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Abstract.

While remarkable recent developments in deep neural networks have significantly contributed to advancing the
state-of-the-art in Computer Vision (CV), several studies have also shown their limitations and defects. In particular,
CV models often make systematic errors on important subsets of data called slices, which are groups of data sharing
a set of attributes. A slice discovery method (SDM) is meant to detect semantically meaningful slices on which the
model performs poorly, called rare slices. We propose a modular neurosymbolic SDM whose distinctive advantage
is the extraction via inductive logic programming of human-readable logical rules describing rare slices, and thus
enhancing the explainability of CV models. To this end, a methodology for inducing the occurrence of rare slices in
a model is presented. We validate the SDM approach on both the synthetic Super-CLEVR and real-world ImageNet
datasets. Our experiments demonstrate the complete pipeline: first, we successfully induce targeted rare slices using
our taxonomy-based heuristic; second, our neurosymbolic SDM correctly identifies these slices and produces precise,
human-readable logical rules to describe them; and finally, these rules are used to guide a data augmentation process
that successfully mends model behaviour and improves its predictive performance.!
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1. Introduction

Computer Vision (CV) [56] is a field of Artificial Intelligence (AI) that enables computer systems to obtain
semantic information from digital images and videos. Following the remarkable recent developments of deep
neural networks, significant achievements have been made in advancing state-of-the-art performance in
various CV tasks [31], among which it is crucial to mention safety-critical applications, such as autonomous
driving [63].

However, empirical studies, e.g. [47], show that CV models struggle to generalise to new data slightly
different from those on which they were initially trained and tested. A related problem is the presence of
important subsets of data, called slices, for which deep learning models often make systematic errors [17]. A
slice is defined as a group of data sharing a set of attributes. For instance, one study found that some object
recognition models systematically underperform in identifying common household items from non-Western
countries and low-income communities [14]. This underperformance likely stems from variations in the
objects themselves and the different contexts in which they appear.

Accurately detecting underperforming slices, called rare slices, allows one to carefully analyse such
prediction errors and subsequently improve the model. Expectedly, identifying rare slices is a complex
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task, especially for high-dimensional and unstructured data, e.g. images, where such slices often manifest
as subtle, non-obvious patterns that are difficult to spot and extract. Furthermore, it is non-trivial to
understand what makes slices rare. In view of this, the slice discovery problem [17] has been described as
mining unstructured input data for semantically meaningful slices on which the model performs poorly.

In this work, we propose to tackle the slice discovery problem with a neurosymbolic Al approach [23],
given the capabilities of Machine Learning (ML), and in particular Deep Learning (DL), for unstructured
data classification and Knowledge Representation and Reasoning (KRR) methods for transparent logical
inference and explainability. In particular, we provide a framework to experiment with different datasets
the effectiveness of our inductive logic programming-based slice discovery method (SDM). This framework
allows us to evaluate our SDM according to the semantic quality of the extracted rules in describing
rare slices and the effect of such rules in reducing model misclassifications. To this end, we leverage
Super-CLEVR [36], a well-known synthetic dataset with a data generator for images of vehicles organised
in hierarchical classes, and ImageNet [31], a large-scale real-world image dataset organised according to the
WordNet [45] hierarchy. The main contributions of our work are summarised as follows:

1. We present our modular neurosymbolic framework for slice discovery, which consists of a closed-loop

that involves data generation (or subsampling), object detection (or image classification), scene graph
generation describing the semantic contents of images, rule learning to detect rare slices, and neural
network model mending.
We then translate the images classified by YOLOv5 into scene graphs in the language of Inductive
Logic Programming (ILP) [9]. Depending on the ground truth, these scene graphs constitute the
positive and negative ILP examples, i.e. those in which the neural network incorrectly resp. correctly
classified the image. Subsequently, we use three different ILP systems, Popper [10], FOLD-R++ [59],
and FastLAS [34], to obtain succinct logical rules that reveal which images are hard for the model to
classify. Finally, the neural network model is trained on its checkpoint with further data generated
using these rules.

2. In order to test the proposed approach on various slice discovery settings, we focus on generating
datasets with rare slices. Closest to our work, Eyuboglu et al. [17] considered the generation of
rare slices in the context of the hierarchical class structure, but did not consider further class
taxonomies besides the default one; this makes their method not really suitable for the scenarios we
are considering. In contrast, a taxonomy-based approach is pursued in this work, and a methodology
for building datasets with rare slices is presented. We provide image datasets with rare slices leveraging
Super-CLEVR (via generation) and ImageNet (via controlled subsampling), and on which we train
YOLOv5 [48] models.

3. We provide an implementation along with experimental results for both datasets to test the
effectiveness of rare slice generation, rule extraction on the classification results of the neural network
model, and model mending. The results show that our approach could reliably generate rare slices and
that rule learning delivered meaningful rules describing rare slices. Furthermore, feeding the neural
network with additional training data generated according to such rules resulted in a significant
performance improvement, as misclassifications decreased considerably.

With our framework, we can generate controlled rare slices in datasets to then test the model behaviour
on them. Furthermore, it allows the automatic mining via ILP of human-readable logical rules that pinpoint
the deficiencies of a classification model and benefit the user’s intuition for model mending. The transparent
nature of logical rules makes them highly interpretable and provides a basis for finding model explanations
from possible background information.

This article extends our previous work [7] with (i) a more detailed and extended related work section, (ii)
the use of further ILP systems, (iii) a more rigorous experimental evaluation using an additional real-world
dataset, and (iv) an improved implementation of the proposed SDM framework.

The remainder of the article is organised as follows. In Section 2, we provide a review of related work
on SDMs. Section 3 presents an introduction to the Super-CLEVR and ImageNet datasets and the ILP
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systems. Section 4 describes the proposed neurosymbolic framework for slice discovery. Section 5 presents
a taxonomy-based methodology for generating datasets containing rare slices. Section 6 describes the
experimental setup and presents an overview of the obtained results. The experimental results are discussed
in Section 7. Finally, conclusions and future work are provided in Section 8.

2. Related Work

Several studies [5, 14, 28, 42] have shown that neural network models often make systematic errors
on data slices. The impact of such errors is especially pronounced for critical application areas, such as
medical diagnostics [43] and fraud detection [27], where accurate identification of rare slices positively
influences essential decision-making. Consequently, recent research has proposed automated SDMs aimed
at identifying semantically meaningful slices in which the model exhibits prediction errors. An optimal
SDM should automatically detect data slices containing coherent instances that closely correspond to a
concept understandable by humans [26] and on which the model underperforms.

Previous research has addressed the slice discovery problem by focusing on datasets with metadata or
structured (e.g. tabular) data. In [6] the Slice Finder system is proposed, which employs two different
automated data slicing methods, viz. decision tree training and lattice searching. In [49], the authors
present SliceLine, an exact yet fast and practical enumeration algorithm to find problematic data slices
leveraging monotonicity properties and upper bounds for effective pruning. On the other hand, the Premise
algorithm [22] heuristically discovers those feature-value combinations (i.e. patterns) that provide clear
insight into the systematic errors of NLP classifiers.

Dealing with the slice discovery problem becomes particularly challenging for unstructured data, such
as images and audio. Recent studies have proposed methods for identifying slices in this context. Several
of them embed the data in a representation space and then use clustering or dimensionality reduction
techniques. The Domino SDM [17] exploits cross-modal embeddings and an error-aware Gaussian mixture
model to discover and describe coherent slices, while the Spotlight method [13] for finding systematic errors
is based on the idea that similar inputs tend to have similar representations in the final hidden layer
of a neural network. Spotlight exploits this similarity by focusing on such representation space, aiming
to identify contiguous regions where the model underperforms. In [55], the authors describe a two-step
method, called George, for identifying underperforming slices without requiring access to slice labels. In
the first step, slice labels are estimated by training a model and splitting each class into estimated slices
through unsupervised clustering in the model feature space. In the second step, these estimated slices are
used to train a new model, optimizing for worst-case performance over all estimated slices via a robust
optimisation technique [50].

The recent explosion of generative Al has seen various works considering the use of such models to
address the slice discovery problem. The PromptAttack procedure [40] identifies systematic errors by
exploiting a text-to-image model to synthesise images, conditioned on a prompt that encodes information
about subgroups and classes. In [21], a human-in-the-loop tool is proposed, called AdaVision, which
uses GPT-3 [4] to suggest coherent but potentially underperforming slices to explore, and CLIP [46] to
retrieve relevant images to improve slice identification. In [1], the authors present the SCROD pipeline for
slice discovery in object detectors applied to synthetic street scenes. Such a pipeline consists of several
generative models to synthesise images with fine-grained control in a fully automated and scalable way. The
interactive VLSlice system [54] is designed to test vision-and-language models by discovering their slices
from unlabelled image datasets. In [38], the SSD-LLM framework is proposed for automatic subpopulation
structure discovery using a Large Language Model (LLM) [4]. Such a framework is based on the idea of
generating informative image captions via a multimodal LLM [60], and then analysing and summarising
the subpopulation structure of datasets through an LLM. SSD-LLM can be combined with subsequent
operations to tackle various tasks better, including slice discovery.
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Fig. 1. The figure on the left shows images from Super-CLEVR [36] of vehicles made up of their parts characterised by four
attributes, i.e. colour, size, material, and texture. The middle and right figures show examples of Super-CLEVR renderings
with generated questions.

Distinguishing between positive and negative examples is central to our method. Prior work has leveraged
Linear Temporal Logic over finite traces (LTLf) to separate temporal classes [19], and used Learning
From Interpretation Transitions (LFIT) to explain black-box behaviour [57]. Other approaches generate
interpretable Signal Temporal Logic (STL) formulas for time-series classification [61], integrate symbolic
reasoning with neural models via abductive inference [12], or learn differentiable rule sets from continuous
features [64]. Our method follows this line of research but focuses on ILP for discovering interpretable rules
in the context of slice discovery for high-dimensional visual data.

While several prior works described above have tackled the problem of identifying data slices on which
models underperform, they typically focus on black-box or subsymbolic techniques. A key challenge in this
area is the lack of interpretability in the discovered slices. Our work directly addresses this gap by introducing
a neurosymbolic approach that extracts human-readable logical rules to describe underperforming slices.
Furthermore, we show that the rules can also be used effectively for mending the CV model, thus providing
their direct practical application.

3. Preliminaries

In this section, we provide an overview of both the Super-CLEVR and ImageNet datasets and briefly
overview ILP and the systems we use.

3.1. Super-CLEVR

Inspired by the seminal work on CLEVR [25], the Super-CLEVR dataset was designed to test the visual
reasoning capabilities of Al systems. It comprises images featuring classes of vehicles, such as motorcycles,
cars, and aeroplanes. The classes are further divided into vehicle subclasses, which make the dataset
hierarchical, a crucial characteristic for inducing the occurrence of rare slices within our SDM framework.
For example, the “motorcycle” class contains “chopper”, “sportbike”, “dirtbike”, and “scooter” subclasses,
also referred to as “shapes”. The hierarchical structure of vehicle classes and their corresponding subclasses
(shapes) defined in the original Super-CLEVR dataset are shown in Table 1. Vehicles have four attributes,
i.e. colour, size, material, and texture. Each image is accompanied by a set of questions designed to test
various aspects of visual reasoning, including types such as counting, existence, comparison, attribute
identification, and spatial relationships as shown in Fig. 1. Super-CLEVR contains about 30k images and
10 question-answer pairs for each of them.

The Super-CLEVR dataset generator employs an algorithm that uses Blender [8] to create a diverse
set of images and corresponding questions. Each image is generated by randomly placing vehicles in a
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Table 1

Hierarchical structure of vehicle classes and their corresponding subclasses (shapes) defined in the original Super-CLEVR
dataset.

Vehicle Class  Vehicle Subclasses

Aircraft Private Jet, Fighter Jet, Biplane, Airliner

Bicycle Road Bike, Mountain Bike, Utility Bike, Tandem Bike
Bus Transit Bus, Double Bus, Articulated Bus, School Bus
Car SUV, Pickup Truck, Station Wagon, Minivan, Sedan

Motorcycle Dirtbike, Sportbike, Chopper, Scooter

three-dimensional scene. The attributes of these objects are also randomly assigned within predefined
categories. Spatial relationships are managed to ensure objects do not overlap unrealistically. Once an image
is composed, the generator creates questions based on different types of reasoning tasks. The questions
are formulated by randomly selecting objects and their attributes in the image and constructing queries
that require an understanding of the objects and their relations. This procedural generation ensures a wide
variety of questions and scenes, overcoming possible human biases when creating datasets.

Example 1 (running example). Throughout the paper, we use a running example to illustrate our method-
ology: a rare slice from the Super-CLEVR dataset involving the “utility bike” subclass. This slice is
statistically rare, appearing with a very low occurrence frequency in the training data, and it is visually
similar to the “mountain bike” subclass, making it a candidate for model misclassification and an ideal test
case for the proposed SDM pipeline.

3.2. ImageNet

To validate our SDM framework on a real-world benchmark, we use the well-known ImageNet [31]
dataset. Unlike the synthetic Super-CLEVR, ImageNet is a large-scale image dataset consisting of real-world
images organised according to the WordNet [45] hierarchy. It contains over 14 million annotated images
representing more than 20,000 categories, making it one of the most widely used benchmarks in CV. For our
experiments, we did not use the entire, vast WordNet hierarchy. Instead, to create a realistic but controlled
setting for evaluating the proposed SDM, we defined a custom taxonomy based on a curated subset of
vehicles from WordNet. This allowed us to apply our taxonomy-based heuristic to induce the generation of
specific rare slices in a focused and challenging experimental environment to test our methodology.

ImageNet is primarily designed for image classification, where each image is associated with a single
class label corresponding to the main object in the scene. It does not provide the detailed, object-level
bounding box annotations found in object detection datasets. Furthermore, as a dataset of real-world
images, ImageNet lacks a procedural image generator. Therefore, creating rare slices or augmenting the
data for model mending are achieved through controlled subsampling of the existing dataset or using
external data augmentation techniques.

3.3. Inductive Logic Programming

Inductive Logic Programming [41] is a subfield at the intersection of ML and KRR that aims to find
patterns in data by learning logical descriptions, utilising background knowledge (B) and sets of positive
(E™) and negative (E~) ground examples. The learning process in ILP aims to find a hypothesis h from a
hypothesis space H, such that BUh = ET, and BUh }£ E™, i.e. the background B plus the hypothesis h
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entails each positive example while it does not entail any negative example. It typically involves, starting
from the known facts and relations contained in B, generating hypotheses consistent with ET, testing
them against F~ to ensure that no negative example is entailed, and refining them until they entail all the
positive and none of the negative examples. If no hypothesis satisfies this condition, the learning process
ends with no solution. While classical ILP systems often assume a single, global background knowledge B
shared across all examples, our framework operates on context-dependent examples. In this setting, each
example is accompanied by its own scene-specific background knowledge derived from the corresponding
image.

ILP has applications in various fields, among them robotics [62], bioinformatics, e.g. protein structure
discovery [58], medicine, e.g. drug design [15, 18], and ECG waveform learning [29], to mention a few;
see [3, 32] for more of them.

A number of ILP approaches and tools are available; for a comprehensive survey on ILP, we refer to [11].

This work tests the following three ILP systems as symbolic reasoning components within the proposed
neurosymbolic architecture for slice discovery:

1. Popper [10] is a state-of-the-art first-order ILP system that implements the learning from failures
approach by combining Answer Set Programming (ASP) [37] and Prolog [2]. It supports infinite
problem domains, reasoning about lists and numbers, learning textually minimal programs, and
learning recursive programs. Furthermore, Popper can learn minimal description length logic programs
as hypotheses from noisy data.

2. FOLD-R++ [59] is in terms of efficiency and scalability an improvement of the FOLD-R first-order
inductive learning algorithm [52], which serves to learn answer set programs from mixed (numerical
and categorical) data for classification tasks. The three main improvements of FOLD-R++ are the
following: (i) it uses the prefix sum algorithm to speed up computation; (ii) it allows negated literals
in the default portion of the learnt rules; (iii) it introduces the hyper-parameter exception ratio, which
is the threshold of the ratio of false-positive examples (i.e. exceptions) to true-positive examples that
a rule can imply.

3. FastLAS [34] is a recent first-order ILP system designed to perform learning tasks in the context of
ASP, based on the context-dependent learning-from-answer-sets framework used by the ILASP [33]
system. FastLAS comes with several restrictions, i.e. it is not as general as ILASP, but it is significantly
more scalable. Furthermore, FastLAS has the advantage of taking as input a customised scoring
function for hypotheses that allows the user to express domain-specific optimisation criteria. Such a
scoring function defines the cost of a rule. FustLAS then computes an optimal solution with respect
to the given scoring function. Finally, a key feature of FustLAS is its capability to handle noisy data
by introducing a penalty mechanism. This mechanism assigns a penalty to each example, which is
a cost for not covering that example. The penalties are defined by a user-specified weight, denoted
by the variable A > 0, A € N, which adjusts the importance of different examples. Higher penalties
may discourage the system from including certain complex rules if simpler alternatives exist, thus
balancing accuracy against simplicity in the learned model.

The ILP systems we use, with the exception of FOLD-R++, are guided by a mode bias, which is a set
of declarations that constrains the structure of the hypotheses the system can learn. These declarations
specify, for example, which predicates can appear in the head or body of a rule, their argument types, and
whether negation is permitted. This syntactic bias is crucial for pruning the vast hypothesis space and
focusing the search on meaningful rule templates.

The ability of these three ILP systems to learn from noisy data is fundamental to the functioning of our
SDM. Indeed, a rare slice can be interpreted as a set of exceptions on which a classifier underperforms. In
order to find the pattern that characterises such a set of exceptions, we use the same idea as in [52], which
is to consider misclassifications as positive examples and correct classifications as negative examples to
obtain rules describing rare slices.
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Fig. 2. Overview of the proposed neurosymbolic SDM architecture. The solid arrows show the data flow, while the dashed
arrow represents the use of the extracted logical rules to generate further training data to improve classification performance.

