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Abstract
Integrating fairness into machine learning models has been an important
consideration for the last decade. Here, neurosymbolic models offer a valuable
opportunity, as they allow the specification of symbolic, logical constraints that are
often guaranteed to be satisfied. However, research on neurosymbolic applications
to algorithmic fairness is still in an early stage. With our work, we bridge this gap
by integrating counterfactual fairness into the neurosymbolic framework of Logic
Tensor Networks (LTN). We use LTN to express accuracy and counterfactual fairness
constraints in first-order logic and employ them to achieve desirable levels of both
performance and fairness at training time. Our approach is agnostic to the underlying
causal model and data generation technique; as such, it may be easily integrated
into existing pipelines that generate and extract counterfactual examples. We show,
through concrete examples on three benchmark datasets, that logical reasoning
about counterfactual fairness has some important advantages, among which its
intrinsic interpretability, and its flexibility in handling subgroup fairness. Compared
to three recent methodologies in counterfactual fairness, our experiments show that
a neurosymbolic, LTN-based approach attains better levels of counterfactual fairness.

Keywords
Counterfactual Fairness, Neurosymbolic AI, Knowledge Extraction

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

1 Introduction
In the last decade, there has been a considerable amount of research on the topic of
fairness in deep learning, as neural networks are increasingly used in critical contexts
such as credit scoring, risk assessment of recidivism, and job recruitment. As of today,
making these systems fairer is a complex and multi-faceted challenge.

Considering fairness and bias in machine learning, there are two major aspects of
interest: how to detect bias and how to mitigate it. A challenge regarding bias detection
is that the many fairness criteria explored are sometimes incompatible (Verma and
Rubin 2018; Castelnovo et al. 2021). To a large extent, the fairness area has divided
itself into the two broad categories of group-based and individual-based notions, where
the former see groups of individuals – rather than single individuals – as the ultimate
objects of unfairness. A common objection to group-based fairness metrics is that they
secure fairness for “the average individual” of a sensitive group, at the cost of ignoring
existing unfairness within such groups, which contrasts with the main intuition that
fairness has to do with treating similar individuals in a similar way (Dwork et al.
2012). To address these desiderata, some individual-based measures of fairness have
been proposed. Among them, counterfactual fairness (CF) (Kusner et al. 2017) reframes
the problem of algorithmic fairness through the lenses of causality, namely, as the
counterfactual question: “Would I be treated in the same way, had my protected feature
been different?”.

The question regarding bias mitigation concerns the level at which we want to mitigate
bias, if before training (pre-processing), at training time (in-processing), or after (post-
processing) (Hort et al. 2022; Caton and Haas 2024). Pre-processing techniques comprise
different transformations of the training data towards a more balanced dataset. The
rationale behind it is, that a model that is trained on fair data will deliver fair predictions
(Kusner et al. 2017). Post-processing handles bias of a trained model by correcting
its input, the model itself, or its output (Hort et al. 2022). As they rather aim for
(hard) correction than (soft) mitigation, these techniques are useful for constraints that
must hold universally. In-processing comprises methods like regularization, adversarial
learning, model composition, and adjusted learning methods (Hort et al. 2022; Caton and
Haas 2024). Instead of simulating a desired world or correcting biased predictions, it aims
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to induce intrinsically fair models that are able to handle unfair data (Wan et al. 2023).
A practical benefit is that in-processing techniques can also be applied to pre-trained
models for (fairness) constraint learning (Wan et al. 2023).

In this context, the idea of leveraging neurosymbolic approaches to tackle algorithmic
unfairness has been largely underexplored so far. The potential for a good fit between
these two research lines has been pointed out in recent surveys by Gibaut et al. (2023)
and Bhuyan et al. (2024). Neurosymbolic AI allows one to reason symbolically about
the neural network’s behaviour, by establishing a correspondence between its low-level
information processing and high-level logical reasoning (Hitzler and Sarker 2022; Sarker
et al. 2021). As such, the approach shows many advantages for establishing trust in
deep learning systems, by making models more interpretable and transparent (Gibaut
et al. 2023). Furthermore, most in-processing bias mitigation frameworks adjust the loss
function or the learning algorithm of machine learning models according to a distinct,
hard-coded, notion of fairness. Instead, neurosymbolic models offer flexibility, as they
provide an interface between arbitrary formalised constraints and their implementation
into the machine learning process.

To bridge this gap, we propose an in-processing method to train a counterfactually
fair neural network by means of the neurosymbolic method of Logic Tensor Networks
(LTN) proposed by Badreddine et al. (2022). Specifically, we integrate counterfactual
fairness into the neural network learning process, in the form of logical constraints.
Furthermore, we show how to exploit symbolic reasoning after network training to better
secure fairness for specific sensitive subgroups. Lastly, we integrate a counterfactual
knowledge extraction method into the LTN training process. We investigate how
counterfactual explanations may be employed to reason about which features, had they
been different, result in different outcomes, and show how to extract constraints to
improve counterfactual fairness from this. We evaluate our method on three benchmark
datasets with binary as well as score-based predictions. We find that our method is able
to take accurate decisions with minimal infractions in terms of counterfactual fairness,
especially when subgroup fairness is considered.

The main contributions of this work are the following. First, we push the state-of-the-
art in neurosymbolic fairness approaches by showing how to integrate counterfactual
fairness and subgroup counterfactual fairness into LTN. Secondly, we introduce a
novel methodology to automatically extract fairness constraints from counterfactual
explanations. Finally, we show how LTN may be employed to provide individuals
insights on their outcome. A short version of this paper was previously published at
the NeSy conference 2025 (Heilmann et al. 2025).

2 Preliminaries
Our pipeline is based on two main algorithmic parts: LTN to specify counterfactual
fairness constraints, and counterfactual knowledge extraction based on counterfactual
explanations, in the dual role of injecting further fairness constraints and inspecting the
impact thereof. Here, we provide a preliminary discussion on counterfactual fairness,
LTN, and counterfactual explanations.
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2.1 Counterfactual Fairness

Kusner et al. (2017) introduced the notion of counterfactual fairness, according to which
a classifier treats individuals fairly if they would have received the same outcome, had
their sensitive attribute been different. Such a counterfactual outcome requires knowledge
of the causal model M underlying the data-generating process. A causal model is a
pair (S,F) defined as follows. Signature S is a tuple (U ,V,R) where U is the set of
exogenous variables, i.e., variables that causally depend on factors that are outside the
scope of the model such as noise and background conditions; V is the set of endogenous
variables, whose values are causally determined by other variables of the model; R
is a function that associates each variable X ∈ U ∪ V with the non-empty set of its
possible values. Finally, F is the set of structural equations that determine the value
of Y as a function of those of the other endogenous and exogenous variables, i.e.,
FX : R(U ∪ V − {X}) → R(X).

