes and a gene specific subclass of either
a protein-protein interaction from INO or a genetic interaction from MI, which
is linked to the phenotype.

Beyond the data from SGD we have also included information about reactions and
pathways from BioCyc, which uses its own controlled vocabulary. In the graph, reactions
are linked to their input and output chemicals, as well as, when specified, genes they are
catalysed by and locations in the cell where they take place. We link pathways to their
involved reactions, as well as to the compounds that are consumed and produced.

3.3. Prediction models

To demonstrate the usefulness of our KG and how the box embedding method described
in Section 3.1 can be used in practice, we train GNNs to predict phenotypic traits in
S. cerevisiae. We use data from Costanzo et al. (2016) where cell growth is measured when
pairs of genes are deleted (digenic deletions) from the genome. By comparing this growth
to that of cells with no gene deletions, a fitness score can be determined, describing the
impact of deleting the two genes. A subset of this data, grown under the same standard
experimental conditions (30◦C), is used to train our model. This results in a data set with
10,085,183 examples of deleted gene pairs and a corresponding fitness. Note that the genetic
interaction relation from SGD describes a similar phenomena, often derived from the same
dataset. These relations are thus removed from the graph before training to avoid data
leakage.

We divide our classes in the KG into eight different domains, seen in Figure 2b, for which
separate embeddings are found. These splits generally align well with the ontologies the
classes are from, or disjoint branches in the same ontology. The reasoning behind this is that
these domains represent non-overlapping concepts, so not much is gained by representing
them in the same embedding space. Doing this also allows us to reduce the dimensionality
of the embedding space and vary it depending on the number of classes in the domain.
Adding reverse links to the graph to allow for message passing in both directions results
in 204 different types of links. After removing infrequent (<1,000) and overlapping edges
we end up with 72 different types of links, and nodes belonging to eight different domains,
used for prediction.

Prior shallow node embeddings were trained using the overlap losses in (7) and (8),
representing the classes as Gumbel boxes. Large boxes were penalised using the regulari-
sation in (9) and negative examples are generated by drawing random classes, p̄, that are
not in the set of parents to c, i.e. not in {p|c ⊑∗ p}, to better discriminate between classes.
Parameters used to train the box embeddings and the dimensions of the different domains
are reported in Appendix C.1.

For predicting the gene-pair fitness we use a heterogeneous GNN followed by a fully
connected neural network, an overview of the architecture can be seen in Figure 3a. The
GNN used is based on the max-aggregated GraphSAGE embedding algorithm introduced
by Hamilton et al. (2017), which has previously shown promise in KG- and network-related
prediction tasks (Ma et al., 2023; Syama et al., 2023; Vretinaris et al., 2021). In our
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Figure 3: An overview of the system predicting the fitness when deleting pairs of genes
is shown in a. b shows how classes in the different domains are represented
by boxes and how information is aggregated in the GNN, as well as how the
node embeddings throughout the network are interpreted as boxes using the box
transformation in (2). Arrows from the boxes represent learnable SAGE mod-
ules, different for each source domain-edge-target domain type. The fitness
is predicted from the Hadamard product of the embeddings of the two deleted
genes.

heterogeneous setting, each source-edge-target type has its own SAGEConv-module, whose
outputs are combined using mean aggregation to create the node embeddings from each
layer. The dimensionality of the SAGE message-passing modules is adjusted based on the
type of source-edge-target triple, and specifically varies with the number of edges directed
toward the target domain. Domains with a high degree of incoming connectivity, such as
‘Material entities’ or ‘Genes’, are assigned higher dimensional feature spaces. The resulting
class embeddings, generated by the GNN, capture aggregated neighbourhood information.
By applying box-losses as introduced in Section 3.1, the training will also aim to represent
the class hierarchy as box embeddings. Figure 3b illustrates how information is propagated
from the initial box embeddings across different domains to the gene embeddings. To predict
the fitness of a gene pair, we compute the Hadamard product of their embedding vectors and
feed the result into a fully connected neural network, which outputs a real-valued prediction.

We train the model by minimising, using the Adam optimiser, the following loss function,

L = LMSE(y, ŷ) + α(L⊑ + βL−⊑) + λ ∥w∥2 (11)

LMSE denotes the mean squared errors of the fitness predictions and L⊑ and L−⊑ are defined
in (5-8). α and β are weights determining the impact of the semantic loss, measuring how
well the box embeddings represents the class hierarchies. λ controls regularisation of the
parameters in the network.
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The models are trained and evaluated using 10-fold cross validation where the data
split is based on the genes. Any gene pairs that include genes from both the training and
validation sets are discarded. This ensures that no pairs involving validation-set genes are
seen during training, so the learned representations of genes in the training set do not
influence the predictions being evaluated.