Example 2 (continued). Continuing our example, suppose the trained model frequently confuses “utility
bike” with “mountain bike” and misclassifies it as “sports bicycle” instead of “urban bicycle”. After feeding
these misclassifications (positive examples) and correct classifications (negative examples) into an ILP
system, it might produce the following logical rule:

hard(V0O) :- contains(VO, V1), shape(V1, utility_bike), color(V1i, yellow),
material(V1, rubber), direction(V1, south), sce_id(V0), obj_id(V1).

This rule provides a precise, human-readable diagnosis. It has learned that “a scene VO is hard for the
model to classify if it contains an object V1 whose shape is utility bike, colour is yellow, material is rubber,
and direction is south”. The sce_id(V0) and obj_id (V1) predicates simply bind the variables to the scene
and object identifiers, respectively. This symbolic output is the key to understanding the rare slice and is
used to guide the subsequent model mending process.

4. Neurosymbolic Framework for Slice Discovery

In order to construct a neurosymbolic SDM approach, we propose an architecture of a system as shown
in Fig. 2. The system comprises several modules, shown as boxes, which process inputs in a pipeline. From
configuration files or available data sources, datasets containing rare slices are constructed (either through
generation or subsampling) on which a neural network model is trained and evaluated. Then, a semantic
description of the images is produced, from which rules for detecting rare slices are extracted. Finally, the
rules are used to generate further training data to mend the neural network model, thus closing the loop of
model learning. In the following, we describe the tasks in the processing pipeline in more detail.

According to Kautz’s taxonomy of neuro-symbolic systems [51], our SDM approach aligns with the
[Neuro— Symbolic] paradigm, where the outputs of a neural system (here, a vision model) are post-processed
by a symbolic module to derive interpretable logical rules.

4.1. Data Generation

The first step in the pipeline is concerned with data generation, i.e. producing datasets containing rare
slices. We provide a methodology for them, which will be detailed in Section 5.

CV encompasses a wide range of tasks, among which image classification and object detection are two of
the most prominent. Image classification assigns a single label to an entire image, identifying the most
prominent object or scene. In contrast, object detection involves identifying and localising multiple objects
within an image by predicting both their classes and bounding boxes. Our framework handles both tasks
but requires different processing pipelines accordingly.

At an abstract level, the task consists of creating a labelled dataset D, where elements are labelled with
their ground-truth annotations. In our general framework, D consists of pairs (I, L), where I is an image
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and L is its label . For Super-CLEVR, L includes both the class and bounding box annotations, whereas
for ImageNet, L contains only the class label.

For illustration, in the Super-CLEVR setting L = {(b1,h1),..., (bn, hyn)}, where each b; is a bounding
box of some object o; in I, and h; is in the underlying hierarchy H the root class of the subclass of o;,
1 < i < n. For example, the vehicle subclass (or “shape”) “dirtbike” may have as its root class “land
vehicle”, “motorcycle”, or another class depending on the hierarchy H under consideration. A bounding box
b; is a tuple (x~,y~, 2", y"), where (z~,y ) is the top-left corner point and (z*,y™) is the bottom-right
corner point. Objects are identified by their bounding boxes, i.e. we can view b; as an object ID. Following
the ImageNet standard, the dataset provides a single class label L for each image. It does not include the
bounding boxes or scene graphs, so additional annotations can be generated using external tools.

For datasets with a synthetic generator, such as Super-CLEVR, we directly modify the generator
that renders images to control the distribution of objects. By adjusting the occurrence frequency of
specific objects according to a given hierarchy H, we can create a new dataset that contains controlled
rare slices. The dataset is split into a training and a validation set, based on information provided in
configuration files, e.g. whether or not each split contains rare slices. The generator produces a labelled
dataset D = {(I1,L1),...,(In,, Ly.)} where the number of images N per split s is approximately ns/[,
with ng being the total number of objects per split and 3 the average number of objects per image. For
real-world datasets where no generator is available, such as ImageNet, we simulate this process. We achieve
the same outcome by performing a controlled subsampling of the original dataset to construct new training
and validation splits with the desired distribution of rare slices.

The Super-CLEVR generator produces further data for the images, such as questions about them (which
we disregard, as not needed) and scene descriptions consisting of object attributes (e.g. colour and size).
This enriched description is the ground truth of the images, which can be used for synthetic scene graph
generation and fine-grained classification. For ImageNet, which lacks such built-in annotations, we obtain
comparable semantic descriptions through automated scene graph generation methods applied to the
subsampled images, as later described in Section 6.3.1.

4.2. Object Detection and Image Classification

Once a dataset is prepared, we train and evaluate a neural network model to produce the classification
results that will be analysed for rare slices discovery. This process involves a standard training and validation
cycle, followed by a specific step to categorise the results for our SDM pipeline. First, a model (e.g. YOLOwS)
is trained on the training split of the dataset D, which contains the induced rare slices. The trained model is
then run on the validation split, where the object distribution is balanced to fairly evaluate the performance
of the model. The model prediction format depends on the CV task associated with each dataset. For image
classification (e.g., on ImageNet), the model returns a single class label h for a given image I. For object
detection (e.g., on Super-CLEVR), it returns a set of pairs (13, fz), where each pair consists of a predicted
bounding box b and its corresponding class label h from the hierarchy # with its associated confidence
score. Finally, to prepare the data for rule extraction, we analyse the model performance on the validation
set and, for each class h € H, partition the validation images into two sets:

- E;f (positive examples): This set contains images where the model failed. For object detection, this
means any image where at least one object of class h was misclassified. For image classification, it is
any image of class h that received an incorrect label.

— E, (negative examples): This set contains images where the model succeeded. For object detection,
this means all objects of class h in the image were correctly classified. For image classification, it is
any image of class h that was correctly labelled.

These sets of positive (failure) and negative (success) examples constitute the input for the subsequent
scene graph generation and rule extraction steps.
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4.8. Scene Graph Generation

Scene Graph Generation (SGG) deals with producing a semantic graph representation from an input
image. A scene graph is a (labelled) directed graph G = (V, E) comprising object nodes, attribute nodes,
and relation nodes. Each object is typically associated with a bounding box, a class label, and attributes
such as colour or size. Relations capture connections between object pairs, e.g. spatial relations like behind
or next to. Scene graphs offer a powerful semantic abstraction of visual data that can be leveraged to identify
patterns linked to misclassifications and support interpretable rule extraction. Various SGG methods exist,
most based on deep neural networks, but symbolic or hybrid approaches are also possible.

In synthetic datasets like Super-CLEVR, ground-truth scene graphs can be directly obtained from
the dataset generator, as rich annotations are available for all objects, attributes, and relations. These
ground-truth graphs provide a perfect basis for constructing logical examples for rule extraction. In contrast,
for real-world datasets like ImageNet, which lack such ground-truth annotations, scene graphs must be
generated through external tools (e.g., automated SGG methods or additional annotation pipelines [35]).
These tools are able to derive the necessary object nodes, attribute nodes, and relation nodes, the latter
also deducible from spatial configurations. In both settings, we convert validation examples in E,f and E,
into scene graphs Gg+ and G g-, respectively: for Super-CLEVR, these are constructed using ground-truth
annotations; for ImageNet, they are generated using additional tools as described in Section 6. Regardless
of the source, each image in the validation set is converted into this structured graph format, ensuring a
consistent semantic representation suitable for the subsequent ILP-based rule extraction step.

4.4. Rule Extraction via Inductive Logic Programming

We define an instance of the rule extraction problem in the ILP language to detect rare slices. To this
end, we translate the scene graphs in G B Tesp. G - of class I into their logical representations which are
h

suitable for assembling the sets ILP+ and ILP - of positive and negative examples, respectively, and the
h h

background knowledge B describing the semantic information about objects in the images. This involves
converting the objects and their attributes depicted in the scene graphs into logical facts.

Context-Dependent Background Knowledge. We clarify that, while classical ILP systems often assume
a single, global background knowledge B shared across all examples, in our setting the examples are
context-dependent: each example includes its own scene-specific information derived from the corresponding
image. This is the case for FastLAS, where the background facts describing object attributes are included
directly in each example (see Figure 3). For Popper, the background knowledge is provided separately from
the examples, but it is still paired uniquely with each example via identifiers. In the case of FOLD-R++, the
background knowledge is explicit in the tabular representation defined by CSV columns as features. Formally,
for a set of examples F, for each e; € E there exists a distinct background knowledge B; specifically related
to e;. For ease of notation, in the rest of the paper, we will refer to this context-dependent background
knowledge generally as B. Thus, while the notion of B is preserved, it is virtually instantiated per-example
in different forms across the ILP systems we evaluate.

Then, ILP B ILP B and B are fed into a rule extraction system. Notably, the positive examples
ILP Bf represent the input images for which the model made an incorrect classification, as we look for an
explanation of why the model fails. The rule extraction system, for which we envisage using an ILP system,
then outputs a set of rules as a hypothesis for rare slice detection.

As an example of ILP encoding, Fig. 3 shows excerpts of positive and negative examples and part of the
mode bias used for Super-CLEVR. The representation is in the language of FastLAS, a state-of-the-art
ILP system. Its expressive language allows the description of data and the specification of parameters
and mode declarations to shape the search space. Specifically, FastLAS allows for a penalty to be set for
each example by coding sX@Y, where X is a scene ID and Y is the cost for not covering that example.
The positive example, denoted by #pos, is entailed by its background knowledge B, which is the third
set {contains (19, 0)...} listed, combined with the hypothesis A if there is at least one answer set that
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#pos(s19@4, {hard(19)}, {}, { % Configuration options
contains (19, 0). #maxv(2) .
color(0, yellow).
direction(0, south). % Rule heads
material (0, metal). #modeh (hard (var(sce_id))).
shape (0, utility). % Rule bodies
size(0, large). #modeb (contains(var(sce_id), var(obj_id))).
#modeb (not contains(var(sce_id), var(obj_id))).
contains(19, 1). #modeb (shape (var (obj_id), const(shape))).
. #modeb (color (var(obj_id), const(color))).
H. #modeb(size(var(obj_id), const(size))).

#modeb (not size(var(obj_id), const(size))).
#modeb(direction(var(obj_id), const(direction))).

#neg(s3202, {hard(32)}, {}, { #modeb (not direction(var(obj_id), const(direction))).
contains (32, 0). #modeb (material (var (obj_id), const(material))).
color(0, gray). #modeb (not material(var(obj_id), const(material))).
direction(0, southwest).
material(0, rubber). % Type domains
shape (0, tandem). shape (utility).
size(0, small). direction(east).

contains (32, 1).
e % Scoring function
». #bias("penalty(20, head(X)) :- in_head(X).").

Fig. 3. The left side of the figure shows excerpts of positive and negative examples with their context-dependent background
knowledge, in the language of FastLAS. The right side of the figure shows an excerpt of the mode bias.

includes the ground atom hard(19). The negative example, denoted by #neg, is not entailed if there is no
answer set of its background knowledge B combined with h that includes the hard(32) atom. Background
knowledge B for each example is derived from the scene graphs of the images. The hard/1 predicate was
explicitly introduced as a rule head to represent in which case a scene is difficult for the classifier, i.e. it
contains rare slices, depending on its composition of objects and attributes. The mode bias specifies that the
hard (X) predicate must only appear as a rule head, where X is a scene ID. Conversely, the contains (X,Z)
predicate, where X is a scene ID and Z is an object ID, can only appear in the rule body. The same
applies to the shape(Z,sha), color(Z,col), size(Z,siz), direction(Z,dir), and material (Z,mat)
predicates, where Z is an object ID and sha, col, siz, dir, and mat are constants of the respective domains.
Furthermore, four predicates, i.e. contains, size, direction, and material, can also appear as negative
literals in the rule body. In the FastLAS mode bias, only a subset of predicates is specified as negative to
tailor the search space. Finally, FastLAS allows the specification of the maximum number of variables per
rule via the #maxv directive, and the scoring function via #bias("penalty...").

Example 3 (continued). Consider a scene where “a yellow, rubber utility bike facing south” is misclassified
by the object detector. Its corresponding scene graph is translated into a positive example for the ILP
system for rule extraction. In the FastLAS syntax, each #pos or #neg block defines one example. For
instance, in the positive example #pos(s1904, {hard(19)}, {}, {contains(19, 0). ...3}). in Fig. 3,
the first argument is the unique example identifier plus its penalty, the second is the set of atoms that
the learned rules must prove (in this case, hard(19)), the third specifies atoms the rules must not prove
(unused in our examples), and the fourth block contains the context-dependent background knowledge, a
set of facts describing this specific scene. In this case, the fact contains (19, 0) links object 0 to scene 19,
while the subsequent facts, such as shape(0, utility) and color(0, yellow), define its attributes. In
contrast, a scene containing a correctly classified vehicle, like a “tandem bike” in Fig. 3, would be added as
a negative example #neg(...)..

The mode bias then defines the structure for the rules the ILP system can learn. For exam-
ple, #modeh (hard(var(sce_id))). declares that the head of any learned rule must be of the form

© 00 N O O W N

g DD DD DD DR DWW W W W W W W W NN NN NNNN R R R R R R R R, e
» O © 00 N O O b W N B O O 0N O O P W N P O O 0N O P WN P O O 0N O O W N P O



© 00 N O O W N

B DD s DR D DWW W W W W W W W WNNNNNNNNNDDN R PR R R R R R R
0o N O b W N, O W 00N O WN R, O O 00N R WN R, O © 0N O W N =, O

49

M. Collevati et al. / Leveraging Neurosymbolic Al for Slice Discovery 11

hard(ScenelD), identifying difficult scenes for the model, while #modeb lists all admissible object predicates
and their values for the rule body.

Given the complete input in Fig. 3, FastLAS produces the following hypothesis h:

hard(V0) :- contains(VO,V1), size(V1,large), material(V1,rubber), shape(V1,utility),
direction(V1,south), sce_id(V0), obj_id(V1).

hard(V0) :- contains(VO,V1), shape(V1,utility), color(Vi,yellow), direction(V1,south),
sce_id(V0), obj_id(V1).

hard(V0) :- contains(VO,V1), shape(V1i,utility), direction(V1i,north), sce_id(V0), obj_id(V1).

hard(V0) :- not size(V1,large), not direction(V1,east), not direction(V1,southeast),
contains(V0O,V1), shape(V1i,utility), color(V1i,purple), sce_id(VO0), obj_id(V1).

Informally, these rules express that a scene is considered difficult for the model to classify if it contains a
“utility bike” with specific attributes. For example, the first rule says that whenever there is a scene with a
“large rubber utility bike facing south”, the neural network model will likely make a misclassification error
on such an object.

The Popper encoding is very similar in structure to the FastLAS encoding since it consists of a file for
specifying the examples, one for the background knowledge, and one for the mode bias. In contrast, the
FOLD-R++ encoding is more simplified as it only consists of a CSV file of tabular data, where the first row
specifies the feature names for each column, and subsequent rows provide all the examples. The complete
encodings for the Popper, FOLD-R++, and FastLAS systems used in the experiments are available in the
online repository, with excerpts provided in Appendix B.

4.5. Model Mending

The final step in our SDM pipeline is model mending, where the extracted rules discovered in the previous
stage are used to correct model deficiencies. This is achieved by augmenting the original training data with
new images that specifically target the identified rare slices. For a synthetic dataset like Super-CLEVR, we
use the data generator to procedurally create new images that precisely match the conditions specified by
the logical rules. For a real-world dataset like ImageNet, while generative models offer one possible path for
data augmentation, our approach instead relies on curated subsampling. We identify and select images from
the complete ImageNet dataset that match the rule conditions to effectively augment the training data
without generating synthetic images. In both cases, the model is then retrained on this enriched dataset to
improve its robustness and performance on rare slices.

Example 4 (continued). Fig. 5 shows the effectiveness of our model mending process: before the intervention,
the model misclassifies the “utility bike” rare slice as “sports bicycle”, whereas after retraining it with data
guided by the extracted rules, it correctly classifies it as “urban bicycle”.

5. Rare Slice Generation Methodology

Motivated by the limitations of existing rare slice generation methods in our context and the need for
a reliable testbed for our SDM, we present a taxonomy-based methodology to induce the occurrence of
controlled rare slices in a model.

In our framework, following the characterisation introduced by Domino [17], we define a rare slice as an
object subclass that appears infrequently in the dataset and on which the model underperforms. Therefore,
a rare slice has two key properties:

1. Statistical Rarity: The slice appears with a very low frequency in the dataset.
2. Functional Rarity: The model systematically underperforms on the slice.
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While statistical rarity can be directly controlled (e.g., by setting a low occurrence probability via the
Super-CLEVR generator, or via controlled subsampling of the ImageNet dataset), functional rarity is
a model-dependent property. To reliably induce functional rarity, we propose a heuristic that bases its
intuition on the fact that a CV model is more likely to fail when forced to distinguish between visually
similar objects that belong to different target classes. Therefore, our heuristic is to intentionally design
custom taxonomies that separate these similar object subclasses into distinct target classes (e.g., placing
“dirtbike” in the “motorcycle” class and the visually similar “mountain bike” in the “bicycle” class). By
then making one of these subclasses statistically rare, we induce the generation of a controlled rare slice in
the classification model. This approach can be applied to any dataset, including Super-CLEVR (by defining
custom class hierarchies for the generator) and ImageNet (by grouping and re-mapping classes from its
native WordNet hierarchy).

To formally identify these underperforming slices, we use a main performance metric for each task as
a proxy for difficulty. A target class is flagged as possibly containing a rare slice if its metric falls below
a dataset-dependent target class threshold 7.. Specifically, we use per-class recall for the Super-CLEVR
object detection task and Top-1 accuracy for the ImageNet image classification task. This threshold allows
us to systematically identify underperforming slices and study them in controlled settings.