Let us assume that, in M, variable Ŷ corresponds to a model’s prediction and S
to a binary sensitive attribute with possible values R(S) = {s, s′}. The computation
of the counterfactual outcome for an individual with sensitive attribute s corresponds
to the intervention ŶS←s′ (Pearl and Mackenzie 2018). This denotes the value of the
predicted outcome Ŷ as determined by a minimally modified version of M in which
a new structural equation of S overrides its value to s′. The formalisation by Kusner
et al. (2017) requires that the probability distribution of model predictions is the same in
the actual world, where S = s, and in the counterfactual world, where S = s′. This must
hold for any individual i.e., under any assignment of sensitive feature S and non-sensitive
feature(s) X = (Xi, . . . , Xn) in the actual world:

P (Ŷ = y|S = s,X = x) = P (ŶS←s′ = y|S = s,X = x) (1)

2.2 Causal Normalizing Flows

In real-world settings, it is infeasible to access the complete structural causal model
M underlying the data. Therefore, recent approaches aim to approximate unknown
structural causal models and generate counterfactual data based on these approximations
(Kocaoglu et al. 2018; Kim et al. 2021; Grari et al. 2023; Javaloy et al. 2023). To estimate
the counterfactuals of (factual) observations, one method is Causal Normalizing Flows
(CNF) (Javaloy et al. 2023). CNF are causal generative models that leverage on the deep-
learning method of normalizing flows to accurately and efficiently approximate M of
a data-generating process. The approximation is carried out on the basis of (factual)
observations and the causal graph induced by M. The causal graph of M is a directed
acyclic graph whose nodes are labeled by the endogenous and exogenous variables of
M, and where each directed edge from node a to node b indicates that the latter depends
on the former. The exogenous variables correspond to the roots of the graph. Unlike M,
the causal graph induced by it, is in many cases obtainable through domain knowledge,
as it is a description of the causal dependencies of M, without specifying its structural
equations.
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2.3 Counterfactual Explanations
The counterfactual explanation of a negatively predicted data point is generally defined
as the set of minimal changes to that point sufficient to obtain a positive outcome. Since
we are interested in the causality of such an outcome, we will focus only on the set of
minimal changes that constitute interventions on the structural causal model M in the
technical sense described in Section 2.1. Counterfactual explanations of this kind have
also been termed consequential recommendations in Karimi et al. (2022).

Counterfactual explanations can concern actionable features, i.e., features that
individuals are actually able and willing to change in order to achieve a favourable
outcome (like job, education level, address, etc.) or immutable ones, i.e., features that
either cannot be actively changed (such as race, country of birth, age, gender) or because
it would morally unacceptable to ask to do so (e.g., religion, marital status). Sensitive
attributes are often immutable, and the definition of counterfactual fairness given in
Section 2.1 precisely requires that counterfactual explanations of the model do not
involve sensitive features. However, it has been observed that only a small and often
insufficient set of characteristics is treated as sensitive (Simson et al. 2024). For this
reason, in 4.3 we tackle the issue of counterfactual explanations involving immutable
features.

2.4 Logic Tensor Networks
Logic Tensor Networks (LTN) are a neurosymbolic framework introduced by Badreddine
et al. (2022), enabling generalization and inference from data by defining e.g., a neural
network’s loss function using logical formulas. More specifically, LTN integrates a fully
differentiable first-order logic L with a fuzzy semantics.

Its signature includes a set of constants C, function symbols F , variables X , and
predicate symbols P . These symbols are interpreted, or grounded (denoted by G), onto
tensors of real numbers, representing the domain of discourse. Constants are grounded to
tensors representing datapoints or elements of the domain, while variables are grounded
as finite sequences of tensors representing possible values. Functions are grounded as
computations, so mathematical functions taking and returning tensors, and predicates are
grounded as functions mapping tensors to a real number in [0, 1], representing the degree
of truth of a statement. These predicates can e.g., be realized with neural networks.

LTN employ fuzzy semantics, where any value in [0, 1] is a valid truth degree.
Logical connectives and quantifiers are defined accordingly: connectives such as e.g., ∧
is defined as u ∧ v = uv. Implications are modelled by the Reichenbach implicaton u →
v : 1− u+ uv and quantifiers include the existential quantifier ∃ as a generalized p-mean
( 1n

∑n
i=1 u

p
i )

1/p, p ≥ 1 and the universal quantifier ∀ as 1− ( 1n
∑n

i=1(1− ui)
p)1/p, p ≥

1. Here, the parameter p influences the quantifier’s behaviour with p = 1 corresponding
to the arithmetic mean, p = 2 to root mean square, and as p approaches infinity,
maximum/minimum operations are approached. Note that the selection of connectives
and quantifiers presented here aligns with the stable configuration of LTN proposed by
Badreddine et al. (2022), though alternative definitions exist, and the choice of operators
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impacts training stability and gradient behaviour (Badreddine et al. 2022; Wagner and
d’Avila Garcez 2021).

Learning in LTN involves maximizing the truth degree of logical formulas, called
axioms, comprising a knowledge-base K. This is achieved by aggregating the truth
degrees of individual axioms, commonly using a p-mean (like the existential quantifier)
via an aggregation operator. The resulting aggregated degree is the satisfaction (sat) of
the knowledge-base. Training LTN maximizes sat (treating it as the complement of loss)
using gradient descent, optimizing 1− sat instead of a traditional loss function.

3 Related Work

3.1 Fairness Through Neurosymbolic Methods
The paper by Wagner and d’Avila Garcez (2021) has recently inaugurated a line of
research that combines algorithmic fairness with neurosymbolic aspects. Here, the
authors propose a general method for instilling fairness constraints into deep network
classifiers. They apply the LTN framework and inject these fairness constraints as
logically expressed axioms. Then, the learning process feeds back until these are
satisfied. Their work focuses on the group fairness metrics of demographic parity (i.e., the
difference between the positive outcome rates of the disadvantaged and the advantaged
group) for which the reported experiments reveal that fairness with respect to these
metrics is achieved without sacrificing accuracy.

The reported experiments reveal comparable or even improved accuracy across three
different sets (Adult, German, and COMPAS) while achieving demographic parity, in
comparison with a state-of-the-art neural network-based approach. Closely related to
Wagner and d’Avila Garcez (2021), the work by Greco et al. (2023) experimentally
shows that the effectiveness of LTN for securing fairness is highly dependent on the
semantic interpretations chosen, and that the optimal combination of them yields results
in line with previous non-neurosymbolic approaches to group fairness. While both works
focus on group-based notions of fairness, the integration of counterfactual fairness into
neurosymbolic frameworks has not yet been researched to the best of our knowledge.

3.2 Approaches to Counterfactual Fairness
Among the existing approaches to counterfactual fairness (Kusner et al. 2017), the
majority of the work proposes to enforce it by generating counterfactual data, and
then use this data to enhance factual training data to input into a machine learning
training pipeline (Javaloy et al. 2023; Zuo et al. 2023; Louizos et al. 2017; Kim
et al. 2021; Lin et al. 2024; Xu et al. 2019; Kocaoglu et al. 2018; Yang et al. 2021).
The main focus throughout these approaches lies on the counterfactual generation
process leaving aside modifications on the final predictor itself. Differently, Grari
et al. (2023) claim that additionally integrating counterfactual fairness objectives into
the loss function of the machine learning pipeline contributes to counterfactually
fairer predictions. Our proposal builds on the latter suggestion and develops the idea
of a neurosymbolic approach in which the requirements of counterfactual fairness
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are expressed logically and injected at training time. We integrate counterfactual
fairness by estimating counterfactuals examples via current methods; we then develop
a neurosymbolic approach that can achieve an overall counterfactual fair model. Broadly
speaking, what makes a neurosymbolic approach different from these other approaches
is that, in the neurosymbolic model, we express the constraints symbolically and try to
ensure that the prediction guarantees the satisfaction of these constraints. Some models
might try to implicitly ensure correctness with respect to the fairness criteria, but this
is hard to verify. This is why a neurosymbolic approach is particularly promising for
ensuring fairness criteria in machine learning models and underscores the contribution of
this paper.