Hyperparameters, including learning rate, regularisation (λ), the depth and width of the
fully connected neural network, the depth of the GNN, and embedding dimensions through-
out the GNN, are tuned using Bayesian optimization. For the embedding dimensions, values
are doubled for the most common target domains and halved for the least common. Tuning
is performed on a separate data split from the one evaluated in Section 4.1. This tuning is
done for a model using box embeddings as prior node representations, but without semantic
loss during training, the same parameters are then used for all evaluated models. The used
hyperparameters are reported in Appendix C.2.

3.4. Learning GNN box embeddings without a prediction task

To demonstrate how the semantic loss can be used to train box embeddings in the absence
of a prediction task, we use a simpler ontology. Using the family tree of the British royal
family3, we define terms to describe basic parental and spousal relationships, as well as
place of birth, and create ABox statements for corresponding facts from the database. An
overview of the included concepts and properties can be seen in Table 3 in Appendix B.
Following the same methodology as Section 3.2 we rewrite role and class assertions as
TBox axioms. subClassOf relations are used as the positive examples for L⊑, and neg-
ative examples for L−⊑ are taken from disjoint classes, inferred from the disjointness ax-
ioms Person ⊓ Country ⊑ ⊥ and Man ⊓ Woman ⊑ ⊥, as well as for randomly drawn pairs
(Individual1 ⊓ Individual2 ⊑ ⊥) to distinguish between individuals in the graph.

As for the models described in Section 3.3, the GNN is constructed from SAGEConv
modules for each edge type. For the purposes of demonstration, we learn embeddings in two
dimensions so they can easily be visualised. We simultaneously train initial box embeddings
(randomly initialised) and a GNN by minimising, again using the Adam optimiser, the loss
function,

L = L⊑ + βL−⊑ + λR, (12)

where R is the regularisation loss from (10), penalising small boxes with an l0 of 1, and β
and λ are weights determining the impact of the negative semantic loss and regularization
loss respectively. Note the absence of the mean squared error term present in the prediction
task above. The regularisation term was included as disjointness tended to make boxes
extremely small along one or more dimensions during training rather than move position in
the space. The negative semantic loss is decomposed into

L−⊑ = L−⊑data + γL−⊑random, (13)

which allows us to tune the contribution of the randomly selected disjointness axioms. For
each loss type (distance or overlap) we separately tuned the hyperparameters, and the used
values are reported in Table 6 in Appendix C.3.

3. Obtained from http://kingscoronation.com/wp-includes/images/Queen_Eliz_II.ged in .GED format
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3.5. Link evaluation

A potential application for the semantic losses defined above, in addition to the training of
box embedding models for quantitative prediction tasks, is to rank proposed revisions to a
knowledge graph based on the resultant changes to embeddings and losses. We test this by
adding single edges to the graph according to the following scheme.

Say that for a given ontology we construct a graph G = (V,E), where each edge vertex
v ∈ V is a class in the ontology and each edge e ∈ E represents a role assertion. Following
the methodology outlined above, we use G as the basis for a GNN, and train box embeddings
and the weights of the GNN using the semantic loss. Introducing new role assertions to the
graph results in graph G̃, and passing the prior box embeddings through the GNN using
these additional edges will change the final box embeddings. We calculate the distance
between the original learned box embeddings and those after the changes to the graph,
giving us a measure of the change to the embeddings from the graph revision. This process
is described in Algorithm 1.

Algorithm 1: Link evaluation algorithm

Train embedding parameters θl on Gtrain
δ ← ∅
foreach e ∈ Etest do

G̃ ← Gtrain ∪ {e}
B ← Box(GNNθ(Gtrain))
B̃ ← Box(GNNθ(G̃))
δ ← δ ∪ (e, ⟨B, B̃⟩) # distance between the generated box embeddings

end
Sort δ to get ranked revisions

To evaluate this proposed method, we split the edges in the graph based on the royal
family tree dataset into training and test data using a 70:30 training and test split, stratified
by relation type. This results in a training graph Gtrain = (V,Etrain) and a test graph
Gtest = (V,Etest). The embeddings and GNN are trained as per Section 3.4. We run
Algorithm 1, going through each edge in the test data. We also perform the same steps
with randomly generated edges with source and target drawn from the same classes as the
test edge, and with completely randomly drawn source and target nodes. The distance
metric used is defined in (4).

