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Abstract. This work compares large language models (LLMs) and neuro-symbolic approaches in solving Raven’s progressive
matrices (RPM), a visual abstract reasoning test that involves the understanding of mathematical rules such as progression or
arithmetic addition. Providing the visual attributes directly as textual prompts, which assumes an oracle visual perception module,
allows us to measure the model’s abstract reasoning capability in isolation. Despite providing such compositionally structured
representations from the oracle visual perception and advanced prompting techniques, both GPT-4 and Llama-3 70B cannot
achieve perfect accuracy on the center constellation of the I-RAVEN dataset. Our analysis reveals that the root cause lies in
the LLM’s weakness in understanding and executing arithmetic rules. As a potential remedy, we analyze the Abductive Rule
Learner with Context-awareness (ARLC), a neuro-symbolic approach that learns to reason with vector-symbolic architectures
(VSAs). Here, concepts are represented with distributed vectors s.t. dot products between encoded vectors define a similarity
kernel, and simple element-wise operations on the vectors perform addition/subtraction on the encoded values. We find that
ARLC achieves almost perfect accuracy on the center constellation of I-RAVEN, demonstrating a high fidelity in arithmetic
rules. To stress the length generalization capabilities of the models, we extend the RPM tests to larger matrices (3×10 instead of
typical 3×3) and larger dynamic ranges of the attribute values (from 10 up to 1000). We find that the LLM’s accuracy of solving
arithmetic rules drops to sub-10%, especially as the dynamic range expands, while ARLC can maintain a high accuracy due to
emulating symbolic computations on top of properly distributed representations.1

Keywords: Analogical reasoning, large language models, vector-symbolic architectures, reasoning benchmarks

1. Introduction

Abstract reasoning is often regarded as a core feature of human intelligence. This cognitive process involves
abstracting rules from observed patterns in a source domain, and applying them in an unseen target domain. With
the ultimate aim of achieving human-level intelligence, abstract reasoning tasks have sparked the interest of many
in machine learning research. Thanks to the availability of large datasets [1–3], various learning-based methods,
ranging from pure connectionist [4, 5] to neuro-symbolic [6–11] approaches, achieved promising results in this
domain.

More recently, the zero- and few-shot capabilities of LLMs and their multi-modal variants have been tested
on various abstract reasoning tasks such as verbal [12–15] or visual [12, 15–24] analogies. One natural approach

*Corresponding author. E-mail: michael.hersche@ibm.com.
1Our code is available at https://github.com/IBM/raven-large-language-models.
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Fig. 1. This work compares the abstract reasoning capabilities of large language models (LLMs) and neuro-symbolic ARLC on Raven’s progres-
sive matrices (RPM) tests. a) An RPM example taken from the center constellation of I-RAVEN. The task is to find the empty panel at the
bottom-right of the context matrix by selecting one of the answer candidates. b) Solving RPMs through LLM prompting. Visual attribute values
are extracted from the I-RAVEN dataset and assembled to individual per-attribute text-only prompts. LLMs are prompted to predict the attribute
of the empty panel. Finally, the attribute predictions are compared with the answer candidates, whereby the best-matching answer is selected as
the final answer. c) Solving RPMs with neuro-symbolic ARLC that relies on distributed similarity-preserving representations and manipulates
them via dimensionality-preserving operations; it learns rule-formulations as a differentiable assignment problem.

towards zero-shot visual abstract reasoning is to leverage multi-modal LLM’s vision capabilities to solve the task
end-to-end. However, these multi-modal models perform significantly worse than their text-only version [18], which
might stem from a missing fine-grained compositional feature comprehension [16]. As an additional help, LLMs
have been provided with text-only inputs by giving them access to an oracle perception, i.e., providing perfectly dis-
entangled representations [12, 17]. While this generally improves their reasoning abilities, LLMs still fail to achieve
perfect accuracy on many simple tasks. One example is represented by Raven’s progressive matrices (RPMs) [25],
a benchmark that tests visual abstract reasoning capabilities by measuring the fluid intelligence of humans. Here,
the state-of-the-art (SOTA) LLM-based approach [17] achieves only 86.4% accuracy in the center constellation
of I-RAVEN [3], which we observe to be a gate-keeper for this task (see Section 2.1).

In contrast, recent neuro-symbolic approaches showed not only almost perfect accuracy on the center con-
stellation of I-RAVEN, but also demonstrated high fidelity in out-of-distribution (OOD) settings. For instance, the
Abductive Rule Learner with Context-awareness (ARLC) represents attribute values with high-dimensional, dis-
tributed representations based on vector-symbolic architectures (VSAs) [26–29]. Learning the RPM rules boils
down to a differentiable assignment problem of high-dimensional panel representations in a series of binding and
unbinding operations, which can be solved with unconstrained optimization algorithms such as stochastic gradient
descent (SGD). ARLC outperformed the SOTA LLM-based approach [17] both on in-distribution and OOD, thanks
to relying on structured and similarity-preserving representations based on fractional power encoding (FPE) [27].

