
A Survey of Neurosymbolic
Answer Set Programming

Journal Title
XX(X):1–33
©The Author(s) 2025
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

1

Alexander Philipp Rader1 and Alessandra Russo1
2

Abstract
Neurosymbolic artificial intelligence (AI) combines neural networks and symbolic methods to
create robust and explainable frameworks. This survey provides an overview of the literature on
neurosymbolic AI that uses answer set programming (ASP) as its symbolic language of choice.
ASP is a logical formalism that can represent expressive rules and common-sense reasoning
in a compact and human-readable form. Bridging the gap between neural representations and
categorical symbols is a difficult task, especially when the learning of knowledge is involved. Many
approaches have been proposed in the field to overcome these challenges and we categorise them
based on which components are hard-coded or learned. We provide illustrations and explanations
of the different types of frameworks and compare them with each other. We discuss the advantages
of such hybrid models in terms of explainability and logical robustness. Lastly, we explore the limits
of the field, including the simplicity of tasks, the extensive use of hard-coded knowledge, and the
limited scalability of methods. We argue that both improvements in scalability and novel ways of
propagating the learning signal through ASP components are needed to propel the field forward.

3

Keywords
Answer Set Programming, Neurosymbolic AI4

Introduction5

As AI systems are deployed more widely, issues of trust, safety and interpretability become ever more6

important. Modern neural AI models have made strides in many areas such as holding conversations (Liu7

et al. 2023), passing difficult exams (OpenAI 2023) and generating images from text prompts (Podell8

et al. 2024). They are remarkably capable of processing real-world data and autonomously learning9

knowledge from examples. However, they lack explicit reasoning and logic capabilities, which can lead10

1Department of Computing, Imperial College London, United Kingdom

Corresponding author:
Alexander Philipp Rader, Imperial College London, Exhibition Rd, London SW7 2AZ, UK.
Email: apr20@ic.ac.uk

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

to inconsistent outputs and hallucinations (Farquhar et al. 2024). Their black-box nature also means they11

are not explainable and lack formal guarantees (John-Mathews 2021).12

Marcus (2020) argues that symbolic representations are necessary for AI to achieve robust reasoning.13

Unlike neural networks, symbolic AI acquires an internal model to represent abstract knowledge and can14

reason with it logically. This model is human-readable, making its decisions transparent and explainable.15

Depending on the formal representation of the model, guarantees can be made about its behaviour as well.16

However, symbolic methods struggle to deal with real-world, noisy data and often scale exponentially17

with the size of the problem domain.18

The intersection of neural networks and symbolic methods is known as neurosymbolic AI and aims19

to combine the best of both worlds (Garcez and Lamb 2023). There are countless ways of integrating20

these two paradigms. In this survey, we focus on the use of answer set programming (ASP), a type of21

symbolic AI that belongs to the field of logic programming. ASP is more expressive than languages22

like Prolog, while still being relatively efficient to compute (Lifschitz 2019). It is therefore well suited23

for representing complex tasks and a popular choice for neurosymbolic AI. We explore the capabilities,24

advantages and drawbacks of frameworks combining ASP and neural networks throughout this survey.25

We start by formally defining ASP in the background section, explaining how to learn ASP rules and26

providing a quick overview of neural networks. The main section is then divided into two parts.27

The first part contains a discussion of papers in the field of neurosymbolic ASP. It is split into28

four sections, which represent different categories of frameworks. We categorise frameworks based on29

whether their neural component is pre-trained, their symbolic component is hard-coded, or either of them30

is learned. We briefly describe each framework and discuss its strengths and weaknesses. The descriptions31

are accompanied by illustrations allowing the reader to compare and contrast them. We conclude that the32

advantages of neurosymbolic ASP lie in explainability, robustness and data efficiency, compared to purely33

neural approaches.34

The second part discusses the current limits and open challenges of the field. It is split into three35

sections, covering simple perception tasks, limited ASP generation and scalability issues. We show that36

neurosymbolic ASP has so far been restricted to simple inputs that do not reflect real-world scenarios.37

Moreover, most frameworks rely on hand-written background knowledge to complement the knowledge38

that is learned, or restrict the search space for finding ASP rules. Lastly, the field suffers from timeouts39

and scalability issues that limit the ability of frameworks to scale to real-world tasks.40

This survey focuses on papers released within the last five years, i.e. from 2020 onwards. We only41

discuss frameworks that use an expressive subset of ASP, at least at the level of stratified programs. This42

excludes frameworks that learn simpler ASP rules, as well as those with sufficiently expressive rules in43

other logical languages. Finally, we restrict our focus to supervised learning and do not discuss work44

on combining reinforcement learning and ASP. Prominent papers outside our scope are discussed in the45

related work section.46

Background47

Answer set programming (ASP)48

We give a brief overview of the syntax and semantics of ASP. For detailed definitions, please refer49

to Gelfond and Kahl (2014) and Lifschitz (2019).50

Prepared using sagej.cls



Rader and Russo 3

Syntax. The language of ASP consists of constants, functions, predicates and variables. A term can be51

constructed as follows:52

• A variable or constant is a term,53

• If t1, . . . , tn are terms and f is a function of arity n, then f(t1, . . . , tn) is a term.54

An atom is an expression of the form p(t1, . . . , tn) where p is a predicate of arity n. If n = 0, we omit55

the parentheses and just write p. A literal is an atom p(t1, . . . , tn) or its negation ¬p(t1, . . . , tn). Terms56

without variables are called ground and an atom is ground if every term in it is ground. Ground atoms57

and their negations are ground literals. A set of ground literals is called an interpretation.58

A general rule consists of literals h1, . . . , hk and b1, . . . , bn and has the form:59

h1 ∨ · · · ∨ hk :− b1, . . . , bm, not bm+1, not bn

The left part of the rule is the head and the right part is the body. The head is a disjunction of literals60

and the symbol ∨ is read as or. If the head only contains one atom, it is a normal rule. If the head is61

empty, the rule is a constraint. The body contains positive and negative literals; the latter are indicated62

by the symbol not in front of them. Unlike classical negation, denoted by the symbol ¬, the symbol not63

denotes negation as failure and means that a literal is not believed to be true. If there are no negative64

literals in the body, it is a definite rule. A program is a collection of rules. A definite program consists65

of only definite rules and a stratified program contains no cycles through negation.66

Semantics. A set S of ground literals satisfies67

1. literal l if l ∈ S,68

2. not l if l /∈ S,69

3. h1 ∨ · · · ∨ hk if for some 1 ≤ i ≤ k, hi ∈ S70

4. b1, . . . , bn if S satisfies every literal in it,71

5. a rule r if, whenever S satisfies the body of r, it satisfies the head of r.72

The solutions of an answer set program are defined as sets of ground literals, called answer sets.73

To determine whether a candidate set S is an answer set of a program Π, the reduct of the program,74

ΠS , needs to be constructed. This is done in multiple steps: First, ground the program by replacing all75

variables with all possible ground constants mentioned in the program. Then, remove all rules containing76

not l such that l ∈ S. Last, remove all remaining body literals containing not. S is an answer set of Π77

if it satisfies the rules of ΠS and is minimal (i.e. there is no proper subset of S satisfying the rules of ΠS).78

The language contains more constructs to facilitate the modelling of complex problems. The main79

constructs include cardinality constraints, aggregates and optimisation statements.80

A cardinality constraint is of the form81

l{h1, . . . , hk}u :− b1, . . . , bm, not bm+1, . . . , not bn

where l and u are integer values such that l ≤ u. Whenever the body holds, between l and u atoms in the82

head of the rule must be included in the answer set of the program. By leaving out the bounding numbers83

in a cardinality constraint, any combination of atoms in that set can be included in an answer set. This84

construct is known as a choice rule.85

Prepared using sagej.cls



4 Journal Title XX(X)

Aggregates perform operations on sets. For example, the expression #count{X : p(X)} represents the86

number of elements in p. Other operations include sums, maxima and minima. Aggregates are often used87

in conjunction with comparison operators to model complex relationships.88

Optimisation statements instruct the answer set solver to find solutions that either minimise or89

maximise certain properties. They are written using directives such as #maximize{X : p(X)}. Rule90

bodies can also be annotated with weights, so-called weak constraints. The solver finds the optimal91

solution and ranks the answer sets based on these criteria.92

s(ASP) (Marple et al. 2017) is an extension of the language, which provides solutions top-down in a93

goal-driven manner. Given a query, the system computes a partial answer set that contains it, bypassing94

the need to compute the entire answer set. Moreover, it does not need to ground the program, leading95

to performance improvements for some problems. A further extension is s(CASP) (Arias et al. 2018),96

which introduces constraints on variables, including over dense and unbounded domains.97

ASP is a modelling language, meaning that problems are represented in a declarative way. To solve98

a problem, you typically model it in ASP and a solver calculates the possible solutions. One widely99

used solver is Clingo (Gebser et al. 2017). An answer set program can have multiple solutions and can100

represent problems up to the second level of the polynomial hierarchy (Law et al. 2018). ASP is also101

non-monotonic, meaning that adding new rules can invalidate previously held conclusions. This enables102

commonsense reasoning to be modelled through default rules, which usually hold unless disproven by103

new evidence.104

Learning from answer sets105

Rather than defining answer set programs by hand, the Learning from answer sets (LAS) task aims to106

automatically learn an answer set program from examples. This process, known as inductive learning,107

tries to find general rules that explain the given data. In this section, we define how to set up and solve a108

LAS task, using the definitions from Law et al. (2019).109

Examples are represented in the form of weighted context-dependent partial interpretations (WCDPIs).110

A WCDPI is a tuple e = ⟨eid, epen, epi, ectx⟩, where eid is a unique identifier, epen is a penalty value,111

epi is a partial interpretation and ectx is the context. A partial interpretation epi consists of a pair of atom112

sets ⟨einc, eexc⟩, called the inclusion and exclusion sets. The context is written in the form of an answer113

set program. A program P accepts a WCDPI e, iff there exists at least one answer set I ∈ AS(P ∪ ectx),114

such that einc ⊆ I and eexc ∩ I = ∅.115

A LAS task is a tuple T = ⟨B,SM , ⟨E+, E−⟩⟩, where B is the background knowledge, SM is116

the hypothesis space and E+, E− are sets of positive and negative WCDPIs. B is simply represented117

as an answer set program and SM is a set of ASP rules. The goal is to learn an optimal hypothesis118

H ⊆ SM , such that B ∪H accepts as many positive WCDPIs and as few negative WCDPIs as possible.119

The optimality of H is determined by summing up the penalties of negative/positive WCDPIs that are120

accepted/not accepted respectively. In addition, a penalty for the length of H is applied to encourage121

shorted hypotheses. Since it is infeasible to define SM as a list of all possible rules that H could contain,122

it is declared using a mode bias in practice. The mode bias consists of declarations and other constructs123

that specify the hypothesis space.124

Learning a hypothesis that defines concepts already observed in the examples is known as observational125

predicate learning (OPL). This is computationally easier than non-OPL tasks, which require learning126

concepts that are not directly observed (Law et al. 2021).127

Prepared using sagej.cls



Rader and Russo 5

The two main LAS frameworks are ILASP (Law et al. 2020b) and FastLAS (Law et al. 2020a). ILASP128

is capable of learning full answer set programs. FastLAS is more scalable but also more restricted. It129

does not learn constructs such as choice rules or recursive rules and cannot invent new predicates. Both130

systems are purely symbolic and cannot natively integrate neural networks.131

Neural networks132

Neural networks are composed of multiple layers of nodes, which are connected by weighted vertices.133

They process an input by pushing it from one layer to the next, transforming it with linear and non-linear134

functions. The transformed data that is output from the last layer represents the result. A dataset of input-135

label pairs is used to learn a task. For each dataset example, the neural network output is compared with136

the label and a loss is calculated. The weights of the neural connections are changed with regards to137

the loss through the process of backpropagation (LeCun et al. 2015). Unlike symbolic methods, neural138

networks represent knowledge sub-symbolically via their structure and the values of the weights applied139

to connections.140

CNNs. A class of neural networks for image classification are convolutional neural networks (CNNs).141

They contain specialist convolutional layers, which detect local features, and pooling layers, which merge142

the features into higher-level concepts. These operations are particularly suited for images, as the different143

convolutional functions act like filters and extract different properties from the input (LeCun et al. 2015).144

Foundation models. Neural networks with billions of parameters that are trained on vast amounts of145

broad data are known as foundation models (Bommasani et al. 2022). They are capable of solving a146

wide range of problems through the use of in-context learning. The model learns how to solve a task147

from examples provided in the prompt as a natural language description. No weights are changed in this148

process, instead the model is only conditioned to utilise existing parameters. This type of adaptation is149

known as few-shot learning. When no examples are provided in the prompt, the model performs zero-shot150

learning. Finetuning is used to adapt a model to task-specific data by changing its weights.151

The two main types of foundation models are large language models (LLMs) and vision language152

models (VLMs). LLMs are based on the transformer architecture and process text through the mechanism153

of attention. VLMs combine an LLM with a vision encoder to process multimodal input in the form of154

text and images (Bordes et al. 2024).155

Neurosymbolic ASP frameworks156

Input
Neural

component
Latent
vector

Symbolic
concepts

ASP
component

Downstream
output

Figure 1. High-level depiction of inference through the components of neurosymbolic ASP frameworks.