3.3 Integrating Counterfactual Explanations

One active line of research explores the possibility of using XAI methods to detect and
even mitigate violations of fairness (Deck et al. 2024). For instance, in the already
mentioned pipeline by Wagner and d’Avila Garcez (2021), the SHAP explainability
method (Lundberg and Lee 2017) is used, but it plays no active role in it, as it is
only employed to isolate problematic imbalances and subsequently check the efficacy
of their fairness constraints in their mitigation. In contrast, in our pipeline we can exploit
explainability methods for the automatic generation and injection of ad hoc fairness
constraints into the network.

An important explainability method is that of counterfactual explanations, that is, the
set of minimal changes to a data instance sufficient to obtain a different classification
outcome. Goethals et al. (2024) have introduced a method based on counterfactual
explanations to detect significant patterns of discrimination. Namely, the method
compares the distribution of counterfactual explanations between sensitive groups. As an
example, they show that in the Adult dataset (Becker and Kohavi 1996), women are more
frequently returned marital-status=“husband” as a counterfactual explanation than men.
Since it is problematic to suggest that an individual should change immutable features of
this type to obtain a positive outcome, we consider undesirable all those counterfactual
explanations that suggest to change an immutable feature, as we argue that it is unethical
in itself to suggest individuals to change features such as marital status, or religion to
obtain a favourable outcome.

For this reason, in Section 4.3, we develop a method to automatically smooth
out possible imbalances in undesirable counterfactual explanations between sensitive
groups. We integrate the method by Goethals et al. (2024) into our pipeline with minor
adjustments: On the algorithmic level, for every negatively-predicted data point x ∈ D−,
we iterate over every possible value1 f of every feature F and calculate the new
prediction of this counterfactual. Subsequently, the results are aggregated on the basis of
the sensitive attribute, hence highlighting differences in the distribution of counterfactual
explanations between groups.
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Accuracy Axioms:

Counterfactual Fairness Axioms: 

data

Generation of Counterfactuals:

Model Satisfiability:

extract imbalances in
counterfactual explanations

Counterfactual Knowledge Extraction Axioms:

...

Figure 1. Overview of our pipeline for binary predictions. Here, S denotes the set of sensitive
attributes, Fi a feature, T the dataset and D the prediction model.

4 Method

The goal of our pipeline is to enforce counterfactual fairness, while preserving the
accuracy of predictions, and additionally disincentivising undesirable counterfactual
explanations that suggest individuals to intervene on immutable features to achieve a
favourable outcome. Specifically, we define certain data columns as immutable if they
are either sensitive or particularly challenging for individuals to act upon. We achieve
these three goals by integrating adequate axioms into the training process of the LTN
framework. An overview of the pipeline for datasets with binary outcomes can be found
in Figure 1.

As a first pre-processing step, we approximate counterfactual examples for all data
points x in the data T . Here, any counterfactual generation method can be applied,
allowing flexibility in how we define counterfactuals based on the specific application
and dataset. Secondly, we introduce axioms to ensure accuracy. These axioms ensure that
the model retains its predictive power while incorporating fairness constraints. Following
this, we introduce axioms enforcing counterfactual fairness, requiring that a datapoint
and its counterfactual with respect to the sensitive attribute receive the same predicted
outcome (or a similar outcome in a score-based prediction).

Finally, we optionally add axioms derived from our counterfactual knowledge
extraction method, which disincentivise counterfactual explanations that recommend an
intervention on an immutable feature. These axioms encode the knowledge that altering
immutable attributes should not be proposed as a path to a more desirable outcome. We
then train a model within the LTN framework, leveraging gradient descent to maximize
the satisfaction of all axioms.

This trained model can be post-hoc queried for imbalances between sensitive
subgroups or individual datapoints, allowing for an post-hoc analysis of potential biases.
Importantly, the pipeline is iterative so that the results of this analysis can be fed back
into the training pipeline by adding additional, targeted axioms, and retraining our
model until a sufficient level of model satisfiability is reached. This approach allows
for refinement of the fairness constraints and continuous improvement of the model’s
behaviour. Our pipeline is capable to handle, with different sets of axioms, both binary
predictions and score-based ones. Furthermore, the axiom-based approach allows for
transparent and auditable fairness interventions, enabling practitioners to understand why
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the model behaves in a particular way and to tailor the fairness constraints to their ethical
considerations.

4.1 Accuracy Axioms
The first axioms we add to the training pipeline ensure the accuracy of the model
predictions. Here, for binary predictions, we adapt the axioms for predictive performance
by Wagner and d’Avila Garcez (2021). Let D denote our classifier, T our dataset and let
x ∈ T hold. Furthermore, let T + be the set of data points with a positive outcome as
ground truth and T − the data points with a negative outcome as ground truth. Then, we
can state the following axioms:

∀x ∈ T + : D(x) (A1)

∀x ∈ T − : ¬D(x) (A2)

Axiom A1 states that for all data points with a positive ground truth label x ∈ T +, the
classifier D(x) should predict a positive outcome. Conversely, Axiom A2 states that for
all data points with a negative ground truth label x ∈ T −, the classifier should predict a
negative outcome.

For a score-based prediction, where the output is a continuous value, our axioms have
to take into account that predictions and ground truth are close. We therefore define a
predicate for the equality Eq(ŷ, y) = 1/(1 + 0.5

∑
j(ŷj − yj)

2), where ŷ denotes the
predicted score of the data points x ∈ T and y is the ground truth score. This predicate
returns a value close to 1 when the predicted and true scores are similar, and closer to
0 as the difference increases. With this predicate defined, we have the axiom optimizing
the predictive performance for score-based settings:

∀x ∈ T : Eq(D(x), y) (A3)

4.2 Counterfactual Fairness Axioms
By adding the axioms, we want that a data point and its counterfactual with respect to
the sensitive attribute S receive the same outcome. Let x′ ∈ cf(x, S) denote the set of
generated counterfactuals of x with respect to the sensitive feature S. Intuitively, for
counterfactual fairness to hold, the following should be true for all data points:

∀x ∈ T , ∀x′ ∈ cf(x, S) : D(x) ↔ D(x′) (A4)

This axiom guarantees an overall counterfactually fairer model as it reformulates the
original definition of counterfactual fairness expressed in Equation 1, as a first-order
logic constraint. It states that for every data point x and its counterfactual x′, the
classifier’s prediction for x must be logically equivalent to the prediction of x′. For score-
based prediction, we modify this axiom to account for the continuous output. Instead of
requiring the equivalence above, we check for closeness of predicted scores using the
Eq predicate defined above. We reformulate D(x) ↔ D(x′) to Eq(D(x), D(x′)). This
modification applies to all subsequent axioms.
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We now go one step further, showing how to integrate counterfactual fairness axioms
for subgroups (or “subgroup counterfactual fairness”). The rationale here is that the
general Axiom A4 doesn’t account for potential fairness disparities between different
subgroups within the dataset. A model might enhance fairness more for one subgroup
than for another, a behaviour that is not captured by a global fairness constraint. We
therefore refine our axioms with respect to subgroups C1, . . . , Cn as follows:

∀x ∈ TC1
, ∀x′ ∈ cf(x, S) : D(x) ↔ D(x′) (A41)

. . .