This paper extends on the initial work on ARLC [10], by comparing its abstract reasoning capability with two
prominent LLMs (GPT-4 [30] and Llama-3 70B [31]) (see Fig. 1). Circumventing the perception by providing
ground-truth attribute labels to the models allows us to measure their analogical and mathematical reasoning ca-
pabilities in isolation. Hence, we evaluate the reasoning capabilities of LLMs under conditions that play to their
strengths, namely, language understanding, when such compositionally structured (i.e., disentangled) representa-
tions are provided. Our comprehensive prompting efforts lead to very high accuracy for Llama-3 70B (85.0%) and
GPT-4 (93.2%), where the latter notably outperforms previous reports with GPT-3 [17] (86.4%) and GPT-4 o1-
preview [24] (18.00%). This LLM’s imperfect accuracy on the isolated task motivated us to further analyze their
capability of detecting and executing different rules. In both GPT-4 and Llama-3 70B, we find a notable weakness
in performing arithmetic rules that require row-wise additions or subtractions (e.g., see the last prompt in Fig. 2).
To gain more insight about this behavior, we set up a new RPM dataset (I-RAVEN-X) that increases the grid size
from 3×3 to 3×10, additionally allowing for a configurable dynamic range for the arithmetic computations. Also
here, we observe a notable weakness in the arithmetic rule that gets even amplified by an increasing dynamic range.
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On the other hand, ARLC demonstrates high accuracy on larger grid sizes and allows to increase the dynamic range
without further retraining, thanks to the the capability of adjusting the underlying structured FPE representations.

2. Datasets

2.1. I-RAVEN

We test the models on the center constellation of I-RAVEN [3] (see Fig. 1). The test consists of a 3×3 context
matrix, where the bottom-right panel is missing. The task is then to select the correct answer from eight candidate
panels to complete the matrix. Independent of this setup, each panel contains a number of objects arranged according
to a specific constellation. For instance, panels in the center constellation contain only one object, whereas panels
in the 2x2 constellation contain at most four objects. The objects are characterized by different attributes (shape,
size, and color). The relation between each attribute’s value in different panels is governed by a well-defined set of
rules:

– constant: This rule keeps the attribute value constant within the row.
– progression: The attribute value monotonically increases or decreases in a row by a value of 1 or 2.
– arithmetic: The attribute values of the first two panels are either added (arithmetic plus) or sub-

tracted (arithmetic minus), yielding the attribute value of the third panel in the row.
– distribute three: This rule involves the fact that three different values of an attribute appear in the three

panels of every row (with distinct permutations of the values in different rows). The same holds with respect
to the columns.

The task is to infer the rule governing each attribute in the context matrix and use it to determine the content of the
missing (bottom-right) panel, selecting it within the eight candidate answers. Compared to other RPM benchmarks
that have been used to evaluate LLMs [12], I-RAVEN tests a more complex range of logical and arithmetic skills.
While I-RAVEN provides tests in various constellations with more objects that may intuitively appear more arduous
to solve, LLMs are more challenged with the seemingly simple constellations. For instance, GPT-3 achieved a higher
accuracy on the 2x2 and 3x3 constellations (78.0% and 86.4%) than on center (77.2%) [17]. Moreover, high
accuracy can be maintained on the 2x2 and 3x3 constellations while only looking at the last row of the context
matrix [17], effectively showing that no analogical reasoning is required to solve the test in these constellations.
Hence, we opted to focus our evaluation on the center constellation only, using 500 samples from I-RAVEN’s
test set.

Inspired by recent works [12, 17], we simplify RPM from a visual abstract reasoning test to a purely abstract
reasoning test. Assuming a perfect perception, we extract the attribute values from I-RAVEN and use them to create
the prompts for the model. This approach simplifies the RPM task as it not only provides the correct attributes but
also filters irrelevant attributes. In a follow-up work [32], we tested the robustness of LLMs against uncertainties
in the perception. As expected, adding confounding attributes as well as a smoothened non-one-hot distribution
degraded the LLMs’ performance considerably.

2.2. New I-RAVEN-X

To further evaluate the mathematical reasoning capabilities at scale, we introduce an extension of the I-RAVEN’s
center constellation, called I-RAVEN-X. Our new benchmark maintains I-RAVEN’s four rules and three at-
tributes but allows for a parameterizable number of columns (g) and a dynamic range of attribute values (m).
When generating a new RPM example, we uniformly sample from one of the available rules (constant,
progression, arithmetic, and distribute three). Note that the attribute shape does not incur the
arithmetic rule.

In the following, we describe the generation process of the RPM context matrix of size 3 × g for the individual
rules. The overall goal is that the values stay in the range [0,m − 1].
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System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
             row 1: 5, 5, 5; 
             row 2: 3, 3, 3; 
             row 3: 6, 6, 
Output:  6

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
             row 1: 6, 6, 6; 
             row 2: 4, 4, 4; 
             row 3: 2, 2, 
Output: 2

Attribute: shape
Rule: constant
Correct answer: 6

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
             row 1: 8, 2, 6; 
             row 2: 1, 0, 1; 
             row 3: 8, 7, 
Output:  6

Attribute: size
Rule: constant
Correct answer: 2

Attribute: color
Rule: arithmetic -
Correct answer: 1

a) LLM prompts for I-RAVEN

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
      

Output:  242

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!

Output: 695

Attribute: shape
Rule: progression
Correct answer: 242

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
             

Output:  352

Attribute: size
Rule: constant
Correct answer: 695

Attribute: color
Rule: arithmetic -
Correct answer: 58

b) LLM prompts for our new I-RAVEN-X

2,
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63,
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0,
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7,
551,

5,
308,
0,

5; 
38; 

20,
2,
0,
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0,
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0,
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row 1: 769,
row 2: 848,
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0,
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338; 
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row 1: 320,
row 2: 718,
row 3: 224,
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73,
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695,

73,
677,
695,

row 1: 73,
row 2: 677,
row 3: 695,

73,
677,
695,

Fig. 2. a) Individual per-attribute text-only prompts to solve RPM tasks from I-RAVEN. b) Example prompts with of our novel configurable
I-RAVEN-X dataset of size 3×10 with a value range of m = 1000. In both the I-RAVEN and I-RAVEN-X examples, the LLM (GPT-4) errs in
the arithmetic rules.

– constant: For each row, we uniformly sample an integer from the set {0, 1, ...,m − 1}, and duplicate along
the row.