There are a wide variety of frameworks which combine neural networks and ASP. In all approaches, the157

neural component processes raw inputs, while the ASP component performs logical reasoning to create an158

Prepared using sagej.cls



6 Journal Title XX(X)

output, as illustrated in Figure 1. Combining neural and symbolic methods requires a translation between159

the latent vector representation of neural outputs and the symbolic concept representation of symbolic160

reasoners. We illustrate a typical inference procedure through such a neurosymbolic architecture with an161

example.162

Example. In the MNIST Addition task, each input consists of two images of handwritten digits163

from the MNIST dataset (Deng 2012). Each downstream output is a single number, representing the164

sum of the two input numbers. In a neurosymbolic framework, the neural component can be a simple165

CNN which processes one image at a time and produces a latent vector of size 10. The ith entry in166

the vector represents the probability of the input being number i, for i ∈ {0, . . . , 9}. By choosing the167

argmax, i.e. the index of the entry with the highest probability, each latent vector can be translated168

into a symbolic concept. The ASP component can include a rule for adding up the two symbolic169

concepts: result(Z) :− digit(1, X), digit(2, Y), Z = X+ Y. The downstream output is the number Z170

in result(Z).171

Compared to fully neural methods, a neurosymbolic approach has the advantages of robustness and172

explainability. The ASP component provides a decision based on human-readable rules, in contrast to173

an opaque neural network, which uses layers of nodes and weights. Any conclusion output by the ASP174

component is also logically robust given these set of rules, which is not guaranteed with a neural network.175

However, the increased transparency comes at a cost of complexity.176

First, the translation between the continuous vector space of neural networks and the discrete symbols177

and rules of ASP is not always trivial. Symbols have to be extracted from raw data, such as natural178

language text or images. Depending on the problem, the translation may involve an unknown number of179

concepts or complex perception tasks.180

Second, providing a learning signal for the neural and/or symbolic component is difficult. In a181

traditional neural network task, the model is trained end-to-end using the input and labels. For182

neurosymbolic ASP frameworks, the neural network outputs latent concepts, for which labels are often183

unavailable. Instead, the learning signal comes from the downstream labels, which have to be propagated184

through the non-differentiable ASP component. In many tasks, different combinations of latent symbols185

can result in the same downstream output, providing a noisy learning signal to the neural network.186

Learning the ASP component itself is challenging as well, as it receives noisy inputs from the neural187

network.188

The proposed frameworks in the literature are all structured differently and deal with their own set of189

challenges. They can be split up into four broad categories:190

1. Frameworks with a pre-trained neural and hard-coded ASP component. Their main challenge lies191

in the translation of neural outputs into symbols.192

2. Frameworks with a hard-coded ASP component that train a neural network. Their main challenge193

lies in the propagation of the downstream learning signal through the ASP component.194

3. Frameworks with a pre-trained neural component that learn an answer set program. Their main195

challenge lies in the learning of ASP rules with noisy neural predictions.196

4. Frameworks that learn the neural and ASP component jointly. Their main challenge is a197

combination of all the problems above.198

In this section, we discuss each category and illustrate the frameworks within it.199

Prepared using sagej.cls



Rader and Russo 7

Pre-trained neural and hard-coded symbolic component200

When both the neural and symbolic components are already given, the main focus lies on bridging the201

gap between them. Papers in this area tend to choose challenging tasks with natural language texts and202

complex images to demonstrate the usefulness of their framework. While earlier works use hand-crafted203

parsing pipelines, more recent papers experiment with LLMs.204

Input
image

YOLO ASP solver
Answer

Predicates

Input
text

Parser

ASP rules
Background
knowledge

(a) High-level depiction of the inference procedure in
ASP-VQA (Eiter et al. 2022) and AQuA (Basu et al.
2020).

LLM

ASP
solver

Answer

Background
knowledge

Predicates

Input

Prompt

(b) High-level depiction of the inference procedure in
[LLM]+ASP (Yang et al. 2023) and STAR (Rajasekharan
et al. 2023).

Latent vectors
k-means

Clusters

Downstream
labels

ASP
component

Labelled
clusters

Clingo

Background
knowledge

1

2 3

(c) High-level depiction of the cluster creation in Embed2Sym (Aspis
et al. 2022).

Figure 2. High-level depictions of frameworks with pre-trained neural and hard-coded symbolic components.

Figure 2a depicts the general structure of frameworks for the task of visual question answering (VQA).205

In VQA, the task involves answering questions about an image, such as “How many blue objects are in206

the scene?”207

ASP-VQA and AQuA. Both the ASP-VQA (Eiter et al. 2022) and AQuA (Basu et al. 2020) frameworks208

use a YOLO network (Redmon and Farhadi 2018) to extract predicates from the image. YOLO is a neural209

network architecture that extracts bounding boxes for objects in an image. Each row in its output vector210

represents an object, and the columns correspond to class probabilities. Converting these neural vectors211

Prepared using sagej.cls



8 Journal Title XX(X)

into symbols is done simply by picking the class with the highest probability. On top of that, ASP-VQA212

uses thresholding to select multiple likely classes per object and aggregates them into a choice rule. The213

ASP component can choose any of these top predictions, allowing room for error. As both approaches214

pre-train the YOLO network directly on given latent labels, no learning is occurring, just inference.215

To extract the query and knowledge from text questions, both frameworks use a parsing pipeline. ASP-216

VQA does not use the natural language text directly, but its functional representation, which the dataset217

provides. The functional representation is a structured format made up of function symbols, predicates218

and relations. The translation into ASP can therefore be done by a straightforward set of parsing rules.219

AQuA, on the other hand, parses the natural language text and converts it into ASP by utilising a part-220

of-speech tagger and dependency parser from CoreNLP (Manning et al. 2014). Both approaches also221

include extensive background knowledge of the task hard-coded in ASP. An ASP solver then calculates222

the answer by combining the extracted predicates, ASP rules and background knowledge.223

By adding a symbolic layer on top of the YOLO network, they achieve the capability to answer224

complex queries. AQuA even exceeds human baseline performance on one of their datasets. The symbolic225

layer also adds robustness, as ASP-VQA reports good results even when the network is poorly trained.226

Recently, LLMs have taken over the process of parsing natural language input. Their remarkable ability227

to produce structured language output from natural language input makes them well suited for the task228

of extracting ASP facts from text. They also require much less hand-crafting than building pipelines with229

taggers and parsers. Figure 2b illustrates the use of LLMs in bridging the gap between text and ASP230

predicates.231

[LLM+ASP]. Yang et al. (2023) use LLMs for extracting ASP facts from natural language text puzzles232

in their [LLM]+ASP framework. As LLMs are general-purpose models, in-context learning is employed233

through examples of correct extractions in the prompt. The extracted facts are combined with hard-coded234

background knowledge and an ASP solver arrives at the answer. The background knowledge comes in235

the form of knowledge modules, which are written in a general way and therefore reusable for different236

datasets. For example, the location module includes ASP rules for calculating an object’s location using237

offsets and is used for spatial reasoning, navigation and path-finding problems. The authors show that the238

framework can solve robot planning tasks that the LLM alone fails at, thereby enhancing its capabilities.239

STAR. In a similar vein, the STAR framework (Rajasekharan et al. 2023) extracts predicates from240

language inputs using an LLM and reasons over them with ASP. The authors make use of both in-context241

learning and finetuning to improve performance. Unlike [LLM]+ASP, they reason with the s(CASP)242

variation, which is query-driven and more scalable. s(CASP) adds the ability to justify an answer in243

form of a proof tree, which enhances explainability compared to using an LLM directly. Hard-coded244

background knowledge is once again needed to represent the commonsense knowledge necessary for245

solving the problems.246

In further work, the authors use the STAR framework to create a neurosymbolic chatbot. In this247

scenario, the background knowledge is a conversational template that includes rules for staying on topic,248

gathering relevant information from the user and answering their questions. To create a natural flow of249

conversation, the LLM translates the ASP output into natural language again. Zeng et al. (2023) use this250

system to create a conversational agent called AutoConcierge using the LLM GPT3 (Brown et al. 2020).251

The aim is to provide restaurant recommendations based on using nine relevant properties, e.g. location252

Prepared using sagej.cls



Rader and Russo 9

and price preferences, that are extracted from the user with natural language dialogues. Zeng et al. (2024)253

use the same system to create AutoCompanion, which is a social conversational bot for movies.254

Embed2Sym. Unlike the previous frameworks, Embed2Sym (Aspis et al. 2022) pre-trains the neural255

component on downstream labels rather than latent labels. The neural network is structured to contain256

a separate perception and reasoning component, both of which are neural. The perception component257

processes the input and projects it into a latent dimension. The reasoning component takes the258

concatenated latent vectors and predicts the downstream output. This structure allows the entire neural259

network to be trained end-to-end with downstream labels, while producing a representation of latent260

concepts. To bridge the gap between latent vectors and symbolic concepts, the framework uses k-means261

clustering, as shown in Figure 2c. The number of clusters is equal to the number of values a latent262

concept can take and is hard-coded in the background knowledge. In the case of MNIST Addition, there263

are 10 clusters, one for each single-digit number. Matching each cluster with the correct concept label264

is done with Clingo using a hand-crafted answer set program. This program includes rules for reaching265

the downstream answer from latent concepts and chooses a cluster/concept matching that maximises266

the number of correct downstream predictions. In the MNIST Addition example, the answer set program267

would include rules for summing up the two latent concepts and assigning each digit the cluster that leads268

to the maximum number of correct sum predictions. At inference time, the framework uses the neural269

perception component to create latent vectors. It assigns each vector the symbolic label corresponding to270

the nearest cluster and then solves the task using the hard-coded ASP rules. The ASP component can be271

modified to solve new problems, such as subtraction, without retraining the neural network. This makes272

the model transferable to new domains, unlike a purely neural solution.273

The latent embedding space of the neural component might not produce perfect clusters, leading274

to misclassified concepts. Rader and Russo (2023) alleviate this issue by extending the framework275

with active learning. They use the clusters to create a dataset of latent labels and finetune the276

perception component to predict latent concepts directly. For each example where the downstream277

prediction is correct, the cluster assignment is used as the the latent label. For examples with incorrect278

downstream predictions, an oracle provides active latent labels for the dataset. The extension improves279

the performance of the framework, enabling it to classify concepts more accurately than the clusters. As280

only a small number of datapoints need to be labelled and the network is not retrained from scratch, this281

extension is both data- and time-efficient.282

Overall, the frameworks in this section use symbolic components to improve the capabilities of neural283

networks and LLMs. They successfully apply parsers, LLM predictions or clustering to bridge the gap284

between raw data and ASP facts. Answers from such hybrid networks are more robust and explainable285

than those from the neural networks alone. However, the scope has been limited to the interplay between286

neural and ASP methods, where no neurosymbolic learning is involved. The lack of automatic learning287

procedures also leads to a need for labour-intensive hard-coding, which limits the adaptability to new288

problems.289

Neural training with hard-coded symbolic component290

The frameworks in this section contain hand-written answer set programs and tackle the issue of training291

neural networks indirectly. This type of task is also referred to as neurosymbolic reasoning. The neural292

component must learn latent symbols without access to latent labels, instead relying on downstream293

Prepared using sagej.cls



10 Journal Title XX(X)

labels. Thus, the main challenge lies in propagating the learning signal through the non-differentiable294

symbolic component to the neural network.295

Downstream
labels

ASP
component

Clingo

Answer sets

Gradient
ascent

Neural
component

Input

Figure 3. High-level depiction of the training procedure for the neural component in NeurASP (Yang et al.
2020), SLASH (Skryagin et al. 2024) and dPASP (Geh et al. 2024).