4. Results

4.1. Gene deletion fitness prediction

In Table 1 we present the coefficient of determination (R2) for different versions of the
model described in Section 3.3. We evaluate a model without any information from class
hierarchies, a model with the prior node embeddings in box form, and models using both
prior node embeddings and the semantic loss in (11). Both the overlap and distance version
of the losses are evaluated. The model not using any hierarchy information learns shallow
embeddings specifically for this task to represent the nodes in the KG. For the two models
with the semantic loss, we apply it to all domains except the one embedding the genes, since
the class hierarchy in this domain is not considered informative. The gene hierarchy builds

11



Kronström Gower Brunns̊aker Tiukova King

on a rudimentary SGD gene categorisation, offering very little information, with over 90%
of genes falling into the same category. The loss is applied to all generated embeddings,
including the initial embeddings, whose weights are also adjusted during training.

We also compare to a Light Gradient Boosting Machine (LightGBM) (Ke et al., 2017)
on the instantiation of the phenotype information from the KG. The phenotypes describe
observable characteristics of the genes and is the part of the KG we expect to be most
informative for this task (further support for this is seen when considering feature impor-
tances for the GNN, mentioned in Section 4.2, which are dominated by phenotypes). The
instantiation of the phenotypes is sparse with 2680 features.

Table 1: Results from 10-fold cross-validation of digenic deletion fitness. The GNN with-
out box embeddings learns task-specific shallow embeddings as the prior node
representations. The other three GNNs uses pre-trained box embeddings and the
semantic loss in (11) is applied to two of them. All GNN models share the same
architecture. The instantiation model uses a sparse feature matrix with non-zero
entries for phenotype annotations from the KG. Significant pairwise differences
are indicated by ↑ and ↓ (p<0.05, paired t-test).

Description Mean R2 SD a b c d e

a Instantiations + LightGBM 0.211 0.022 - ↓ ↓ ↓ ↓
b GNN without box embeddings 0.329 0.043 ↑ - ↓ ↓ ↓
c GNN with prior box embeddings 0.360 0.043 ↑ ↑ - ↓
d GNN with prior box embeddings + Loverlap 0.368 0.038 ↑ ↑ -

e GNN with prior box embeddings + Ldistance 0.374 0.042 ↑ ↑ ↑ -

From the results it is clear that the GNN generates gene embeddings which can be
used for predicting this fitness to a reasonable degree, given the amount of noise typically
present in biological measurements (Li et al., 2021). Using the box embeddings to represent
classes rather than learning them from scratch results in a significant (p<0.05, paired t-
test) improvement. Enforcing the hierarchical class structure through the semantic loss
throughout the model improves the results further, the model trained with the distance-
loss performs significantly (p<0.05, paired t-test) better than the models not using the
semantic loss. The instantiated phenotype information seems to be somewhat useful for
prediction, but is not as informative as the full KG.

The parity plots for the predictions are shown in Figure 4(a) and 4(c). From this we can
see that most double gene deletions do not have major impact on the fitness. We can also
see a clear shrinkage effect where the model mispredicts extreme values, especially deletions
with low fitness are overestimated. Comparing the predictions from the model trained with
the semantic loss we can see that they in general are rather similar, but that the semantic
loss model seems to have fewer large underestimations.

Figure 5 show the semantic losses in the different domains, introduced in Figure 2b, for
the best performing model, using Ldistance. A similar pattern is observed for all domains
where both the positive loss for the first layer (the pretrained box embeddings) and the
negative loss for the second layer is low and fairly constant. The positive losses for the second
layers decreases across all domains throughout training, while the negative loss for the first
layer does not change much and is substantially higher than the others. This suggests that,
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(c) Double deletion with semantic loss
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(d) Triple deletion with semantic loss

Figure 4: Parity plots for double, (a) and (c), and triple, (b) and (d), gene deletions. (a)
and (b) shows the parity plot for the model using box embeddings as prior node
representations only, while (c) and (d) shows the predictions from a model also
trained with the distance-based semantic losses, Ldistance. For the double dele-
tion, the predictions from all validation sets in the cross validation are shown.

even though they result in a significant improvement in prediction performance, the initial
box embeddings has a lot of overlap between classes. On the other hand, the embeddings
generated by the GNN discriminates very well between classes, already at the first epoch
and the hierarchical structure is learnt throughout training.

To evaluate our model on a slightly modified version of the original task, we use data
from Kuzmin et al. (2018), who performed a study similar to the one used for training
our models, but focused on trigenic deletion fitness. This dataset comprises a total of
15,095 triple deletion datapoints. For this we use one model trained on the full dataset
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Figure 5: Average Ldistance and L
−
distance losses per class for the different domains in the KG,

during training of the best performing model in Table 1. The line is the average
loss across the 10 folds and the shaded area shows ± one standard deviation.
Note that this loss is not applied to the gene-domain, since its class hierarchy is
not deemed to be informative.

from Costanzo et al. (2016), but instead perform the Hadamard product between the three
involved genes. Notably we achieve an R2 of 0.380 for a model using box embeddings as
prior node representations, and 0.415 for a model using the same prior node embeddings,
but trained with the distance-based semantic loss. These values are slightly higher than
the average performance observed in the cross-validation of digenic deletions. The parity
plots, seen in Figure 4(b) and 4(d), shows promise in generalising to a new task. Again, the
prediction patterns for the two models look similar, but the model trained with the semantic
loss does not predict as high fitness. An important note on this experiment is that, unlike
the double deletion experiment, the individual genes making up the triple deletions are now
seen as parts of double deletion examples in training.