– progression: First, we uniformly sample the progressive increment/decrement (δ) from the set
{−2,−1,+1,+2}. In case of a positive increment, we first define the values of the right-most columns, by
uniformly sampling from the set {(g − 1) · δ, ...,m − 1} for each row. Then, the rest of the matrix is completed
by applying the progression rule. The sampling for a negative δ is done specularly from the first column.

– arithmetic: The attribute values of the first g − 1 panels are either added (arithmetic plus) or sub-
tracted (arithmetic minus), yielding the attribute value of the last panel in the row. In arithmetic
plus, we sequentially sample the values from the first g − 1 panels in the row. For each panel, we set the
sampling range to {0, ...,m − s}, where s is the sum of the already sampled panels in the row. Afterward, the
first g − 1 panels are shuffled. Finally, the values of the last panels are the sum of the first g − 1 ones, applied
row-wise. For arithmetic minus, we apply the same sampling strategy but leave the first column empty.
The value of the first column is then defined as the sum of the other columns.

– distribute-n: We uniformly sample distinct values for the first row from {0, ...,m − 1}. The content of
the remaining rows is defined by applying a circular shift per row (either right or left).

Finally, we generate the candidate answers using I-RAVEN’s attribute bisection tree [3]. The original RAVEN
dataset had a flaw in the generation of the answer set. Each distractor in the answer set (i.e., a wrong answer
candidate) was generated by randomly altering one attribute of the correct answer. As a result, one could predict
the correct answer by taking the mode of the answer candidates without looking at the context matrix, therefore
bypassing the actual reasoning task. As a remedy, the attribute bisection tree generates unbiased answers that are
well balanced. Fig. 2b shows example prompts generated from samples of our new dataset.

3. LLM-based RPM solving

3.1. Models

We focused our evaluations on text-only LLMs. There exist attempts [16, 18, 20–22] that leverage vision support
of some multi-modal LLMs (e.g., GPT-4V) directly feeding the models with visual RPM data; however, they achieve
consistently lower reasoning performance than with text-only prompting. The SOTA LLM-based abstract reasoning
approach [17] relied on reading out GPT-3’s (text-davinci-002) token probabilities. However, this model is
no longer accessible to users and its successive iterations do not allow the retrieval of prediction logits. Hence, we
considered discrete classification approaches that are based on output strings rather than distribution over tokens.
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In particular, we investigated two SOTA LLMs: the proprietary GPT-4 [30]2 (gpt-4-0613) and the open-source
Llama-3 70B [31]3. More recent iterations of these models were not considered in our analysis for different rea-
sons. Meta’s attribution requirement in their updated terms regarding naming conventions prevented us from testing
Llama-3.1 During initial tests, GPT-4o yielded worse results than GPT-4, hence we focused on GPT-4. Moreover,
the evaluation of large reasoning models, such as DeepSeek’s R1 [33] or OpenAI’s o-series [34], is covered in our
follow-up work [32].

3.2. Prompting and classification

Entangled and disentangled prompts. Following [17], we use numerical descriptions of the attribute values that
has lead to better performance than textual descriptions [24]. Moreover, we evaluate two different prompting strate-
gies, entangled and disentangled prompting. The entangled prompting provides all the attributes’ values in a single
prompt (see Appendix A.1). The disentangled prompting, on the other hand, is a compositionally structured ap-
proach that queries the LLM for individual attribute prediction. Disentangled prompting simplifies the task, but
increases the number of queries by 3×.

Discriminative and predictive classification. Similarly to [14], we consider two approaches to solve RPM tests
with LLMs. In the discriminative approach, we provide the attribute descriptions of both the context matrix and
the answer candidates. The LLM is then asked to return the panel number of the predicted answer. Appendix A.2
provides an example prompt of the discriminative approach. In the predictive approach, we prompt the LLM only
with the context matrix without the candidate answers. The LLM has to predict the value of the empty panel (see
Fig. 2). For selecting the final answer, we compare the predicted values with the answer panels and pick the one
with the highest number of overlapping values. While the predictive approach may appear more difficult, it implicitly
biases the LLM to approach the task as humans usually do, i.e., first applying a generative process to abduce rules
and execute them to synthesize a possible solution, and then discriminatively selecting the most similar answer
from choices [35]. Moreover, the final answer selection is done without the intervention of the LLM, rendering
phenomena like hallucinations less likely. Thus, the predictive classification can be seen as a more guided approach
that helps LLM to solve the task.

Self-consistency. As an optional extension, we employ self-consistency [36, 37] by querying the model multiple
times (n = 7 times), sampling the next token from the distribution with a non-zero soft-max temperature. We find
the optimal soft-max temperature for GPT-4 (T = 0.5) and Llama-3 70 B (T = 0.4) via a grid search on a subset
of 50 I-RAVEN problems. We did not explore the effect of other parameters, such as top-k or top-p, and set them to
the default values. The final prediction is determined by a majority vote over the sampled outputs. The selection of
an odd number of samples (i.e., n = 7) helps to prevent potential ties.

In-context learning For a better understanding of the RPM task, we optionally prefix 16 in-context examples to
the prompt [38]. In the predictive classification approach (where no answer candidates are provided), we simply
provide complete example RPM matrices. The in-context samples are randomly selected from I-RAVEN’s training
set. Examples that had the same context matrix as the actual task are discarded and re-sampled to prevent shortcut
solutions.