All frameworks in this section follow the same high-level procedure for training, which Figure 3296

illustrates. For each example, they calculate all answer sets and use them as noisy labels for training297

the neural network. Where they differ is the loss functions they use and the structure of their neural298

components and learning algorithms.299

NeurASP. The first framework of this kind is NeurASP (Yang et al. 2020), which trains a neural network300

given an answer set program and downstream labels. The neural component outputs a latent vector,301

which acts as a probability distribution over ASP concepts. A hard-coded ASP ruleset then calculates the302

downstream prediction using the most probable symbolic concepts from the neural network output. To303

propagate the learning signal through the symbolic program to the neural network, NeurASP first finds304

all answer sets that satisfy the downstream label. Each answer set contains a set of so-called neural atoms,305

which are the concepts that the neural component predicts. NeurASP calculates the probability of each306

answer set by multiplying the probabilities of the neural atoms in it. Finally, it calculates the gradient307

of the loss with respect to each neural output and performs gradient ascent. For each entry in the neural308

latent vector, the gradient is increased for each answer set that contains it and decreased for each answer309

set that does not contain it, weighted by the probability of the answer set. In effect, the answer sets act as310

noisy latent labels. Rather than having one label for a neural network prediction, you have a weighted set311

of labels.312

Example. We revisit the MNIST Addition example from the beginning of this section to illustrate313

the training procedure. In NeurASP, the neural network predicts the value of a single digit and the sum314

operation is hard-coded in the ASP component. At training time, NeurASP calculates all answer sets for315

a given downstream label. For example, if the downstream label is 11, then the answer sets contain the316

following combinations of neural atoms: {(2, 9), (3, 8), (4, 7), (5, 6), (6, 5), (7, 4), (8, 3), (9, 2)}. Each317

answer set is assigned a probability based on neural network confidences. If the neural network is highly318

confident that the first number is 6 and the second number is 5, then the answer set (6, 5) will have319

a higher probability than, say, (8, 3). The gradient ascent operation will then increase the weights for320

Prepared using sagej.cls



Rader and Russo 11

predicting numbers 2 to 9, as they appear in the answer sets, and decrease the weights for 0 and 1, which321

do not appear in any answer set. The increases and decreases are weighted by the answer set probabilities.322

Splitting up a task in this way alleviates pressure on the neural network. Instead of solving the entire323

task, it only has to learn latent concepts. Existing knowledge can then be utilised in the form of ASP rules324

to find the downstream solution.325

SLASH. Skryagin et al. (2022) introduce SLASH, an extension of NeurASP that integrates more326

sophisticated probability estimations. In NeurASP, the perception component is a neural network and327

is only capable of estimating conditional probabilities for each symbol C given data X: P (C|X).328

This is typically done using a Softmax function on its last layer. SLASH extends this notion with329

neural-probabilistic predicates (NPPs). NPPs can learn the probability distribution of the latent concepts,330

allowing SLASH to estimate P (X|C) and P (X,C) as well. Through density estimation, SLASH can331

also handle missing data points and regenerate them. In the paper, NPPs are realised using probabilistic332

circuits, but they can be replaced by any other component that estimates probabilities, including neural333

networks.334

The scalability of SLASH is improved in Skryagin et al. (2024), where the authors introduce a method335

called SAME to prune insignificant answer sets and speed up learning. As the neural predictions improve336

f during training, SAME gradually eliminates symbolic latent concepts with low probabilities when337

generating answer sets. Over time, each epoch gradually speeds up, as the gradients are calculated using338

fewer and fewer answer sets.339

dPASP. Geh et al. (2024) introduce a more powerful specification language with dPASP. It extends340

the capabilities of NeurASP and SLASH by introducing interval-valued facts and disjunctions that are341

annotated with probabilities. They implement two semantics for their framework: maxent and credal.342

The former assigns probabilities based on maximising entropy, while the latter is more conservative and343

assigns tighter bounds. The syntax of dPASP allows for the seamless integration of Python code and344

an interface between raw data and program constants. The learning function is based on a Lagrange345

multiplier derivation for gradient ascent and ends up being very similar to NeurASP’s learning rule. It346

calculates the same terms as NeurASP, but multiplies them with weight factors 1
m and 1− 1

m , where m347

is the number of possible atoms that the neural network output represents.348

Overall, the fundamental way of propagating the learning signal remains the same in all of the frameworks349

in this section. The downstream label is converted into noisy latent labels through calculating answer sets350

and assigning probabilities to them. This approach enables solving complex problems, while keeping the351

neural components simple. NeurASP introduced this notion and has been expanded upon with SLASH352

and dPASP. These models add capabilities like more complex probabilistic modelling and handling353

interval-valued or missing data.354

Symbolic learning with pre-trained neural component355

Pre-training a neural component on latent labels alleviates the challenge of propagating the downstream356

learning signal back to the neural network. Papers in this section instead focus on translating neural357

outputs into symbols and learning an answer set program to solve the task. They use two main approaches358

for learning ASP rules: Either extracting symbolic concepts and then using a LAS solver, or generating359

rules directly with an LLM. Setting up a LAS task is not trivial, as the search space of possible rules360

Prepared using sagej.cls



12 Journal Title XX(X)

is large and neural outputs are noisy. Generating rules with LLMs is challenging as well, because the361

free-form output has to be syntactically and semantically correct. In this section, we discuss the different362

strategies that have been proposed to overcome these issues.363

Symbolic
concepts

Downstream
labels

LAS solver

Background
knowledge

ASP
component

(a) High-level depiction of the symbolic learning
procedure in FFNSL (Cunnington et al. 2023a),
NeSyGPT (Cunnington et al. 2024) and
Embed2Rule (Aspis et al. 2024).

FOLD-SE
Semantic
labelling

Last layer of
neural

component

Downstream
labels

Labelled rulesASP rules

(b) High-level depiction of the symbolic learning procedure in
NeSyFOLD (Padalkar et al. 2024).

LLM

LLM

LLM

ASP rules

Constants

Predicates

Input

Prompt

(c) High-level depiction of the symbolic learning procedure in
GPT-ASP (Ishay et al. 2023).

Input

LLM

ASP rules

Clingo

LLM
Background
knowledge

Feedback

(d) High-level depiction of the symbolic learning
procedure in DSPy-ASP (Wang et al. 2024) and
LLM-ARC (Kalyanpur et al. 2024).

Figure 4. High-level depictions of symbolic learning procedures in frameworks with pre-trained neural
components.

Figure 4a illustrates frameworks that deploy an off-the-shelf LAS solver like ILASP or FastLAS to364

find ASP rules. They differ in how they create the symbolic concepts necessary for the LAS task.365

FFNSL. The framework FFNSL (Cunnington et al. 2023a) uses a standard neural network that is366

pre-trained using latent labels. Their so-called data-to-knowledge generator translates the latent vector367

outputs of the neural component into ASP atoms by selecting the index of the maximum value in the368

vector. This translation is hard-coded, so it is known which vector entries correspond to which symbolic369

concepts. The symbolic component then learns an answer set program that solves the downstream task.370

It uses ILASP or FastLAS to find ASP rules based on the predicted symbolic concepts, the downstream371

labels and hard-coded background knowledge, which includes the search space for the possible rules.372

The paper investigates the effect of distributional shifts in the dataset, which cause the accuracy of the373

Prepared using sagej.cls



Rader and Russo 13

neural networks to plummet. However, the symbolic learning remains robust to noisy predictions and the374

generated rules outperform fully neural baselines.375

NeSyGPT. Instead of training a traditional neural network, NeSyGPT (Cunnington et al. 2024) extracts376

symbols from the data using a VLM. The framework feeds the input image into BLIP (Li et al. 2022)377

alongside a question designed to extract the latent concept. For example, the authors set the question378

“What number is this?” in the MNIST Addition task. For more complex perception tasks, such as379

extracting the suit and rank of a playing card, they additionally finetune BLIP with latent labels. Since380

there are no guarantees on the BLIP output, they use a text distance metric to map the VLM output to381

a predefined set of symbolic concepts. This interface between neural and symbolic components, i.e. the382

set of symbolic concepts and what questions to ask the VLM, is not necessarily manually engineered.383

The authors present a way to programmatically generate it using LLMs. After all examples have been384

converted into symbolic concepts, NeSyGPT learns ASP rules with ILASP.385

Embed2Rule. To reduce the number of calls to a VLM, Embed2Rule (Aspis et al. 2024) uses BLIP386

to label clusters rather than each individual example. It follows the same procedure as Embed2Sym387

to generate the clusters, which we illustrated in Figure 2c. Images from each cluster are then sampled388

and weakly labelled using BLIP. As BLIP might assign different labels to images in the same cluster,389

an optimisation algorithm finds the cluster-label assignment that maximises agreement with the BLIP390

labels. Lastly, the learned symbolic concepts are used to find rules with ILASP. Only requiring the VLM391

to label a few datapoints per cluster enhances the data and compute efficiency of this method.392

NeSyFOLD. The aim of NeSyFOLD (Padalkar et al. 2024) is not to solve a task, but to explain decision-393

making in CNNs. The CNN is pre-trained on downstream labels and NeSyFOLD turns its final layer into394

ASP rules, as Figure 4b illustrates. The rationale is that filters in the final layer tend to represent high-395

level concepts that can be formalised in logic. NeSyFOLD first binarises the last layer by thresholding396

the activation of each filter given an input, creating a tabular dataset. Then, the framework makes use of397

the FOLD-SE algorithm, which turns tabular data into default ASP rules (Wang and Gupta 2023). The398

resulting program approximates the decision-making of the last layer of the CNN by treating each filter399

as an atom that is used in the rule set. These atoms do not have human-readable names, which is why a400

semantic labelling step is necessary. An oracle, such as a human or foundation model, gives each atom a401

name by looking at the parts of the images that are activated by the filter that the atom represents. This402

results in a neuro-symbolic model that mostly maintains the predictive power of the CNN while being403

explainable and human-readable.404

The authors have expanded the framework multiple times. NeSyFOLD-G (Padalkar et al. 2023) is405

a variant which groups similar kernels together before binarising them. This reduces the number of406

generated rules and therefore increases interpretability. NeSyBiCor (Padalkar et al. 2025) introduces the407

ability to remove biases in a CNN based on the rules extracted by NeSyFOLD. The user can tag undesired408

concepts in those rules that should not be used to make decisions. For example, the CNN might use the409

colour of the sky for predicting the type of road in an image, which is irrelevant. The framework then410

finetunes the CNN using a semantic similarity loss to push it away from making predictions with such411

undesired concepts. This process largely maintains the accuracy of the rule set and often reduces the412

number of rules.413

The remaining three frameworks in this section utilise LLMs to create ASP rules. Their goal is to414

augment the reasoning capabilities of LLMs by encoding tasks in ASP instead of solving them directly.415

Prepared using sagej.cls



14 Journal Title XX(X)

The remarkable ability of LLMs to produce structured languages such as Python code has been widely416

demonstrated in literature. However, as the training sets include much less ASP than Python, LLMs417

struggle to generate correct answer set programs from scratch. Therefore, all approaches use multi-step418

methods.419

GPT-ASP. Ishay et al. (2023) devise a four-step method for converting natural language logic puzzles420

into answer set programs. Their framework GPT-ASP first generates constants, then predicates and then421

rules, as Figure 4c illustrates. At each step, the LLM has access to both the input and the ASP generated422

in the previous steps. The rule generation step is split up into two parts. First, the LLM generates choice423

rules, which increase the number of answer sets. Then, it creates constraints, which limit the number of424

answer sets again. This process is similar to how humans model problems in ASP. The pipeline allows425

you to spot and correct errors easily by inspecting the constructed constants, predicates and rules. This is426

not possible with LLM-only models that simply output the answer.427

The capabilities of LLMs to generate ASP code can be further improved by introducing feedback loops.428

Two frameworks make use of this technique, which is shown in Figure 4d.429

DSPy-ASP. In the DSPy-ASP framework (Wang et al. 2024), the LLM can revise the ASP rules for430

three iterations. First, it generates ASP predicates and queries, which are input to the Clingo solver431

together with predefined knowledge modules. Second, the LLM then revises the answer set program432

based on feedback from the solver, such as error messages. This process is repeated three times. While433

the LLM only generates predicates at first, it does have the ability to revise and generate new rules during434

the feedback loops. The authors use the DSPy Python framework (Khattab et al. 2024) to automate435

the prompt engineering process and show that adding feedback loops further improves task success.436

Compared to direct-prompting, the addition of ASP results in significant accuracy increases of up to 50%437

in spatial reasoning tasks.438

LLM-ARC. Kalyanpur et al. (2024) go further and use LLMs to generate tests in addition to ASP rules439

in their LLM-ARC framework. These tests are meant to verify the semantic correctness of the code. Just440

like the generated ASP rules, they are run through Clingo, which provides feedback through its error441

messages. The authors provide a simple schema for specifying tests, including mechanisms for checking442

that a proposition is true in any, all or no answer sets. The LLM can then correct the code and tests in443

an iterative manner, until everything compiles and all tests pass. The prompt includes few-shot examples444

of how to solve questions from the benchmark, including how to write tests and correct errors. Even445

though there are no guarantees that the generated tests are semantically sound, the authors show that they446

improve the correctness of the generated ASP rules in practice.447

To sum up, there are two main approaches to learning ASP rules from raw data: Converting the data into448

symbolic examples to use with off-the-shelf solvers or generating rules directly. Both strands have been449

influenced by the rise of foundation models. In the former, VLMs act as the perception component,450

extracting predicates from images. In the latter, LLMs additionally act as the reasoning component,451

writing and improving ASP rules to solve a task using in-context learning. Foundation models have452

improved the scope and accuracy of neurosymbolic ASP methods. In turn, ASP has improved the logical453

capabilities of LLMs, which by themselves struggle with reasoning.454

Prepared using sagej.cls



Rader and Russo 15

Joint learning of neural and symbolic components455

Training the neural component and learning ASP rules at the same time is a very challenging task, because456

it resembles a chicken-and-egg problem. The neural network does not have latent labels to train with, as457

there is no answer set program that can generate them. And the ASP component does not have latent458

concepts to learn from, as the neural network is not trained yet. There are two papers in the literature that459

have tried to overcome these challenges without using any pre-trained components and we will discuss460

them in this section.461

Bootstrapping

Neural
component

ASP
component

NeurASP

Input

Corrective
examples

ClingoLAS solver

Downstream
labels

Background
knowledge

(a) High-level depiction of the learning procedure in NSIL (Cunnington
et al. 2023b).

Downstream
labels

Optimisation

Background
knowledge

Neural
training

Neural
component

Solving

ASP
component

Opt-sufficient
subset

Input

(b) High-level depiction of the learning procedure in NeuralFastLAS (Charalambous et al.
2023).

Figure 5. High-level depictions of frameworks that jointly learn the neural and ASP component.