4.2. Model interpretation and experimental evaluation

Since our predictions stem from a KG where each link holds domain-relevant meaning, we
explore patterns among important edges. We apply the input× gradient method (Shriku-
mar et al., 2017) via Captum (Kokhlikyan et al., 2020) to attribute edge importance for
predictions by a model using prior box embeddings (model c in Table 1). By multiplying
the individual importance scores for the involved genes we get a measure of the importance
of co-occurring edges. Summing these values for all predictions gives a global importance
of such edge-pairs. This can be interpreted as the impact of the interaction between the
two traits on the fitness.
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Figure 6: An overview of the selection and results of the experiment we performed. (a)
shows the highest ranked importances of edge-pairs and the pair selected for
the experiment, nutrient utilisation of inositol and stress resistance to NaCl, is
highlighted in red. f0 and f1, which have a higher assigned weight, are discarded
due to safety and lab constraints as it involves the chemical bleomycin. (b) Box
plot showing the distribution of AUC for all of the experimental conditions tested.
Inositol supplementation significantly impacts growth dynamics in high doses (p
< 0.05). NaCl stress changes the impact of inositol in a dose dependent manner,
suggesting an interactive effect (p < 0.05).

To identify patterns corresponding to viable experiments for standard lab setups we
filtered for edges related to nutrient utilisation phenotypes. A more detailed description
of the filtering process can be found in Appendix D.1. The top ten most important edge
pairs are shown in Figure 6(a) and detailed in Appendix D.2. The highest-weighted, safely
testable pair was selected and highlighted in red in Figure 6(a), linking one of the involved
genes to inositol (vitamin B8) utilisation and the other to NaCl stress resistance, suggesting
a potential interaction between these traits.

To experimentally test this hypothesis, a perturbation experiment was performed in an
automated laboratory cell (Williams et al., 2015), in which inositol and NaCl was supplied
in a range of concentrations, details about the experimental design and cultivation methods
can be found in Appendix D.3. An ∆ino1 mutant (INOsitol requiring) was used for all
subsequent experiments, as it is unable to synthesise inositol on its own, ensuring that
any intracellular accumulation was acquired only through transport from the media. The
growth dynamics of the cells in the different experimental conditions were summarised with
the area under curve (AUC) of the growth curves, providing a single-valued measure of the
biomass accumulation over the course of the experiment. The full growth dynamics can
be seen in Figure 9 in Appendix D.4 and summarising boxplots are shown in Figure 6(b).
Statistical testing for interaction effects was done with a Gaussian generalised linear model
(GLM), further details can be found in Appendix D.4.

These empirical results, seen in Figure 6(b) and Table 2, indicate a significant interaction
between inositol supplementation and induced NaCl stress, verifying that the proposed edge-
interactions are consistent with experimental data. Specifically, supplementing with inositol
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Table 2: Estimated parameters from the GLM examining the effects of myo-Inositol-
supplementation and NaCl treatment on growth dynamics. The table presents
coefficient estimates, p-values and confidence intervals for the main effects and
interaction terms. Significant interactions indicate that the effect of myo-inositol
supplementation changes depending on treatment levels. The two highlighted rows
indicate the significant interaction effect.

Coefficient
(×103)

Confidence
interval (×103) p-value

Intercept 97.29 [88.20, 106] 0.000

Medium inositol -11.84 [-24.7, 1.02] 0.071

High inositol -14.56 [-27.9, -1.24] 0.032

Low NaCl -9.50 [-22.4, 3.37] 0.148

High NaCl -30.61 [-43.5, -17.8] 0.000

Medium inositol × Low NaCl 13.11 [-5.40, 31.6] 0.165

High inositol × Low NaCl 13.38 [-5.45, 32.2] 0.164

Medium inositol × High NaCl 20.92 [2.41, 39.4] 0.027

High inositol × High NaCl 22.64 [3.40, 41.9] 0.021

rescued cells from NaCl-induced stress, indicating that inositol availability enhances their
ability to withstand salt stress. Inositol has previously been implicated in biosynthesis and
integrity of cell membranes (Culbertson and Henry, 1975). Since NaCl can disrupt osmotic
balance, enhanced membrane stability is likely to have a protective effect for the cells.