Our methodology for generating rare slices begins with a given class hierarchy H = {hy : §1,..., hpp :
Sm}, where each root class h; contains a set of subclasses s;. We then identify a set of pairs P =
{(c1,¢2),...,(Cn-1,cn)},n =1, of visually similar subclasses, each belonging to some s;, that a CV model

is likely to confuse (e.g., “mountain bike” and “dirtbike”). Finally, we construct a dataset D such that, for
a given class h; € H, one of its subclasses ¢; appearing in a pair of P occurs with a very low occurrence
probability o in D. We implement this methodology through a configurable, step-by-step process. While
we illustrate it here for a synthetic dataset like Super-CLEVR, the procedure is analogous for a real-world
dataset like ImageNet, where “generation” is simulated via controlled subsampling of the original dataset.

1. Define Rare Slice Candidates: We first create a slice configuration file that specifies the set S =
{¢i | ¢; appears in a pair of P} of visually similar subclasses intended to be rare. For example, in
Super-CLEVR, ¢; can be the “dirtbike” subclass, which is paired with “mountain bike” in P because
they are visually similar. In the same file, each subclass ¢; may be restricted by specifying any
combination of attribute values that makes the respective slice more specific, such as by fixing a
particular colour and material. For example, a rare slice can be defined as the “dirtbike” subclass with
colour “red” and material “metal”. These user-specified attributes are exhaustively combined with
all values of the remaining attributes. For example, if the attribute “size” is not specified, then the
rare slice “dirtbike-red-metal” will include all possible values of “size”, i.e. “dirtbike-red-metal-small”
and “dirtbike-red-metal-large”. Non-rare slices consist of all remaining combinations of subclasses and
attribute values that are not rare slices. For example, the combination “dirtbike-blue-metal-small” is
a non-rare slice because the user has restricted the rare slice to the colour “red”. In summary, all
¢; € 5, together with their user-specified attribute values, are defined as rare slices, while every other
combination of subclass and attribute values is a non-rare slice.

2. Set Occurrence Probability: We assign to each rare slice a low occurrence probability «; lower ov means
a lower probability of creating an object.

3. Configure Data Splits: A second configuration file defines the total number ng of objects per split
s € {train, validation} and whether the split should contain rare slices. We typically generate the
training split with rare slices and the validation split with a uniform distribution of all objects for
fair evaluation.

4. Rare and Non-Rare Slice Configuration: A third configuration file is generated containing the complete
specification of all rare and non-rare slices as defined in step 1 according to the class hierarchy #.

5. Generate or Subsample: The configuration files are used to either guide the modified Super-CLEVR
image generator or the ImageNet subsampling script to produce the final data splits. In both cases,
the goal is to create data splits with the desired object distributions. In Super-CLEVR, the generator
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computes the target number of rare objects for each subclass ¢; in a split s as n., s = a-n,, rounded
to an integer. If n., ; = 0, the configuration is invalid and the process stops with an error that no
rare objects can be generated with the given n,, asking the user to increase it. Otherwise, n., s (= 1)
rare objects are randomly distributed among the rendered images, with the remaining slots filled by
Ng — Z?zl ng,,s uniformly distributed non-rare objects.

Following the above steps, specific rare slices can be generated depending on the taxonomy under consid-
eration. Furthermore, for each generated image, the Super-CLEVR generator produces the corresponding
description consisting of the objects in the scene, their attributes, and the relationships between them.
These descriptions allow scene graphs to be readily derived and then encoded into ILP examples, as shown
in Fig. 3. For ImageNet, which provides a single class label per image without detailed object annotations,
the necessary scene graphs are generated using external tools, as detailed in Section 6.

6. Experiments

The proposed SDM approach was evaluated in a series of experiments, which aimed to assess the
effectiveness of rare slice generation, rule extraction, and model mending. To demonstrate the versatility
of our approach, we performed the evaluation on two distinct benchmarks: the synthetic Super-CLEVR
dataset for an object detection task, and the real-world ImageNet dataset for an image classification task.
This section describes the evaluation platform, outlines the experimental setup for both benchmarks, and
presents the results from our analysis. All data and details are available in the online repository.

6.1. Evaluation Platform

The evaluation platform is a server running Ubuntu 22.04.2 LTS (kernel version 6.8) with two Intel Xeon
Silver 4314 CPUs (each having 16 cores at 2.40GHz, 2 threads per core, and 24MB of cache), 1,024GB of
DRAM, four NVIDIA RTX A5000 GPUs (each having 24GB of VRAM), and the CUDA 12.2 APIL.

6.2. Super-CLEVR Experiments

This section details the experimental setup and presents the results from our evaluation of the proposed
SDM architecture for the object detection task on the generated Super-CLEVR dataset. Specifically, we
built a challenging and imbalanced training set and used it to train several YOLOwv5 models for object
detection, each based on a different set of target classes from our custom taxonomies. Afterwards, we
iteratively evaluated, diagnosed, and improved these models on the validation set. We outline the data
taxonomies, dataset composition, the neural network architecture, and the iterative process of slice discovery
and model mending in our pipeline.

6.2.1. FExperimental Setup
In the following, we describe the experimental setup for each module of our SDM architecture.

Taxonomies. In our experiment, we used two custom taxonomies based on vehicle subclasses available in
Super-CLEVR: airliner, biplane, fighter jet, private jet, sedan, minivan, station wagon, pickup truck, SUV,
school bus, articulated bus, double bus, transit bus, scooter, chopper, sportbike, dirtbike, tandem bike,
utility bike, mountain bike, and road bike. First, we identified five pairs of vehicle subclasses as visually
similar: (“dirtbike”, “mountain bike”), (“articulated bus”, “transit bus”), (“utility bike”, “mountain bike”),
(“pickup truck”; “sedan”), and (“private jet”, “airliner”). Then, we defined two Super-CLEVR taxonomies
according to the proposed heuristic presented in Section 5, separating the vehicle subclasses of the pairs
into different target classes. Specifically, as we descend toward the bottom of a taxonomy, more pairs are
separated into distinct classes. In this way, we induced the generation of five rare slices to test the SDM
implementation. To investigate rare slice generation, we defined from these taxonomies a total of five sets
of target classes, referred to as hierarchies, each serving as training data labels to train a separate YOLOv)
model. The two taxonomies are listed and described below:
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1. Vehicle Type (VT) classifies vehicles according to their type in a multilevel taxonomy, where target
classes become more and more specific at each level. The name of a class suggests the vehicles it
contains. For example, the “air vehicle” class contains air vehicles such as “airliner” and “biplane”. In
contrast, the “scooter” and “mountain bike” vehicles are in the “land vehicle” class, but also in the
class below, called “two-wheeler”, since they only have two wheels. However, “scooter” belongs to the
more specific “motorcycle” class while “mountain bike” is in the “bicycle” class. The same applies to
the other classes and vehicle subclasses, as shown in Fig. 7, where vehicle subclasses are the leaves
of the taxonomy. In the following, the four different hierarchies considered in the experiments to
evaluate and compare the influence of rare slices on classification performance are reported. For each
hierarchy of the VT taxonomy, the corresponding classes constitute the targets for training a neural
network model.

— Hierarchy 1 (VT:H1): “air vehicle” and “land vehicle”.

— Hierarchy 2 (VT:H2): “air vehicle”, “two-wheeler”, and “multi-wheeler”.

— Hierarchy 3 (VT:H3): “air vehicle”, “bicycle”, “motorcycle”, “bus”, and “car”. These are the
classes that constitute the original hierarchy used in Super-CLEVR.

— Hierarchy 4 (VT:H4): “air vehicle”, “sports bicycle”, “urban bicycle”, “sports motorcycle”,

MW M PE 1Y

“urban motorcycle”, “regular bus”, “specialized bus”, “offroad car”, and “urban car”.

Note that we purposely designed VT:H1 and VT:H2 not to satisfy the heuristic criterion, i.e. no
previously defined pair of vehicle subclasses was separated into different target classes, serving as base
cases. In contrast, for VI'H3 and VT.H/, we defined the classes based on the heuristic criterion. In
particular, VT:H3 only separates the (“dirtbike”, “mountain bike”) pair, and VT-H4 separates four
pairs: (“dirtbike”, “mountain bike”), (“articulated bus”, “transit bus”), (“utility bike”, “mountain
bike”), and (“pickup truck”, “sedan”). This design allowed us to assess the effectiveness of the
proposed heuristic in generating rare slices in the YOLOv5 models trained for each hierarchy.

2. Primary Purpose (PP) classifies vehicles according to their primary use, as shown in Fig. 8. For
example, “scooter” is in the “urban vehicle” class, which contains vehicles intended for urban
transportation, while “dirtbike” is in the “offroad vehicle” class. For the PP taxonomy, we considered
only one hierarchy, referred to as PP:H 1, with five target classes — “urban vehicle”, “offroad vehicle”,
“specialized vehicle”, “high-speed vehicle”, and “recreational vehicle” — designed to separate four
of the visually similar pairs of vehicle subclasses: (“articulated bus”, “transit bus”), (“utility bike”,
“mountain bike”), (“pickup truck”, “sedan”), and (“private jet”, “airliner”).

Dataset. For the two taxonomies, we generated a single training set of 10,000 images using the Super-
CLEVR generator. Fach image contains between three and six vehicles from the vehicle subclasses listed
in Table 1. Vehicle attributes taken into account in image generation include: “materials” (e.g. “metal”),
“colours” (e.g. “gray”), “sizes” (e.g. “small”), and “directions” (e.g. “southwest”). To create rare slices, we
introduced data imbalance in the training set by manipulating the occurrence probability « of specific
vehicle subclasses, without restricting them by specifying any combination of attribute values. Specifically,
we selected one vehicle subclass from each pair mentioned above — “dirtbike”, “articulated bus”, “utility
bike”, “pickup truck”, and “private jet” — as potential rare slice by setting its occurrence probability a to
0.05% of the total number ng of vehicles in the training set. Depending on the hierarchy used in neural
network training, these vehicle subclasses are potential rare slices; the remaining vehicle subclasses were
uniformly distributed. Last, to fairly evaluate model performance, we generated a single validation set of
2,500 images with a balanced distribution, where each of the 21 vehicle subclasses is uniformly represented.

Neural Network. For each of the five hierarchies (VI:H1 — VT:H4 and PP:H1), a YOLOv5 model version
yolov5s? was built on the training set running 80, 160, and 320 epochs using an image size of 640 x 640 pixels

2The yolov5s is the second-smallest pretrained version in the YOLOw5 family. It trades off some accuracy for a much
smaller size and faster inference.
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hard(V0) :- contains(VO,V1), south(V1), utility(Vi).
hard(V0) :- contains(VO,V1), north(V1), utility(V1).
hard(V0) :- contains(V0,V2), contains(VO,V1), small(V1), metal(V1), southeast(V2), utility(V2).

Fig. 4. Rules extracted by Popper for the “urban bicycle” class in VT:H4, for sample size 100%. The rules correctly detect
the rare slices “utility bike facing north” and “utility bike facing south”.

and a batch size of 16. The default YOLOwv5 hyperparameters were used, including the SGD optimiser,
initial learning rate of 0.01, final learning rate factor of 0.01, momentum of 0.937, and weight decay of
5.0 x 10~%4. Then, each trained model was evaluated on the validation set, and the results were inspected.

Rule Ezxtraction and Selection. For the rule extraction module, we employ Popper, FOLD-R++, and
FastLAS to identify rare slices within underperforming target classes of each hierarchy. The ILP systems
extract rules based on the scene graphs generated for each image; an example is shown in Fig. 4. These
rules consist of a combination of vehicle attributes, described earlier in Section 3.1. The process begins
by identifying problematic target classes with recall at or below a predefined target class threshold 7.
The value for 7, is empirically determined by analysing the per-class model performance on the validation
set. By placing the threshold within an observed performance gap, a criterion is created to separate
underperforming classes that require intervention from those that are well-performing. For each problematic
class, the ILP systems generate a set of rules describing rare slices that the model struggles to classify
correctly. Then, we analyse these extracted rules to find unifying patterns and simplify them into more
general candidate hypotheses derived by selecting the vehicle attributes that occurred more often in the
extracted rules. For a candidate rule to be considered formally as a description of a potential rare slice, we
introduce a rare slice hypothesis threshold 75,. This threshold is also empirically determined and serves as a
criterion to ensure that a candidate rule for a rare slice is supported by a significant percentage of the
extracted rules. Its purpose is to filter out spurious or overly specific rules that might only be supported by
a small fraction of the ILP hypotheses. The rationale behind this strategy is supported by the fact that if
most of the extracted rules agree on the choice of a vehicle attribute, it means that such an attribute is
more likely to be the most appropriate to characterise positive examples, i.e. rare slices. To ensure the
robustness of our findings, we test each ILP system across various hyperparameter settings with a timeout
of 3,600 seconds:

1. For Popper, we used the noisy mode, which allows it to learn the minimal description length program
from noisy data. Furthermore, we varied the sample size of the validation set, using 25%, 50%, and
100%, to study the scalability as the amount of available data changed.

2. For FOLD-R++, we tested nine configurations by combining the three sample sizes (25%, 50%, 100%)
with three different exception ratios (0.25, 0.50, 0.75). This hyperparameter represents the threshold

of the ratio of false-positive examples (i.e. exceptions) to true-positive examples that a rule can entail.

3. For FastLAS, we used the opl mode, which runs the original FastLAS1 algorithm. Furthermore, to
use it in the mode that supports noisy data, we assigned a penalty to each example, which is the
cost of violating it. As there are much less positive than negative examples and positive examples
are more important to cover because they characterise rare slices, we set the penalty values for
positive and negative examples to 4 and 2, respectively. To narrow down the hypothesis space, the
maximum number of variables per rule was limited to 2. We also tested nine configurations for
FastLAS, combining the three sample sizes with three rule head penalties (10, 20, 30) for the scoring
function that charges such penalty values for each extracted rule head, to observe how they affect the
quality of the output result.

All hyperparameter values mentioned were empirically fine-tuned by exploratory experimentation.

Specifically, we selected several reasonable values to test different configurations of ILP systems in extracting
meaningful rules describing rare slices. All other system hyperparameters use default values. A set of rules
was obtained for each experimental configuration based on the hierarchy, target class, ILP system, and
hyperparameter values considered. This comprehensive evaluation allows us to assess the effectiveness,
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reqular= ;- 0'98% specializ;; 0.98'0.96

r‘egular-bus 0.98 r‘egular-bus 0.97

sporis—motorcycle 0.97 sports—motorcycle 0.98

sports—bicyd

Fig. 5. The left figure shows a scene, based on VT:H4, in which vehicles corresponding to the “utility bike” and “articulated
bus” rare slices are misclassified by YOLOv5 into the “sports bicycle” and “regular bus” classes, respectively. In contrast,
the right figure shows the same scene in which such vehicles are correctly classified, after model mending, into their “urban
bicycle” and “specialized bus” classes, respectively.

speed, and verbosity of each ILP system and to verify that the identified rare slices are consistent across
different configurations.

Model Mending. We proceed with the model mending step after selecting candidate rules that describe
rare slices. We augment the original training set with new images to address data imbalance and further
train the model. These images, generated with the Super-CLEVR data generator, specifically contain
the vehicle attributes based on the rare slices identified by the selected rules. As for the neural network
hyperparameters, the initial learning rate is modified according to the specific needs of each model mending
iteration, as we will discuss below. All other neural network hyperparameters remain as in the initial model
training (see Section 6.2.1). The validation set remains unchanged for all iterations of our SDM pipeline to
ensure a fair and consistent evaluation of performance improvements.

6.2.2. Experimental Results
In the following, we present the experimental results for rare slice generation, rule extraction, and model
mending from the iterative application of our SDM architecture.

Rare Slice Generation and Initial Model Training. Our method successfully generates rare slices on which
YOLOv5 models underperform, as revealed by the experimental results described below. More precisely,
confusion matrices from model validation confirm the effectiveness of our taxonomy-based approach in
inducing the presence of rare slices within the neural network models trained on hierarchies satisfying the
proposed heuristic. Furthermore, rare slices degraded model performance across all epoch values considered
(i.e. 80, 160, and 320), highlighting the persistence of rare slices even as the number of training rounds
increases. The YOLOwv5 training process saves the model weights that achieve the highest performance on
the validation set. Hence, 160-epoch models that performed best were designated as our baseline defective
models. In our object detection task, model performance is measured by its recall metric, also known as
true positive rate (TPR), on the target classes of the validation set. Recall represents the proportion of all
true positives that were correctly classified as positive. To diagnose the models, we inspected the recall
of each target class. To identify underperforming classes, we set the target class threshold 7. to 95.00%.
Any target class performing at or below this threshold is considered problematic and is inspected via our
SDM. As expected, models trained on VT H1 and VT:H2, which did not employ the subclass separation
heuristic, showed no evidence of rare slices, achieving 100% recall for all target classes and thus exceeding
T¢, as shown in Fig. 10 and Fig. 13. In contrast, applying this heuristic to the hierarchy design consistently
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resulted in models exhibiting potential rare slices, a finding substantiated by their confusion matrix recall
values:

— For VT:H3, the “motorcycle” class recall dropped to 94.00%, as shown in Fig. 16, falling below our
performance bar 7. and thus being marked as problematic. The other target classes in this hierarchy —
“air vehicle”, “bicycle”, “bus”, and “car” — all achieved 100.00% recall.

— VT:H4 was the most challenging case. Four of its target classes fell significantly below the threshold
Te, as shown in Fig. 22: “urban bicycle” at 80.00%, “sports motorcycle” at 86.00%, “specialized bus”
at 91.00%, and “offroad car” at 92.00%. These were all identified as problematic classes for rule
extraction. In contrast, the other target classes performed well: the “regular bus” class achieved
99.00% recall, while the “air vehicle”, “sports bicycle”, “urban motorcycle”, and “urban car” classes
all reached 100.00% recall.

— For PP:H 1, four target classes performed at or below the threshold 7., as shown in Fig. 31, making
them targets for diagnosis: “high-speed vehicle” at 92.00%, “specialized vehicle” at 95.00%, “urban
vehicle” at 95.00%, and “offroad vehicle” at 95.00%. In contrast, the “recreational vehicle” class
achieved 100.00% recall.