NSIL. Cunnington et al. (2023b) address the chicken-and-egg problem in their NSIL framework by462

bootstrapping a hypothesis, as Figure 5a illustrates. The bootstrapping task takes only the downstream463

labels and background knowledge into account. It is set up using WCDPIs, each of which contains a464

Prepared using sagej.cls



16 Journal Title XX(X)

downstream label in the inclusion set and choice rules for the neural atoms in the context. A LAS solver465

then finds ASP rules that cover as many WCDPIs as possible.466

For tasks like MNIST Addition, bootstrapping works well. In the paper, the mode bias includes467

functions for addition, subtraction and multiplication. To maximise coverage of WCDPIs, the LAS solver468

would choose the addition function, because it is the only one that can cover all 20 downstream labels.469

A subtraction function of two positive digits cannot cover the labels 10 to 19, while a multiplication470

function cannot arrive at prime numbers like 13. For more complex tasks, the initial hypothesis might471

be wrong or incomplete, which is where the iterative nature of NSIL comes into play. The bootstrapped472

hypothesis is used to train the neural component with NeurASP. The freshly trained neural predictions473

are turned into corrective examples to learn a better hypothesis using FastLAS or ILASP. At this point,474

the loop starts again by training the neural network using the new hypothesis.475

Splitting up the process into a neural and symbolic component allows NSIL to solve NP-complete476

tasks like the hitting set problem. It plays to the strengths of both paradigms, at the expense of a difficult477

learning regime.478

NeuralFastLAS. Charalambous et al. (2023) introduce NeuralFastLAS, which learns ASP rules and479

trains a neural network jointly in one iteration, as shown in Figure 5b. First, the framework constructs480

a set of ASP rules that can prove the downstream labels for each example, given all possible choices481

of neural atoms. Using the background knowledge and constraints such as symmetry, this set of rules is482

pruned in the optimisation step to obtain the opt-sufficient subset. Crucially, the opt-sufficient subset is483

proven to contain the optimal symbolic solution. The answer sets stemming from the opt-sufficient subset484

are then used as noisy latent labels to train the neural network. Since there are many different rules in the485

opt-sufficient subset, the neural component has a second head that computes a posterior probability for486

each rule. After the network has been trained, an optimal hypothesis is found given the neural network487

predictions and rule posteriors. The paper proves the theoretic correctness of the method and provides488

conditions for the guaranteed convergence of the neural network. As the name suggests, the framework is489

modelled after FastLAS and thereby inherits its expressive power, which is limited to stratified programs.490

The papers in this section tackle true neurosymbolic learning without any pre-training and very limited491

background knowledge. Both frameworks break down complex problems into a neural and symbolic492

part and try to solve both simultaneously - a very difficult task. They start the process by bootstrapping493

rules, either computing a single hypothesis or a space of possible hypotheses. While this approach works494

for simple examples, it tends to get stuck in local minima and is limited in its scalability. Much more495

research is needed to find algorithms that efficiently traverse the search space of possible rules while496

training neural components at the same time.497

Performance analysis498

The experimental sections of the literature provide an insight into the viability of the proposed methods499

on different datasets. They also compare their methods to purely neural or symbolic baselines, as well as500

other neurosymbolic frameworks. Overall, most experiments yield superior results in accuracy compared501

to baselines.502

With regard to purely neural methods, authors also highlight advantages in robustness and503

explainability. FFNSL, for example, maintains a better performance under distributional shifts than a504

neural network alone. The STAR framework can generate justifications for each answer in form of505

Prepared using sagej.cls



Rader and Russo 17

a proof tree. And while NesyFOLD’s rules create a slight drop in performance compared to a CNN,506

they provide the ability to explain decisions and correct biases. Papers that combine LLMs and ASP507

report better results than using LLMs by themselves, especially on logically challenging tasks. Whether508

the advantage in reasoning has remained is hard to gauge, since LLMs are constantly improving their509

reasoning capabilities.510

Compared to other logic-based methods, such as propositional logic or Prolog, ASP frameworks are511

more expressive. The ability of ASP to represent non-monotonic formulas allows it to solve problems512

that other logical frameworks fail at. For example, the NSIL paper includes experiments on the hitting513

set problem, which is NP-complete. NSIL manages to find a solution, while other baselines fail, because514

they can only express definite rules.515

When papers compare their approach to other neurosymbolic ASP frameworks, they often highlight516

improvements in runtime speed. SLASH improves upon NeurASP by speeding up learning significantly517

through their SAME method, and dPASP runs quicker than NeurASP as well. Similarly, Embed2Sym can518

solve tasks where SLASH times out, as it uses clusters rather than having to compute answer sets. The519

same is the case for Embed2Rule compared to NSIL. NeuralFastLAS is faster than NSIL in tasks like520

3-number-additions, but is unable to complete some problems, e.g. those that require predicate invention.521

Papers report improvements in explainability, robustness and often accuracy when adding ASP to522

neural methods. However, there are certain limitations in these experiments. The tasks are often easy, the523

baselines simple and much of the necessary knowledge is hard-coded. In the next section, we will take a524

closer look at the drawbacks of neurosymbolic ASP and define the limits of current developments in the525

field.526

The limits of neurosymbolic ASP527

There are overarching limits in this research area that current methods have not been able to overcome528

and hold the field back. In this section, we aim to identify where these limits lie and what is needed529

to break through them. We broadly categorise them into three themes: simple perception components, a530

limited capacity to generate ASP and scalability issues.531

Simple perception tasks532

The datasets for the vast majority of papers include very simple perception tasks. This, in turn, means533

that the perception components tend to be small neural networks that have limited capabilities. While the534

frameworks might be able to train such small networks, it puts into question their usability in real-world535

scenarios.536

Table 1 provides a summary of all types of input that papers have used to test their frameworks. The537

datasets can be split up into three categories: synthetic images, real-world pictures, and natural language538

text. Within these categories, there are discrepancies about the difficulty of the perception task.539

Synthetic images. The MNIST dataset consists of 28x28 pixel greyscale images of handwritten540

digits (Deng 2012). It was created in 1994 and formed the basis for testing one of the first convolutional541

neural networks, LeNet-5, which already achieved 99% accuracy (Lecun et al. 1995). As such, it is542

considered one of the easiest perception datasets and even very small neural networks can learn to predict543

it perfectly. Out of the twelve frameworks in this survey that take images as inputs, nine of them are tested544

on MNIST images, despite its simplicity. The main reason is that the image classification only forms the545

Prepared using sagej.cls



18 Journal Title XX(X)

Synthetic images Real-world images Natural language text

MNIST (Deng 2012):
Embed2Sym, NeurASP,
SLASH, dPASP, FFNSL,
NeSyGPT, Embed2Rule, NSIL,
NeuralFastLAS
ShapeWorld (Kuhnle and
Copestake 2017): SLASH
CLEVR (Johnson et al. 2017):
ASP-VQA, AQuA, SLASH,
NeSyGPT

CIFAR-10 (Krizhevsky and
Hinton 2009): Embed2Sym
VQAR (Huang et al. 2021):
SLASH
Playing cards (Cunnington
et al. 2023a): FFNSL,
NeSyGPT, Embed2Rule
PlantVillage (Hughes and
Salathe 2016), Indoor
scenes (Quattoni and Torralba
2009): FFNSL
PlantDoc (Singh et al. 2020):
NeSyGPT
Places (Zhou et al. 2018),
German traffic
signs (Stallkamp et al. 2012):
NeSyFOLD

bAbI (Weston et al. 2015),
CLUTRR (Sinha et al. 2019),
gSCAN (Ruis et al. 2020):
[LLM]+ASP
StepGame (Shi et al. 2021):
[LLM]+ASP, DSPy-ASP
SpartQA (Mirzaee et al. 2021):
DSPy-ASP
Logic grid puzzles (Mitra and
Baral 2015): GPT-ASP
FOLIO (Han et al. 2024):
LLM-ARC
QuaRel (Tafjord et al. 2019):
STAR

Table 1. Datasets used for the perception components and the frameworks that use them.

first part of a more complex neurosymbolic task, such as addition or set membership. To convincingly546

demonstrate the real-life viability of these neurosymbolic frameworks, however, more realistic perception547

tasks are needed.548

The ShapeWorld dataset is a step above MNIST, consisting of two-dimensional shapes with various549

orientations and colours against a white background (Kuhnle and Copestake 2017). The SLASH550

framework uses a variant with up to four shapes and trains a CNN to recognise properties of the objects551

(colour, shape, shade and size). The downstream label is the combination of all properties, for example552

has attributes(object1, red, circle, bright, small). Unlike in tasks like MNIST Addition, the553

downstream label therefore includes all four latent labels without obfuscating them. Therefore, the neural554

component is trained directly on the latent labels and the symbolic component only collects all latent555

attributes into one predicate. While the perception task with ShapeWorld is more difficult, the actual556

neurosymbolic task is easier than for MNIST tasks.557

In the CLEVR dataset, the shapes are three-dimensional and can partially occlude each other (Johnson558

et al. 2017). Again, SLASH trains the neural component directly on the latent attributes of the objects.559

ASP-VQA and AQuA use a pre-trained YOLO network and do not perform any learning at all. NeSyGPT560

uses a VLM instead, which is pre-trained on a large corpus of general images. In addition, the authors561

finetune it with a small number of latent labels.562

In the category of synthetic images, only MNIST is truly used for neurosymbolic training of563

the perception component, where the downstream label only provides a noisy signal to the latent564

classification task. Both ShapeWorld and CLEVR, while embodying a more complex perception task,565

provide direct latent labels for the frameworks.566

Prepared using sagej.cls



Rader and Russo 19

Real-world images. CIFAR-10 is a dataset of real-world objects, but the images are compressed to567

32x32 pixels and include only 10 categories (Krizhevsky and Hinton 2009). Embed2Sym uses it for the568

CIFAR-10 Addition task, where each image category is arbitrarily assigned a number and the goal is to569

find the sum of two images. Just like in MNIST Addition, no latent labels are given, but the perception570

task is marginally more difficult.571

The Visual Question Answering and Reasoning (VQAR) dataset contains diverse real-world images572

with a much higher resolution than CIFAR-10 (Huang et al. 2021). But the SLASH framework uses a573

pre-trained network to find the bounding boxes of objects, sidestepping the issue of training the neural574

component.575

The Playing cards dataset consists of photos of real playing cards with a resolution of 523x831576

pixels (Cunnington et al. 2023a). It is used to learn the rules for determining the winner of card games,577

such as “Follow Suit”. In that game, the winner is the player with the same suit as player 1 and the578

highest rank. The downstream label only provides the number of the winning player, not the ranks or579

suits of the cards. The Follow Suit task is therefore a dataset comprising both real-world inputs and580

downstream labels that do not provide strong latent signals. However, none of the three papers that use581

the dataset actually train the neural component from downstream labels. FFNSL pre-trains the neural582

component on the latent playing card labels directly, while Embed2Rule and NeSyGPT use a VLM with583

latent finetuning.584

The same is the case for the PlantVillage (Hughes and Salathe 2016) and Indoor scenes (Quattoni585

and Torralba 2009) datasets. While they contain real-world images of diseased crops and varied indoor586

rooms, FFNSL uses a pre-trained neural network. For the PlantDoc dataset, which contains images of587

diseased plants (Singh et al. 2020), NeSyGPT uses a VLM with latent finetuning.588

The Places dataset contains images of indoor and outdoor scenes (Zhou et al. 2018) and is used by589

the NeSyFOLD and NeSyBiCor frameworks. The downstream labels represent scenes, while the latent590

concepts are objects in the image. NeSyFOLD first trains a CNN to predict the scene category and then591

extracts rules from the CNN’s last layer. Each atom in those rules represents a (set of) filter activations,592

which roughly correspond to objects in the image. The names of the objects are provided through manual593

annotation of segmentation masks. Therefore, the framework is not able to classify latent concepts594

autonomously. The papers use the same techniques for the German traffic sign dataset which includes595

pictures of, shockingly, German traffic signs (Stallkamp et al. 2012).596

While many of the datasets in this section display realistic scenes and objects, they are not used in597

a neurosymbolic training regime. Instead, almost all frameworks either pre-train or finetune the neural598

components on image labels directly, which amounts to a basic classification task. The notable exception599

is CIFAR-10, where latent symbols are extracted automatically without labels in the Embed2Sym600

framework.601

Natural language text. The last category of datasets comprises collections of natural language texts,602

which are used by the LLM-based neurosymbolic frameworks. They all take the form of logical tasks or603

puzzles, making them well-suited for translating into ASP.604

bAbI is a collection of questions that involve skills such as counting, path-finding or negation to solve.605

The questions are generated from a simulation of entities and actions, which are turned into natural606

language using a simple automated grammar (Weston et al. 2015). CLUTRR poses the task of inferring607

family relations from short stories. It is more realistic than bAbI, as the stories were written by crowd-608

workers, who generated narratives from the generated kinship facts (Sinha et al. 2019). gSCAN represents609

Prepared using sagej.cls



20 Journal Title XX(X)

a grid world in JSON format and asks natural language questions about how to achieve a goal. The610

questions are very direct instructions without much language variability and the answer comes in the611

form of a sequence of actions (Ruis et al. 2020). In all these datasets, [LLM]+ASP uses additional hand-612

written knowledge modules to solve the tasks. Thus, even though many of the tasks are complex, the613

framework requires substantial manual engineering.614

StepGame contains questions that require multi-hop spatial reasoning of up to 10 steps. It consists of615

descriptions of entities and their spatial relationships in a grid-based world and asks queries about their616

relative positions. These descriptions are generated automatically, but utilise different ways to describe617

spatial relations from a set of crowdsourced synonyms (Shi et al. 2021). Both [LLM]+ASP and DSPy-618