4. ARLC: learning abductive reasoning using VSA distributed representations

This section presents the Abductive Rule Learner with Context-awareness (ARLC), which performs neuro-
symbolic reasoning with distributed VSA representations (see Fig. 3). ARLC projects each panel’s attribute value
(or distributions of values) into a high-dimensional VSA space. The resulting VSA vectors preserve the semantic
similarity between attribute values: the dot products between corresponding VSA encoded vectors define a similar-
ity kernel [27, 39]. Moreover, simple component-wise operations on these vectors, binding and unbinding, perform

2GPT-4 was accessed between 07/03/2024–10/30/2024.
3The model weights were downloaded and evaluated locally. Unless stated otherwise, we use the base model without instruction tuning.
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?

Context

Answer candidates

Projection to the 
VSA space

Rule computation

Fig. 3. ARLC architecture. ARLC maps attribute values, or distributions of values, to distributed VSA representations, where the semantic
similarity between values is preserved via a notion of kernel. Learnable rules (r1, ..., rR) predict the VSA representation of the empty panel
(v̂(3,3)

a,r ) together with a confidence value (sr). The closest answer to the predicted soft-selected prediction (v̂(3,3)
a ) is chosen as the final answer.

Fig. 4. Similarity kernel in VSA. Mapping two values (v1 and v2) to a VSA space (i.e., GSBC in ARLC) that uses fractional power encoding
(FPE) and computing their similarity in the VSA space yields the shown similarity kernel K(v1 − v2).

addition and subtraction respectively on the encoded values. For rule learning, ARLC introduces a generic rule
template with several terms forming a series of binding and unbinding operations between vectors. The problem of
learning the rules from data is reduced to a differentiable assignment problem between the terms of the general rule
template and the VSA vectors encoding the contents of the panels, which can be learned with standard SGD. ARLC
was initially presented in [10]; this work mainly compares it to the reasoning capabilities of LLMs on I-RAVEN,
and demonstrates its extension to larger grid sizes and dynamic ranges on our novel I-RAVEN-X.

4.1. From visual attributes to distributed VSA representations

ARLC’s key concept is to represent attribute values with high-dimensional, distributed VSA vectors that preserve
the semantic similarity between the attribute values thanks to an introduced kernel notion. We start by defining a
VSA that equips the space with dimensionality-preserving vector operations. Bundling (⊕) is a similarity-preserving
operation that creates a superposition of the operands, that is, the resulting vector will have a high similarity with the
two operands. Binding (⊗) associates two elements, effectively encoding a relationship between two vectors. For
example, binding the attribute “color” with the value “red” produces a new vector that represents this pair. Impor-
tantly, this operation destroys similarity: the result is dissimilar to both operands, which helps prevent interference
between different bindings. Unbinding (⊘) is the inverse operation. Given a bound pair and one of its components
(e.g., the attribute), unbinding retrieves the other (e.g., the value). This allows for structured information retrieval.
The main difference between members of the VSA family is the specific realization of the bundling, binding, and

vector space (see [40]).
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Table 1
Supported VSA operations and their equivalent in R.

Operation Binary GSBCs with FPE Equivalent in R

Binding (⊗) Block-wise circular convolution Addition +

Unbinding (⊘) Block-wise circular correlation Subtraction −
Bundling (⊕) Sum & normalization —
Similarity (⊙) Cosine similarity (cos(·, ·)) —

Specifically, ARLC uses binary generalized sparse block codes (GSBCs) [41] as a particular VSA instance. In
binary GSBCs, the D-dimensional vectors are divided into B blocks of equal length, L = D/B, where only one
(randomly selected) element per block is set to 1 (D = 1024 and B = 4). The algebraic operations of binary GSBCs
are defined in Table 1. The choice of binary GSBCs is motivated by better retrieval accuracy when encoding prob-
ability mass functions (PMFs), compared to other alternatives such as Fourier holographic reduced representations
(FHRR) [8]. See Appendix B for a detailed background on VSA.

Next, we define a mapping z : Z+ → RD that enables the projection of input RPM attributes into a correspond-
ing high-dimensional, semantically-rich feature space. Note that this work focuses on mapping integer values as the
attribute values in I-RAVEN are integer-valued too. However, generalizing this approach to real-valued domain map-
pings is possible using frequency holographic reduced representations (FHRR) [26]. Leveraging fractional power
encoding (FPE) [27], a value v ∈ Z+ is encoded as

z(v) = zv =

v⊗
n=1

z,

where z ∈ RD is a randomly drawn binary GSBC vector. This mapping yields a similarity kernel between neigh-
boring vector representations [39], as shown in Fig. 4.

Let us assume two variables with values v1 and v2, which are represented with two VSA vectors (z(v1) = zv1

and z(v1) = zv2 ). Binding the two vectors yields z(v1) ⊗ z(v2) = zv1 ⊗ zv2 = zv1+v2 . Hence, binding in the
VSA space is equivalent to the addition in R. In other words, the FPE initialization allows to establish a semantic
equivalence between high-dimensional vectors and real numbers. This property is consistently exploited in ARLC’s
framework, as it allows to solve the analogies in the RPM puzzles as simple algebraic operations in the domain
of real numbers. For example, by computing the similarity between the bound representation and a third projected
variable (sim(zv1+v2 , zv3)), we can evaluate whether v1 + v2

?
= v3 representing the arithmetic plus rule in

RPM.
One advantage of performing reasoning with distributed VSA representations is its capability to represent per-

ceptual uncertainty in the variable values. Connecting to the previous example, let us assume that the first variable
takes value v1 with probability p and value v′1 with probability p′ = 1 − p. The distribution can be encoded as the
weighted superposition of the two corresponding codewords: p · zv1 + p′ · zv′1 . The similarity computation between
the bound representation and a third variable would then yield

sim((p · zv1 + p′ · zv′1)⊗ zv2 , zv3) = sim(p · zv1 ⊗ zv2 + p′ · zv′1 ⊗ zv2 , zv3) (1)

≈p · sim(zv1 ⊗ zv2 , zv3) + p′ · sim(zv′1 ⊗ zv2 , zv3), (2)

where the first equality uses the linearity of the binding operation, and the second approximation requires linearity
of the similarity metric4. Overall, this formulation allows the validation of multiple solutions (in this case two) using
only a single binding and similarity computation.