First Rule Extraction and Selection Iteration. The poor performance of the nine target classes suggests

investigating them in search of rare slices. To this end, we employed our rule extraction module, tasking ILP
systems to find the rules that identify rare slices in each problematic class of the models. After extracting
the rules, we analysed them to identify underlying patterns. As previously mentioned, these rules consist
of a combination of vehicle attributes. Our analysis revealed that the vehicle subclass was the primary
feature in the extracted rules, often appearing with specific secondary vehicle attributes that further defined
the potential rare slice. Therefore, we simplified all these rules into more general candidate hypotheses,
such as “an image is difficult for the object detection model if it contains a dirtbike facing north”. To
formalise which of these candidate rules to consider as descriptions of potential rare slices, we set the rare
slice hypothesis threshold 75, to 33.33%. Consequently, only candidate rules that agree with a percentage
of extracted rules greater than or equal to 7, are retained. Popper, FOLD-R++, and FastLAS results,
summarised in Tables 2-4, revealed patterns across all nine problematic classes. In the tables, an entry is
marked with a v to denote that at least one extracted rule agrees with a candidate rule for that target
class, while an X indicates that no extracted rule does. Furthermore, T" denotes that the ILP system has
timed out. Each mark is accompanied by a tuple where the first value is the runtime in seconds, the
second is the total number of extracted rules, the third is the number of those rules that agree with the
first candidate rule, the fourth is the number of those rules that agree with the second candidate rule,
and so on. We now provide a comparison of the results in these tables between the ILP systems in terms
of effectiveness, speed, and verbosity. Overall, FOLD-R++ was the most effective and robust system. It
successfully identified candidate rules for all nine problematic classes across the three hierarchies and
for most hyperparameter configurations. In contrast, FastLAS demonstrated high potential but was less
consistent. While it successfully identified several rare slices, it was prone to timeouts on larger sample
sizes (e.g., for the “urban bicycle” and “high-speed vehicle” classes) and was highly sensitive to its rule
head penalty hyperparameter. It was also generally the slowest system. Popper was the fastest and least
verbose system, typically producing a small set of rules when successful. However, it was also the least
effective, failing to identify three of the nine slices (“offroad car” in VT:H/, and “offroad vehicle” and
“specialized vehicle” in PP:H 1) and often requiring larger sample sizes to succeed on others. Despite these
individual differences, the combined evidence from all three ILP systems strongly pointed towards the same
underlying vehicle subclasses and their respective attributes, giving us high confidence in the subsequent
hypothesis. A breakdown of the rules extracted for each underperforming class is given below:

— VT:H3: For the “motorcycle” class, we found that 97.30% of rules involved the “dirtbike” subclass,
and 89.19% also specified the “north” direction (Table 5). Since both these percentages exceed 3,
this led to the selection of the more specific candidate rule for model mending:
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Table 2
Rule extraction results of the first iteration of the Popper system on the models for Super-CLEVR.
Sample Size
25% 50% 100%
VTHS
M X (2.94, 0, 0) v (13.29,1, 1) v (29.77,1, 1)
VT:H4
UB v (11.34,2,1,1) v (29.44,3,1,1) v (71.48, 3,1, 1)
SM v (7.26,1,1) v (26.19, 2, 1) v (49.67,1, 1)
OocC X (1.72, 0, 0) X (7.09, 0, 0) X (19.15, 0, 0)
SB X (2.96, 0, 0) v (8.80,1,1) v (29.39, 2, 2)
PP:H1
uv v (11.22,2,1,1) v (25.98,2,1,1) v (56.64,3,1,1)
oV X (3.58, 0, 0) X (7.97, 0, 0) X (30.55, 0, 0)
SV X (1.95, 0, 0) X (6.13, 0, 0) X (17.74, 0, 0)
HV X (7.22,0,0) X (17.63, 0, 0) v (46.47, 3, 3)
Table 3
Rule extraction results of the first iteration of the FOLD-R++ system on the models for Super-CLEVR.
Sample Size
25% | 50% | 100%
Exception ratio
0.25 0.50 0.75 | 0.25 0.50 0.75 | 0.25 0.50 0.75
VT:H3
M v (37.69,1,1) V(3618 1,1) v (37.26,1,1) | v (79.66,1,1) v (77.82,1,1) v (7793, 1,1) | v (290.86,2, 1) v (280.14,2,1) v (182.39,2, 1)
VT:HY
UB v (35.28,2,1,1) v (37.01,2,1,1) v (37.22,2,1,1) |/ (234.91,7,1,1) v (236.99, 7,1, 1) v (122.71, 4,1, 1) | v (649.15, 11, 1,1) v (577.53, 10, 1, 1) v (454.25, 4, 1, 1)
SM X (978, 0, 0) X (9.78, 0, 0) X(819,0,0) | v (154.98,3,1) v (204.66,3,1)  (204.32,3,1) |  (795.97, 5, 3) v (521.79,3,1) v (526.68, 3, 1)
oc v (58.85,1,1) v/ (59.03,1,1) v/ (58.62,1,1) | X(25.89,0,0)  X(25.80,0,0) X (25.81,0,0) v (806.72,7,7) v (814.38,7,7)  / (811.59,7,7)
SB v (89.33,2,1)  / (163.07,4,2) v (123.45,3,1) | v (103.69,1,1) v (104.96,1,1) v (184.92,2,1) | v (2,020.21,12,9) v (798.17,4,2)  / (737.88,4, 1)
PPH1
UV v/ (13668, 5,2, 1) v (131.18,3, 1,1) v (13181, 3, 1, 1) |/ (36644, 5,2, 1) v (275.22,3, 1, 1)  (269.19, 3, 1, 1) |/ (2,376.56, 15, 1, 6) v (562.03, 3, 1,1) v (564.16, 3, 1, 1)
ov v (10750, 4,4)  / (106.64,4,4) v (106.28,4,4) | v (268.38,4,4) v (270.10,4,4) v (269.29,4,4) | v (260.71, 1, 1) v (26195, 1,1) v (260.29, 1, 1)
sV v (15418, 3,2) v (152.29,3,2) v (15281,3,2) | X(2651,0,0)  X(2645,0,0) X (2557,0,0) | v (1,957.50,6,5) v (1,95441,6,5) v (1,949.11, 6, 5)
HY V (26940, 5,5)  V (267.56,5,5) v (115.80,2,2) |  (448.65,4,4) (441.62,4,4) (442.57,4,4) | / (722.85, 3, 3) v (602.35,3,3) v (563.96, 3, 3)
Table 4
Rule extraction results of the first iteration of the FastLAS system on the models for Super-CLEVR.
Sample Size
25% | 50% | 100%
Rule head penalty
10 20 30 | 10 20 30 | 10 20 30
VIHS
M /(16445,1,1) X (168.09,0,0) X (17047,0,0) | v (710.42,6,6) v (703.62,3,3) X (709.12,0,0) |/ (1,979.61,7,6) v (2,000.79, 4, 4)  (1,979.56, 2, 2)
VT4
UB v (428.70,1,1,1) v (420.37,1,1,1) v (432.62, 1,1, 1)| v/ (1,777.84,10,8,7) v (1,732.70, 4, 2, 3) v (1,747.49, 2, 2, 1) T T T
SM v (267.49,5,4) v (278.79,1,1)  / (276.20,1,1) | v (1,242.71,12,8)  / (1,232.06,4,3) v (1,187.63, 1,1) |V (3,185.80, 11, 8) v (3,145.65, 6, 6) v (3,117.27, 1, 1)
oc X(130.18,1,0) X (134.03,0,0) X (135.46,0,0) | / (387.37,3,2) X (390.18, 0, 0) X(397.25,0,0) | v (1,237.95,4,1) X (1,243.66,0,0) X (1,219.60, 0, 0)
SB v (183.55,2,1) X (183.69,0,0) X (175.57,0,0) | v (506.58, 4, 1) X (513.43, 0, 0) X (513.36,0,0) | v (1,804.56,5,3) v (1,750.75, 2, 2) X (1,787.29, 0, 0)
PP:H1
UV v/ (587.16,5,3,4) v (580.60,2,2,2) v (57457, 1,1, 1)| v (1,902.39, 8, 6,3) v (1,930.73,3, 3,2) v (1,939.26, 2, 2, 1) T T T
ov X (187.68,0,0) X (185.68,0,0) X (190.05,0,0) | v (722.63,3,2) X (72156, 0, 0) X (T12.37,0,0) | / (2,587.70,5,2) v (257152, 2,1) X (2,584.88, 0, 0)
SV X(132.89,1,0) X (13817,0,0) X (134.52,0,0) |  (402.53,1, 1) X (415.38, 0, 0) X (402.71,0,0) | X (1,550.34, 1, 0) X (1,557.28, 0,0) X (1,538.56, 0, 0)
v v (415.23,4,3) v/ (42252,1,1) X (413.03,0,0) | v (1,19353,5,3) (L176.64,1,1) X (1,189.77, 0, 0) T T T
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Table 5
Rule extraction results of the “motorcycle” class of the first iteration on the VT:H 38 model for Super-CLEVR.

Total runtime (s)  Total no. rules  Total no. rules per vehicle subclass

Popper 46.00 2 Dirtbike: 2 (100.00%) [North: 2 (100.00%)]
FOLD-R++ 1,108.93 12 Dirtbike: 12 (100.00%) [North: 9 (75.00%)]
Dirtbike: 22 (95.65%) [North: 22 (95.65%)],
FastLAS 8,586.13 23 irtbike: 22 ( ) [Nor ( 0]
Sedan: 1 (4.35%)
Dirtbike: 36 (97.30%) [North: 33 (89.19%)],
Total 9,741.06 37 irtbike: 36 ( ) [Nor ( 0]

Sedan: 1 (2.70%)

Table 6
Rule extraction results of the “specialized bus” class of the first iteration on the VT:H/ model for Super-CLEVR.

Total runtime (s)  Total no. rules  Total no. rules per vehicle subclass

Popper 41.15 3 Articulated Bus: 3 (100.00%) [North: 3 (100.00%)]
Articulated Bus: 33 (100.00%) |North: 19 (57.58%)|,
FOLD-R-+ 4,325.68 33 rticulated Bus: 33 ( ) [Nor ( 0l
Tandem Bike: 1 (3.03%), Utility Bike: 1 (3.03%)
Articulated Bus: 11 (84.62%) [North: 7 (53.85%)],
FastLAS 7.427.78 13 Pickup Truck: 1 (7.69%), Biplane: 1 (7.69%),

Dirtbike: 1 (7.69%), Road Bike: 1 (7.69%),
Fighter Jet: 1 (7.69%)

Articulated Bus: 47 (95.92%) [North: 29 (59,18%)] ,
Pickup Truck: 1 (2.04%), Biplane: 1 (2.04%),
Total 11,794.61 49 Dirtbike: 1 (2.04%), Road Bike: 1 (2.04%),
Fighter Jet: 1 (2.04%), Tandem Bike: 1 (2.04%),
Utility Bike: 1 (2.04%)

Table 7
Rule extraction results of the “high-speed vehicle” class of the first iteration on the PP:H 1 model for Super-CLEVR.

19

Total runtime (s)  Total no. rules  Total no. rules per vehicle subclass

Private Jet: 3 (100.00%) [Large — Metal: 3 (100.00%)]7

Popper 71.32 3
PP Chopper: 1 (33.33%)
FOLD-Re+ 3.874.76 33 Private Jet: 33 (100.00%) [Large — Metal: 33 (100.00%)],
Sportbike: 5 (15.15%), School Bus: 5 (15.15%)
Private Jet: 10 (90.91 L — Metal: 8 (72.73 s
FastLAS 15,610.72 11 rivate Je ( %) [Large — Metal: 8 ( )]

Sedan: 1 (9.09%)

Private Jet: 46 (97.87%) [Large — Metal: 44 (93.62%)]7
Total 19,556.80 47 Sportbike: 5 (10.64%), School Bus: 5 (10.64%), Sedan: 1 (2.13%),
Chopper: 1 (2.13%)
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o Motorcycle first (and only)® candidate rule:
hard(VO) :- contains(VO,V1), dirtbike(V1), north(Vi).

where V1 denotes a vehicle in an image VO.
— VT:H4: For the four problematic classes, the percentage of rules identifying the rare slice exceeded
the threshold 75, in all cases.

o For “specialized bus”, 95.92% of rules identified “articulated bus”, with 59.18% specifying “north”
direction (Table 6).

o For “offroad car”, 84.38% of rules identified “pickup truck” and “rubber” material (Table 18).

o For “sports motorcycle”, 86.36% of rules identified “dirtbike”, with 66.67% also specifying “north”
direction (Table 19).

o For “urban bicycle”, 98.68% of rules identified “utility bike”, with directions “north” (35.53%)
and “south” (34.21%) being the most common secondary attributes (Table 20).

This led to the selection of the following candidate rules for model mending:

o Specialized bus first candidate rule:
hard(V0) :- contains(VO,V1), articulated_bus(V1), north(Vi).
o Offroad car first candidate rule:
hard(V0O) :- contains(VO,V1), pickup_truck(V1), rubber(Vi).
o Sports motorcycle first candidate rule:
hard(VO) :- contains(VO,V1), dirtbike(V1), north(Vi).
o Urban bicycle first candidate rule:
hard(V0) :- contains(VO,V1), utility_bike(V1), north(V1).
o Urban bicycle second candidate rule:
hard(V0) :- contains(VO,V1), utility_bike(V1), south(V1).

where V1 denotes a vehicle in an image VO.
— PP:H1: The ILP systems also found strong evidence for rare slices in this hierarchy, with all candidate
hypotheses surpassing the threshold 7.

)

o For “high-speed vehicle”, 97.87% of rules identified “private jet”, with 93.62% specifying “large’
and “metal” attributes (Table 7).

o For “offroad vehicle”, 89.19% of rules identified “pickup truck”, with 86.49% also specifying
“rubber” material (Table 21).

o For “specialized vehicle”, 96.67% of rules identified “articulated bus”, with 73.33% specifying
“north” direction (Table 22).

o For “urban vehicle”, 95.77% of rules identified “utility bike”, frequently with “north” (43.66%)
and “south” (42.25%) directions (Table 23).

This led to the selection of the following candidate rules for model mending:

o High-speed vehicle first candidate rule:
hard(V0O) :- contains(VO,V1), private_jet(V1), large(V1), metal(V1).
o Offroad vehicle first candidate rule:
hard(V0O) :- contains(VO,V1), pickup_truck(V1), rubber(Vi).
o Specialized vehicle first candidate rule:
hard(V0) :- contains(VO,V1), articulated_bus(V1), north(Vi).
o Urban vehicle first candidate rule:
hard(V0) :- contains(VO,V1), utility_bike(V1), north(V1).
o Urban vehicle second candidate rule:
hard(V0) :- contains(VO,V1), utility_bike(V1), south(V1).

where V1 denotes a vehicle in an image VO.

3This clarification also applies to several subsequent candidate rules and will not be repeated, to avoid redundancy.
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First Model Mending Iteration. To address the data imbalance without introducing catastrophic forgetting?,
we augmented the original training set with new images generated by the Super-CLEVR generator according
to the selected rules. This augmentation was done according to the rules selected in the previous step, which
consist of both the rare vehicle subclass and its most common secondary attributes. For each hierarchy,
the respective defective model (the best performing 160-epoch version) was then retrained on its newly
balanced dataset for 20, 40, and 80 epochs, using the same hyperparameters as before. By comparing the
outcomes of the three numbers of retraining epochs for each model, we determined the most effective model
mending for each specific hierarchy. The results from the number of optimal retraining epochs are detailed
below.

— For VT:HS3, the original training set was augmented with 500 new images of the “dirtbike” rare slice
adhering to its secondary vehicle attribute of facing “north”. The most effective model retraining was
the 20-epoch one, which successfully addressed the deficiency in the “motorcycle” class by increasing
its recall from 94.00% to 99.00%, as shown in Fig. 17. The remaining classes — “air vehicle”, “bicycle”,
“bus”, and “car” — all maintained their 100.00% recall.

— For VT:H/, the training set was augmented with 500 new images for each of the four identified rare
slices, adhering to their secondary vehicle attributes: “utility bike” facing “north” or “south”; “dirtbike”
facing “north”, “articulated bus” facing “north”, and “pickup truck” made of “rubber”. The 20-epoch
retraining was the most effective and led to substantial improvements. The recall for the “urban
bicycle” class rose from 80.00% to 94.00%, “sports motorcycle” from 86.00% to 96.00%, “specialized
bus” from 91.00% to 96.00%, and “offroad car” from 92.00% to 98.00%, as shown in Fig. 23. The
latter three classes became well-detected, and the “urban bicycle” class was significantly improved.
However, “urban bicycle” is the only class to fall below our target class threshold 7. of 95.00%,
marking it as the target for a second SDM iteration. Finally, the target classes that already performed
well were not negatively impacted; “regular bus” recall improved from 99.00% to 100.00%, while “air
vehicle” maintained its 100.00% recall. The other classes saw only a negligible 1.00% drop in recall,
indicating that the mending process did not cause significant catastrophic forgetting.

— For PP:H 1, the training set was augmented with 500 new images for each of its four rare slices
defined by their primary and secondary vehicle attributes: “utility bike” facing “north” or “south”,
“articulated bus” facing “north”, “pickup truck” made of “rubber”, and “private jet” in both “large”
and “metal”. The most effective model retraining was the 40-epoch one, which achieved notable
performance gains. The recall for the “urban vehicle” and “offroad vehicle” classes both rose from
95.00% to 97.00%. Similarly, the “specialized vehicle” recall increased from 95.00% to 98.00%, and
“high-speed vehicle® from 92.00% to 96.00%, as shown in Fig. 32. Finally, the already well-performing
“recreational vehicle” class maintained its 100.00% recall.