ASP make use of hand-written knowledge modules to solve the task, limiting their applicability in real-619

world scenarios. A more complex benchmark is SpartQA, which consists of quantifier-based reasoning620

around blocks and objects, generated automatically (Mirzaee et al. 2021). DSPy-ASP beats LLMs in621

terms of accuracy, but again at the expense of requiring manually specified ASP knowledge modules.622

The logic grid puzzles dataset provides a set of categories, each containing an equal number of623

elements. The aim is to match elements based on clues given in the question. Since the dataset was624

compiled from a puzzle website, the questions are presumably human-made (Mitra and Baral 2015). GPT-625

ASP manages to achieve a high accuracy, unlike LLM-only methods, without relying on any hand-crafted626

ASP. Instead, all the necessary knowledge is encoded within the prompt, which contains instructions and627

a few solved examples from the dataset.628

FOLIO consists of a set of premises and a conclusion. The task is to determine whether the conclusion629

is true, false or uncertain. It was created by experts in 2024 to challenge the state-of-the-art language630

models of the time and includes logically complex tasks written in natural language (Han et al. 2024).631

LLM-ARC manages to outperform LLM-only models without needing any hand-written ASP rules.632

QuaRel is a set of commonsense physics questions based on properties like friction, speed or time.633

The questions were crowdsourced by asking people to come up with imaginative scenarios for the given634

relations (Tafjord et al. 2019). The STAR framework uses LLMs to extract predicates, while modelling635

the commonsense knowledge by hand in ASP. The authors have also created multiple chatbots based636

on this framework and have done qualitative testing using real user input. They conclude that STAR637

performs better than vanilla LLMs in metrics such as staying on topic or providing relevant responses.638

In summary, most natural language datasets were generated synthetically, with some using crowd-639

workers to enrich the questions. Since they are based on simulations or structured graphs, transforming640

them into ASP is more straightforward than with true natural language inputs. The notable exception is641

FOLIO, which was written by experts with the goal of providing a challenging and varied benchmark. It is642

therefore impressive that LLM-ARC achieves state-of-the-art results on it without using any hand-written643

ASP knowledge.644

Another potential issue is that all datasets other than FOLIO were created before the advent of LLMs645

and have been released publicly. As LLMs are trained on large amounts of publicly available data, it is646

possible that they have seen these datasets in their training procedure. For a fair analysis of LLM-based647

methods, authors should make sure to use datasets that the model could not have encountered before.648

All in all, methods with more complex neurosymbolic requirements are limited to more rudimentary649

perception datasets. Only the two simplest visual datasets, MNIST and CIFAR-10, are used for training650

the neural component without latent labels. For any more advanced perception tasks, neurosymbolic651

frameworks either train their neural component directly or finetune a VLM with latent labels. The652

Prepared using sagej.cls



Rader and Russo 21

current limit for true neurosymbolic learning with ASP therefore lies with 32x32 pixel images with 10653

categories. For textual inputs, most datasets are synthetically generated and the majority of frameworks654

need additional hard-coded ASP knowledge. Only LLM-ARC generates all ASP autonomously and has655

been tested on a challenging, real-world dataset with FOLIO. However, as LLMs are pre-trained on vast656

amounts of data, no training of the neural component is occurring.657

Limited ASP generation658

ASP is able to express all NP-search problems and includes a variety of useful constructs such as659

disjunctions, choices and negation as failure to efficiently model statements Brewka et al. (2011).660

However, many neurosymbolic framework can only learn a subset of ASP. Furthermore, they often661

require extensive background knowledge and mode biases to limit the search space. Even LLMs, which662

can in theory generate any answer set program, are often limited to just producing predicates and have663

only been shown to generate deductive proofs rather than general knowledge. In this section, we will664

discuss these limitations, focussing on frameworks that learn at least part of an answer set program.665

Expressivity limits. Predicates are the most basic form of ASP that a framework can produce and can666

be extracted directly from the input using a translation procedure. A few frameworks only generate667

predicates: ASP-VQA and AQuA utilise YOLO, while [LLM]+ASP and STAR take advantage of LLMs.668

The rest of the answer set program is either extracted using a fixed parsing pipeline or hard-coded in669

the form of knowledge modules. Some of these knowledge modules are general enough to be reusable670

for different tasks. Initially, the DSPy-ASP framework also generates just facts and relies on hard-coded671

ASP rules to form a program. However, it can change those rules and generate new ones in the iterative672

refinement stage based on Clingo feedback.673

Predicates Stratified
programs

Noisy
examples

Choice
rules

Weak
constraints

Non-
stratified
programs

Predicate
invention

NeSyFOLD

FastLAS

ILASP

Non-OPL

Translation
Non-

stratified
programs

in BK

Hard
constraints

Figure 6. Levels of expressivity of different LAS frameworks.

Learning rules is a step up from predicates, but not all algorithms can generate rules that exploit674

the full expressivity of ASP. For example, NeSyFOLD uses the FOLD-SE algorithm, which can only675

Prepared using sagej.cls



22 Journal Title XX(X)

learn default theories. These are equivalent to stratified answer set programs and cannot contain any676

cycles through negation. NeuralFastLAS is modelled after the first version of FastLAS, which is limited677

to observational predicate learning (OPL) and cannot learn recursive rules (Law et al. 2020a). Three678

further frameworks use FastLAS directly and are compatible with newer versions, which support non-679

OPL learning (Law et al. 2021): FFNSL, NSIL and NeSyGPT. They all support the use of ILASP as680

well for tasks that require higher expressive power. NSIL uses ILASP’s capability to learn choice rules681

in the Hitting set task, where the framework needs to generate all hitting sets of a given collection.682

FFNSL, NeSyGPT and Embed2Rule require its predicate invention capability for the Follow suit task.683

Figure 6 provides a summary of the levels of expressivity and features that different frameworks can684

reach. Notably, FastLAS allows the use of non-stratified programs in the background knowledge, while685

ILASP supports it outright. ILASP can also learn higher-level ASP constructs such as hard and weak686

constraints, as well as choice rules.687

Lastly, there are two frameworks that use LLMs to produce entire ASP rulesets: GPT-ASP generates688

rules in a four step process and LLM-ARC generates both ASP rules and tests, refining them iteratively.689

As LLMs can output any combination of letters, they are in theory capable of producing any unrestricted690

answer set program, using all the syntactic constructs available in the language.691

In summary, the expressive capabilities of generated answer set programs vary between frameworks.692

Four of them use ILASP for generation, which gives them the ability to generate complex programs,693

including constructs such as negation as failure. However, they need to help ILASP out significantly by694

utilising background knowledge and mode biases to restrict the search space, which we discuss in the next695

section. Only two LLM-based frameworks generate rules directly, rather than just extracting predicates.696

They can theoretically create rules of any level of expressivity. But in practice they have only generated697

deductive steps for solving logic puzzles, rather than learning inductive knowledge like ILASP does. We698

explore this further in the Induction vs Deduction section.699

Background knowledge. Out of the 17 frameworks discussed in this survey, nine hard-code the ASP700

component. Out of the remaining frameworks, five use FastLAS or ILASP and therefore make extensive701

use of background knowledge. FFNSL, NeSyGPT, Embed2Rule, NSIL and NeuralFastLAS all use rule702

templates to restrict the search space and make the task tractable for FastLAS or ILASP.703

We illustrate the extent of the background knowledge with the MNIST Addition task that has been a704

running example throughout this survey. The following is an example of a typical rule template for this705

task, which we have adapted from NSIL:706

num(0..18).707

digit_type(0..9).708

result(Y) :- digit(1,X0), digit(2,X1), solution(X0,X1,Y).709

:- digit(1,X0), digit(2,X1), result(Y1), result(Y2), Y1 != Y2.710

#modeh(solution(var(digit_type),var(digit_type),var(num))).711

#modeb(var(num) = var(digit_type)).712

#modeb(var(num) = var(digit_type) + var(digit_type)).713

#maxv(3).714

#bias("penalty(1, head(X)) :- in_head(X).").715

#bias("penalty(1, body(X)) :- in_body(X).").716

Prepared using sagej.cls



Rader and Russo 23

The first two lines restrict the domain of the labels (num) and digits (digit type). The next line717

specifies that the result is the solution of the two input digits. The constraint ensures that there is only718

one result. The rest of the background knowledge consists of mode biases. #modeh specifies that the719

head of the learned rule must include a solution predicate with two digits and a number as its arguments.720

The #modeb lines tell the LAS solver that only a digit or the sum of two digits can be in the body of the721

learned rule. #maxv(3) restricts the LAS solver to a maximum of three variables in each rule. The last722

two lines specify that a penalty is given for each example that is not covered. The penalties instruct the723

LAS solver to find an optimal solution that covers as much of the data as possible.724

As this example demonstrates, much of the ASP structure is still hand-crafted, even for a simple task725

like MNIST Addition. NSIL also runs experiments with superfluous functions, such as subtraction or726

multiplication, to increase the hypothesis space. However, this still presents a vastly restricted search727

space compared to the universe of all possible functions. For more complex tasks, such as playing card728

games, even more information is needed to make the learning task tractable. Scaling up to real-world729

tasks would therefore require a substantial amount of manual engineering. This limits the usefulness of730

LAS solvers in the real world, because background knowledge is expensive to codify and sometimes731

unattainable.732

Only three frameworks generate 100% of their ASP rules themselves: NeSyFOLD, GPT-ASP and733

LLM-ARC. NeSyFOLD restricts the search space by only considering stratified ASP rules. The latter734

two papers use LLMs and guide the search through in-context learning, where a few solved examples are735

put in the prompt. However, they solve a fundamentally different task than the traditional models: They736

create a new program for each question, rather than coming up with a general solution for a task from a737

set of examples. This discrepancy is discussed in the next section.738

Induction vs deduction. Learning answer set programs has traditionally been done through the lens739

of inductive logic programming (ILP). The goal of ILP is to learn general facts and rules from740

examples (Muggleton 1991). All neurosymbolic ASP frameworks in this survey that use traditional neural741

networks perform inductive learning. They generate one answer set program using multiple examples that742

models the entire dataset. The frameworks using LLMs, however, work differently. They generate a new743

answer set program for every example, with the aim of solving the puzzle in the question. The program744

models the natural language question in ASP and the solver then performs deductive inference to arrive745

at the solution. This is more akin to a translation and deduction task, rather than discovering new, general746

knowledge through induction.747

LLMs in general struggle much more with inductive reasoning than deductive reasoning (Hua748

et al. 2025). Therefore, it remains to be seen if frameworks using LLMs are able to generate answer749

set programs inductively. More research and experiments are needed to develop this capability in750

neurosymbolic ASP.751

Scalability issues752

Searching for solutions in the space of answer set programs is a difficult task to scale. For example,753

the complexity for ILASP to decide whether a hypothesis is an optimal inductive solution is ΣP
2 -754

complete (Law et al. 2018). This limits the scalability of frameworks that make use of ILASP, such755

as FFNSL, NeSyGPT or Embed2Rule. FastLAS was created to be a more scalable LAS solver, but at a756

cost of features such as learning recursive rules or predicate invention (Law et al. 2021).757

Prepared using sagej.cls



24 Journal Title XX(X)

Such scalability issues can be bypassed with the use of foundation models, which do not calculate758

rules exactly, but rather predict the right words and symbols. However, they themselves require a lot of759

resources. All LLM-based frameworks in this survey were run on a version of OpenAI’s GPT models,760

either GPT-3 or GPT-4. These are proprietary models that require dedicated server architecture to run761

and usually incur a per-token cost. Unlike traditional methods, they cannot be run on local machines.762

Even smaller models like BLIP, which is used in NeSyGPT and Embed2Rule, require a lot of resources763

to finetune. Training them from scratch would be prohibitively expensive for researchers, which is why764

pre-trained models are used instead.765

Training traditional neural networks in a neurosymbolic way comes with scalability issues too.766

NeurASP-based methods, which include SLASH, dPASP and NSIL, calculate all answer sets for the767

given answer set program when training the neural network. This is feasible for tasks like MNIST768

Addition, where there are at most a few hundred possible answer sets. However, it is intractable for769

tasks like Follow suit, which yields anywhere from 800,000 to 5 million answer sets. Aspis et al. (2024)770

report that SLASH and NSIL are timing out or running out of memory in Follow suit and Sudoku.771

There is still a lot of work to be done to speed up ASP methods. While neural networks benefit from772

GPU parallelisation and very efficient Python frameworks, ASP methods like ILASP or NeurASP run on773

the CPU. We need faster implementations, in addition to theoretical discoveries, to make neurosymbolic774

ASP methods more viable in real-world tasks.775

Related work776

In this survey, we have discussed papers that combine neural networks and ASP. We restricted our focus777

to supervised machine learning and required that the frameworks use rules at least as expressive as778

stratified answer set programs. In this section, we will briefly discuss papers related to neurosymbolic779

ASP that do not fulfill all these criteria.780

Other logical languages781

Many papers have proposed neurosymbolic algorithms in logical languages other than ASP. There are782

too many to name, so we will briefly discuss the most well-known.783

DeepProbLog (Manhaeve et al. 2021) is an extension of the logical language ProbLog, which integrates784

neural networks for specifying probabilities of facts. Belonging to the family of Prolog, it is capable of785

expressing stratified programs.786

MetaABD (Dai and Muggleton 2021) trains a neural network and induces a logical theory jointly. The787

framework uses a combination of abduction and induction and can learn recursive first-order theories with788

predicate invention. The rules are limited to definite logic, which only accept one model, rather than the789

many-world semantics in ASP. This means that it cannot model constructs such as defaults, exceptions,790

constraints or choices.791

Evans et al. (2021) tackle a slightly different problem with the Apperception task. The goal is to build792

a theory that predicts future states given temporal data. The language of the theories is in a temporal793