4The GSBC uses the non-linear cosine similarity that impacts the approximation in Equation (2). Note, however, that ARLC’s rule selection
considers relative similarities between different rule probabilities, where the approximation is sufficient.
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In the RPM application, each panel’s label is translated to a PMF p
(i, j)
a , where a is the attribute, i is the row index

and j is the column index of the panel. The panel’s PMF is then projected into the VSA space as

v(i, j)
a =

m∑
k=1

p(i, j)
a [k] · zk,

where m is the number of possible values that the attribute a can assume. Overall, this yields eight VSA vectors for
each attribute a (one for each panel of the input RPM matrix), represented by

Va :=
(
v(1,1)

a ,v(1,2)
a , . . . ,v(3,2)

a

)
. (3)

Note that the basis vectors are pre-computed and stored in a dictionary C = {zk}r
i=1 containing m elements.

4.2. Learning RPM rules as an assignment problem

The previous example demonstrates that executing the arithmetic rule requires addition computations, which
can be efficiently performed in the VSA space using the binding operation. Indeed, we find that other RPM rules
(constant, progression, distribute three) can be described with one or multiple additions and sub-
tractions as well, which can be represented in the VSA space using binding and unbinding operations, respectively
(see Appendix D). Hence, the rules used in RPM can be generally framed as a series of binding and unbinding
operations:

r = (c1 ⊗ c2 ⊗ c3 ⊗ c4 ⊗ c5 ⊗ c6)⊘ (c7 ⊗ c8 ⊗ c9 ⊗ c10 ⊗ c11 ⊗ c12) , (4)

Here, each ci can either assume the value of a context panel v(i, j)
a or the identity vector e. The assignments between

each placeholder c and its value are learned during training (or programmed) and depend on the specific rule. For
instance, during the inference of the arithmetic plus rule on the 3rd row of the context matrix, the assignments would
correspond to:

c1 = v(3,1)a , c2 = v(3,2)a , ci = e ∀i ∈ {3, 4, ..., 12}.

where v(3,1)a and v(3,2)a are the vector representations of the first and second panel of the row, respectively. In this
setting, learning RPM rules can be interpreted as an assignment problem between VSA vectors and the terms in
Equation (4).

Motivated by works in cognitive sciences and psychology that argue for the importance of context in the solution
of analogies for humans [42, 43], ARLC uses a general formulation of the soft-assignment problem which relies on
the notion of context:

ck =

I∑
i=1

wi
k · xi +

J∑
j=1

u j
k · o j + vk · e, (5)

where w,u,v are the learned parameters and they are subject to the following constraints:

I∑
i=0

wi
k +

J∑
j=0

w j
k + vk = 1, 0 ⩽ wi

k ⩽ 1 ∀i, 0 ⩽ u j
k ⩽ 1∀ j, 0 ⩽ vk ⩽ 1, ∀k.

Here, X = {x1, . . . ,xI} is the set of attributes that define the current sample, that is, the description of the
problem for which we infer a solution. O = {o1, . . . ,oJ} is the set of attributes that define the context for
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(a) X = {R1},O = {R2,R3} (b) X = {R2},O = {R1,R3} (c) X = {R3},O = {R1,R2}

Fig. 5. Visualization of current samples (X = {x1,x2}, in yellow) and context (O = {o1, . . . ,o5}, in green) panels when predicting the third
panel for different rows, namely the first row (left), second row (center) and third row (right). Black objects represent panels that are not used for
the computation, while the question mark represents the unknown test panel, which is unavailable during inference.

that sample, that could be interpreted as a working memory from which additional information to infer the an-
swer can be retrieved. For predicting the empty panel in the last row, the context (O) corresponds to the first
two rows and the current samples (X) to the last row (see Fig. 5c). Formally, we set X = {v(3,1)

a ,v
(3,2)
a } and

O = {v(1,1)
a ,v

(1,2)
a ,v

(1,3)
a ,v

(2,1)
a ,v

(2,2)
a } for predicting the rightmost panel in the last row. We augment this stan-

dard prediction with two more permutations, which aim to predict the rightmost panel of the first and second row
(see Fig. 5a and Fig. 5b). The knowledge of the rightmost panels in the first two rows allows us to compute a rule
confidence by comparing the rule’s prediction with the actual panel representation via the cosine similarity.

4.3. Executing and selecting the learned rules

ARLC learns a set of R different rules with rule-specific weights (wr,ur,vr). Inference with the learned rule set
is a two-step process: an execution step (where all the rules are applied in parallel to the input) and a selection step
(where a prediction for the missing panel is generated). The application of each rule r to an RPM example generates
a tuple of three VSA vectors (v̂

(i,3)
a,r )3i=1, which corresponds to the result of the rule execution on the three rows

of the RPM matrix, together with a rule confidence value sr. The confidence value is computed as the sum of the
cosine similarities between the predicted VSA vectors and their respective ground-truth vector,

sr =

3∑
i=1

cos
(
v(i,3)

a , v̂(i,3)
a,r

)
. (6)

Note that the ground-truth value for the last row (v(3,3)
a ) is unknown during inference, since the RPM task is to

predict this panel. Hence, we omit the last term of the sum (i = 3) in the inference. The answer is finally produced
by taking a linear combination of the VSA vectors generated by executing all the rules, weighted by their respective
confidence scores (normalized to a valid probability distribution using a softmax function). More formally, if we
define s = [s1, . . . , sR] to be the concatenation of all rules’ confidence score and V̂

(3,3)
a = [v̂

(3,3)
a,1 , . . . , v̂

(3,3)
a,R ] to be

the concatenation of all rules’ predictions for the missing panel, the final VSA vector predicted by the model for the
attribute a becomes

v̂(3,3)
a = softmax (s) · V̂(3,3)

a . (7)

The use of the weighted combination can be understood as a soft-selection mechanism between rules and was found
to be more effective compared to the hard-selection mechanism provided by sampling [9].