The mending process was successful across all hierarchies, substantially improving the recall of the target
classes; notably, the overall performance of the model for VT:H4 improved substantially. The three
previously underperforming classes “sports motorcycle”, “specialized bus”, and “offroad car” now reported
recalls meeting the target class threshold 7. of 95.00%, indicating that their initial rare slices had been
successfully resolved. However, we conducted a second iteration of the SDM pipeline to investigate any

remaining deficiencies.

Second Rule Extraction and Selection Iteration for VT:H4. Despite a significant improvement from
80.00% to 94.00%, the “urban bicycle” class was the only one that still failed to satisfy our threshold
T.. We again employed our rule extraction module, tasking ILP systems to find rules that identify a
potential rare slice within this problematic class. As in the previous iteration, we analysed the rules to
identify underlying patterns and used the same hypothesis formation process and rare slice hypothesis
threshold 75, of 33.33%. The results of this second rule extraction iteration for the “urban bicycle” class are

4Catastrophic forgetting [20], also known as catastrophic interference, refers to the tendency of a neural network to rapidly
and drastically forget previously learned information upon learning new information.
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Table 8
Rule extraction results of the second iteration of the Popper system on the VT:H4 model for Super-CLEVR.

Sample Size

25% 50% 100%
VT:H4
UB X (1.38,0,0) X (4.33,0,0) v (11.37,1,1)
Table 9

Rule extraction results of the second iteration of the FOLD-R++ system on the VT:H/j model for Super-CLEVR.

Sample Size
25% | 50% | 100%

Exception ratio
0.25 0.50 0.75 | 0.25 0.50 0.75 | 0.25 0.50 0.75

VTHY
UB V (37.07,5,5) / (44.94,8,8) / (22.09, 4,4) |V (217.11, 3, 3) / (21544, 3,3) / (216.16, 4, 4) | / (50027, 10, 5) v (188.49,2,2) ¥ (170.81, 7, 7)

Table 10
Rule extraction results of the second iteration of the FastLAS system on the VT:H4 model for Super-CLEVR.
Sample Size
25% | 50% | 100%

Rule head penalty
10 20 30 | 10 20 30 | 10 20 30

VT:H
UB X (67.49,0,0) X (66.89,0,0) X (68.64,0,0)|X (218.81,0,0) X (219.82,0,0) X (217.62, 0, 0) | / (582.65, 5, 2) X (589.29,0,0) X (584.73, 0, 0)

Table 11
Rule extraction results of the “urban bicycle” class of the second iteration on the VT:H4 model for Super-CLEVR.

Total runtime (s)  Total no. rules  Total no. rules per vehicle subclass

Popper 17.08 1 Utility Bike: 1 (100.00%) [North: 1 (100.00%)]

Utility Bike: 43 (93.48%) [North: 41 (89.13%)],

Tandem Bike: 7 (15.22%), Sedan: 2 (4.35%), Scooter: 2 (4.35%),
Sportbike: 1 (2.17%), Private Jet: 1 (2.17%),

Station Wagon: 1 (2.17%)

FOLD-R++ 1,612.38 46

Utility Bike: 2 (40.00%) [North: 2 (40.00%)],
FastLAS 2,615.94 5 Road Bike: 1 (20.00%), Pickup Truck: 1 (20.00%),
School Bus: 1 (20.00%)

Utility Bike: 46 (88.46%) [North: 44 (84.62%)],

Tandem Bike: 7 (13.46%), Sedan: 2 (3.85%), Scooter: 2 (3.85%),
Total 4,245.40 52 Sportbike: 1 (1.92%), Private Jet: 1 (1.92%),

Station Wagon: 1 (1.92%), Road Bike: 1 (1.92%),

Pickup Truck: 1 (1.92%), School Bus: 1 (1.92%)

summarised in Tables 8-10. The ILP systems showed a greater divergence in performance in this iteration.

FOLD-R++ was once again the most effective system. It successfully found candidate rules across all nine
hyperparameter configurations. It was also the most verbose, generating a total of 46 rules, 41 of which
agreed with our candidate hypothesis across all configuration settings. In contrast, Popper and FastLAS
were far less effective. Popper only succeeded in one configuration (at 100.00% sample size) and was the
least verbose, generating only a single rule. FastLAS also only succeeded in one configuration (at 100.00%
sample size with a rule head penalty of 10) and failed in all others, generating just 5 rules in total. This

© 00 N O O W N

g DD DD DD DR DWW W W W W W W W NN NN NNNN R R R R R R R R, e
» O © 00 N O O b W N B O O 0N O O P W N P O O 0N O P WN P O O 0N O O W N P O



© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O © 00 N O O P W N P, O W 00 N O o0 P W N P, O W 00 N OO P W N PR O O 00 N O O W N Pr O

M. Collevati et al. / Leveraging Neurosymbolic Al for Slice Discovery 23

suggests that the remaining performance issue was more subtle to identify. A detailed breakdown of the
rules extracted for the underperforming “urban bicycle” class is provided in Table 11. The evidence pointed
to the “utility bike” subclass as the primary source of the problem. In particular, 88.46% of all extracted
rules involved the “utility bike” subclass, and 84.62% also specified the “north” direction. We hypothesised
that this problem resulted from the difficulty of the model in distinguishing the “utility bike” vehicle, when
facing “north”, from other visually similar subclasses (e.g., “mountain bike”), a confusion that was not
completely resolved by the initial data augmentation. Since both these percentages exceed 73, this led to
the selection of the more specific candidate rule for the second model mending:

— Urban bicycle first candidate rule:
hard(V0O) :- contains(VO,V1), utility_bike(V1), north(V1).

where, as before, V1 denotes a vehicle in an image VO.

Second Model Mending Iteration for VT:H/. For the second mending iteration, we augmented the training
data by generating 500 new images with the Super-CLEVR generator for the “utility bike” rare slice
adhering to its secondary vehicle attribute of facing “north”. We then retrained the best-performing model
from the first iteration (the one mended over 20 epochs) for an additional 20, 40, and 80 epochs. To refine
the model without risking degrading its performance for classes that still rely heavily on previous training,
we employed fine-tuning with a lower initial learning rate of 0.001.

The model retrained for an additional 20 epochs proved to be the most effective. This second intervention
successfully resolved the persistent slice, as shown in Fig. 24. The recall for the problematic “urban bicycle”
class rose significantly from 94.00% to 98.00%, finally surpassing our target class threshold 7.. The other
classes maintained their high performance, with some showing minor fluctuations representing an acceptable
trade-off for the significant improvement in the underperforming class: “sports motorcycle” recall remained
at 96.00%, while “specialized bus” saw a slight single-point increase to 97.00%. The “offroad car” class saw
a negligible decrease from 98.00% to 97.00%, and the “sports bicycle” class also saw a slight decrease from
99.00% to 98.00%. The “urban motorcycle” class improved from 99.00% to 100.00% recall, “air vehicle” and
“regular bus” maintained their 100.00% recall, and “urban car” remained stable at 99.00%. This confirms
that the iterative mending process was highly successful in correcting a specific deficiency without causing
significant degradation elsewhere. Therefore, the process was terminated at this stage.

6.3. ImageNet Experiments

This section details the experimental setup and presents the results from our evaluation of the proposed
SDM architecture for the image classification task on a curated subset of the ImageNet dataset. Specifically,
we built a challenging and imbalanced training set and used it to train a YOLOv5 model for image
classification. Afterwards, we iteratively evaluated, diagnosed, and improved such a model on the respective
validation set. As for Super-CLEVR, we outline the data taxonomy, dataset composition, the neural network
architecture, and the iterative process of slice discovery and model mending in our pipeline.

6.3.1. Experimental Setup
In the following, we describe the experimental setup for each module of our SDM architecture.

Tazonomy. In our experiment, we used a reduced list of 11 vehicle subclasses from ImageNet: tandem
bicycle, motorhome, moped, scooter, mountain bike, jeep, pickup truck, station wagon, convertible, minivan,
and moving van. First, we identified the following four pairs of vehicle subclasses as visually similar:
(“tandem bicycle”, “mountain bike”), (“moped”, “mountain bike”), (“jeep”, “minivan”), and (“station
wagon”, “minivan”). Then, as for Super-CLEVR, we defined a taxonomy according to the proposed heuristic
presented in Section 5, separating the vehicle subclasses of the pairs into different target classes. This
taxonomy, which we refer to as the Vehicle (VE) taxonomy, classifies vehicles according to their type as
illustrated in Fig. 9. For example, the “scooter” subclass is in the “motorcycle” class, while the “pickup
truck” subclass is in the “offroad vehicle” class. To investigate rare slice generation, we defined from the VE
taxonomy a single set of target classes, referred to as Hierarchy 1 (VE:H 1), serving as training data labels
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to train a YOLOv5 model. VE:H1 comprises the following classes: “leisure vehicle” (LV), “motorcycle”
(M), “offroad vehicle” (OV), “passenger car” (PC), and “van” (V). We specifically structured these classes
to create challenging classification scenarios by separating all previous pairs of vehicle subclasses. In this
way, we induced the generation of rare slices to test the SDM implementation.

Dataset. We built our training and validation sets using a subset of ImageNet. The training set consists of
3,634 images distributed across the five classes of our VE taxonomy. To create rare slices, we intentionally
varied the number of images per vehicle subclass, introducing data imbalance. Specifically, we designated
four vehicle subclasses — “tandem bicycle”, “moped”, “jeep”, and “station wagon” — as rare slices. These
subclasses were chosen from each of the four visually similar pairs mentioned above. The occurrence
probability « for each of these subclasses in the training set was set to 5% of the respective target class,
thus making them potential rare slices. For this training set, rare slices were defined without considering
specific values for vehicle attributes, such as colour or position. All remaining subclasses were uniformly
distributed, with each represented by 500 images. To fairly evaluate model performance, we created a
separate validation set of 2,200 images with a balanced distribution, where each of the 11 vehicle subclasses
is uniformly represented. For the ILP systems, we generated scene graphs for each image with the help of
the GPT-4.1° VLM and then manually curated the results to ensure accuracy. This assisted annotation
process allowed us to capture key attributes for both the scene environment and the vehicles. Environment
attributes include “number of persons” (e.g. 2), “background” (e.g. “rural outdoor”), “snow” (e.g. “false”),
and “time of day” (e.g. “daytime”). Vehicle attributes include “colour” (e.g. “black”), “orientation” (e.g.
“side view”), “position” (e.g. “foreground”), “type” (e.g. “tandem bicycle”), and “visibility” (e.g. “fully
visible”).

Neural Network. For the VE:H 1 hierarchy, a YOLOuv5 model version yolovss-cls® was built on the training
set running 20, 40, and 80 epochs using an image size of 224 x 224 pixels and a batch size of 16. The default
YOLOwv5 hyperparameters were used, including the Adam optimiser, initial learning rate of 0.001, final
learning rate factor of 0.01, momentum of 0.9, and weight decay of 5.0 x 10~°. Then, each trained model
was evaluated on the validation set, and the results were inspected.

Rule Eztraction and Selection. For the rule extraction module, we employ the same ILP systems (Popper,
FOLD-R++, and FastLAS) and a similar methodology as described in the Super-CLEVR experiments
to identify rare slices within underperforming target classes. The process again begins by identifying
problematic target classes, for which the ILP systems then extract rules based on the scene graphs
generated for each image. These rules consist of a combination of vehicle and environment attributes,
described in Section 6.3.1. The differences in this setup are as follows:

— Problematic target classes are those with a Top-1 accuracy at or below a predefined target class
threshold ..

— While the hyperparameter settings for Popper and FOLD-R++ remain the same as in Super-CLEVR,
for FastLAS we tested nine configurations combining the three sample sizes (25%, 50%, 100%) with
three different rule head penalty values (1, 5, 10). These values were empirically fine-tuned based on
exploratory experimentation specifically for the ImageNet dataset. We observed during initial runs
that the higher penalty values used in the Super-CLEVR experiments were too restrictive in the
ImageNet context, often preventing FastLAS from learning any rules at all.

Then, the extracted rules are analysed to form candidate hypotheses, which are formally selected if they
meet a predefined rare slice hypothesis threshold 7,. As before, this comprehensive evaluation measures the
effectiveness, speed, and verbosity of each ILP system, while also verifying the consistency of the identified
rare slices.

5We used version gpt-4.1-2025-04-14 by OpenAl [44].
6The yolov5s-cls is the second-smallest pretrained version in the YOLOv5 family. It trades off some accuracy for a much
smaller size and faster inference.

© 00 N O O W N

O g D s D B D A S D s W W W W W W W W W W NN NNNRNNNN B R R s e s e s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O



© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O © 00 N O O P W N P, O W 00 N O o0 P W N P, O W 00 N OO P W N PR O O 00 N O O W N Pr O

M. Collevati et al. / Leveraging Neurosymbolic Al for Slice Discovery 25

Fig. 6. The left figure shows a scene, based on VE:H 1, in which the vehicle corresponding to the “tandem bicycle” rare slice is
misclassified by YOLOwv5 into the “offroad vehicle” class. In contrast, the right figure shows the same scene in which such a
vehicle is correctly classified, after model mending, into its “leisure vehicle” class.

Model Mending. We proceed with the model mending step using the same procedure as in the Super-
CLEVR experiments. After selecting candidate rules that describe rare slices, we augment the original
training set with new images to address the data imbalance and then further train the model to mend its
behaviour. The primary difference in this setup is the source of the new data. Instead of using a generator,
the new images are sourced from the ImageNet dataset, specifically chosen based on the rare slices identified
by the selected rules. As before, the initial learning rate is modified according to the specific needs of each
model mending iteration, while all other neural network hyperparameters remain the same as those used in
the initial model training and described in Section 6.3.1.

6.3.2. Experimental Results
In the following, we present the experimental results for rare slice generation, rule extraction, and model
mending from the iterative application of our SDM architecture.

Rare Slice Generation and Initial Model Training. In our image classification task, model performance
is measured by its Top-1 accuracy, which represents the percentage of validation images where the main
prediction of the model matches the correct label. The YOLOw) training process saves the model weights
that achieve the highest Top-1 accuracy on the validation set. We trained the model for 20, 40, and 80
epochs; the results are shown in Table 12. The model trained for 40 epochs yielded the best initial result,
achieving an overall Top-1 accuracy of 80.32% on the validation set, compared to 79.23% for 20 epochs and
77.73% for 80 epochs, respectively. This model was designated as our baseline defective model. To diagnose
the model, we inspected the Top-1 accuracy of each of the five target classes, as shown in Table 12. To
identify underperforming classes, we set the target class threshold 7. to 86.00%. Any target class performing
at or below this threshold is considered problematic and is inspected via our SDM. Our analysis confirmed
that four target classes fell below this performance bar: “leisure vehicle” at 62.25%, “motorcycle” at 83.50%,
“offroad vehicle” at 85.00%, and “passenger car” at 80.75%. In contrast, the “van” class exceeded the
threshold with an accuracy of 88.00%.

First Rule Extraction and Selection Iteration. The poor performance of the four target classes suggests
investigating them in search of rare slices. To this end, we employed our rule extraction module, tasking ILP
systems to find the rules that identify rare slices in each problematic class of the model. After extracting
the rules, we analysed them to identify underlying patterns. As previously mentioned, these rules consist of
a combination of vehicle and environment attributes. However, the vehicle subclass was the unifying feature
in most rules for each potential rare slice. Therefore, we simplified these observations into more general
candidate hypotheses, such as “an image is difficult for the model to classify if it represents a tandem
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Table 12

Top-1 accuracy of the VE:H1 model on the ImageNet validation set after the initial model training. The left table shows the
overall accuracy at different training epochs, the right table the accuracy for each of the five target classes.

Target class  Top-1 acc. (%)

Epochs  Top-1 acc. (%)

LV 62.25
20 79.23 M 83.50
40 80.32 ov 85.00
80 77.73 PC 80.75
\% 88.00

bicycle”. To formalise which of these candidate rules to consider as descriptions of potential rare slices, we
set the rare slice hypothesis threshold 75, to 33.33%. Consequently, only candidate rules that agree with a
percentage of extracted rules greater than or equal to 7, are retained. The results for Popper, FOLD-R++,
and FastLAS, summarised in Tables 13-15, revealed patterns across all four problematic classes. We now
compare the results in these tables for the ILP systems in terms of effectiveness, speed, and verbosity.

FastLAS was the most effective and robust system, successfully identifying candidate rules for all four
problematic classes across almost all hyperparameter settings. However, it was also the slowest and by far
the most verbose, generating the most “noisy” output. FastLAS produced a total of 408 rules across the four
classes, many of which were non-contributing rules. In contrast, FOLD-R++ was extremely fast, moderately
verbose, but slightly less effective, finding candidate rules for three of the four problematic classes while
generating a total of 90 rules. It completely missed the “offroad vehicle” class. Popper performed the
worst, identifying only the candidate rule for the “leisure vehicle” class and failing on the other three. It
was also the least verbose system, generating a mere 3 rules in total. Despite these individual differences,
the combined evidence from all three ILP systems strongly pointed towards the same underlying vehicle
subclasses, giving us high confidence in the subsequent hypothesis. A detailed breakdown of the rules
extracted for each underperforming class is provided in Table 16 and Appendix D. In particular, for the
“leisure vehicle” class, we found that 72.97% of the rules involved the “tandem bicycle” subclass. Similarly,
“moped” was present in 79.61% of the rules for the “motorcycle” class, “jeep” in 61.00% for the “offroad
vehicle” class, and “station wagon” in 74.34% for the “passenger car” class. Since each of these percentages
exceeds 7y, this led to the selection of the following candidate rules for model mending:

— Leisure vehicle first candidate rule:
hard(V0O) :- contains(V0O,V1), tandem_bicycle(V1).
— Motorcycle first candidate rule:
hard(V0O) :- contains(VO,V1), moped(V1).
— Offroad vehicle first candidate rule:
hard(V0O) :- contains(VO,V1), jeep(V1).
— Passenger car first candidate rule:
hard(V0O) :- contains(VO,V1), station_wagon(V1).

where V1 denotes a vehicle in an image VO.