Datalog variation, but the binary neural network to map raw data to symbols is encoded in ASP.794

Prepared using sagej.cls



Rader and Russo 25

Subsets of ASP795

Some papers use ASP as their logical language, but limit themselves to a subset of it. One example is796

Pix2Rule, which extracts rules from a neural layer and represents them in ASP (Cingillioglu and Russo797

2021). However, the rules are in disjunctive normal form (DNF), which is propositional logic. The DNF-798

EO framework expands Pix2Rule to real-world multi-classification tasks, but still represents all extracted799

rules in DNF (Baugh et al. 2023).800

Riley and Sridharan (2019) propose a framework that uses non-monotonic reasoning in CR-Prolog,801

which is a subset of ASP. They use hardcoded rules to learn classifications given features extracted by802

CNNs. They also include a mechanism to learn rules, which trains a decision tree and translates it into803

logic. This restricts the expressiveness of learned rules, as they do not use constructs like negation as804

failure.805

Reinforcement learning806

ASP is also used as a specification language for rewards in reinforcement learning (RL). A variety of807

papers specify goals in ASP and some even learn such rules.808

Agostinelli et al. (2024) specify the set of goal states with ASP, rather than listing each state one by809

one. A deep reinforcement learning algorithm then estimates a heuristic function of the distance from the810

current state to this set of goal.811

Albilani and Bouzeghoub (2023) use ASP rules in two ways: to generate traces for learning low-level812

policies and as a backup policy in safety-critical scenarios.813

Tudor and Gupta (2024) specify rules in s(CASP) for RL and use a dependency graph to prune the814

rules for faster execution. In this way, ASP helps train the neural component.815

Leonetti et al. (2016) use ASP to represent the transition model of an environment and calculate plans816

using Clingo. The plans represent partial policies, which restrict an agent to reasonable actions during817

execution. Among these actions, the agent learns the expected cumulative reward using RL. In principle,818

any planner can be used, but the authors chose ASP due to its ability to represent defaults. It allows them819

to compactly represent optimistic assumptions, e.g. that all doors are open unless proven otherwise.820

Furelos-Blanco et al. (2021) introduce ISA, a framework for learning automata for subgoals in RL.821

The automata are presented in ASP and have states for achieving or failing high-level goals. They use822

ILASP to learn these automata from RL traces. Parać et al. (2024) extend this work and introduce the823

ability to handle noisy data.824

Lastly, Chu-Carroll et al. (2024) have used neuro-symbolic ASP in real-world applications at their825

company Elemental AI. They use it for solving constraint satisfaction and optimisation problems. ASP826

serves as the logical reasoning engine and LLMs are used for knowledge acquisition and user interaction,827

in what they call an “LLM sandwich”. For knowledge acquisition, the LLM translates user inputs into an828

intermediate language, called Cogent, which is a constrained subset of English. For user interaction, the829

LLM takes the output of the ASP reasoner and presents it in a natural language interface.830

Conclusion831

In this survey, we have discussed the current literature on neurosymbolic ASP, highlighting the832

achievements and limitations of the field. We categorised the wide array of different frameworks833

Prepared using sagej.cls



26 Journal Title XX(X)

according to which components are learned or hard-coded. Frameworks with fully pre-trained neural834

networks and hard-coded ASP components focus on the translation between the components. They835

achieve good results on complex tasks by using either elaborate pipelines or LLMs for the translation into836

ASP. When the neural components need to be trained, the main challenge lies in propagating the learning837

signal through the non-differentiable ASP component. All papers in this category essentially use the same838

technique: enumerating answer sets to serve as noisy labels. This leaves room for further research into839

different methods of providing learning signals. When the neural network is pre-trained, its predictions840

serve as noisy examples for learning ASP rules. The challenge here lies with the limitations of rule841

learners. Traditional methods like ILASP require hard-coding rule templates to restrict the search space.842

Although LLMs can translate natural language problems into ASP rules, it has not yet been demonstrated843

that they can learn general rules inductively. Lastly, jointly learning the neural and symbolic component844

serves as the most difficult challenge, as there are no reliable learning signals for either component at the845

start. Only two frameworks have been proposed so far and they are limited to simple perception problems.846

The main open challenges in neurosymbolic ASP include harder tasks, less hard-coding and better847

scalability. The current limit for joint learning in perception tasks is CIFAR-10, while the majority of848

language datasets use synthetically generated sentences. More realistic tasks are needed to demonstrate849

the applicability of neurosymbolic ASP in real-world settings. The need for extensive hard-coding also850

holds the field back. Pre-training the neural component, especially foundation models, and hand-writing851

rules can be a very expensive processes. Even frameworks that learn rules need to limit the search space852

with manually engineered rule templates. Lastly, symbolic methods lack scalability compared to neural853

frameworks like Pytorch or Tensorflow. Commonly-used frameworks like Clingo or ILASP do not have854

GPU support and cannot be parallelized easily. Code built on top of them, such as NeurASP, is often a855

research prototype and therefore not optimised.856

To overcome these challenges, solutions are needed in multiple areas. More efficient methods are857

necessary for scaling up to larger tasks. This includes improving the implementation and speed of858

existing methods, such as Clingo, ILASP or NeurASP, but that is not enough. Novel methods are859

needed for problems like efficiently traversing the search space of ASP rules and propagating learning860

signals through ASP components. A tighter integration between neural and symbolic representations861

could overcome some of the inefficiencies. Foundation models also represent a promising direction, if862

enough resources are available to use and finetune them. Further research is necessary to learn inductive863

knowledge with LLMs, for example by integrating them with LAS solvers.864

As neural models continue to struggle with complex logical reasoning, integrating efficient and search-865

based symbolic methods can achieve better performance, robustness and explainability. With its mix866

of expressiveness and readability, ASP is well-suited to fulfill this role, making neurosymbolic ASP a867

worthwhile area for further research.868

Acknowledgements869

This work was supported by the UKRI Centre for Doctoral Training in Safe and Trusted Artificial Intelligence870

[EP/S0233356/1].871

Prepared using sagej.cls



Rader and Russo 27

References872

Agostinelli F, Panta R and Khandelwal V (2024) Specifying goals to deep neural networks with answer set873

programming. Proceedings of the International Conference on Automated Planning and Scheduling 34(1): 2–874

10. DOI:10.1609/icaps.v34i1.31454. URL https://ojs.aaai.org/index.php/ICAPS/article/875

view/31454.876

Albilani M and Bouzeghoub A (2023) Guided hierarchical reinforcement learning for safe urban driving. In:877

2023 IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI). pp. 746–753. DOI:878

10.1109/ICTAI59109.2023.00115.879

Arias J, Carro M, Salazar E, Marple K and Gupta G (2018) Constraint answer set programming without grounding.880

Theory and Practice of Logic Programming 18(3–4): 337–354. DOI:10.1017/S1471068418000285.881

Aspis Y, Albinhassan M, Lobo J and Russo A (2024) Embed2rule scalable neuro-symbolic learning via latent space882

weak-labelling. In: Neural-Symbolic Learning and Reasoning: 18th International Conference, NeSy 2024,883

Barcelona, Spain, September 9–12, 2024, Proceedings, Part I. Berlin, Heidelberg: Springer-Verlag. ISBN 978-884

3-031-71166-4, p. 195–218. DOI:10.1007/978-3-031-71167-1 11. URL https://doi.org/10.1007/885

978-3-031-71167-1_11.886

Aspis Y, Broda K, Lobo J and Russo A (2022) Embed2Sym - Scalable Neuro-Symbolic Reasoning via Clustered887

Embeddings. In: Proceedings of the 19th International Conference on Principles of Knowledge Representation888

and Reasoning. pp. 421–431. DOI:10.24963/kr.2022/44. URL https://doi.org/10.24963/kr.889

2022/44.890

Basu K, Shakerin F and Gupta G (2020) Aqua: Asp-based visual question answering. In: Practical Aspects891

of Declarative Languages: 22nd International Symposium, PADL 2020, New Orleans, LA, USA, January892

20–21, 2020, Proceedings. Berlin, Heidelberg: Springer-Verlag. ISBN 978-3-030-39196-6, p. 57–72. DOI:893

10.1007/978-3-030-39197-3 4. URL https://doi.org/10.1007/978-3-030-39197-3_4.894

Baugh KG, Cingillioglu N and Russo A (2023) Neuro-symbolic rule learning in real-world classification tasks. URL895

https://arxiv.org/abs/2303.16674.896

Bommasani R, Hudson DA, Adeli E, Altman R, Arora S, von Arx S, Bernstein MS, Bohg J, Bosselut A, Brunskill E,897

Brynjolfsson E, Buch S, Card D, Castellon R, Chatterji N, Chen A, Creel K, Davis JQ, Demszky D, Donahue C,898

Doumbouya M, Durmus E, Ermon S, Etchemendy J, Ethayarajh K, Fei-Fei L, Finn C, Gale T, Gillespie L, Goel899

K, Goodman N, Grossman S, Guha N, Hashimoto T, Henderson P, Hewitt J, Ho DE, Hong J, Hsu K, Huang J,900

Icard T, Jain S, Jurafsky D, Kalluri P, Karamcheti S, Keeling G, Khani F, Khattab O, Koh PW, Krass M, Krishna901

R, Kuditipudi R, Kumar A, Ladhak F, Lee M, Lee T, Leskovec J, Levent I, Li XL, Li X, Ma T, Malik A, Manning902

CD, Mirchandani S, Mitchell E, Munyikwa Z, Nair S, Narayan A, Narayanan D, Newman B, Nie A, Niebles JC,903

Nilforoshan H, Nyarko J, Ogut G, Orr L, Papadimitriou I, Park JS, Piech C, Portelance E, Potts C, Raghunathan904

A, Reich R, Ren H, Rong F, Roohani Y, Ruiz C, Ryan J, Ré C, Sadigh D, Sagawa S, Santhanam K, Shih A,905

Srinivasan K, Tamkin A, Taori R, Thomas AW, Tramèr F, Wang RE, Wang W, Wu B, Wu J, Wu Y, Xie SM,906

Yasunaga M, You J, Zaharia M, Zhang M, Zhang T, Zhang X, Zhang Y, Zheng L, Zhou K and Liang P (2022)907

On the opportunities and risks of foundation models. URL https://arxiv.org/abs/2108.07258.908

Bordes F, Pang RY, Ajay A, Li AC, Bardes A, Petryk S, Mañas O, Lin Z, Mahmoud A, Jayaraman B, Ibrahim M, Hall909

M, Xiong Y, Lebensold J, Ross C, Jayakumar S, Guo C, Bouchacourt D, Al-Tahan H, Padthe K, Sharma V, Xu910

H, Tan XE, Richards M, Lavoie S, Astolfi P, Hemmat RA, Chen J, Tirumala K, Assouel R, Moayeri M, Talattof911

A, Chaudhuri K, Liu Z, Chen X, Garrido Q, Ullrich K, Agrawal A, Saenko K, Celikyilmaz A and Chandra V912

(2024) An introduction to vision-language modeling. URL https://arxiv.org/abs/2405.17247.913

Prepared using sagej.cls

https://ojs.aaai.org/index.php/ICAPS/article/view/31454
https://ojs.aaai.org/index.php/ICAPS/article/view/31454
https://ojs.aaai.org/index.php/ICAPS/article/view/31454
https://doi.org/10.1007/978-3-031-71167-1_11
https://doi.org/10.1007/978-3-031-71167-1_11
https://doi.org/10.1007/978-3-031-71167-1_11
https://doi.org/10.24963/kr.2022/44
https://doi.org/10.24963/kr.2022/44
https://doi.org/10.24963/kr.2022/44
https://doi.org/10.1007/978-3-030-39197-3_4
https://arxiv.org/abs/2303.16674
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2405.17247


28 Journal Title XX(X)

Brewka G, Eiter T and Truszczynski M (2011) Answer set programming at a glance. Commun. ACM 54: 92–103.914

DOI:10.1145/2043174.2043195.915

Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A,916

Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler D, Wu J, Winter C, Hesse917

C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I918

and Amodei D (2020) Language models are few-shot learners. In: Larochelle H, Ranzato M, Hadsell R, Balcan919

M and Lin H (eds.) Advances in Neural Information Processing Systems, volume 33. Curran Associates, Inc.,920

pp. 1877–1901. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/921

1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.922

Charalambous T, Aspis Y and Russo A (2023) Neuralfastlas: Fast logic-based learning from raw data. URL923

https://arxiv.org/abs/2310.05145.924

Chu-Carroll J, Beck A, Burnham G, Melville DO, Nachman D, Özcan AE and Ferrucci D (2024) Beyond llms:925

Advancing the landscape of complex reasoning. URL https://arxiv.org/abs/2402.08064.926

Cingillioglu N and Russo A (2021) pix2rule: End-to-end neuro-symbolic rule learning. International Workshop on927

Neural-Symbolic Learning and Reasoning URL https://api.semanticscholar.org/CorpusID:928

235422026.929

Cunnington D, Law M, Lobo J and Russo A (2023a) Ffnsl: Feed-forward neural-symbolic learner. Mach.930