4.4. Training Loss and other Implementation Aspects

We follow the training recipe provided by Learn-VRF [9]. The model is trained using stochastic gradient descent
(SGD) with a learning rate lr = 0.01 for 25 epochs. The training loss is defined as the inverse cosine similarity
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Table 2
Task accuracy (%) on the center constellation of I-RAVEN. Among the baselines, we replicate Learn-VRF [9]; the other results are taken
from [8]. The standard deviations are reported over 10 random seeds. Llama-3 and GPT-4 are queried with the corresponding best prompting
technique (see Table 3). ARLC’s weights are either manually programmed (ARLCprogr), learned from scratch (ARLClearn), or learned after
manual programming (ARLCp 7→l). The number of parameters for GPT-4 is not publicly available. The reasoning backend of PrAE, NVSA, and
our ARLCprogr do not have trainable parameters.

Method Parameters Accuracy

MLP [9] 300 k 97.6
SCL [5] 961 k 99.9±0.0

PrAE [6] n.a. 83.8±3.4

NVSA [8] n.a. 99.8±0.2

Learn-VRF [9] 20 k 97.7±4.1

GPT-3 [17] 175 b 86.4

Llama-3 70 b 85.0
GPT-4 unk. 93.2
ARLCprogr n.a. 99.6±0.0

ARLCp 7→l 480 99.6±0.0

ARLClearn 480 98.4±1.5

between the three predicted panels and their corresponding ground truth

L = 1−
3∑

i=1

cos
(
v(i,3)

a , v̂(i,3)
a

)
. (8)

As in Learn-VRF, we set the number of rules to R = 5. A single set of rules is instantiated and shared between
all RPM attributes.

4.5. Applying ARLC on I-RAVEN-X

While ARLC was initially designed for I-RAVEN, it can be seamlessly extended to our I-RAVEN-X with minor
modifications. First, the number of binding/unbinding terms in Equation (4) is increased, e.g., from 12 to 22 to sup-
port the larger grid size of g = 10. Moreover, we increase the number of entries in the dictionary (C) to support the
larger dynamic range (m). Notably, only varying the dynamic range at constant grid size does not require retraining:
we can simply replace the dictionary in order to support OOD generalization. Indeed, we could demonstrate that
ARLC trained on a dynamic range of m = 45 can favorably generalize to a dynamic range of m = 1000.

5. Results

5.1. Main results on I-RAVEN

Table 2 compares our LLM results with ARLC on the center constellation of I-RAVEN, considering also a
range of neuro-symbolic and connectionist baselines. For the LLMs, we show the results with the corresponding
best prompting techniques (see the ablation in Section 5.2). Moreover, we present results for three different ver-
sions of ARLC: ARLCprogr, where the model’s weights are manually programmed with RPM rules (R = 4, since
constant can be considered as a special case of progression), ARLCp 7→l, where the model is initialized with
the programmed rules and then trained with gradient descent, and ARLClearn, where the rules are learned from
scratch from data.

Among the LLM approaches, our GPT-4-based approach achieved the highest accuracy (93.2%) notably outper-
forming previous SOTA LLM-based abstract reasoning approaches on this benchmark (86.4%) [17]. Yet, all LLM
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Table 3
Ablation study considering various LLM prompting techniques. We report the task accuracy (%) on the center constellation of I-RAVEN.

Predictive/
discriminative

Disentangled queries
per attribute (3×queries)

Self-consistency
(n=7)

In-context learning
(s=16)

GPT-4 Llama-3 70B

Discriminative 46.8 22.8
Discriminative ✓ 63.0 22.4
Predictive 74.8 79.0
Predictive ✓ 91.4 83.2
Predictive ✓ ✓ 93.2 84.8
Predictive ✓ ✓ 85.4 84.8
Predictive ✓ ✓ ✓ 86.4 85.0

Table 4
Accuracy (%) of predicting the correct attribute value. Self-consistency (n=7) is used. Results are averaged across all attributes.

Model
Disentangled queries
per attribute (3×queries)

Constant Progression Distribute three Arithmetic

GPT-4
No 100 98.0 91.6 27.1
Yes 100 100 99.5 73.6

Llama-3 70B
No 100 97.2 99.3 31.0
Yes 100 100 96.6 45.0

approaches fall behind the tailored connectionist and neuro-symbolic solutions. Notably, with only 480 learnable
parameters, ARLC achieves a high accuracy of 98.4%. Moreover, we show that post-programming training allows
for maintaining the knowledge of the model, rather than completely erasing it as shown in other settings [44].

5.2. Ablation of LLM prompting techniques

Table 3 shows the task accuracy on I-RAVEN using GPT-4 and Llama-3 70B in various prompting configurations.
Overall, both models benefit from the additional guidance provided by our prompting techniques. Concretely, using
a predictive approach and querying for individual disentangled attributes yielded already high accuracies (91.4%
and 83.2% for GPT-4 and Llama-3 70B, respectively). Introducing self-consistency further improves the accuracy
for both models. Llama-3 70B’s performance can be further pushed (to 85.0%) by using self-consistency and in-
context learning. On the contrary, GPT-4 cannot make use of the additional in-context samples, yielding a lower
accuracy instead. Indeed, recent work on LLM reasoning models [33] made a similar observation, where “few-shot
prompting consistently degrades its performance.”