∀x ∈ TCn
, ∀x′ ∈ cf(x, S) : D(x) ↔ D(x′) (A4n)

This set of axioms applies the counterfactual fairness constraint separately to each
subgroup. For each subgroup Ci, these axioms state that for all data points x belonging
to that subgroup (TCi

) and their corresponding counterfactuals x′, the classifier’s
predictions must be equivalent. In a simple setting, the data could be divided into
subgroups based on different sensitive values. However, more refined subgroups are also
supported, allowing for partitioning based on combinations of features. For example, we
can further devide the sensitive groups (e.g., females and males) into subgroups based
on other features (e.g., age). These subgroups can be designed to partition the entire
dataset (for instance, “young females”, “elderly females”, “young males”, and “elderly
males”), or to isolate a specific subset of interest within the sensitive group, for which
we want to enforce the fairness constraint. This is especially interesting in real-world
scenarios where counterfactual fairness might not be relevant for all subgroups of a
sensitive feature, but only for some of them. For instance, a financial institute might want
to evaluate the counterfactual fairness w.r.t. gender of a loan that can be granted to young
people only, or certain professionals only (e.g., teachers). In such cases, they would
apply Axiom A4n for ∀x ∈ Tyoung or ∀x ∈ Tteachers. This setup makes our approach
adaptable to many applications in which subgroup counterfactual fairness is desired.

4.3 Counterfactual Knowledge Extraction Axioms
The overall idea for axioms from counterfactual knowledge extraction (CKE) is that
we want to smooth out observed imbalances between sensitive groups in the frequency
of certain undesirable counterfactual explanations. We consider undesirable all those
counterfactual explanations x′ ∈ cf(x, F ) where F is an immutable (but non-sensitive)
feature, as we argue that it is unethical in itself to suggest individuals to change
features such as marital status, or religion to obtain a favourable outcome. These
counterfactual explanations not only raise ethical concerns but also potentially mask
underlying unfairness with respect to the sensitive group. For example, Goethals et al.
(2024) found that women were more frequently returned marital-status=“husband” than
men as a counterfactual explanation in the Adult dataset.

This points to a critical issue: the model may be learning to associate certain outcomes
with immutable characteristics and then recommending changes to those characteristics
as a pathway to a more favourable result. This not only reinforces the idea that certain

Prepared using sagej.cls



Heilmann, Manganini et al. 11

identities or attributes are inherently less desirable, but also signals underlying problems
within the model itself. The very presence of these imbalances should raise red flags
and prompt a thorough analysis before deployment. Such recommendations can suggest
that the model has amplified biases present in the training data, or that the features are
interacting in unintended ways. Our approach seeks to address this by firstly discovering
such issues and secondly discouraging the generation of such problematic counterfactual
explanations. The goal is not simply to achieve statistical fairness, but to ensure that the
model reasons fairly and doesn’t perpetuate harmful biases.

We hence want our pipeline to be able to detect an imbalance in the frequency
of undesirable counterfactual explanations between sensitive groups and automatically
generate ad hoc axioms to mitigate such an imbalance. To this end, we generate
counterfactual explanations of negatively predicted data points.2 We then compare the
frequencies of counterfactual explanations across groups by aggregating the data points
on the basis of the sensitive attribute, obtaining a score representing the difference of
frequencies for undesirable explanations. This score provides an analyst with valuable
information on which specific discrimination patterns should be addressed and for which
sensitive class.

Let us denote these explanations with (s′, F1), . . . , (s
′, Fm) and the datapoints for

which the sensitive attribute S is s′ that obtained a negative prediction with T̂ −S=s′ . Then
we want for a negatively predicted (factual) datapoint x ∈ T̂ −S=s′ that its counterfactual
explanations x′ ∈ cf(x, Fi) with respect to feature Fi, receives the same outcome as x.
This indicates that feature Fi is not relevant for the outcome of the prediction. This can
be modeled by the following axioms:

∀x ∈ T̂ −S=s′ , x
′ ∈ cf(x,F1) : D(x) ↔ D(x′) (A51)

. . .

∀x ∈ T̂ −S=s′ , x
′ ∈ cf(x,Fm) : D(x) ↔ D(x′) (A5m)

These axioms enforce that for a given sensitive group (defined by S = s′), if a data point
x is predicted in a certain way, then any counterfactual of x created by intervening on an
immutable feature (Fi) should receive the same prediction.

While for counterfactual fairness axioms we add all axioms simultaneously in the
training pipeline, these knowledge extraction-based axioms are added iteratively for
better model surveillance and to oversee their individual influence to counterfactual
fairness. Furthermore, a human-in-the-loop may be integrated in this part of the pipeline
to assess which constraints are desirable to be integrated as axioms. It’s also worth
noting that explainability axioms can be applied in two ways: either in conjunction
with counterfactual fairness axioms, or individually as minimal interventions to improve
counterfactual fairness.

4.4 Post-Hoc Queries
Integrating counterfactual fairness into a neurosymbolic framework poses several
advantages, primarily due to the framework’s inherent ability to reason about logical
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statements and their truth values. In particular, the satisfaction level to any logical query
may be straightforwardly computed. This is of particular benefit in fairness-sensitive
applications, offering a transparent way to assess and enforce fair behaviour. LTN allow
us not only to ensure fairness but also to probe the model’s reasoning and understand
why it makes certain decisions. Here, we elaborate on two post-hoc queries.

Firstly, after training our pipeline, an individual can run an existence query to
investigate potential unfairness affecting them directly. For instance, they can ask is
there a similar point in my subgroup which has a different outcome? Concretely, for
an individual data point x̂ which is in subgroup TC this query could logically formulates
as:

∃x ∈ TC , x ̸= x̂ : ¬D(x) = D(x̂) ∧ ||x− x̂||2 < β (2)

Here, β denotes the parameter for similarity, defining how close a data point must be to
x̂ to be considered similar, and can be defined application-specific. A high satisfaction
level for this query indicates the existence of (many) similar individuals within the same
subgroup who received different predictions.

Secondly, the evaluation of CF can be flexibly queried for specific subgroups. This is
especially interesting in applications where CF might not be relevant for all subgroups in
the dataset as the application is specifically designed for one subgroup, e.g., giving out
loans to teachers. Here, one can run a universally-quantified query for this subgroup and
evaluate if the model is counterfactual fair with respect to the sensitive attribute. This
allows for a targeted assessment of fairness, focusing on the groups most relevant to the
application.

5 Research Questions
To assess our approach, we conducted experiments to showcase that integrating
accuracy, CF and axioms from counterfactual knowledge extraction is beneficial for
training counterfactually fairer models. The experiments address the following research
questions:

(Q1) How does our method improve counterfactual fairness, overall and at the subgroup
level? Here, we first aim to assess how well our approach reduces bias overall but
also across different subgroups within the dataset.

(Q2) How does our method compare to other approaches in terms of fairness and
accuracy? To tackle this question, we compare our pipeline against existing CF
methods, evaluating its performance across both fairness metrics and predictive
accuracy.

(Q3) Can counterfactual knowledge extraction be exploited to learn effective axioms?
We explore whether automatically generated axioms based on observed
imbalances in counterfactual explanations can contribute to improved fairness.