First Model Mending Iteration. To address the data imbalance without introducing catastrophic forgetting,
we augmented the original training set with new images taken from ImageNet according to the selected
rules. This augmentation aimed to precisely balance the distribution of all vehicle subclasses to a target of
500 images each. The number of new images added for each vehicle subclass was therefore the exact amount
needed to reach this target from their initial count in the imbalanced set. Specifically, we added 473 new
images for “tandem bicycle”, 473 for “moped”, 447 for “jeep”, and 473 for “station wagon”. The defective
model (the 40-epoch version) was then retrained on this newly balanced dataset for 10 and 20 epochs, using
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Table 13

Rule extraction results of the first iteration of the Popper system on the VE:H1 model for ImageNet.

Sample size

25% 50% 100%
VEH1
LV v (0.95,1,1) v (312,1,1) v (5.49,1,1)
M X (0.75, 0, 0) X (2.24,0,0) X (2.53,0,0)
ov X (1.25, 0, 0) X (2.73,0,0) X (4.62,0,0)
PC X (0.65, 0, 0) X (2.40,0,0) X (3.96, 0, 0)
Table 14

Rule extraction results of the first iteration of the FOLD-R++ system on the VE:H1 model for ImageNet.

Sample size

25% \ 50% \ 100%
Exception ratio
0.25 0.50 0.75 ‘ 0.25 0.50 0.75 ‘ 0.25 0.50 0.75

VEH1

v X (0.01,1,0) X (0.01,1,0) X(0.01,1,0)|v (0.06 10,10) v (0.01,4, 1)  (0.01,4,1)|v (0.07,8,8) v (0.01, 1, 1) v (0.01, 1, 1)
M v (0.01,5,5) v (0.02,8,6) v (0.02,8,6)| v (0.02 3,3 v (001,22 v (0.01,1,1)]v (0022 2) v (0.02,2,2) v (0.022,2)
ov X (0.01,0,0) X (0.01,0,0) X (0.01,0,0)| X(0.02,1,0) X (0.02,1,0) X(0.02,1,0)|X(0.021,0) X(0.02 1,0 X (0.02 1,0)
PC v (0.01,3,1) v (0.01,3,1) v (0.01,3,1)| v (0.02,4,4) v (0.01,2,2) v (0.01,2 2)|v (0.02,1,1) v (0.02,1,1) v (0.02, 1, 1)

Table 15

Rule extraction results of the first iteration of the FastLAS system on the VE:HI1 model for ImageNet.

Sample size

VEHI1
0%

M

ov

PC

25% | 50% | 100%
Rule head penalty
1 5 10 | 1 5 10 | 1 5 10
/ (2.30, 20, 16) v (211,17, 15) v (2.06, 5, 3) | / (8.39, 21, 16) v (8.17, 18, 14) v (8.27, 8, 6) | / (25.42, 29, 18) v (23.60, 25, 16) v (24.12, 8, 6)
V/(201,7,5) v (1.82,7,5) « (1.73,1,1)| v (6.90, 11, 7) v (6.92,11,8) v (6.74,1, 1) |/ (13.74, 15, 12) v (12.79, 14, 11) v (13.08, 3, 3)
v (3.94,9,7) v (3.63,9,6) v (3.51,1,1)|v (8.77,15,10) v (8.11,13,9) v (8.25,1, 1) |/ (26.98, 25, 15) v (26.10, 20, 12) X (25.88, 1, 0)
v (249,10, 6) / (217,10,7) X (2.16,0,0) |/ (7.12, 14, 11) / (6.4, 14, 11) / (6.30, 2, 2) |/ (13.96, 22, 17) « (14.25, 19, 14) v (14.11, 2, 2)

the same hyperparameters as before. As shown in Table 17, the model retrained for just 10 epochs achieved
the highest Top-1 accuracy of 90.55%, while 20 epochs yielded a slightly lower accuracy of 90.09%. The
intervention was highly effective, marking a significant improvement over the baseline. A detailed look at
the per-class performance for the best model (retrained for 10 epochs), shown in Table 17 and exemplified
in Fig. 6, confirms this. The Top-1 accuracies for the four problematic classes rose substantially: “leisure
vehicle” at 90.00%, “motorcycle” at 96.00%, “offroad vehicle” at 90.50%, and “passenger car” at 90.25%. In
contrast, the “van” class deteriorated from 88.00% to 85.75%, probably due to the improvement in the
accuracy of visually similar vehicles with which it is confused. This made “van” the new lowest-performing
class and the only one to fall below our target class threshold 7. of 86.00%, marking it as the target for a

second SDM iteration. The details of this second iteration of our SDM pipeline are described in Appendix D.
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Table 16
Rule extraction results of the “leisure vehicle” class of the first iteration on the VE:H 1 model for ImageNet.

Total runtime (s)  Total no. rules  Total no. rules per vehicle subclass

Popper 9.56 3 Tandem Bicycle: 3 (100.00%)

FOLD-R++ 0.20 31 Tandem Bicycle: 22 (70.97%)

Tandem Bicycle: 110 (72.85%), Motorhome: 13 (8.61%),
FastLAS 104.44 151 Mountain Bike: 6 (3.97%), Pickup Truck: 2 (1.32%),
Station Wagon: 1 (0.66%)

Tandem Bicycle: 135 (72.97%), Motorhome: 13 (7.03%),
Total 114.20 185 Mountain Bike: 6 (3.24%), Pickup Truck: 2 (1.08%),
Station Wagon: 1 (0.54%)

Table 17

Top-1 accuracy of the VE:H 1 model on the ImageNet validation set after the first model mending iteration. The left table
shows the overall accuracy at different training epochs, the right table the accuracy for each of the five target classes.

Target class  Top-1 acc. (%)

Epochs  Top-1 acc. (%) LV 90.00
M 96.00

10 90.55 ov 90.50
20 90-09 PC 90-25
v 85.75

7. Discussion

Our experiments, conducted on both the synthetic Super-CLEVR and real-world ImageNet datasets,
demonstrate that the proposed SDM is highly effective at identifying rare slices in CV models. By
systematically training, diagnosing, and mending models for both object detection (for Super-CLEVR) and
image classification (for ImageNet) tasks, we validated the general efficacy of our neurosymbolic approach.
The taxonomy-based heuristic at the core of our approach consistently and successfully induced challenging,
hard-to-detect rare slices in the trained models. This allowed for a rigorous evaluation of the SDM pipeline.
The subsequent application of ILP systems not only identified underperforming slices, but also extracted
interpretable logical rules that pinpointed the specific data attributes causing the model to underperform.
These rules then guided a targeted data augmentation and model mending process, which led to significant
and consistent performance improvements across all tested hierarchies. In the sequel, we compare the
performance of the integrated ILP systems, discuss the impact of model mending, and briefly compare our
work with some existing SDMs. Finally, we acknowledge current limitations.

7.1. Comparison of ILP Systems

Our comparative analysis among the three ILP systems — Popper, FOLD-R++, and FastLAS— reveals
the differences in their performance:

— Popper was the fastest and least verbose system, but also the least effective. It failed to identify
several key rare slices, and its success was highly dependent on having a large sample size of data.

— FOLD-R++ was a very reliable and robust system with respect to hyperparameters. It successfully
identified the underlying rare slices in nearly all problematic classes across both Super-CLEVR and
ImageNet experiments, even with smaller data samples. The exception ratio in FOLD-R++ had a
minimal impact on its rule extraction, indicating limited sensitivity to this hyperparameter in our
context.

© 00 N O O W N

oaoa D DD DD DD D DWW W W W W W W W W NN NN NN NNNN R R R R R BB B
» O © 00 N O O b W N B O O 0N O O P W N P O O 0N O P WN P O O 0N O O W N P O



© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O © 00 N O O P W N P, O W 00 N O o0 P W N P, O W 00 N OO P W N PR O O 00 N O O W N Pr O

M. Collevati et al. / Leveraging Neurosymbolic Al for Slice Discovery 29

— FastLAS was the most effective and expressive system, capable of identifying subtle rare slices,
as demonstrated in the second iteration of the ImageNet experiments where other systems failed.
However, this expressiveness comes at a cost. FastLAS was consistently the slowest system, and
highly sensitive to its rule head penalty hyperparameter. Lower penalty values consistently produced
meaningful rules, whereas higher values sometimes prevented the system from discovering any rules.

In addition to requiring less data for slice discovery, smaller samples have the advantage of significantly
reducing the running time of ILP systems. In particular, using smaller samples was necessary for FastLAS in
the Super-CLEVR experiments. One possible reason why FastLAS is slower may be its penalty mechanism
and scoring function, which make the optimisation problem more challenging to solve. On the other
hand, one probable explanation for the speed of Popper is the lack of negation in its extracted rules.
Indeed, it is important to consider that both FOLD-R++ and FastLAS provide rules with negation, which
greatly widens the hypothesis space. However, rules with negation allow for alternative and more concise
descriptions of slices by specifying which vehicle attributes should not be present. The ability to express
rules with negation may be one reason why FOLD-R++ and FastLAS have succeeded more than Popper
in identifying rare slices. Despite their individual differences, the ILP systems showed a crucial consistency;
when multiple systems succeeded, they invariably pointed to the same root cause (e.g., a specific vehicle
subclass), reinforcing the validity of our findings. This convergence gives us high confidence in the identified
slices and the subsequent mending strategies. Interestingly, while larger sample sizes generally improved
the likelihood of success for all systems, both FOLD-R++ and FastLAS were often effective with as little
as 25.00% of the validation data, highlighting the potential for efficient application in resource-constrained
scenarios. Finally, these findings emphasise the importance of achieving a good trade-off between speed,
effectiveness, and robustness in ILP-based slice discovery.

7.2. Impact of Model Mending

The model mending phase, guided by the rules extracted via our SDM, proved highly effective across
all hierarchies. By augmenting the training set with new images specifically targeting the identified rare
slices, we achieved substantial improvements in model performance. For instance, in the challenging VT:H4
hierarchy, the recall for the “urban bicycle” class jumped from 80.00% to 94.00% after the first mending
iteration. The iterative nature of our SDM pipeline proved to be very effective. The second mending
iteration for VT:H4 further improved the “urban bicycle” recall to 98.00%, demonstrating the capacity of
our SDM to solve progressively more subtle performance issues. This iterative refinement also highlights its
ability to enhance model robustness without causing catastrophic forgetting, as the performance of already
well-behaving classes remained high.

YOLOv5 models achieved high overall performance on the Super-CLEVR dataset, with mAP@0.5 values
approaching 1.0 in all experiments. However, the goal of this work was not to maximise general object
detection metrics, but rather to diagnose and correct highly specific, induced failures known as rare slices.
For this purpose, per-class recall serves as a more precise diagnostic tool than a global metric like mAP.
While a high mAP score confirms the good overall model performance, it can mask the poor performance
on a specific, underrepresented slice of data, as the error is averaged out. By focusing on the recall of the
problematic classes, we can directly measure the impact of the slice and, more importantly, verify the
success of the mending process in a targeted manner. While the main analysis focuses on recall to clearly
illustrate the diagnosis and repair of rare slices, a more comprehensive set of performance metrics is provided
for completeness. We have included detailed results in Appendix C., which contains the confusion matrices,
F1-Confidence curves, and other model training and validation performance metrics (e.g., mAP@0.5) for
all Super-CLEVR hierarchies, both before and after model mending. This supplementary data confirms
that the targeted improvements in recall discussed in the main text are accompanied by corresponding
positive gains in the Fl-score, reinforcing the overall efficacy of the proposed SDM pipeline.

Finally, the results across both the Super-CLEVR and ImageNet experiments indicate that model mending
allows for significant improvements without extensive retraining. For the Super-CLEVR hierarchies, a
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relatively small number of additional training epochs — between 20 and 40 — was sufficient to integrate the
new data and correct the identified rare slices. This efficiency was even more pronounced in the ImageNet
experiments, where a brief retraining of just 10 epochs yielded effective results for both mending iterations.

7.8. Comparison with FExisting Methods

As detailed in Section 2, the state-of-the-art can be broadly categorised, and our neurosymbolic
architecture offers a distinct alternative that emphasises logical rule extraction. Several methods in slice
discovery and rare data mining, such as Domino [17], Spotlight [13], George [55], and TALISMAN [30], have
introduced strategies to identify rare or underperforming data regions by operating largely in embedding
spaces or latent distributions. Another relevant method by Jiang et al. [24] proposed density-based rare
example mining using normalizing flows over learned detection features in a 3D object detection setting.
Although this approach significantly improves performance on rare intraclass instances, it does not provide
semantic explanations of errors or insight into the nature of failure modes. In fact, the common limitation
of these approaches is a lack of interpretability. A rare slice is typically identified as a cluster of data
points, not a human-understandable concept in a semantic, logical format. More recent methods, such as
PromptAttack [40], AdaVision [21], and SSD-LLM [38], leverage the power of large-scale generative and
multimodal models. These approaches can explore and structure datasets to suggest potential areas of
underperformance. However, the final rare slice description often remains a textual prompt or a collection
of images, rather than a formal, verifiable rule.

Our neurosymbolic SDM contrasts with these methods by prioritising interpretability and targeted
causality. The main technical difference is the use of ILP to move from systematic model errors to a set of
compact, human-readable, and formal logical rules describing them. This provides several advantages:

1. Transparency: Logical rules offer a clear semantic explanation of the failure condition of the model
(e.g., shape(utility) and direction(north)).

2. Editability: Rules are not only descriptive, but also prescriptive. They provide a precise, actionable
specification that can directly guide the model mending process.

3. Debugging: Rules serve as a valuable tool for model debugging, allowing ML practitioners to understand
the specific visual attributes that confuse the model.

In summary, our work addresses the fundamental challenge of making slice discovery interpretable and
directly actionable for targeted model correction.

7.4. Limitations

For each CV task, our SDM approach builds on the availability of scene graph representations to
extract interpretable logical rules describing “hidden” rare slices, i.e. underperforming subsets of data not
explicitly labelled and difficult to spot from unstructured data, such as images. These representations
provide the rich semantic structure necessary for our method. However, scene graphs are generally not
readily available for datasets, especially in real-world scenarios. Nevertheless, rapid advances in Vision
Language Models (VLMs) are making it increasingly feasible to semi-automatically generate (curated
generation) such semantic representations from image data. In our ongoing work, we are actively and
systematically exploring the integration of VLMs to automate the scene graph generation step, as we
have experimented here for real-world images from the ImageNet dataset. Consequently, our SDM is
directly applicable whenever appropriate semantic representations can be obtained from image data, making
automated semantic extraction a promising direction for our future work.

A second limitation is the current reliance on manual, exploratory tuning for the hyperparameters
of the ILP systems. While our experiments show that robust rules can be found by testing a range of
configurations, this process can be time-consuming and may require domain expertise.

Furthermore, the scalability of ILP systems can be computationally intensive, especially with large
validation sets or with a complex hypothesis space defined by numerous attributes and predicates. As
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observed in our experiments, FastLAS was prone to timeouts when analysing the entire validation set in
Super-CLEVR, indicating that the ILP system performance can be a bottleneck.

Finally, the current implementation of our SDM focuses on discovering rare slices defined by object
attributes (e.g., “a yellow rubber utility bike facing south”). A limitation of this approach is that it does not
yet consider slices defined by the relationships between objects (e.g., “a bicycle next to a car”). Extending
the proposed SDM to incorporate object relations would allow for the discovery of more complex rare slices,
providing deeper insights into model failures.

8. Conclusion and Future Work

In this work, we have presented a neurosymbolic approach to address the slice discovery problem. In
particular, we have provided a modular architecture and an implementation that connects dataset generation,
model classification, and rule extraction via ILP to identify misclassified rare slices. Our experiments,
conducted on both the synthetic Super-CLEVR and real-world ImageNet datasets, demonstrate the
effectiveness of our methodology. The proposed taxonomy-based heuristic reliably generated datasets with
predictable rare slices, validating our approach for inducing specific model failures. The ILP systems proved
effective at producing useful logical rules describing rare slices. Further training the models with new
data guided by these rules resulted in significant performance improvements on the problematic classes
for both object detection and image classification tasks. Our SDM approach can also be extended to
the multi-label classification task, thus dealing with taxonomies structured as directed acyclic graphs in
addition to tree-shaped ones. Furthermore, our results underscore the effectiveness of the iterative nature
of the SDM pipeline. We showed that further iteration can successfully diagnose and resolve more subtle
and persistent errors, demonstrating the ability of the SDM to progressively refine model performance and
address increasingly difficult deficiencies.

The results obtained are encouraging and demonstrate the potential of simultaneously exploiting DL and
KRR methods for slice discovery. In this way, compact and human-readable logical rules can be extracted
that improve the interpretability and explainability of a CV model under examination, also paving the way
to advanced concepts such as causal and contrastive explanations.