To test the potential impact of instruction-tuning, we conducted experiments with Llama 3 70B Instruct. We found
that the instruction-tuned model generally performs worse, achieving 64.6% and 79.2% with and without in-context
learning, respectively. We leave the exploration of finding an optimized set and sequence of in-context examples,
which has been shown to improve the performance of instruction-tuned models [45], for future work.

5.3. LLMs show weakness in arithmetic rule

Even though both LLMs achieve a reasonable overall task accuracy, they fail in some instances. We shed more
light on the reasoning capability of the two models by analyzing the accuracy of predicting the correct value for a
given rule. As shown in Table 4, both models perform well on constant, progression, and distribute
three rules, whereas the accuracy notably drops for the arithmetic rule. One explanation for the accuracy
drop could be the LLM’s tendency for (short-sighted) relational reasoning, instead of performing relational mapping
that requires the understanding of the first two rows before applying a rule on the last row [13]. We analyze this



12 M. Hersche et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 5
Task accuracy (%) on I-RAVEN and our novel I-RAVEN-X. The LLMs use self-consistency (n=7). For ARLClearn we report max/mean evaluation
accuracies over 5 different training seeds.

I-RAVEN I-RAVEN-X
3× 3 3× 10

Dynamic range (m) 5–10 50 100 1000

Llama-3 70B 85.0 76.8 73.0 74.2
GPT-4 93.2 82.2 79.6 76.6
ARLCprogr 99.6 100.0 100.0 99.7
ARLClearn 99.1/98.6 94.6/86.3 95.1/88.0 91.6/82.8

Table 6
Arithmetic accuracy (%) on I-RAVEN and our novel I-RAVEN-X. The LLMs use self-consistency (n=7). For ARLClearn we report max/mean
evaluation accuracies over 5 different training seeds.

I-RAVEN I-RAVEN-X
3× 3 3× 10

Dynamic range (m) 5–10 50 100 1000

Llama-3 70B 45.0 1.5 2.6 0.4
GPT-4 73.6 30.4 25.1 8.4
ARLCprogr 100.0 99.8 100.0 99.5
ARLClearn 99.5/99.2 99.1/95.5 98.9/96.3 97.9/95.3

hypothesis in Appendix C, where we attempt to explain the LLM’s wrong predictions by rules that may have been
inferred from the last row. For GPT-4, 32 out of 68 errors can be explained by rules that might have been inferred
from a partial context matrix, e.g., a constant or progression rule based on the last row.

5.4. Results on our novel I-RAVEN-X

Finally, we conduct experiments on our novel I-RAVEN-X test, which allows us to configure the matrix size and
the dynamic range of the attribute values. We fix the grid size to 3 × 10 and vary the dynamic range between 50,
100, and 1000. As shown in Table 5, the LLM’s drops not only due to the larger grid size but also generally degrades
with an increasing dynamic range. At the same time, our ARLC maintains a high accuracy across the board, while
only being trained at dynamic range of 50 and reconfigured for the higher ranges. Investigating the performance on
the arithmetic rule in Table 6 explains the overall accuracy degradation: the arithmetic accuracy drops below
10% for both LLMs at the highest dynamic range (1000).

6. Conclusion

This work revealed LLM’s limitations in recognizing and executing arithmetic rules in abstract reasoning tasks,
despite being provided disentangled prompts with ground-truth visual attributes and using advanced prompting
techniques. We further showed the serious limitation on a larger (3×10) RPM test. As a viable alternative, we
presented a neuro-symbolic approach (ARLC) that achieves a high accuracy both on I-RAVEN and our I-RAVEN-X,
thanks to learning to reason with distributed VSA representations and operators. Beyond accuracy, ARLC not only
inherits advantages from symbolic methods (e.g., interpretability and programmability) but also advances efficiency
and trainability. Yet, it is still tailored and trained to solve the given RPM task. In contrast, LLMs are more general
but lack interpretability and require more computing resources. Combining the strengths of both methods, we see
great potential in integrating ARLC into more general frameworks, e.g., within a neuro-symbolic system where
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ARLC could execute [46] or validate [47] reasoning steps from neural models (e.g., LLMs). Moreover, it would be
interesting to tighten the integration between the two systems at the embedding level [48].
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Appendix A. Prompting details

This appendix provides more details on our prompting strategy. While the prompt design was mainly inspired
by [17], we extended it with predictive and discriminative classification and fine-tuned it for the different models.
For example, we found that adding a prefix (“Only return the missing number”) helped to slightly improve GPT4’s
accuracy, whereas it reduced Llama-3 70B’s performance. Thus, we used individual prompts for the different mod-
els.

A.1. Joint attribute querying

As an alternative to individually querying the LLM for predicting the separate attributes, we also devised a joint
attribute prompting scheme, shown in Fig. A.6. The attributes of each panel are represented in brackets: (shape,
size, color). In this setting, the LLM is required to predict all three attributes of the missing panel at once. For
better distinguishing between the different attributes, they are scaled with individual factors (1×, 0.1×, 10×).

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
             row 1: (3,0.5,50), (6,0.5,50), (4,0.5,50); 
             row 2: (4,0.3,10), (3,0.3,10), (6,0.3,10); 
             row 3: (6,0.1,70), (4,0.1,70), (
Out:       3,0.1,70)

Fig. A.6. Example prompt for joint prediction of all three attributes.

A.2. Discriminative classification approach

Fig. A.7 shows an example prompt for performing discriminative classification. As shown, the answers only
contain two distinct values (“6” and “7”); finding the correct answer requires the consideration of all attributes. For
choosing the final answer, we extract all attribute values that correspond to the predicted answer (e.g., value “7” for
shape) and select the best matching answer candidate, i.e., the answer with the highest number of overlaps with
the predicted attributes.