(Q4) What can we learn from post-hoc queries? Here, we explore the potential of the
neurosymbolic framework to provide deeper insights into the model’s decision-
making process.
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Figure 2. Partial causal graphs for the COMPAS (a) and Lawschool (b) datasets. The arrows
connecting nodes and rectangles indicate that the node is connected to every node inside the
rectangle. White nodes denote immutable sensitive features, grey nodes immutable
non-sensitive features, and blue nodes actionable features.

6 Experimental Setup

In this section we introduce the datasets we tested our method on, the counterfactual
generation method, the different baselines and our evaluation metrics. Our code can be
found at https://github.com/xheilmann/CounterfactualFair_LTN.

6.1 Datasets
We conduct experiments across three benchmark datasets, as detailed below. Firstly,
we ran experiments on the Adult dataset (Becker and Kohavi 1996), with gender as
our sensitive attribute. This dataset contains features for binary prediction of an adult’s
income, comprising 48842 records with 14 features and a binary target indicating income
exceeding 50K. Features include race, age, workclass, education, marital status, and
occupation. As subgroups, we take each attribute combination of (gender, race). As
immutable features we identify marital-status, relationship, race and native-country. The
test set comprises around 10K data points, each accompanied by their corresponding
counterfactual instances.

Furthermore, we apply our method on the COMPAS dataset (Angwin et al. 2016) with
race as the sensitive attribute. Collected as part of the ProPublica analysis of machine
bias in criminal sentencing, COMPAS contains 6172 observations with features relating
to defendants, including age, race, prior criminal records, and a recidivism risk score. The
target variable indicates rearrest within two years. Here, we evaluate on and add subgroup
fairness axioms for race and each attribute combination of (race, age). For the latter, we
group the age attribute into four categories, namely, under 30, 31-45, 46-60, and older
than 60 years (COMPAS(age) in the following). As immutable feature we have age. In
our test set we have on average 1230 data points and their counterfactuals.

As a third dataset, we employ the Lawschool dataset (Wightman 1998) with gender as
the sensitive attribute. The Lawschool dataset consists of data on law school applicants,
focusing on undergraduate GPA and LSAT scores alongside admission status. We want
to stress that Kusner et al. (2017) show that this dataset is counterfactually fair with
respect to gender. Here, we evaluate how adding our (subgroup) counterfactual fairness
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axioms improve subgroup fairness for all combinations of (gender, race). We have race
as immutable feature. We evaluate on a test set containing 4359 data points.

6.2 Counterfactuals
Our function for approximating counterfactual examples x′ ∈ cf(x, F ) is implemented
via causal normalizing flows (Javaloy et al. 2023) as explained in Section 2.2. We
extended the original code3 to generate the counterfactuals with respect to all the
attributes, rather than just for the sensitive one. This is necessary for the generation of
the counterfactual knowledge extraction (CKE) axioms described in Section 4.3. For the
interventions, we set the feature value to the most frequent values that are at least present
in 1% of the dataset, up to a maximum of 10 values. For continuous features, we took
their percentiles. For the experiments, we used the partial4 causal graphs by Zhang et al.
(2016) for Adult, by Russell et al. (2017) for COMPAS, and by Kusner et al. (2017) for
Lawschool. The latter two are reported in Figure 2. For the training of CNF we kept the
same hyperparameters used by Javaloy et al. (2023) for each of the three datasets: 1000
epochs, batch size of 256, and inner dimension of [32, 32, 32].

Yet, we stress that our method does not train to generate counterfactual examples but
only requires them as input, and may be employed in conjunction with any counterfactual
generation methodology. These generation methods can be applied in a pre-processing
step and the generated counterfactuals can then serve as input into our pipeline.

6.3 LTN Setup
As predicate for prediction in LTN, we train a multi-layer perceptron (MLP) with two
layers of 100 and 50 neurons trained with the Adam optimizer with learning rate 0.1.
We report averaged results over a 5-fold cross-validation. For LTN, we use Reichenbach
implication and p = 1 as universal quantifier’s exponent as introduced in Section 2.4.
We report results for equally weighted axioms in the main paper and imbalanced weight
settings in Appendix B. We ran all experiments on a computer with specification Ubuntu
22.04.1 LTS, 64 GB RAM and Ryzen Threadripper 1920X 12-Core Processor as CPU.
Running times ranged from 1 minute to 1.5 hours for the largest dataset.

6.4 Baselines
In this section, we provide more information on each of the three baselines our pipeline is
compared to: GAN-based method, DCEVAE and CNF. Also, we report hyperparameter
settings and adaptions made for the comparison. All the following methodologies,
differently from ours, generate counterfactual examples themselves. Our approach,
however, is agnostic to the underlying counterfactual generation technique and may be
easily integrated in existing pipelines that generate and extract counterfactual examples.
This presents a challenge in terms of comparison, as these methods will tend to perform
better on the set of counterfactuals that they themselves generated compared to other
methodologies. Hence, we provide an evaluation of each baseline on a test set of the
counterfactuals (approximated by CNF) we input into our pipeline (results in Section
7) as well as a study on how our method performs when we input the counterfactuals
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generated by the GAN method (Appendix A). Furthermore, for DCEVAE and CNF, we
train an MLP with the same hyperparameters as the underlying MLP in our method on
the complete set of counterfactual and original data points. This is not to be confused with
other proposed settings in literature (Javaloy et al. 2023), where predictors are sometimes
trained in an unaware setting, which means that sensitive attributes are left out during
training or only trained on non-descendent variables of the sensitive attribute.

GAN-based method. Grari et al. (2023) introduce a Generative Adversarial Model
(GAN) approach for counterfactual inference and learning a counterfactually fair
predictive model. For counterfactual inference, they propose a neural network encoder
which generates a counterfactual from input X (original data point), Y and sensitive
attribute S and a decoder which tries to reconstruct original Y and X from the
generated data point and S. The adversarial network tries to infer S in this setting.
For the counterfactual predictive model, they add an additional term for penalizing
counterfactual unfairness to their loss function and extend this method to continuous
features. We ran the available code5 for 100 epochs for counterfactual inference and
1000 epochs for training a counterfactual fair predictor with learning rate 0.0001. For
batch size we evaluated [256, 512, 2048]. Results are shown for 512 for Lawschool and
COMPAS and 2048 for Adult. All other hyperparamters were set as given in the code.

DCEVAE. The Disentangled Causal Effect Variational AutoEncoder (DCEVAE) was
proposed by Kim et al. (2021) as an extension to existing methodologies in fair
variational optimisation. The main improvement put forward by the authors is the
development of a ELBO-like objective for a causal graph in which variables that descend
from sensitive attributes are kept separate from other covariates. The model then seeks
to disentangle the VAE representations to separate the effects of the two sets of features.
Among other applications, the authors test the counterfactual effect of applying their
method to the Adult dataset.

In terms of integration into our experimental analysis, we started from the public code
release by Kim et al. (2021)6. However, we noticed that the main PyTorch backprop code
consistently gave a tensor version mismatch error. Thus, we modified the backprop loop
by slightly changing the parameter update logic. We note that other authors that sought
to reproduce the results from Kim et al. (2021) relied on the same bugfix.7

For hyperparameters we tested [100, 250, 500] as training epochs and [0.001, 0.0001]
as learning rate as well as [512, 1024] as batch size for all three datasets. We reported
best results (100 epochs, 0.0001 learning rate, 1024 batch size) averaged over five runs.