Learn. 112(2): 515–569. DOI:10.1007/s10994-022-06278-6. URL https://doi.org/10.1007/931

s10994-022-06278-6.932

Cunnington D, Law M, Lobo J and Russo A (2023b) Neuro-symbolic learning of answer set programs from raw933

data.934

Cunnington D, Law M, Lobo J and Russo A (2024) The role of foundation models in neuro-symbolic learning935

and reasoning. In: Besold TR, d’Avila Garcez A, Jimenez-Ruiz E, Confalonieri R, Madhyastha P and Wagner B936

(eds.) Neural-Symbolic Learning and Reasoning. Cham: Springer Nature Switzerland. ISBN 978-3-031-71167-937

1, pp. 84–100.938

Dai WZ and Muggleton S (2021) Abductive knowledge induction from raw data. In: Zhou ZH (ed.) Proceedings of939

the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21. International Joint Conferences940

on Artificial Intelligence Organization, pp. 1845–1851. DOI:10.24963/ijcai.2021/254. URL https://doi.941

org/10.24963/ijcai.2021/254. Main Track.942

Deng L (2012) The mnist database of handwritten digit images for machine learning research. IEEE Signal943

Processing Magazine 29(6): 141–142.944

Eiter T, Higuera N, Oetsch J and Pritz M (2022) A neuro-symbolic asp pipeline for visual question answering. URL945

https://arxiv.org/abs/2205.07548.946

Evans R, Bošnjak M, Buesing L, Ellis K, Pfau D, Kohli P and Sergot M (2021) Making sense of raw input.947

Artificial Intelligence 299: 103521. DOI:https://doi.org/10.1016/j.artint.2021.103521. URL https://www.948

sciencedirect.com/science/article/pii/S0004370221000722.949

Farquhar S, Kossen J, Kuhn L and Gal Y (2024) Detecting hallucinations in large language models using950

semantic entropy. Nature 630: 625 – 630. URL https://api.semanticscholar.org/CorpusID:951

270615909.952

Furelos-Blanco D, Law M, Jonsson A, Broda K and Russo A (2021) Induction and exploitation of subgoal953

automata for reinforcement learning. J. Artif. Int. Res. 70: 1031–1116. DOI:10.1613/jair.1.12372. URL954

https://doi.org/10.1613/jair.1.12372.955

Prepared using sagej.cls

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2310.05145
https://arxiv.org/abs/2402.08064
https://api.semanticscholar.org/CorpusID:235422026
https://api.semanticscholar.org/CorpusID:235422026
https://api.semanticscholar.org/CorpusID:235422026
https://doi.org/10.1007/s10994-022-06278-6
https://doi.org/10.1007/s10994-022-06278-6
https://doi.org/10.1007/s10994-022-06278-6
https://doi.org/10.24963/ijcai.2021/254
https://doi.org/10.24963/ijcai.2021/254
https://doi.org/10.24963/ijcai.2021/254
https://arxiv.org/abs/2205.07548
https://www.sciencedirect.com/science/article/pii/S0004370221000722
https://www.sciencedirect.com/science/article/pii/S0004370221000722
https://www.sciencedirect.com/science/article/pii/S0004370221000722
https://api.semanticscholar.org/CorpusID:270615909
https://api.semanticscholar.org/CorpusID:270615909
https://api.semanticscholar.org/CorpusID:270615909
https://doi.org/10.1613/jair.1.12372


Rader and Russo 29

Garcez A and Lamb L (2023) Neurosymbolic ai: the 3rd wave. Artificial Intelligence Review : 1–20DOI:956

10.1007/s10462-023-10448-w.957

Gebser M, Kaminski R, Kaufmann B and Schaub T (2017) Multi-shot ASP solving with clingo. CoRR958

abs/1705.09811.959

Geh RL, Gonçalves J, Silveira IC, Mauá DD and Cozman FG (2024) dPASP: A Probabilistic Logic Programming960

Environment For Neurosymbolic Learning and Reasoning. In: Proceedings of the 21st International Conference961

on Principles of Knowledge Representation and Reasoning. pp. 731–742. DOI:10.24963/kr.2024/69. URL962

https://doi.org/10.24963/kr.2024/69.963

Gelfond M and Kahl Y (2014) Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The964

Answer-Set Programming Approach. Cambridge University Press.965

Han S, Schoelkopf H, Zhao Y, Qi Z, Riddell M, Zhou W, Coady J, Peng D, Qiao Y, Benson L, Sun L, Wardle-Solano966

A, Szabó H, Zubova E, Burtell M, Fan J, Liu Y, Wong B, Sailor M, Ni A, Nan L, Kasai J, Yu T, Zhang R, Fabbri967

A, Kryscinski WM, Yavuz S, Liu Y, Lin XV, Joty S, Zhou Y, Xiong C, Ying R, Cohan A and Radev D (2024)968

FOLIO: Natural language reasoning with first-order logic. In: Al-Onaizan Y, Bansal M and Chen YN (eds.)969

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. Miami, Florida,970

USA: Association for Computational Linguistics, pp. 22017–22031. DOI:10.18653/v1/2024.emnlp-main.1229.971

URL https://aclanthology.org/2024.emnlp-main.1229/.972

Hua W, Sun F, Pan L, Jardine A and Wang WY (2025) Inductionbench: LLMs fail in the simplest complexity class.973

In: Workshop on Reasoning and Planning for Large Language Models. URL https://openreview.net/974

forum?id=brw11PScQM.975

Huang J, Li Z, Chen B, Samel K, Naik M, Song L and Si X (2021) Scallop: From probabilistic deductive976

databases to scalable differentiable reasoning. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang P and977

Vaughan JW (eds.) Advances in Neural Information Processing Systems, volume 34. Curran Associates, Inc., pp.978

25134–25145. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/979

d367eef13f90793bd8121e2f675f0dc2-Paper.pdf.980

Hughes DP and Salathe M (2016) An open access repository of images on plant health to enable the development of981

mobile disease diagnostics. URL https://arxiv.org/abs/1511.08060.982

Ishay A, Yang Z and Lee J (2023) Leveraging large language models to generate answer set programs. In:983

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning,984

KR ’23. ISBN 978-1-956792-02-7, pp. 374–383. DOI:10.24963/kr.2023/37. URL https://doi.org/10.985

24963/kr.2023/37.986

John-Mathews JM (2021) Critical empirical study on black-box explanations in ai. URL https://arxiv.org/987

abs/2109.15067.988

Johnson J, Hariharan B, van der Maaten L, Fei-Fei L, Zitnick CL and Girshick R (2017) Clevr: A diagnostic dataset989

for compositional language and elementary visual reasoning. In: 2017 IEEE Conference on Computer Vision990

and Pattern Recognition (CVPR). pp. 1988–1997. DOI:10.1109/CVPR.2017.215.991

Kalyanpur A, Saravanakumar KK, Barres V, Chu-Carroll J, Melville D and Ferrucci D (2024) Llm-arc: Enhancing992

llms with an automated reasoning critic. URL https://arxiv.org/abs/2406.17663.993

Khattab O, Singhvi A, Maheshwari P, Zhang Z, Santhanam K, A SV, Haq S, Sharma A, Joshi TT, Moazam H,994

Miller H, Zaharia M and Potts C (2024) DSPy: Compiling declarative language model calls into state-of-the-art995

pipelines. The Twelfth International Conference on Learning Representations URL https://openreview.996

net/forum?id=sY5N0zY5Od.997

Prepared using sagej.cls

https://doi.org/10.24963/kr.2024/69
https://aclanthology.org/2024.emnlp-main.1229/
https://openreview.net/forum?id=brw11PScQM
https://openreview.net/forum?id=brw11PScQM
https://openreview.net/forum?id=brw11PScQM
https://proceedings.neurips.cc/paper_files/paper/2021/file/d367eef13f90793bd8121e2f675f0dc2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d367eef13f90793bd8121e2f675f0dc2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d367eef13f90793bd8121e2f675f0dc2-Paper.pdf
https://arxiv.org/abs/1511.08060
https://doi.org/10.24963/kr.2023/37
https://doi.org/10.24963/kr.2023/37
https://doi.org/10.24963/kr.2023/37
https://arxiv.org/abs/2109.15067
https://arxiv.org/abs/2109.15067
https://arxiv.org/abs/2109.15067
https://arxiv.org/abs/2406.17663
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od


30 Journal Title XX(X)

Krizhevsky A and Hinton G (2009) Learning multiple layers of features from tiny images. Technical998

Report 0, University of Toronto, Toronto, Ontario. URL https://www.cs.toronto.edu/˜kriz/999

learning-features-2009-TR.pdf.1000

Kuhnle A and Copestake A (2017) Shapeworld - a new test methodology for multimodal language understanding.1001

URL https://arxiv.org/abs/1704.04517.1002

Law M, Russo A, Bertino E, Broda K and Lobo J (2020a) Fastlas: Scalable inductive logic programming1003

incorporating domain-specific optimisation criteria. Proceedings of the AAAI Conference on Artificial1004

Intelligence 34(03): 2877–2885. DOI:10.1609/aaai.v34i03.5678. URL https://ojs.aaai.org/index.1005

php/AAAI/article/view/5678.1006

Law M, Russo A and Broda K (2018) The complexity and generality of learning answer set programs.1007

Artificial Intelligence 259: 110–146. DOI:https://doi.org/10.1016/j.artint.2018.03.005. URL https://www.1008

sciencedirect.com/science/article/pii/S000437021830105X.1009

Law M, Russo A and Broda K (2019) Logic-based learning of answer set programs. Reasoning Web. Explainable1010

Artificial Intelligence: 15th International Summer School 2019, Bolzano, Italy, September 20–24, 2019,1011

Tutorial Lectures : 196–231DOI:10.1007/978-3-030-31423-1 6. URL https://doi.org/10.1007/1012

978-3-030-31423-1_6.1013

Law M, Russo A and Broda K (2020b) The ilasp system for inductive learning of answer set programs.1014

Law M, Russo A, Broda K and Bertino E (2021) Scalable non-observational predicate learning in asp. In: Zhou1015

ZH (ed.) Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21.1016

International Joint Conferences on Artificial Intelligence Organization, pp. 1936–1943. DOI:10.24963/ijcai.1017

2021/267. URL https://doi.org/10.24963/ijcai.2021/267. Main Track.1018

LeCun Y, Bengio Y and Hinton G (2015) Deep learning. Nature 521: 436–44. DOI:10.1038/nature14539.1019

Lecun Y, Jackel L, Bottou L, Cortes C, Denker J, Drucker H, Guyon I, Muller U, Sackinger E, Simard P and Vapnik V1020

(1995) Learning algorithms for classification: A comparison on handwritten digit recognition. Neural networks1021

: 261–276.1022

Leonetti M, Iocchi L and Stone P (2016) A synthesis of automated planning and reinforcement learning for efficient,1023

robust decision-making. Artificial Intelligence 241: 103–130. DOI:https://doi.org/10.1016/j.artint.2016.07.004.1024

URL https://www.sciencedirect.com/science/article/pii/S0004370216300819.1025

Li J, Li D, Xiong C and Hoi S (2022) BLIP: Bootstrapping language-image pre-training for unified vision-language1026

understanding and generation. In: Chaudhuri K, Jegelka S, Song L, Szepesvari C, Niu G and Sabato S (eds.)1027

Proceedings of the 39th International Conference on Machine Learning, Proceedings of Machine Learning1028

Research, volume 162. PMLR, pp. 12888–12900. URL https://proceedings.mlr.press/v162/1029

li22n.html.1030

Lifschitz V (2019) Answer Set Programming. 1st edition. Springer Publishing Company, Incorporated. ISBN1031

3030246574.1032

Liu Y, Han T, Ma S, Zhang J, Yang Y, Tian J, He H, Li A, He M, Liu Z, Wu Z, Zhu D, Li X, Qiang N, Shen D,1033

Liu T and Ge B (2023) Summary of chatgpt/gpt-4 research and perspective towards the future of large language1034

models.1035

Manhaeve R, Dumančić S, Kimmig A, Demeester T and De Raedt L (2021) Neural probabilistic logic programming1036

in deepproblog. Artificial Intelligence 298: 103504. DOI:https://doi.org/10.1016/j.artint.2021.103504. URL1037

https://www.sciencedirect.com/science/article/pii/S0004370221000552.1038

Prepared using sagej.cls

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/abs/1704.04517
https://ojs.aaai.org/index.php/AAAI/article/view/5678
https://ojs.aaai.org/index.php/AAAI/article/view/5678
https://ojs.aaai.org/index.php/AAAI/article/view/5678
https://www.sciencedirect.com/science/article/pii/S000437021830105X
https://www.sciencedirect.com/science/article/pii/S000437021830105X
https://www.sciencedirect.com/science/article/pii/S000437021830105X
https://doi.org/10.1007/978-3-030-31423-1_6
https://doi.org/10.1007/978-3-030-31423-1_6
https://doi.org/10.1007/978-3-030-31423-1_6
https://doi.org/10.24963/ijcai.2021/267
https://www.sciencedirect.com/science/article/pii/S0004370216300819
https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v162/li22n.html
https://www.sciencedirect.com/science/article/pii/S0004370221000552


Rader and Russo 31

Manning C, Surdeanu M, Bauer J, Finkel J, Bethard S and McClosky D (2014) The Stanford CoreNLP natural1039

language processing toolkit. In: Bontcheva K and Zhu J (eds.) Proceedings of 52nd Annual Meeting of1040

the Association for Computational Linguistics: System Demonstrations. Baltimore, Maryland: Association for1041