System: Complete the Raven's progressive matrix:
User:     row 1: 4, 4, 4; 
             row 2: 6, 6, 6; 
             row 3: 7, 7, 

             Select the correct Answer from the following list
             Answer #0: 7
             Answer #1: 6
             Answer #2: 7
             Answer #3: 7
             Answer #4: 6
             Answer #5: 6
             Answer #6: 7
             Answer #7: 6
             
             Solution: The correct answer is Answer #
Output:  0: 7

Fig. A.7. Example prompt for discriminative classification approach, where the answer candidates are provided. The underlying attribute is
shape and the rule is constant.
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Appendix B. Vector-symbolic architectures

Vector-symbolic architectures (VSAs) [26–29] are a family of computational models that rely on the mathematical
properties of high-dimensional vector spaces. VSAs make use of high-dimensional distributed representations for
structured (symbolic) representation of data while maintaining the advantages of connectionist distributed vector
representations (see [40] for a survey). Here is a formal definition of VSAs:

Definition 1 (VSA). A vector-symbolic architecture (VSA) consists of a 4-tuple V = (C,⊕,⊗,⊙), where C is a set
of high-dimensional distributed vectors equipped with two main operations, ⊕ (bundling) and ⊗ (binding), and on
which it is possible to define a similarity measure ⊙.

Appendix C. Analysis of arithmetic errors

This appendix aims to find explanations for LLM’s errors by analyzing the structure behind the predicted answers.
A recent study [13] showed that LLMs tend to solve verbal analogy problems in an associative way instead of
performing proper relational mapping. The associative reasoning can be explained as ignoring the source domain
and solving the task directly at the target domain (e.g., only looking at the possible solutions without reading the
questions). Interestingly, children tend to perform associative reasoning, whereas adults opt for relational mapping.

In RPMs, the source domain can be defined as the first two rows (with values x1,1, x1,2, x1,3 and x2,1, x2,2, x2,3),
whereby the target domain is the last row (x3,1, x3,2). Therefore, an associative reasoner would only look at the last
row to solve the task. In the following, we aim to find potential incorrect rules that the LLMs may have been inferred
from the last row(s):

– constant: The values of the last row are identical (x3,1 = x3,2), and the model predicts x̂3,3 = x3,2 = x3,1
– progression: The values of the last row differ by δ = x3,2 − x3,1, and the model predicts x̂3,3 = x3,2 + δ
– short constant: The model just copies the penultimate value: x̂3,3 = x3,2.
– short distribute three: Assuming a distribute three over the last two rows: x3,1 ∈ {x2,1, x2,2, x2,3},

x3,2 ∈ {x2,1, x2,2, x2,3}, and hence x̂3,3 ∈ {x2,1, x2,2, x2,3}.

Fig. C.8 shows the resulting confusion matrix summarizing all the attributes. The arithmetic rule has fewer
occurrences as this rule is not integrated in the attribute shape. As already stated in the main text, the majority of
wrong predictions are related to the arithmetic rule. For GPT-4, our new rule interpretations can explain 32 out
of the 68 errors, while 36 errors remain unknown. Llama-3 70B showed many more errors in the arithmetic rule;
here, we can explain 57 out of 142 errors with relational reasoning. In summary, some (40.1–47.1%) of the LLM’s
errors can be rooted in relational reasoning. Further understanding the behavior of the unknown rules is scope for
future work.
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Fig. C.8. Rule confusion matrix of GPT-4 (left) and Llama-3 70B (right).
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Appendix D. ARLC programmed weights

This appendix provides the rules programmed in ARLCprogr for both I-RAVEN and I-RAVEN-X in Tables D.7
and D.8, respectively. All the terms of the general rule template in Equation (4) that are not explicitly filled in each
rule are either set to e, the identity element for the binding operation, or with terms that cancel out. In practice, the
programming of the terms of each rule is performed by setting the weight in the corresponding position to a high
positive value (1e + 5) and all the other terms to 0.

Table D.7
I-RAVEN rules programmed in ARLCprogr.

RPM Rule Programmed rule

constant
(
x1

a
)
⊘ (e)

progression
(
x2

a ⊗ x2
a
)
⊘

(
x1

a
)

arithmetic plus
(
x1

a ⊗ x2
a
)
⊘ (e)

arithmetic minus
(
x1

a
)
⊘

(
x2

a
)

distribute three
(
o1

a ⊗ o2
a ⊗ o3

a
)
⊘

(
x1

a ⊗ x2
a
)

Table D.8
I-RAVEN-X rules programmed in ARLCprogr.

RPM Rule Programmed rule

constant
(
x1

a
)
⊘ (e)

progression
(
x9

a ⊗ x2
a
)
⊘

(
x1

a
)

arithmetic plus
(
x1

a ⊗ x2
a ⊗ x3

a ⊗ x4
a ⊗ x5

a ⊗ x6
a ⊗ x7

a ⊗ x8
a ⊗ x9

a
)
⊘ (e)

arithmetic minus
(
x1

a
)
⊘

(
x2

a ⊘ x3
a ⊘ x4

a ⊘ x5
a ⊘ x6

a ⊘ x7
a ⊘ x8

a ⊘ x9
a
)

distribute-n
(
o1

a ⊗ o2
a ⊗ o3

a ⊗ o4
a ⊗ o5

a ⊗ o6
a ⊗ o7

a ⊗ o8
a ⊗ o9

a ⊗ o10
a
)

⊘
(
x1

a ⊗ x2
a ⊗ x3

a ⊗ x4
a ⊗ x5

a ⊗ x6
a ⊗ x7

a ⊗ x8
a ⊗ x9

a
)
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