CNF. We provide details on how we applied Causal Normalizing Flows (Javaloy et al.
2023) to approximate counterfactuals in Section 2.2. Provided these counterfactuals, we
train an MLP with the same parameters as for our methodology on the combined dataset
of counterfactuals and original data points. In terms of comparison, this baseline is the
closest to our pipeline, as the same counterfactual generation method is applied. Yet,
training is done differently as our method integrates counterfactual fairness constraints
directly into the training pipeline and does not only take the generated counterfactual as
input.
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Figure 3. CF-MSE for the Adult dataset in three different axiom settings for each subgroup in
(gender, race). Male corresponds to m, female to f, and asian-pac-islander,
american-indian-eskimo are abbreviated with api and aie, respectively.

6.5 Evaluation Metrics

To assess the performance of our method and baselines, we employ metrics to measure
both the predictive accuracy and the counterfactual fairness of the models across the
diverse subgroups within each dataset.

The primary metric for evaluating counterfactual fairness is the Counterfactual Mean
Squared Error (CF-MSE). This measure quantifies the disparity in predictions between
factual data points and their corresponding counterfactual instances. Specifically, CF-
MSE is calculated as the average of the squared differences between the model’s
predictions for each factual data point, D(x), and its counterfactual counterpart, D(x′),
across the entire test set T :

CF-MSE =
1

n

∑
x∈T ,x′∈cf(x,S)

|D(x)−D(x′)|2

Lower values of CF-MSE indicate a more counterfactually fair model, as this suggests
minimal differences in predictions for individuals and their counterfactuals. To further
evaluate the fairness of our method across different demographic groups, we introduce
the worst subgroup CF-MSE. This metric highlights the maximum CF-MSE value
observed across all evaluated subgroups (e.g., combinations of gender and race). By
focusing on the worst-case scenario, we can assess the model’s fairness in the most
challenging contexts and ensure that our approach improves counterfactual fairness
across all subgroups.

We also report the accuracy for the Adult and COMPAS datasets, and the MSE for
the Lawschool dataset, to provide insight into the predictive performance of the models.
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Figure 4. Top: Development of CF-MSE (lower is better) for our pipeline for 5 different
axioms settings for both COMPAS datasets. Bottom: Ratio of undesirable explanations for
each sensitive group before and after applying a CKE axiom for (black, age).

7 Experimental Results

(Q1) How does our method improve counterfactual fairness, overall
and at the subgroup level?
Setup. To show the effectiveness of our method, we evaluate three different axiom
settings. As a baseline, we only apply the accuracy axioms (Equation A1-A2 or A3)
to our pipeline (acc axioms). Next, we integrate the CF axiom (Equation A4) in addition
to the accuracy axioms (acc+CF axioms). Lastly, we evaluate on the combination of
subgroup axioms (Equation A41-A4n) and accuracy axioms (acc+CF sg axioms). All
settings employing fairness axioms, pre-train an LTN for 1500 epochs on the accuracy
axioms, then add the CF axioms.
Results. Results for Adult are displayed in Figure 3. There, one can see that applying
the CF axioms strongly increases fairness for the majority of subgroups. The greatest
improvement in CF-MSE can thereby be seen for the largest subgroup, namely white
males, whereas for the female subgroups fairness only improves slightly and even
gets worse for females in the “other” ethnic subgroup. However, integration of the
subgroup axioms into the training objective mostly prevents this phenomenon. Overall,
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Table 1. Comparison of our pipeline (three different axiom settings) with current baselines
evaluated on CNF approximated counterfactuals in terms of accuracy, CF-MSE and worst
subgroup CF-MSE (sg) as average of 5 runs. Row-wise best results are in bold.

LTN (our pipeline)
dataset metric acc acc+CF acc+ CF sg CNF GAN DCEVAE

Adult accuracy ↑ 0.782±0.006 0.758±0.01 0.812±0.001 0.825±0.001 0.777±0.005 0.831±0.002
CF-MSE ↓ 0.160±0.006 0.065±0.002 0.055±0.001 0.074±0.009 0.216±0.011 0.109±0.009

CF-MSE (sg)↓ 0.210±0.004 0.066±0.002 0.084±0.044 0.113±0.000 0.263±0.018 0.291±0.013
COMPAS accuracy↑ 0.671±0.010 0.675±0.003 0.651±0.013 0.661±0.003 0.685±0.002 0.665±0.009

CF-MSE↓ 0.156±0.037 0.047±0.004 0.045±0.006 0.072±0.010 0.107±0.012 0.188±0.051
CF-MSE(sg)↓ 0.208±0.094 0.045±0.002 0.043±0.092 0.086±0.010 0.110±0.012 0.194±0.061

COMPAS accuracy↑ 0.658±0.013 0.654±0.016 0.658±0.012 0.667±0.002 0.675±0.001 0.651±0.008
(age) CF-MSE↓ 0.254±0.032 0.079±0.016 0.075±0.016 0.094±0.003 0.171±0.010 0.244±0.044

CF-MSE(sg)↓ 0.428±0.048 0.131±0.021 0.142±0.057 0.181±0.006 0.204±0.013 0.342±0.074
Lawschool MSE↓ 0.767±0.013 0.782±0.002 0.796±0.013 0.771±0.008 0.906±0.000 0.754±0.024

CF-MSE↓ 0.096±0.028 0.003±0.000 0.001±0.000 0.012±0.002 0.227±0.013 0.210±0.042
CF-MSE(sg)↓ 0.358±0.021 0.011±0.002 0.001±0.002 0.014±0.003 0.272±0.025 0.251±0.046

CF improves for all subgroups upon the accuracy-only baseline; for all subgroups but
white males, the CF-MSE is again improved by adding subgroup CF axioms. The same
holds for both COMPAS datasets. In the top row plots of Figure 4, we show that CF
axioms as well as subgroup CF axioms improve CF-MSE over all subgroups. We give
complete numerical results for our LTN pipeline on all considered datasets in Table 1.
Therein, we include average CF-MSE and worst-subgroup CF-MSE for all datasets and
methods considered. The clear trend is that the average CF-MSE across groups improves
when applying subgroup fairness axioms for all datasets. Also, accuracy is improved for
Adult and both COMPAS datasets when applying subgroup CF axioms instead of the
general CF axiom. For Lawschool, in Figure 5 we can see a huge improvement of CF
for this dataset when adding CF axioms and an even stronger improvement when adding
CF subgroup axioms that ensure counterfactual fairness with respect to gender to be
distributed more evenly between the different races.

We conclude, in terms of Q1, that our methodology has a positive impact in terms of
fairness, especially when subgroups are actively considered.

(Q2) How does our method compare to other approaches in terms of
fairness and accuracy?
Setup. As baselines we compare our mehtod to DCEVAE (Kim et al. 2021), causal
normalizing flows (CNF) (Javaloy et al. 2023) and a GAN-based method (Grari et al.
2023). For DCEVAE and CNF, we trained an MLP with the same hyper-parameters as
our pipeline on the combined set of generated counterfactual and factual data points.
Note that these methodologies, differently from ours, generate counterfactual examples
themselves. This also means that they are not agnostic to the specific generated data
points. To keep the comparison as fair as possible, we test all methodologies on the same
counterfactual data, which we generate using a causal normalising flow model (Javaloy
et al. 2023). Results on differently generated counterfactuals are given in Appendix A.
Results. We provide a complete comparison in Table 1. Regarding the comparison with
CNF, results show that our pipeline, which adds counterfactual fairness constraints during
training, significantly improves CF compared to only pre-processing for fairness as done
by CNF. However, except for COMPAS, this results in a decrease in accuracy compared
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Figure 5. CF-MSE for Lawschool in three different axiom settings for each subgroup in
(gender, race).

to CNF. For the GAN-based method, we can see improved accuracy for COMPAS but
worse overall CF as well as worse subgroup CF in comparison to our method. Similarly,
DCEVAE has strong results in terms of accuracy and MSE, but struggles in achieving
counterfactually fair results. Here, our results differ significantly from the ones reported
by the original authors (Kim et al. 2021). Our empirical, if anecdotal, experience with
DCEVAE is that it struggles to converge to an accurate result, and even that comes at the
expense of fairness. We elaborated on these reproducibility challenges in Section 6.4.