Ongoing and Future Work. Although our experiments confirm that rule-based augmentation helps
improve classification performance, we acknowledge that the overall effectiveness of model mending may
vary depending on the specific rules extracted. A systematic analysis of the sensitivity of model mending
to rule quality, granularity, and specificity remains as a promising issue for future work. Furthermore,
to make the SDM pipeline more accessible and efficient, automated methods for setting the optimal
hyperparameters for the various ILP systems could be explored, reducing the need for manual, exploratory
tuning. Our ImageNet experiments relied on a VLM to generate the necessary scene graphs, as mentioned
in Section 6.3.1. A key future direction is to systematically explore and integrate state-of-the-art VLMs to
fully automate this step, rather than being provided with ground truth scene graphs, as is the case with
Super-CLEVR. Creating a robust pipeline for generating high-quality semantic representations directly
from input images will make our SDM framework scalable and applicable to any visual dataset. Using such
tools for our SDM presents an interesting research challenge. Thus far, our work has focused on object
attributes. We plan to extend the framework to incorporate relationships between objects. This will allow
for the discovery of more specific rare slices (e.g., “a bicycle next to a car”), providing deeper insights into
model failures at the expense of higher computational cost. Moreover, exploring the integration of further
ILP systems, such as recent neurosymbolic ones, e.g. 6 ILP [16] and aJLP [53], as well as other rule learning

approaches, such as those provided by Statistical Relational Learning, e.g. LERND [39], is on our agenda.
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Appendix A. Taxonomies

A.1. Super-CLEVR — Vehicle Type

Airliner

Biplane
Air Vehicle
Fighter Jet

Private Jet

Sedan

Urban Car Minivan
Station Wagon
Car
Vehicle Pickup Truck
Offroad Car <
SUV

Multi-wheeler

School Bus
pecialized Bus (
A

S
rticulated Bus
Bus
Double Bus
Regular Bus <

Transit Bus
Land Vehicle

Scooter
Urban Motorcycle <

Chopper
Motorcycle
Sportbike
Sports Motorcycle <
Dirtbike
Two-wheeler
Tandem Bike
Urban Bicycle <
Utility Bike
Bicycle

Mountain Bike
Sports Bicycle <

Road Bike

Fig. 7. Super-CLEVR Vehicle Type taxonomy.
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A.2. Super-CLEVR — Primary Purpose

Tandem Bike

Recreational Vehicle

High-Speed Vehicle

Specialized Vehicle

Vehicle

Offroad Vehicle

Biplane

Chopper

Road Bike

Sportbike

Fighter Jet
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School Bus

Articulated Bus

Airliner

Pickup Truck

SUV

Mountain Bike

Dirtbike

Utility Bike

Double Bus

Transit Bus

Urban Vehicle

Fig. 8. Super-CLEVR Primary Purpose taxonomy.
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A.83. ImageNet — Vehicle

Van

Passenger Car

Vehicle

Offroad Vehicle

Moving Van

Minivan

Convertible

Station Wagon

Pickup Truck

Motorcycle

Leisure Vehicle

Fig. 9. ImageNet Vehicle taxonomy.
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Appendix B. ILP Encodings

This section details the specific ILP encoding formats required by the different systems used in our
experiments: Popper, FOLD-R++, and FastLAS. Each system has its own syntax to represent examples,
background knowledge, and mode bias. We provide encoding extracts for two concrete scenarios:

— the “urban bicycle” class of the first iteration on the VT:H/4 model for Super-CLEVR,
— the “leisure vehicle” class of the first iteration on the VE:H 1 model for ImageNet.

The complete encodings used in our experiments are available in the online repository.
B.1.  Popper Encoding

Popper utilises the syntax of Prolog. It requires three main components: a set of positive and negative
examples, background knowledge, and mode bias that defines the structure of learnable rules.

B.1.1. Super-CLEVR - VT:H4
Popper encoding for the “urban bicycle” class at the first iteration on the VT:H 4 model for Super-CLEVR:

Ezamples. Positive (pos) and negative (neg) examples identify scenes that are misclassified (hard) or
correctly classified, respectively.

neg(hard(s1)).

pos (hard (s19)) .

Background Knowledge. A set of ground facts describing all scenes and the objects they contain. Each
fact relates a scene or object ID to a specific property.

contains(s1l, 00_1).
brown(o0_1).
southwest (00_1) .
rubber (00_1).
pickup(o0_1).
small(o0_1).

contains(s19, 00_19).
yellow(o0_19).
south(o0_19).

metal (o0_19).
utility(o0_19).
large(00_19).

Mode Bias. These declarations define the hypothesis space. head_pred specifies the target predicate for
the rule head, while body_pred lists all admissible predicates for the rule body.

% Rule heads
head_pred(hard,1). type(hard, (scene_type,)). direction(hard, (in,)).

% Rule bodies
body_pred(contains,2). type(contains, (scene_type,obj_type)).
direction(contains, (in,out)).
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%% shapes

body_pred(private,1). type(private, (obj_type,)). direction(private, (in,)).
body_pred(fighter,1). type(fighter, (obj_type,)). direction(fighter, (in,)).
body_pred(biplane,1). type(biplane, (obj_type,)). direction(biplane, (in,)).
body_pred(airliner,1). type(airliner, (obj_type,)). direction(airliner, (in,)).
body_pred(road,1). type(road, (obj_type,)). direction(road, (in,)).
body_pred(utility,1). type(utility, (obj_type,)). direction(utility, (in,)).
body_pred(tandem,1). type(tandem, (obj_type,)). direction(tandem, (in,)).
body_pred(mountain,1). type(mountain, (obj_type,)). direction(mountain, (in,)).
body_pred(articulated,1). type(articulated, (obj_type,)). direction(articulated, (in,)).
body_pred(transit,1). type(transit, (obj_type,)). direction(transit, (in,)).
body_pred(double,1). type(double, (obj_type,)). direction(double, (in,)).
body_pred(school,1). type(school, (obj_type,)). direction(school, (in,)).
body_pred(suv,1). type(suv, (obj_type,)). direction(suv, (in,)).
body_pred(wagon,1). type(wagon, (obj_type,)). direction(wagon, (in,)).
body_pred(minivan,1). type(minivan, (obj_type,)). direction(minivan, (in,)).
body_pred(sedan,1). type(sedan, (obj_type,)). direction(sedan, (in,)).
body_pred(pickup,1). type(pickup, (obj_type,)). direction(pickup, (in,)).
body_pred(chopper,1). type(chopper, (obj_type,)). direction(chopper, (in,)).
body_pred(dirtbike,1). type(dirtbike, (obj_type,)). direction(dirtbike, (in,)).
body_pred(scooter,1). type(scooter, (obj_type,)). direction(scooter, (in,)).
body_pred(sportbike,1). type(sportbike, (obj_type,)). direction(sportbike, (in,)).
%% colors

body_pred(gray,1). type(gray, (obj_type,)). direction(gray, (in,)).
body_pred(red,1). type(red, (obj_type,)). direction(red, (in,)).
body_pred(blue,1). type(blue, (obj_type,)). direction(blue, (in,)).
body_pred(green,1). type(green, (obj_type,)). direction(green, (in,)).
body_pred(brown,1). type(brown, (obj_type,)). direction(brown, (in,)).
body_pred(purple,1). type(purple, (obj_type,)). direction(purple, (in,)).
body_pred(cyan,1). type(cyan, (obj_type,)). direction(cyan, (in,)).
body_pred(yellow,1). type(yellow, (obj_type,)). direction(yellow, (in,)).

%h sizes

body_pred(small,1). type(small, (obj_type,)). direction(small, (in,)).
body_pred(large,1). type(large, (obj_type,)). direction(large, (in,)).

%% directions

body_pred(east,1). type(east, (obj_type,)). direction(east, (in,)).
body_pred(northeast,1). type(northeast, (obj_type,)). direction(northeast, (in,)).
body_pred(north,1). type(north, (obj_type,)). direction(north, (in,)).
body_pred(northwest,1). type(northwest, (obj_type,)). direction(northwest, (in,)).
body_pred(west,1). type(west, (obj_type,)). direction(west, (in,)).
body_pred(southwest,1). type(southwest, (obj_type,)). direction(southwest, (in,)).
body_pred(south,1). type(south, (obj_type,)). direction(south, (in,)).
body_pred(southeast,1). type(southeast, (obj_type,)). direction(southeast, (in,)).
%% materials

body_pred(rubber,1). type(rubber, (obj_type,)). direction(rubber, (in,)).
body_pred(metal,1). type(metal, (obj_type,)). direction(metal, (in,)).

B.1.2. ImageNet - VEH 1
Popper encoding for the “leisure vehicle” class at the first iteration on the VE:H 1 model for ImageNet:

Ezxamples.
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pos (hard(s0)) .

neg (hard(s6)) .

Background Knowledge.

contains(s0, 00_0).
black(o0_0).
side_view(00_0).
foreground(00_0).
tandem_bicycle(00_0).
fully_visible(00_0).
rural_outdoor(s0).
false(s0).
daytime(s0).
person(s0, 2).

contains(s6, 00_6).
blue(o0_6).
side_view(o0_6).
foreground(o0_6) .
tandem_bicycle(00_6).
fully_visible(o0_6).
rural_outdoor(s6).
false(s6).
daytime(s6) .
person(s6, 0).

Mode Bias.
% Rule heads

head_pred(hard,1). type(hard, (scene_type,)). direction(hard, (in,)).

% Rule bodies

body_pred(contains,2). type(contains, (scene_type,obj_type)).

direction(contains, (in,out)).

%% person

body_pred(person,2). type(person, (scene_type,int)). direction(person, (in,out)).

%% background

body_pred(indoor,1). type(indoor, (scene_type,)). direction(indoor, (in,)).
body_pred(urban_outdoor,1). type(urban_outdoor, (scene_type,)).

direction(urban_outdoor, (in,)).

body_pred(rural_outdoor,1). type(rural_outdoor, (scene_type,)).

direction(rural_outdoor, (in,)).

body_pred(plain,1). type(plain, (scene_type,)). direction(plain, (in,)).

%% snow

body_pred(false,1). type(false, (scene_type,)). direction(false, (in,)).
body_pred(true,1). type(true, (scene_type,)). direction(true, (in,)).

%% time_of_day
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body_pred(daytime,1). type(daytime, (scene_type,)). direction(daytime, (in,)).
body_pred(nighttime,1). type(nighttime, (scene_type,)). direction(nighttime, (in,)).
%/ color

body_pred(black,1). type(black, (obj_type,)). direction(black, (in,)).
body_pred(white,1). type(white, (obj_type,)). direction(white, (in,)).
body_pred(gray,1). type(gray, (obj_type,)). direction(gray, (in,)).

body_pred(red,1). type(red, (obj_type,)). direction(red, (in,)).

body_pred(blue,1). type(blue, (obj_type,)). direction(blue, (in,)).
body_pred(yellow,1). type(yellow, (obj_type,)). direction(yellow, (in,)).
body_pred(green,1). type(green, (obj_type,)). direction(green, (in,)).
body_pred(purple,1). type(purple, (obj_type,)). direction(purple, (in,)).
body_pred(orange,1). type(orange, (obj_type,)). direction(orange, (in,)).
body_pred(brown,1). type(brown, (obj_type,)). direction(brown, (in,)).
body_pred(multicolor,1). type(multicolor, (obj_type,)). direction(multicolor, (in,)).
%% orientation

body_pred(rear_view,1). type(rear_view, (obj_type,)). direction(rear_view, (in,)).
body_pred(front_view,1). type(front_view, (obj_type,)). direction(front_view, (in,)).
body_pred(side_view,1). type(side_view, (obj_type,)). direction(side_view, (in,)).
body_pred(top_view,1). type(top_view, (obj_type,)). direction(top_view, (in,)).

%% position

body_pred(foreground,1). type(foreground, (obj_type,)). direction(foreground, (in,)).
body_pred(background,1). type(background, (obj_type,)). direction(background, (in,)).
%h type

body_pred(minivan,1). type(minivan, (obj_type,)). direction(minivan, (in,)).
body_pred(moving_van,1). type(moving_van, (obj_type,)). direction(moving_van, (in,)).
body_pred(station_wagon,1). type(station_wagon, (obj_type,)).
direction(station_wagon, (in,)).

body_pred(convertible,1). type(convertible, (obj_type,)). direction(convertible, (in,)).
body_pred(mountain_bike,1). type(mountain_bike, (obj_type,)).
direction(mountain_bike, (in,)).

body_pred(jeep,1). type(jeep, (obj_type,)). direction(jeep, (in,)).
body_pred(pickup_truck,1). type(pickup_truck, (obj_type,)).
direction(pickup_truck, (in,)).

body_pred(tandem_bicycle,1). type(tandem_bicycle, (obj_type,)).
direction(tandem_bicycle, (in,)).

body_pred(motorhome,1). type(motorhome, (obj_type,)). direction(motorhome, (in,)).
body_pred(moped,1). type(moped, (obj_type,)). direction(moped, (in,)).
body_pred(scooter,1). type(scooter, (obj_type,)). direction(scooter, (in,)).

%% visibility

body_pred(fully_visible,1). type(fully_visible, (obj_type,)).
direction(fully_visible, (in,)).

body_pred(partially_visible,1). type(partially_visible, (obj_type,)).
direction(partially_visible, (in,)).

B.2. FOLD-R++ Encoding

FOLD-R++ takes tabular data as input, specified in the text data format Comma-Separated Values (CSV).
Each row corresponds to a single scene (example), and each column represents a specific feature. Object
properties within a scene are flattened into distinct columns (e.g., shape_obj0, color_obj0, size_obj0,
etc.).
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B.2.1. Super-CLEVR - VT:H4

FOLD-R++ encoding for the “urban bicycle” class at the first iteration on the VT:H/ model for
Super-CLEVR. The feature label indicates hard (misclassified) or easy (correctly classified) examples,
and subsequent columns describe the properties of each object (obj0, obj1, ...) in the scene.

id,label,shape_objO,color_objO,size_objO,direction_objO,material_objO,shape_objil,...
1,easy,pickup,brown,small,southwest,rubber,suv,...

3601,hard,utility,yellow,large,south,metal,fighter,...

B.2.2. ImageNet - VEH1

FOLD-R++ encoding for the “leisure vehicle” class at the first iteration on the VE:H1 model for
ImageNet. Environment features like person count and background type appear alongside object features
like color_objO0 and type_objo0.

id,label,person,background,...,color_objO,orientation_objO,position_objO,type_objo0,...
1,hard,2,rural_outdoor, ... ,black,side_view,foreground,tandem_bicycle,...
7,easy,0,rural_outdoor,...,blue,side_view,foreground,tandem_bicycle,...

B.3. FastLAS Encoding

FastLAS utilises the syntax of ASP. A key difference from Popper is that background knowledge is
context-dependent, i.e. it is encapsulated within each example definition rather than provided globally.
Positive (#pos) and negative (#neg) examples represent misclassified (hard) or correctly classified scenes,
respectively.

B.3.1. Super-CLEVR - VT:H4
FastLAS encoding for the “urban bicycle” class at the first iteration on the VT:H4 model for Super-
CLEVR:

Context-Dependent Examples. Each #pos or #neg block defines one example. The first argument is the
unique example identifier plus its penalty, the second is the atom to be proved for the positive examples
(or not proved for the negative ones), the third is the set of atoms that must not be proved (empty in our
examples), and the fourth block contains all background facts relevant only to that example.

#neg(s102, {hard(1)}, {3}, {
contains(1, 0).
color (0, brown).
direction(0, southwest).
material (0, rubber).
shape (0, pickup).
size(0, small).

b.

#pos(s1904, {hard(19)}, {3}, {
contains (19, 0).
color(0, yellow).
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direction(0, south).
material (0, metal).
shape (0, utility).
size(0, large).

b.

Mode Bias. These declarations define the hypothesis space. #modeh specifies the target predicate for the rule
head, while #modeb lists all admissible predicates for the rule body. #maxv (N) specifies the maximum number
of variables in any rule. Type domains define the possible constant values. Finally, #bias("penalty...")
statements define the scoring function that guides the search, e.g. by penalising complex rules or rewarding
the use of certain predicates.

% Configuration options
#maxv(2) .

% Rule heads
#modeh (hard(var(sce_id))).

% Rule bodies

#modeb (contains(var(sce_id), var(obj_id))).
#modeb(not contains(var(sce_id), var(obj_id))).
#modeb (shape (var (obj_id), const(shape))).

#modeb (color(var(obj_id), const(color))).
#modeb(size(var(obj_id), const(size))).

#modeb (not size(var(obj_id), const(size))).
#modeb(direction(var(obj_id), const(direction))).
#modeb(not direction(var(obj_id), const(direction))).
#modeb (material (var(obj_id), const(material))).
#modeb(not material(var(obj_id), const(material))).

% Type domains

sce_1id(0..2499). obj_1id(0..5).

%% shapes

shape(private). shape(fighter). shape(biplane). shape(airliner). shape(road).
shape(utility). shape(tandem). shape(mountain). shape(articulated). shape(transit).
shape (double) . shape(school). shape(suv). shape(wagon). shape(minivan). shape(sedan).
shape (pickup) . shape(chopper). shape(dirtbike). shape(scooter). shape(sportbike).
%% colors

color(gray). color(red). color(blue). color(green). color(brown). color(purple).
color(cyan). color(yellow).

%h sizes

size(small). size(large).

%% directions

direction(east). direction(northeast). direction(north). direction(northwest).
direction(west). direction(southwest). direction(south). direction(southeast).

%% materials

material (rubber). material(metal).
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% Scoring function
#bias("penalty (20, head(X)) :- in_head(X).").

#bias("penalty (-1, body(X)) :- in_body(X), X = contains(_,_).").

B.3.2. ImageNet — VEH 1

FastLAS encoding for the “leisure vehicle” class at the first iteration on the VE:H 1 model for ImageNet:

Context-Dependent Examples.

#pos(s004, {hard(0)}, {}, {
person(0, 2).
contains (0, 0).
color (0, black).
orientation(0, side_view).
position(0, foreground).
type (0, tandem_bicycle).
visibility(0, fully_visible).
background(O, rural_outdoor).
snow(0, false).
time_of_day (0, daytime).

B.

#neg(s602, {hard(6)}, {3}, {
contains(6, 0).
color (0, blue).
orientation(0, side_view).
position(0, foreground).
type (0, tandem_bicycle).
visibility (0, fully_visible).
background(6, rural_outdoor) .
snow(6, false).
time_of_day(6, daytime).
person(6, 0).

.

Mode Bias.

% Configuration options
#maxv(2) .

% Rule heads
#modeh (hard(var(sce_id))).

% Rule bodies

#modeb (contains(var(sce_id), var(obj_id))).
#modeb(not contains(var(sce_id), var(obj_id))).
#modeb (person(var(sce_id), const(person))).

#modeb (background(var (sce_id), const(background))).

#modeb (not background(var(sce_id), const(background))).
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#modeb (snow(var(sce_id), const(snow))).