4.3. Demonstration of royal family box embeddings

For the knowledge graph constructed from the royal family tree dataset, after the hyperpa-
rameter search for distance-loss and overlap-loss, we constructed final box embeddings in
two dimensions using a GNN with one message passing layer. In Figure 7 we plot the box
embeddings for each loss, before input into the GNN and then the final embeddings. We
see clearly that the GNN is performing a transformation of the prior embeddings. Further-
more, both losses result in learned embeddings that capture semantic concepts from the
KG, in particular that Man and Woman are disjoint, yet both under the Person class, and
that each of these is disjoint from Country. Both losses also responded to the randomly
drawn negative loss contributions (L−⊑random) in attempting to separate individuals, though
this is more evident with the overlap-loss.

Comparing Figures 7(a) and 7(b), we see that prior to being passed through the GNN,
the boxes corresponding to different Woman and Man individuals are clustered around the
corners of the superclass boxes. An intuitive explanation for this phenomenon is that they
are being “pulled” into the box for their gender, but once they are in the box there is no
longer any signal affecting their position. The loss from randomly drawn disjointness ax-
ioms keeps them somewhat separated. Having passed through the GNN, the boxes take on
dramatically different shapes and relative positions. The semantic loss of these embeddings
is low, but individuals of the same superclass have now very similar embeddings. By con-
trast, comparing Figures 7(a) and 7(b), we see that the shape of the boxes is long and thin,
minimising the volume of each intersection (in this case the Bessel volume, see Section 2 and
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Dasgupta et al. (2020) for details). And the final embeddings do not differ from the prior
embeddings to the same extent as with distance loss. The overall structure of the parent
classes is broadly the same, albeit rotated. With both losses, the box volume increased after
passing through the GNN, and the difference between height and width decreased.
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Country

ManPerson
Woman

Women
Men
Countries

(c) Overlap Loss - Pre GNN Embeddings

Country

Man

Person

Woman

Women
Men
Countries
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Figure 7: Learned box embeddings in two dimensions for the royal family tree dataset.
7(a) and 7(b) box embeddings prior to input into GNN; 7(b) and 7(d) show final
embeddings for distance and overlap loss respectively.

4.4. Evaluation of graph revisions

The median distances and loss changes for individual edge revisions to the graph were small,
and these measures overall had very large variance. However there were signs in these data
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which suggest that using these values could be used as a tool to rank candidate revisions
to a knowledge base. For the birthPlace relation, the distance of graphs constructed from
the test data was significantly smaller (p <0.05, student’s t-test) than both completely
randomly drawn data and constrained randomly drawn data. However, for the relations
between Person entities, there was common pattern. The graphs constructed from the
test data had a lower distance to the original embeddings when compared to the completely
randomly drawn edges. However when constraining the random draw to appropriate classes,
in this case either Man or Woman, the distances were smaller still than the test data. This
effect can be seen in Figure 8.
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Figure 8: Distribution of distances of box embeddings generated from revised graphs G̃ to
the original embeddings learned from G, shown by relation type. (The method
for calculating these differences is described in 3.5). Completely randomly drawn
edges have a higher mean difference than the test edges (truth data), though for
all edges the lowest mean difference was for constrained randomly drawn edges.

5. Discussion

In this work we have presented a method generating KG embeddings using GNNs, taking
hierarchical class information as well as graph structure into account. We do this by in-
troducing a semantic loss term to the training acting on box transformations of the node
embeddings. We have seen that it can be used on its own to generate KG embeddings
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adhering to subsumptions defined in ontologies, but more importantly this method shows
promise when used together with another, task-specific prediction loss.

We observed this effect when predicting digenic deletion fitness from a KG describing
S. cerevisiae genes which we constructed. While the predictive R2 of 0.374 may seem
low, biological data is inherently noisy, and even replicating experiments is challenging
(Roper et al., 2022). Moreover, our model predicts quantitative outcomes from high-level
qualitative information. What is more interesting is how the prediction performance was
improved by introducing more hierarchical information to the models. One explanation
we envision for the improved performance is that enforcing the class hierarchies has a
regularising effect, while also providing semantic grounding for the modelled concepts. The
improved performance could also suggests that the ontologies used, for example ChEBI and
GO, are, at least somewhat, good models of the domains.

KG embeddings that, at least to a large extent, adhere to their underlying ontologies
can potentially be used for several tasks, even if they were trained with a particular problem
in mind. Our trigenic gene deletion experiments are one example of applying the model
slightly outside its original domain. The increased performance in this task compared to
the digenic deletion is likely, at least partly, due to the individual genes involved no longer
being unseen during training. The fitness will depend heavily on the traits of the individual
genes, which will be better represented for genes in the training data. The embeddings
could potentially be applied to a broader range of tasks, such as GO annotation of genes,
which is typically addressed by integrating multiple knowledge sources (Merino et al., 2022).