Computational Linguistics, pp. 55–60. DOI:10.3115/v1/P14-5010. URL https://aclanthology.org/1042

P14-5010/.1043

Marcus G (2020) The next decade in ai: Four steps towards robust artificial intelligence.1044

Marple K, Salazar E, Chen Z and Gupta G (2017) The s(asp) predicate answer set programming system. URL1045

https://api.semanticscholar.org/CorpusID:195834851.1046

Mirzaee R, Rajaby Faghihi H, Ning Q and Kordjamshidi P (2021) SPARTQA: A textual question answering1047

benchmark for spatial reasoning. In: Proceedings of the 2021 Conference of the North American Chapter1048

of the Association for Computational Linguistics: Human Language Technologies. Online: Association for1049

Computational Linguistics, pp. 4582–4598. DOI:10.18653/v1/2021.naacl-main.364. URL https://1050

aclanthology.org/2021.naacl-main.364/.1051

Mitra A and Baral C (2015) Learning to automatically solve logic grid puzzles. In: Màrquez L, Callison-Burch C1052

and Su J (eds.) Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.1053

Lisbon, Portugal: Association for Computational Linguistics, pp. 1023–1033. DOI:10.18653/v1/D15-1118.1054

URL https://aclanthology.org/D15-1118/.1055

Muggleton S (1991) Inductive logic programming. New Gen. Comput. 8(4): 295–318. DOI:10.1007/BF03037089.1056

URL https://doi.org/10.1007/BF03037089.1057

OpenAI (2023) Gpt-4 technical report.1058

Padalkar P, Wang H and Gupta G (2023) Using logic programming and kernel-grouping for improving interpretability1059

of convolutional neural networks. In: Gebser M and Sergey I (eds.) Practical Aspects of Declarative Languages.1060

Cham: Springer Nature Switzerland. ISBN 978-3-031-52038-9, pp. 134–150.1061

Padalkar P, Wang H and Gupta G (2024) Nesyfold: a framework for interpretable image classification. In:1062

Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference1063

on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in1064

Artificial Intelligence, AAAI’24/IAAI’24/EAAI’24. AAAI Press. ISBN 978-1-57735-887-9, pp. 4378–4387.1065

DOI:10.1609/aaai.v38i5.28235. URL https://doi.org/10.1609/aaai.v38i5.28235.1066

Padalkar P, Ślusarz N, Komendantskaya E and Gupta G (2025) A neurosymbolic framework for bias correction1067

in convolutional neural networks. Theory and Practice of Logic Programming 24: 644–662. DOI:10.1017/1068

S1471068424000322.1069

Parać R, Nodari L, Ardon L, Furelos-Blanco D, Cerutti F and Russo A (2024) Learning robust reward machines from1070

noisy labels. In: Proceedings of the 21st International Conference on Principles of Knowledge Representation1071

and Reasoning, KR ’24. ISBN 978-1-956792-05-8, pp. 909–919. DOI:10.24963/kr.2024/85. URL https:1072

//doi.org/10.24963/kr.2024/85.1073

Podell D, English Z, Lacey K, Blattmann A, Dockhorn T, Müller J, Penna J and Rombach R (2024) SDXL: Improving1074

latent diffusion models for high-resolution image synthesis. The Twelfth International Conference on Learning1075

Representations URL https://openreview.net/forum?id=di52zR8xgf.1076

Quattoni A and Torralba A (2009) Recognizing indoor scenes. In: 2009 IEEE Conference on Computer Vision and1077

Pattern Recognition. pp. 413–420. DOI:10.1109/CVPR.2009.5206537.1078

Rader AP and Russo A (2023) Active learning in neurosymbolic ai with embed2sym. COGAI@IJCLR URL1079

https://api.semanticscholar.org/CorpusID:269089085.1080

Prepared using sagej.cls

https://aclanthology.org/P14-5010/
https://aclanthology.org/P14-5010/
https://aclanthology.org/P14-5010/
https://api.semanticscholar.org/CorpusID:195834851
https://aclanthology.org/2021.naacl-main.364/
https://aclanthology.org/2021.naacl-main.364/
https://aclanthology.org/2021.naacl-main.364/
https://aclanthology.org/D15-1118/
https://doi.org/10.1007/BF03037089
https://doi.org/10.1609/aaai.v38i5.28235
https://doi.org/10.24963/kr.2024/85
https://doi.org/10.24963/kr.2024/85
https://doi.org/10.24963/kr.2024/85
https://openreview.net/forum?id=di52zR8xgf
https://api.semanticscholar.org/CorpusID:269089085


32 Journal Title XX(X)

Rajasekharan A, Zeng Y, Padalkar P and Gupta G (2023) Reliable natural language understanding with large1081

language models and answer set programming. In: Pontelli E, Costantini S, Dodaro C, Gaggl S, Calegari1082

R, D’Avila Garcez A, Fabiano F, Mileo A, Russo A and Toni F (eds.) Proceedings 39th International1083

Conference on Logic Programming, Imperial College London, UK, 9th July 2023 - 15th July 2023, Electronic1084

Proceedings in Theoretical Computer Science, volume 385. Open Publishing Association, pp. 274–287. DOI:1085

10.4204/EPTCS.385.27.1086

Redmon J and Farhadi A (2018) Yolov3: An incremental improvement. URL https://arxiv.org/abs/1087

1804.02767.1088

Riley H and Sridharan M (2019) Integrating non-monotonic logical reasoning and inductive learning with deep1089

learning for explainable visual question answering. Frontiers in Robotics and AI Volume 6 - 2019. DOI:10.1090

3389/frobt.2019.00125. URL https://www.frontiersin.org/journals/robotics-and-ai/1091

articles/10.3389/frobt.2019.00125.1092

Ruis L, Andreas J, Baroni M, Bouchacourt D and Lake BM (2020) A benchmark for systematic generalization in1093

grounded language understanding. In: Proceedings of the 34th International Conference on Neural Information1094

Processing Systems, NIPS ’20. Red Hook, NY, USA: Curran Associates Inc. ISBN 9781713829546.1095

Shi Z, Zhang Q and Lipani A (2021) Stepgame: A new benchmark for robust multi-hop spatial reasoning in1096

texts. In: Proceedings of the AAAI Conference on Artificial Intelligence, volume 36. pp. 11321–11329. DOI:1097

10.1609/aaai.v36i10.21383.1098

Singh D, Jain N, Jain P, Kayal P, Kumawat S and Batra N (2020) Plantdoc: A dataset for visual plant disease detection.1099

In: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, CoDS COMAD 2020. New York, NY, USA:1100

Association for Computing Machinery. ISBN 9781450377386, p. 249–253. DOI:10.1145/3371158.3371196.1101

URL https://doi.org/10.1145/3371158.3371196.1102

Sinha K, Sodhani S, Dong J, Pineau J and Hamilton WL (2019) CLUTRR: A diagnostic benchmark for inductive1103

reasoning from text. In: Inui K, Jiang J, Ng V and Wan X (eds.) Proceedings of the 2019 Conference on1104

Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural1105

Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Computational Linguistics, pp.1106

4506–4515. DOI:10.18653/v1/D19-1458. URL https://aclanthology.org/D19-1458/.1107

Skryagin A, Ochs D, Dhami DS and Kersting K (2024) Scalable neural-probabilistic answer set programming. J.1108

Artif. Int. Res. 78. DOI:10.1613/jair.1.15027. URL https://doi.org/10.1613/jair.1.15027.1109

Skryagin A, Stammer W, Ochs D, Dhami DS and Kersting K (2022) Neural-Probabilistic Answer Set Programming.1110

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning :1111

463–473DOI:10.24963/kr.2022/48. URL https://doi.org/10.24963/kr.2022/48.1112

Stallkamp J, Schlipsing M, Salmen J and Igel C (2012) Man vs. computer: Benchmarking machine1113

learning algorithms for traffic sign recognition. Neural Networks 32: 323–332. DOI:https://doi.org/10.1114

1016/j.neunet.2012.02.016. URL https://www.sciencedirect.com/science/article/pii/1115

S0893608012000457. Selected Papers from IJCNN 2011.1116

Tafjord O, Clark P, Gardner M, Yih Wt and Sabharwal A (2019) Quarel: a dataset and models for answering questions1117

about qualitative relationships. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence1118

and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium1119

on Educational Advances in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI Press. ISBN 978-1-1120

57735-809-1. DOI:10.1609/aaai.v33i01.33017063. URL https://doi.org/10.1609/aaai.v33i01.1121

33017063.1122

Prepared using sagej.cls

https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2019.00125
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2019.00125
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2019.00125
https://doi.org/10.1145/3371158.3371196
https://aclanthology.org/D19-1458/
https://doi.org/10.1613/jair.1.15027
https://doi.org/10.24963/kr.2022/48
https://www.sciencedirect.com/science/article/pii/S0893608012000457
https://www.sciencedirect.com/science/article/pii/S0893608012000457
https://www.sciencedirect.com/science/article/pii/S0893608012000457
https://doi.org/10.1609/aaai.v33i01.33017063
https://doi.org/10.1609/aaai.v33i01.33017063
https://doi.org/10.1609/aaai.v33i01.33017063


Rader and Russo 33

Tudor A and Gupta G (2024) Autonomous task completion based on goal-directed answer set programming. ICLP1123

Workshops URL https://api.semanticscholar.org/CorpusID:276307594.1124

Wang H and Gupta G (2023) Fold-se: An efficient rule-based machine learning algorithm with scalable explainability.1125

In: Gebser M and Sergey I (eds.) Practical Aspects of Declarative Languages. Cham: Springer Nature1126

Switzerland, pp. 37–53.1127

Wang R, Sun K and Kuhn J (2024) Dspy-based neural-symbolic pipeline to enhance spatial reasoning in llms. URL1128

https://arxiv.org/abs/2411.18564.1129

Weston J, Bordes A, Chopra S, Rush AM, van Merriënboer B, Joulin A and Mikolov T (2015) Towards ai-complete1130

question answering: A set of prerequisite toy tasks. URL https://arxiv.org/abs/1502.05698.1131

Yang Z, Ishay A and Lee J (2020) Neurasp: Embracing neural networks into answer set programming. In:1132

Bessiere C (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,1133

IJCAI-20. International Joint Conferences on Artificial Intelligence Organization, pp. 1755–1762. DOI:1134

10.24963/ijcai.2020/243. URL https://doi.org/10.24963/ijcai.2020/243. Main track.1135

Yang Z, Ishay A and Lee J (2023) Coupling large language models with logic programming for robust and general1136

reasoning from text. In: Findings of the Association for Computational Linguistics, ACL 2023, Proceedings1137

of the Annual Meeting of the Association for Computational Linguistics. Association for Computational1138

Linguistics (ACL), pp. 5186–5219. DOI:10.18653/v1/2023.findings-acl.321. Publisher Copyright: © 20231139

Association for Computational Linguistics.; 61st Annual Meeting of the Association for Computational1140

Linguistics, ACL 2023 ; Conference date: 09-07-2023 Through 14-07-2023.1141

Zeng Y, RAJASEKHARAN A, BASU K, WANG H, ARIAS J and GUPTA G (2024) A reliable common-1142

sense reasoning socialbot built using llms and goal-directed asp. Theory and Practice of Logic1143

Programming 24(4): 606–627. DOI:10.1017/s147106842400022x. URL http://dx.doi.org/10.1144

1017/S147106842400022X.1145

Zeng Y, Rajasekharan A, Padalkar P, Basu K, Arias J and Gupta G (2023) Automated interactive domain-specific1146

conversational agents that understand human dialogs. In: Gebser M and Sergey I (eds.) Practical Aspects of1147

Declarative Languages. Cham: Springer Nature Switzerland. ISBN 978-3-031-52038-9, pp. 204–222.1148

Zhou B, Lapedriza A, Khosla A, Oliva A and Torralba A (2018) Places: A 10 million image database for scene1149

recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 40(6): 1452–1464. DOI:1150

10.1109/TPAMI.2017.2723009.1151

Prepared using sagej.cls

https://api.semanticscholar.org/CorpusID:276307594
https://arxiv.org/abs/2411.18564
https://arxiv.org/abs/1502.05698
https://doi.org/10.24963/ijcai.2020/243
http://dx.doi.org/10.1017/S147106842400022X
http://dx.doi.org/10.1017/S147106842400022X
http://dx.doi.org/10.1017/S147106842400022X

	Introduction
	Background
	Answer set programming (ASP)
	Syntax.
	Semantics.

	Learning from answer sets
	Neural networks
	CNNs.
	Foundation models.


	Neurosymbolic ASP frameworks
	Pre-trained neural and hard-coded symbolic component
	ASP-VQA and AQuA.
	[LLM+ASP].
	STAR.
	Embed2Sym.

	Neural training with hard-coded symbolic component
	NeurASP.
	SLASH.
	dPASP.

	Symbolic learning with pre-trained neural component
	FFNSL.
	NeSyGPT.
	Embed2Rule.
	NeSyFOLD.
	GPT-ASP.
	DSPy-ASP.
	LLM-ARC.

	Joint learning of neural and symbolic components
	NSIL.
	NeuralFastLAS.

	Performance analysis

	The limits of neurosymbolic ASP
	Simple perception tasks
	Synthetic images.
	Real-world images.
	Natural language text.

	Limited ASP generation
	Expressivity limits.
	Background knowledge.
	Induction vs deduction.

	Scalability issues

	Related work
	Other logical languages
	Subsets of ASP
	Reinforcement learning

	Conclusion