For Q2, we show that our technique has clear benefits, even if the comparison has
some limitations as established above.

(Q3) Can counterfactual knowledge extraction be exploited to learn
effective axioms?
Setup. Our pipeline, as described in Section 4.3, integrates counterfactual knowledge
extraction (CKE henceforth). To summarise, CKE detects imbalances across sensitive
groups in the frequency of undesirable counterfactual explanations, learning new training
axioms to reduce them. To generate the counterfactual of data point x with respect to
a generic immutable feature F (denoted by cf(x, F )) we use the method of causal
normalizing flows described in Section 2.2. We define imbalance as a difference in
frequencies of at least 0.1 for COMPAS, and 0.01 for Adult and Lawschool.
Results. We applied the extracted axioms both on top of models trained with the CF
axiom (acc+CF+CKE) and with subgroup CF axioms (acc+CF sg+CKE). Results for
COMPAS are reported in Figure 4 as well as in Table 2. Here, the CKE deduced a strong
imbalance for age for the black subgroups. After enforcing that age be irrelevant for
decisions made in the black group, the imbalance drops below the threshold. However,
deincentivising age as counterfactual explanation results in the imbalance widening for
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Table 2. Comparison of our proposed pipeline in five different axiom settings in terms of
accuracy, CF-MSE and worst subgroup CF-MSE (sg) as average of 5 runs for both COMPAS
datasets. CKE adds an axiom for (black, age).

dataset metric acc acc+CF acc+CF sg acc+CF+CKE acc+CF sg+CKE

COMPAS accuracy↑ 0.671±0.010 0.675±0.003 0.651±0.013 0.645±0.008 0.633±0.022
CF-MSE ↓ 0.156±0.037 0.047±0.004 0.045±0.006 0.032±0.001 0.025±0.006

CF-MSE(sg) ↓ 0.208±0.094 0.045±0.002 0.043±0.092 0.033±0.005 0.031±0.031
COMPAS accuracy ↑ 0.658±0.013 0.654±0.016 0.658±0.012 0.636±0.017 0.649±0.009

(age) CF-MSE ↓ 0.254±0.032 0.079±0.016 0.075±0.016 0.077±0.027 0.047±0.016
CF-MSE(sg)↓ 0.428±0.048 0.131±0.021 0.142±0.057 0.118±0.038 0.088±0.088

other attributes – especially priors count (Figures 4(c) and 4(d)). In the same figure,
we observe that CF increases for both ethnicity subgroups even though axioms are only
added for the black subgroup. A further increase of CF is achieved in the combination
of subgroup CF axioms and the CKE axiom (Figures 4(a) and 4(b)). This can also
be seen in Table 2, where CF-MSE is greatly reduced overall but also for subgroups
when adding CKE axioms to disincentivise age for the black subgroup. Yet, we see a
trade-off between improved CF-MSE and a loss in accuracy when applying additional
CKE axioms. For Adult, we refer to Table 3 where we show how subsequently adding
the detected CFK axioms influences the results. Therein, race, marital-status, native-
country were interestingly detected as undesirable explanations for males. Here, for each
detection a CKE axiom was added subsequently after 500 additional training epochs
(ordered from highest imbalance to smallest imbalance), after which we each checked
the axiom’s impact on accuracy, CF-MSE and worst subgroup CF-MSE. Due to the
axiom ordering by imbalance level, we have different sequences in which axioms are
added for each run. Overall we found that accuracy stays stable throughout the CKE
process. However, while CF is improved, subgroup CF gets worse with each additional
CKE axiom after the first. It is left for further research how to establish scalability of the
method beyond a single CKE axiom.

For Lawschool, as the counterfactual knowledge extraction works on binary
predictions, we map the best 40% of all scores to a positive outcome. As a result, for
Lawschool for one out of five runs race was detected as undesirable explanation for the
female subgroup when CKE was evaluated after only training with the accuracy axioms.
Yet, when CF axioms were added race was not detected as undesirable explanation
anymore. Therefore, we conclude that CF axioms in this setting already eliminate
undesirable explanations efficiently enough.

Our takeaway on the CKE technique, Q3, is that it is indeed able to learn beneficial
axioms that reduce specific unfairness patterns for certain subgroups and feature
combinations.

(Q4) What can we learn from post-hoc queries?
Setup. A key advantage of employing a neurosymbolic method, such as LTN, throughout
our pipeline, lies in the opportunity for insights given by first order logic, post-training
queries, an idea we discussed in Section 4.4. We showcase this capability by asking
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Table 3. Impact for Adult of continuously adding CKE axioms on accuracy, CF-MSE and
worst subgroup CF-MSE (sg). The CKE axioms are iteratively added in the order in which
they appear in the table from left to right. Results are for one run, as the order of axioms
varies across runs.

metric LTN(acc) LTN(acc+CF) LTN (acc+CF+CKE)
(race,male) (mar.-status,male) (nat.-country,male)

accuracy ↑ 0.778 0.755 0.757 0.755 0.755
CF-MSE ↓ 0.183 0.063 0.052 0.058 0.050

CF-MSE (sg) ↓ 0.224 0.073 0.070 0.100 0.139

a recourse-flavored query. That is, we take the perspective of a user that has received
some undesired outcome (say, their loan request was denied) as a result of the model
being employed. A natural fairness and recourse-related question for the user is then
to ask whether there are similar users in their subgroups which received a different
outcome, the same query we formalized earlier in Equation 2. The rationale here is to
understand whether individuals in similar circumstances might have still succeeded under
the model’s resource-assignment rationale.
Results. In Table 4, we present illustrative how examples of this query’s output in the
Adult dataset. Therein, we show the query result for exemplary datapoints in each of four
subgroups formed by the gender, race attribute columns. The results show that exemplary
data points differ in the features age, education-level, marital-status, relationship and
occupation. In particular, we observe for the white male example that the query returns
a remarkably similar sample which differs only in age and marital status: The sample
with a positive prediction (in Adult, a salary higher than 50k$) is 24 and married rather
than 23 and unmarried. These discrepancies offer insights for individuals to examine the
model’s fairness and potentially challenge its decisions; on the model owner side, they
are useful to glean more insights on the model’s internal reasoning.

Overall, we conclude for Q4 that a fair neurosymbolic method contributes to a wide
range of additional knowledge extraction opportunities, enhancing understanding of
the underlying data and learning process. This can not only strengthens the fairness
guarantees of the model but also provides interpretable insights into its behaviour,
fostering trust and transparency.