We have not utilised any sequence information for our fitness predictions, despite it being
the most informative data about genes and fully available for S. cerevisiae. Representing
the initial gene embeddings as some encoding of their sequence would provide richer and
more meaningful gene embeddings and most likely result in better predictions. However,
our current setup will put more emphasis on using the information in the KG as the basis
of the predictions. In this way this helps demonstrate both the knowledge in the KG and
the usefulness of our embedding method.

The capability of making predictions from qualitative facts enabled interpretability tech-
niques to guide experiment selection, underscoring the value of structured data represen-
tation and computational methods in accelerating research. Our edge filtering for viable
experiments introduces biases regarding the type of hypotheses generated. Leveraging large
language models could be one approach to automatically refine this selection and reveal
overlooked experiments.

We suggested two different loss functions for learning box embeddings. The first is based
on the volume of overlap between boxes, rewarding overlap for subclasses, and penalising
overlaps in the case of disjointness. The second was based on the distance from the boxes
fulfilling the subsumption axioms. Studying the embeddings of the family tree in Figure 7,
the embedding learnt through the overlap loss using Gumbel boxes seems to have better
captured the semantics of the ontology. Boxes for Man and Woman are aligned along one
dimension and the box for Country is placed orthogonally to this along the other dimension.
The embedding learnt through the distance-based loss instead places the boxes for each class
along a diagonal, which here means in the embedding space Woman is more similar to Country
than Man is, which is not faithful to the semantics of the ontology. Another property of
the embeddings learned in this example is the variation in position among instances, which
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is better for the overlap-loss. Figure 7(b) also shows some variation, primarily among
instances of Man, but the training was less stable, putting too high weight on the negative
examples.

Interestingly, when class hierarchies were enforced in the gene deletion fitness predic-
tions, the distance-based loss yielded better predictive performance. One potential expla-
nation for this finding is that the distance-based loss may be particularly well suited as a
semantic loss to complement a task-specific loss. By introducing a semantic loss component
to our total loss, we of course want to capture how faithfully a given embedding adheres
to the semantics of the source ontology. But to have smooth training, a desirable feature
of a semantic loss measure is that its gradients are informative when the constraints are
not fulfilled. This is exactly what Ldistance does. To obtain useful gradients with Loverlap,
one can for example use Gumbel boxes as in Dasgupta et al. (2020), but a result of the
introduced smoothing is that losses can remain nonzero even when the semantic constraints
are fulfilled. With another loss term primarily guiding the training, in this case LMSE , the
issue of Ldistance not discriminating between classes that we observed with the family tree
dataset is not as pressing, as the primary loss will likely also push towards being able to
discriminate.

Our proposed method for evaluating link revisions to a KG can be seen as an interesting
application and direction for future research. Evaluating only the distance in the generated
embeddings is, in this setting, not enough to discriminate between true and random edges.
It could possibly work better for a more heterogeneous graph, with a richer class hierarchy.
A measure of distance, combined with the semantic losses, could represent a measure of
surprise. In a scientific discovery context, surprise can be used as part of creating and
evaluating hypotheses, opening up opportunities for box embeddings to be used in this
context.

6. Conclusion

In this work we have presented a method generating KG embeddings using GNNs, taking
hierarchical class information as well as graph structure into account. We show that en-
forcing the class hierarchies as semantic losses throughout the model can help predictive
performance while also producing internal representations which better correspond to our
knowledge of the domain. This is demonstrated on a KG we have created from publicly
available data about the yeast S. cerevisiae. Based on this KG we can, not only predict
biological measurements, but also use interpretability tools to form a hypothesis about
phenotype interactions. One such hypothesis was tested and supported by performing a bi-
ological experiment, uncovering an association between inositol utilisation and NaCl stress.
This illustrates how models with semantic grounding can help in scientific discovery.

The code and data for this project are available at https://github.com/filipkro/

kg-box-emb.
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Appendix A. Examples of description logic in KG

A description logic example of how a phenotype with a qualifier and chemical are specified
in the KG. This example is about decreased (APO 0000003) utilisation of carbon source
(APO 0000096) of lactate (CHEBI 16004), observed for the gene YBL030C.

APO 0000098-APO 0000003-CHEBI 16004 ⊑ APO 0000098 ⊓ APO 0000003

APO 0000098-APO 0000003-CHEBI 16004 ⊑ ∃aboutChemical.CHEBI 16004

YBL030C ⊑ ∃RO 0002200.APO 0000098-APO 0000003-CHEBI 16004

YBL030C ⊑ ∃hasChemNutrientUtilization Decreased.CHEBI 16004.

(14)

A description logic example of how a gene (YCR073C) is positively regulating the pro-
tein activity (INO 0000104) of another gene (YLR113W). This regulation happens during
(RO 0002092) cellular response to heat (GO 0034605).

YCR073C-YLR113W-protein activity-positive ⊑ INO 0000104

YCR073C ⊑ ∃positive regulator of.YCR073C-YLR113W-protein activity-positive

positive regulator of.YCR073C-YLR113W-protein activity-positive

⊑ ∃regulated gene.YLR113W

positive regulator of.YCR073C-YLR113W-protein activity-positive

⊑ ∃RO 0002092.GO 0034605

YCR073C ⊑ ∃positively regulating.YLR113W.

(15)

Appendix B. Royal family KG

Table 3: Terms used in family tree demonstration
Term Type Superclass/-property Domain Range

Person owl:Class – – –

Man owl:Class Person – –

Woman owl:Class Person – –

Country owl:Class – – –

parentOf owl:objectProperty – Person Person

fatherOf owl:objectProperty parentOf Man Person

motherOf owl:objectProperty parentOf Woman Person

childOf owl:objectProperty – Person Person

birthPlace owl:objectProperty – Person Country

spouseOf owl:objectProperty – Person Person

husbandOf owl:objectProperty spouseOf Man Person

wifeOf owl:objectProperty spouseOf Woman Person
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Appendix C. Hyperparameters

C.1. Box embedding parameters

Table 4: Parameters used for the box embeddings of the different domains

Domain Dimensions Epochs Lr Regularisation Gumbel
temperature

Neg. ex.
ratio

Material
entity

10 1,000 1e-2 1e-3 0.25 2.0

Genes 8 600 1e-2 1e-3 0.25 4.0

Regulations 5 500 1e-2 1e-3 0.25 2.0

Molecular
functions

5 500 1e-2 1e-3 0.25 2.0

Biological
processes

5 500 1e-2 1e-3 0.25 2.0

Phenotypes 4 500 1e-2 1e-3 0.25 2.0

Reactions &
Pathways

4 500 1e-2 1e-3 0.25 2.0

Cellular
components

4 500 1e-2 1e-3 0.25 2.0

C.2. Prediction model hyperparameters

The best performing model was trained for 500 epochs, with a learning rate of 1e-5, and L2
regularisation weight of 0.1. The depth of the GNN was 2 and the embedding dimensions
for the domains are listed in Table 5 and are the same throughout the GNN. The fully
connected neural network predicting the interaction from the embeddings is of depth 3 with
64, 8, and 1 neurons respectively. For models trained with the semantic loss we used α = 0.1
and β = 0.2.

Table 5: Embedding dimensions for the different domains throughout the GNN.

Embedding
dimensions

32 64 128

Domains Cellular components
Molecular functions

Reactions
Regulations

Biological processes
Phenotypes

Material entities
Genes
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C.3. Family tree box embeddings

Table 6: The embedding models, trained with both Ldistance and Loverlap used the same
hyperparameters. The learning rate was after each epoch multiplied with (1 −
Lr decay) and the regularisation used is presented in (10), penalising small boxes,
with l0 = 1. λ, β, and γ refer to weights in the losses in (12) and (13).

Epochs Initial lr Lr decay Regular-
isation, λ

Negative
weight, β

Negative
weight, γ

500 5e-1 1e-3 1e-2 5e-1 1.0

Appendix D. Model-driven experiment

D.1. Edge filtering

Table 7: We filter for co-occurring edge pairs in which at least one edge connects a gene to
a node that is a subclass of one of the following APO classes, related to nutrient
utilisation.

APO Class Description

APO 0000096 General nutrient utilisation

APO 0000097 Auxotrophy

APO 0000099 Utilisation of nitrogen source

APO 0000100 Nutrient uptake

APO 0000125 Utilisation of phosphorous source

APO 0000219 Utilisation of sulfur source

Table 8: We also allow edge pairs where at least one of the edges links a gene to a chemical
through any of the following relations.

hasChemNutrientUtilization

hasChemNutrientUtilization Increased

hasChemNutrientUtilization Decreased
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D.2. Top edge pairs

Table 9: The 10 edge pairs with the highest importance weight after filtering for the criteria
specified in Appendix D.1. The edge pair selected for the experiment is highlighted.
Ch.Nutr.Util. is short for hasChemNutrientUtilization, Ch.Nutr.Util.Dec.
is short for hasChemNutrientUtilization Decreased, and Ch.StressRes. is
short for hasChemStressResistance.