8 Conclusion & Future Work
To conclude, we have shown how to integrate the individual-based notion of
counterfactual fairness into an LTN training pipeline. We proposed axioms for this
integration and refined these axioms to subgroups, achieving higher counterfactual
fairness for these subgroups by this. Furthermore, we integrated counterfactual
knowledge extraction into our pipeline with subsequent axiom extraction to discourage
undesirable counterfactual explanations. After training our model can be post-hoc
queried for further information. Our pipeline improves counterfactual fairness and
decreases the discrepancy between subgroups w.r.t. the unfair baseline, it has clear
benefits over existing approaches and through its additional knowledge extraction
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Table 4. Satisfaction value (sat) and exemplary data point to the query is there a similar point
in my subgroup which has a different outcome? Here, τ is equal to 3 for males and 5 for
females.
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opportunities enhances the understanding of the underlying data and learning process.
This paper and the previous work we relate to suggest that the neurosymbolic approach
to fairness is promising. It allows for the explicit and transparent codification of
fairness axioms, but also potentially balance different axioms depending on the trade-
offs/constraints for the application at hand.

Our work lays a foundation for further exploration at the intersection of neurosymbolic
methods and (counterfactual) fairness. Building upon the knowledge extraction
capabilities demonstrated in Q4, one direction for future work involves extending our
pipeline to provide individuals with actionable recommendations. Specifically, we aim
to identify concrete feature changes an individual can make to alter a potentially
unfavourable model outcome. Further research could also focus on dynamically adjusting
axiom weights based on performance and fairness considerations. As another addition
to our setup, a future work should add experiments that focus on handling the
issue of intersectionality, i.e. multiple interacting sensitive attributes, with LTN and
fairness axioms. To our knowledge, our proposal is the first to explore the integration
of counterfactual fairness principles with neurosymbolic architectures. Hence, the
integration with other architectures is another research blind spot. As of now, the
flavours of demographic parity, disparate impact, and counterfactual fairness have been
formalized and implemented symbolically. Future research might target the formalization
and efficient application of other notions, e.g. equalized odds (Hardt et al. 2016) or the
Lipschitz condition as described by Dwork et al. (2012). Finally, we intend to evaluate our
pipeline on more recent datasets, such as the ACS Income dataset (Ding et al. 2021), to
provide additional tests of our method’s generalizability. This direction of further studies
could be extended by a practical case study.
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Notes

1. The method takes the most frequent (max 10) values that are at least present in 1% of the
training set. For continuous features, it takes the percentiles.

2. Limiting ourselves to those interventions on one feature only, which result in a change of the
original prediction. Our interventions set the feature to the most frequent (max 10) values that
are at least present in 1% of the training set. For continuous features, we take the percentiles.

3. Available at https://github.com/psanch21/causal-flows

4. Following Javaloy et al. (2023), we do not need to model the causal dependencies between the
predictors and the target variable.

5. From https://github.com/fairml-research/Counterfactual_Fairness

6. available at https://github.com/aailabkaist/DCEVAE
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7. For details, we refer to the train.py script on both the original repository, given above, and
the following repository https://github.com/osu-srml/CF_Representation_
Learning/blob/master/DCEVAE/train.py
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A Comparing to Other Counterfactuals
As stressed before, unlike ours, all methodologies we compare to generate counterfactual
examples themselves. Our method relies only on a set of counterfactuals given as input,
so that it is agnostic to the underlying counterfactual generation technique. However,
during comparison of the different methods we faced the challenge that just a comparison
of methods without taking the generated counterfactuals into account is not appropriate
for our method. We therefore firstly compared each baseline on a common test set of
the counterfactuals (approximated by CNF) we input into our pipeline. Secondly, we
took the counterfactuals generated by the GAN-based method as input into our method
and compared it to the GAN pipeline. For this comparison, we had to modify the
GAN-based method, as in the original version CF-MSE and accuracy is calculated on
different data encodings which was not possible as input into our pipeline. In Table 5 the
results show better values for CF-MSE when training with our method. For COMPAS
and COMPAS(age) this results in a decreased accuracy, compared to the GAN-based
method. However, for the Adult and Lawschool dataset accuracy and MSE is improved
upon the GAN method. Altogether, these results show that our method is applicable
to counterfactuals generated with different methods than with CNF. Also, for these
counterfactuals our method shows improved results, specifically for CF-MSE, when
compared to the original generation method.

B Influence of Axiom Weights
Our pipeline supports different weights for each group of axioms (accuracy, CF, CKE).
This has direct influence on CF and accuracy as can be seen in Table 6. As a trend,
accuracy improves, if higher weights are chosen for the accuracy axioms while CF
decreases. However, this is not the case for all datasets, and we suggest here to try out
different weight settings when applying our pipeline.

Table 5. Comparison of our proposed pipeline (with two different axiom settings) with the
GAN baseline evaluated on the counterfactuals the GAN method produces in terms of
accuracy, CF-MSE and worst subgroup CF-MSE (sg) as average of 5 runs. Best results are in
bold.

dataset metric LTN(acc) LTN(acc+CF) GAN

Adult accuracy ↑ 0.771 ± 0.007 0.775 ± 0.005 0.758 ± 0.006
CF-MSE ↓ 0.231 ± 0.007 0.200 ± 0.007 0.208 ± 0.025

COMPAS accuracy ↑ 0.672 ± 0.015 0.658 ± 0.016 0.680 ± 0.001
CF-MSE ↓ 0.259± 0.016 0.115 ± 0.011 0.177 ± 0.015

COMPAS(age) accuracy ↑ 0.653 ± 0.013 0.654 ± 0.007 0.668 ± 0.006
CF-MSE ↓ 0.321 ± 0.011 0.210 ± 0.018 0.249 ± 0.042

Lawschool MSE ↓ 0.235 ± 0.002 0.234 ± 0.002 0.906 ± 0.001
CF-MSE ↓ 0.019 ± 0.015 0.019 ± 0.015 0.256 ± 0.028
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Table 6. Comparison of our proposed pipeline with two different weight combinations for
acc+CF axioms as well as for acc+CF sg.

dataset metric LTN (acc+CF) LTN (acc+CF sg)
(1,1) (2,1) (1,1) (2,1)

Adult accuracy ↑ 0.758±0.01 0.772±0.006 0.812±0.001 0.769±0.004
CF-MSE ↓ 0.065±0.002 0.078±0.002 0.055±0.001 0.066±0.001

CF-MSE (sg) ↓ 0.066±0.002 0.094±0.054 0.084±0.044 0.084±0.004
COMPAS accuracy ↑ 0.675±0.003 0.674±0.013 0.651±0.013 0.683±0.009

CF-MSE ↓ 0.047±0.004 0.054±0.007 0.045±0.006 0.052±0.002
CF-MSE (sg) ↓ 0.045±0.002 0.057±0.012 0.043±0.092 0.049±0.078

COMPAS(age) accuracy ↑ 0.654±0.016 0.653±0.011 0.658±0.012 0.655±0.018
CF-MSE↓ 0.079±0.016 0.114±0.022 0.075±0.016 0.070±0.018

CF-MSE (sg)↓ 0.131±0.021 0.269±0.091 0.142±0.057 0.143±0.078
Lawschool MSE ↓ 0.782±0.002 0.773±0.018 0.796±0.013 0.786±0.018

CF-MSE ↓ 0.003±0.000 0.005±0.000 0.001±0.000 0.002±0.000
CF-MSE (sg) ↓ 0.011±0.002 0.011±0.001 0.001±0.002 0.002±0.000
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