Importance Relation1 Class1 Relation2 Class2

0.003471 Ch.Nutr.Util. CHEBI 17268 Ch.StressRes. CHEBI 22907

0.002002 Ch.StressRes. CHEBI 22907 has phenotype

APO 0000099-

APO 0000245-

CHEBI 14321

0.001985 Ch.Nutr.Util. CHEBI 17268 Ch.StressRes. CHEBI 26710

0.001705 Ch.Nutr.Util.Dec. CHEBI 23414 Ch.StressRes. CHEBI 22907

0.001679 hasChemCellMorph CHEBI 26710 has phenotype

APO 0000099-

APO 0000245-

CHEBI 14321

0.001580 Ch.Nutr.Util. CHEBI 17268 Ch.StressRes. CHEBI 50145

0.001541 Ch.Nutr.Util.Dec. CHEBI 77995 Ch.StressRes. CHEBI 49470

0.001537 Ch.StressRes. CHEBI 22907 has phenotype

APO 0000099-

APO 0000245-

CHEBI 26271

0.001500 Ch.Nutr.Util. CHEBI 17268 has phenotype

APO 0000059-

APO 0000002-

CHEBI 26710

0.001477 Ch.Nutr.Util.Dec. CHEBI 16236 Ch.StressRes. CHEBI 22907

D.3. Cultivation method

The ∆ino1 deletion mutant was taken from the EUROSCARF deletion collection, with the
strain background being BY4741, genotype: MATa, his3∆1, leu2∆0, met15∆0, ura3∆0
(Y01272).

The ∆ino1 mutant was pre-cultured overnight in minimally buffered delft media contain-
ing the following: 5g/L (NH4)2SO4, 3g/L KH2PO4, 0.5g/L MGSO4. 7H2O, and 1mL/L
trace metal and vitamin solutions as described by Verduyn et al. (1992), 25 mg/L myo-
inositol and 2% glucose (w/v) in 30◦C, and 220rpm. The pre-culture was adjusted to 0.5
OD600, and robotically dispensed with a 1:20 dilution into a 96-well microculture plate
using a Hamilton Microlab Star liquid handling robot. A negative control was also in-
cluded to assess the baseline growth of the ∆ino1 mutant without any supplementation of
myo-inositol. Additionally, myo-inositol-free media with 0.25% (w/v) glucose, myo-inositol
(Sigma aldrich 57570-100G), Sodium chloride (Merck 1064041000) and MilliQ-water was
robotically dispensed, resulting in a total volume of 250µL and the concentrations defined
in Table 10.
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Table 10: The concentrations of inositol and NaCl used for the experiment.

Inositol NaCl

0.00 mMolar 0.0 Molar

0.01 mMolar 0.0 Molar

0.01 mMolar 0.3 Molar

0.01 mMolar 0.6 Molar

0.05 mMolar 0.0 Molar

0.05 mMolar 0.3 Molar

0.05 mMolar 0.6 Molar

0.25 mMolar 0.0 Molar

0.25 mMolar 0.3 Molar

0.25 mMolar 0.6 Molar

A robust plate layout was generated with PLAID (Francisco Rodŕıguez et al., 2023). The
processed plate was cultivated in the automated laboratory cell Eve. The plate was trans-
ferred from an automated incubator (30◦C) to a Teleshaker Magnetic Shaking System, where
it was shaken for 30s at 800 rpm, divided evenly between clockwise and counter-clockwise
double-orbital shaking. After shaking, the plate was transferred to a BMG Polarstar plate
reader, where it underwent optical density measurements at 600 nM (the temperature in
the plate reader was kept at a constant 30◦C). After measuring, the plate was returned to
the incubator. The protocol was automatically repeated every 20 min for up to 24 h.

D.4. Growth data processing and statistical testing

Outliers in the growth curves (measured through optical density at 600nm) were identified
and filtered using the interquartile range (IQR), where any data points outside the range
of [Q1-1.5 IQR, Q3+1.5 IQR] were excluded from the dataset. The filtered curves were
then subsequently smoothed using a rolling mean of window size 3. The resulting averaged
growth curves can be seen in Figure 9. Area under curve was calculated using numpy.trapz

(v1.26.4). To assess the effects of inositol and NaCl on AUC, a generalised linear model
was employed (statsmodels v0.14.4). The model was fitted using a Gaussian family
distribution. Choice α-value was set at 0.05. We modelled all factors as categorical to avoid
imposing any assumptions on linearity. The model is specified as follows:

AUC ∽ C(Inositol)× C(NaCl). (16)
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Figure 9: Growth curves showing the mean optical densities of the 6-8 repetitions for the
different experimental groups. Optical density (at 600nM) is a unitless measure-
ment typically used as an indirect measure of cell density and biomass.
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