#modeb (time_of _day(var(sce_id), const(time_of_day))).
#modeb (color(var(obj_id), const(color))).
#modeb(orientation(var(obj_id), const(orientation))).
#modeb(not orientation(var(obj_id), const(orientation))).
#modeb (position(var(obj_id), const(position))).

#modeb (type (var(obj_id), const(type))).
#modeb(visibility(var(obj_id), const(visibility))).

% Type domains

sce_id(0..399). obj_id(0..4).

%% person

person(0..10).

%% background

background (indoor) . background(urban_outdoor). background(rural_outdoor) .
background(plain).

%% snow

snow(false). snow(true).

%% time_of_day

time_of_day(daytime). time_of_day(nighttime).
%% color

color(black). color(white). color(gray). color(red). color(blue). color(yellow).

color(green). color(purple). color(orange). color(brown). color(multicolor).
%% orientation

orientation(rear_view). orientation(front_view). orientation(side_view).
orientation(top_view).

%% position

position(foreground). position(background).

%h type

type(minivan). type(moving_van). type(station_wagon). type(convertible).
type (mountain_bike). type(jeep). type(pickup_truck). type(tandem_bicycle).
type (motorhome) . type(moped). type(scooter).

%t visibility

visibility(fully_visible). visibility(partially_visible).

% Scoring function

#bias("penalty (10, head(X)) :- in_head(X).").

#bias("penalty(-1, body(X)) :- in_body(X), X = contains(_,_).").
#bias("penalty (-1, body(X)) :- in_body(X), X = type(_,_).").
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Appendix C. Super-CLEVR Experiments
C.1. Vehicle Type: Hierarchy 1

C.1.1. Confusion Matriz
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Fig. 10. Confusion matrix of the VT:H1 model on the Super-CLEVR validation set after the initial model training.
C.1.2. F1-Confidence Curve
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Fig. 11. Fl-confidence curve of the VT:H 1 model on the Super-CLEVR validation set after the initial model training.
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C.1.3. Model Training and Validation Performance Metrics
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Fig. 12. VT:H1 model training and validation performance metrics on Super-CLEVR after the initial model training.
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C.2. Vehicle Type: Hierarchy 2

C.2.1. Confusion Matriz
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Fig. 13. Confusion matrix of the VT:H2 model on the Super-CLEVR validation set after the initial model training.

C.2.2. F1-Confidence Curve
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Fig. 14. Fl-confidence curve of the VT:H2 model on the Super-CLEVR validation set after the initial model training.
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C.2.3. Model Training and Validation Performance Metrics
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Fig. 15. VT:H2 model training and validation performance metrics on Super-CLEVR after the initial model training.
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C.3. Vehicle Type: Hierarchy 8

C.3.1.

Confusion Matrices
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Fig. 16. Confusion matrix of the VT:H3 model on the Super-CLEVR validation set after the initial model training.
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17. Confusion matrix of the VT:H3 model on the Super-CLEVR validation set after the model mending.
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C.3.2. FI1-Confidence Curves

F1-Confidence Curve
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Fig. 18. Fl-confidence curve of the VT:H& model on the Super-CLEVR validation set after the initial model training.
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Fig. 19. Fl-confidence curve of the VT:H3 model on the Super-CLEVR validation set after the model mending.
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C.3.3. Model Training and Validation Performance Metrics
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Fig. 20. VT:HS& model training and validation performance metrics on Super-CLEVR after the initial model training.
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Fig. 21. VT:H& model training and validation performance metrics on Super-CLEVR after the model mending.
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C.4. Vehicle Type: Hierarchy 4

C.4.1. Confusion Matrices
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Fig. 22. Confusion matrix of the VT:H4 model on the Super-CLEVR validation set after the initial model training.
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Fig. 23. Confusion matrix of the VT:H4 model on the Super-CLEVR validation set after the first model mending iteration.
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Confusion Matrix

1.0
sports-bicycle JUkek) 0.01 0.08
urban-bicycle - 0.01 fokel:g 0.03 0.22
0.8
sports-motorcycle - 0.14
urban-motorcycle - 0.04
kel 0.6
L offroad-car - 0.08
9]
8 urban-car - 0.11
j
=9 -0.4
regular-bus - 0.17
specialized-bus - 0.12
-0.2
air - iMoo} 0.05
background -
@ 9] ] 9] L L ] 4] = °
T vy ¢ g ¢ % 3 3z ®° 5
g o g g g g 5 3B °
A A T
5 =
£ 53 & E S g 2 E:
55 2 g g
] o @
& 5
True

Fig. 24. Confusion matrix of the VT:H4 model on the Super-CLEVR validation set after the second model mending iteration.

C.4.2. F1-Confidence Curves
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Fig. 25. Fl-confidence curve of the VT:H/4 model on the Super-CLEVR validation set after the initial model training.
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Fig. 26. Fl-confidence curve of the VT:H4 model on the Super-CLEVR validation set after the first model mending iteration.
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Fig. 27. Fl-confidence curve of the VT:H4 model on the Super-CLEVR validation set after the second model mending

iteration.
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C.4.3. Model Training and Validation Performance Metrics
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Fig. 28. VT:H4 model training and validation performance metrics on Super-CLEVR after the initial model training.
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Fig. 29. VT:H4 model training and validation performance metrics on Super-CLEVR after the first model mending iteration.
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Fig. 30. VT:H4 model training and validation performance metrics on Super-CLEVR after the second model mending iteration.
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C.4.4. Rule Extraction and Selection Results

Table 18

Rule extraction results of the “offroad car” class of the first iteration on the VT:H/4 model for Super-CLEVR.

61

Total runtime (s)  Total no. rules

Total no. rules per vehicle subclass

Popper 27.96 0 X
Pick Truck: 24 (100.00%) |Rubber: 24 (100.00%) |,
FOLD-R-+ 2,686.69 24 fekup Lruc ( ) [Rubber: 24 ( 0]
Mountain Bike: 9 (37.50%)
Pickup Truck: 3 (37.50 Rubber: 3 (37.50
FastLAS 5,275.68 8 ickup Truck: 8 (37.50%) [Rubber: 3 (37.50%)],
Double Bus: 3 (37.50%), Minivan: 1 (12.50%), Biplane: 1 (12.50%)
Pickup Truck: 27 (84.38%) [Rubber: 27 (84.38%)],
Total 7,990.33 32 Mountain Bike: 9 (28.13%), Double Bus: 3 (9.38%),

Minivan: 1 (3.13%), Biplane: 1 (3.13%)

Table 19
Rule extraction results of the “sports motorcycle” class of the first iteration on the VT:H4 model for Super-CLEVR.

Total runtime (s)

Total no. rules

Total no. rules per vehicle subclass

Popper 83.12 4 Dirtbike: 4 (100.00%) [North: 3 (75.00%)]
FOLD-R4+ 2,436.15 20 Dirtbike: 20 (100.00%) [North: 8 (40.00%)]
Dirtbike: 33 (78.57%) [North: 33 (78.57%)],
FastLAS 13.933.60 49 Double Bus: 4 (9.52%), Mountain Bike: 2 (4.76%),
School Bus: 1 (2.38%), Chopper: 1 (2.38%),
Articulated Bus: 1 (2.38%)
Dirtbike: 57 (86.36%) [North: 44 (66.67%)],
Total 16,452.87 66 Double Bus: 4 (6.06%), Mountain Bike: 2 (3.03%),

School Bus: 1 (1.52%), Chopper: 1 (1.52%),
Articulated Bus: 1 (1.52%)

Table 20
Rule extraction results of the “urban bicycle” class of the first iteration on the VT:H4 model for Super-CLEVR.

Total runtime (s)

Total no. rules

Total no. rules per vehicle subclass

Utility Bike: 8 (100.00%) [North: 3 (37.50%),

Popper 112.26 8
South: 3 (37.50%)]
Utility Bike: 49 (100.00%) [North: 9 (18.37%),
FOLD-R++ 2,385.05 49 ility Bike: 49 ( 6) [Nor ( 2
South: 9 (18.37%)], Private Jet: 3 (6.12%)
Utility Bike: 18 (94.74%) [North: 15 (78.95%),
FastLAS 17,348.72 19 ility Bike: 18 ( 6) [Nor ( 2
South: 14 (73.68%)], Road Bike: 1 (5.26%)
Utility Bike: 75 (98.68%) [North: 27 (35.53%),
Total 19,846.03 76 South: 26 (34.21%)] , Private Jet: 3 (3.95%),

Road Bike: 1 (1.32%)
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C.5.  Primary Purpose: Hierarchy 1

C.5.1.  Confusion Matrices
Confusion Matrix
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Fig. 31. Confusion matrix of the PP:H1 model on the Super-CLEVR validation set after the initial model training.
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Fig. 32. Confusion matrix of the PP:H1 model on the Super-CLEVR validation set after the model mending.
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C.5.2. FI1-Confidence Curves
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Fig. 33. Fl-confidence curve of the PP:H 1 model on the Super-CLEVR validation set after the initial model training.
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Fig. 34. Fl-confidence curve of the PP:H1 model on the Super-CLEVR validation set after the model mending.
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C.5.3. Model Training and Validation Performance Metrics
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Fig. 35. PP:H1 model training and validation performance metrics on Super-CLEVR after the initial model training.

12

18
0S
6%

id
LY
9%
i

44
ey
[474

1574
(0i4
6€

8¢
L€
9€
g€

e

€€
[43
1€
o€
62

8¢
12
9C
14
144
€2
[44

1T
(04
6T

8T

LT

9T

ST

i

€T

[43

1T

Smm\lm(ﬂhwi\’h‘

fi120008yT 203G LOf [y 210Quifisoinap buibvioaa / 1D 39 13DA2)I0D) N



18

0.014

0.012

0.010

0.008

0.006

0.020

0.015

0.010

0.005

0§
6%
i
LY
o
i

train/box_loss

20

val/box_loss

20

1474
54
[474

Fig. 36. PPH1

1574
(0i4
6€

0.025

0.020

0.015

0.010

smooth

val/obj_loss

20

0.012

0.010

0.008

0.006

0.004

0.002

0.000

0.12

0.10

0.08

0.06

0.04

0.02

0.00

o

train/cls_loss

20

val/cls_loss

20

[
(o))

[
o

N
IS

-
w

e
N

metrics/precision

0

20

40

metrics/mAP_0.5

[
[N

[
© © 00 N O O b W N

metrics/recall

0.8

0.7

0.6

0.5

0.4

0 20 40
metrics/mAP_0.5:0.95
1.0
0.8
0.6

0.4

0.2

model training and validation performance metrics on Super-CLEVR after the model mending.

8¢
L€
9€
g€

e

€€
[43
1€
o€
62

8¢

12
9C

14
174

€2

[44

114
0C
6T

8T

LT

9T

ST

i

€T

[43

1T

Smm\loi(ﬂvhwi\’i-‘

fi120008yT 203G LOf [ 210Quifisoinap buibvioaa / 1D 39 19DA2)10D) N

99



© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O © 00 N O O P W N P, O W 00 N OO P W N P, O W 00 N OO P W N PR O W 00 N O O W N Pr O

66

C.5.4. Rule Extraction and Selection Results

M. Collevati et al. / Leveraging Neurosymbolic Al for Slice Discovery

Table 21

Rule extraction results of the “offroad vehicle” class of the first iteration on the PP:H 1 model for Super-CLEVR.

Total runtime (s)

Total no. rules

Total no. rules per vehicle subclass

Popper 42.10 0 X

Pickup Truck: 27 (100.00%) [Rubber: 27 (100.00%)],
FOLD-R-+ 1,911.14 27 ickup Huce ( 6) [Rubber: 27 ( )]

Utility Bike: 6 (22.22%)

Pickup Truck: 6 (60.00%) |Rubber: 5 (50.00
FastLAS 10,464.07 10 ickup Truck: 6 ( %) [Rubber: 5 ( %],

Chopper: 3 (30.00%), Biplane: 1 (10.00%)

Pickup Truck: 33 (89.19%) [Rubber: 32 (86.49
Total 12,417.31 37 ickup e ( %) [Rubber: 32 ( %),

Utility Bike: 6 (16.22%), Chopper: 3 (8.11%), Biplane: 1 (2.70%)

Table 22

Rule extraction results of the “specialized vehicle” class of the first iteration on the PP:H 1 model for Super-CLEVR.

Total runtime (s)

Total no. rules  Total no. rules per vehicle subclass

Popper 25.82 0 X

Articulated Bus: 27 (100.00%) [North: 21 (77.78%)],
FOLD-R-+ 6,398.83 27 rticulated Bus: 27 ( ) [Nor ( 0)]

Utility Bike: 6 (22.22%)

Articulated Bus: 2 (66.67%) [North: 1 (33.33
FastLAS 6,272.38 3 rticulated Bus: 2 ( %) [Nor ( %],

Road Bike: 1 (33.33%)

Articulated Bus: 29 (96.67%) [North: 22 (73.33
Total 12,697.03 30 rticulated Bus: 29 ( %) [Nor ( ol

Utility Bike: 6 (20.00%), Road Bike: 1 (3.33%)

Table 23

Rule extraction results of the “urban vehicle” class of the first iteration on the PP:H 1 model for Super-CLEVR.

Total runtime (s)

Total no. rules

Total no. rules per vehicle subclass

Popper

93.84

Utility Bike: 7 (100.00%) [North: 3 (42.86%),
South: 3 (42.86%)|, Road Bike: 1 (14.29%)

FOLD-R++

4,813.27

43

Utility Bike: 43 (100.00%) [North: 11 (25.58%),
South: 14 (32.56%)|, Fighter Jet: 1 (2.33%), Biplane: 1 (2.33%),
School Bus: 1 (2.33%)

FastLAS

18,314.71

21

Utility Bike: 18 (85.71%) [North: 17 (80.95%),
South: 13 (61.90%)], Fighter Jet: 1 (4.76%),
Private Jet: 1 (4.76%), Sedan: 1 (4.76%)

Total

23,221.82

71

Utility Bike: 68 (95.77%) [North: 31 (43.66%),

South: 30 (42.25%)], Fighter Jet: 2 (2.82%),

Private Jet: 1 (1.41%), Sedan: 1 (1.41%), Biplane: 1 (1.41%),
School Bus: 1 (1.41%)
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Appendix D. ImageNet Experiments
D.1. Vehicle: Hierarchy 1

D.1.1. FExperimental Results

Second Rule Extraction and Selection Iteration. Following the first model mending iteration, the overall

performance of the model improved substantially. The four previously underperforming classes now all
reported Top-1 accuracies greater than or equal to 90.00%, well above the target class threshold 7. of
86.00%, indicating that the initial rare slices had been successfully resolved. However, we conducted a second
iteration of the SDM pipeline to investigate any remaining deficiencies. Despite the overall improvement,
the “van” class saw its performance drop to 85.75%, falling below our threshold 7. and becoming the new
performance bottleneck. We again employed our rule extraction module, tasking ILP systems to find rules
that identify a potential rare slice within this newly problematic class. As in the previous iteration, we
analysed the rules to identify underlying patterns and used the same hypothesis formation process and rare
slice hypothesis threshold 7, of 33.33%. The results of this second rule extraction iteration for the “van’
class are summarised in Tables 27-29. The ILP systems showed a greater divergence in performance in
this iteration. Both Popper and FOLD-R++ failed to identify any relevant rules across all hyperparameter
configurations. In terms of verbosity, their output was minimal; Popper extracted only one rule and
FOLD-R++ extracted 12, none of which were relevant to the underlying problem. In contrast, FastLAS
was once again the most effective system. It was also the most verbose, generating a total of 64 rules, 40 of
which agreed with our candidate hypothesis across almost all configuration settings. This suggests that the
remaining performance issue was more subtle to identify. A detailed breakdown of the rules extracted for
the underperforming “van” class is provided in Table 30. The evidence pointed to the “minivan” subclass
as the primary source of the problem. In particular, while Popper and FOLD-R++ did not contribute any
relevant rules, 62.50% of the rules extracted from FastLAS concerned the “minivan” subclass. The total
across all ILP systems showed that 51.95% of all generated rules contained the “minivan” subclass. We
hypothesised that this problem resulted from the difficulty of the model in distinguishing the “minivan”
vehicle from other visually similar subclasses (e.g., “jeep”, “station wagon”), a confusion masked by the
more severe initial data imbalance. Since the percentage of 51.95% exceeds 74, this led to the selection of
the following candidate rule for the second model mending:

)

— Van first candidate rule:
hard(V0) :- contains(VO,V1), minivan(V1).

where, as before, V1 denotes a vehicle in an image VO.

Second Model Mending Iteration. For the second mending iteration, we augmented the training data with
500 new images from ImageNet for the “minivan” subclass according to the selected rule. We then retrained
the best-performing model from the first iteration (the one mended over 10 epochs) for an additional 10
and 20 epochs. To refine the model without risking degrading its performance for classes that still rely
heavily on previous training, we employed fine-tuning with a very low initial learning rate of 1.0 x 1078,
As detailed in Table 31, after both 10 and 20 epochs of fine-tuning, the model achieved a new best Top-1
accuracy of 90.91% on the validation set. However, a detailed error analysis shown in Table 31 revealed
that this slight increase in overall accuracy did not correspond to an improvement in the problematic “van’
class, which saw its accuracy slightly decrease to 85.50%. In contrast, the other classes maintained or
slightly improved their high performance: “leisure vehicle” at 90.75%, “motorcycle” at 96.00%, “offroad
vehicle” at 91.33%, and “passenger car” at 90.75%. We concluded that the remaining classification errors
were likely not solvable by further data balancing alone and may require more fundamental changes to the
model architecture or data collection strategy. Therefore, we terminated the mending process at this stage.
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D.1.2. Rule Extraction and Selection Results

Table 24
Rule extraction results of the “motorcycle” class of the first iteration on the VE:H 1 model for ImageNet.

Total runtime (s)  Total no. rules  Total no. rules per vehicle subclass

Popper 5.52 0 X

FOLD-R++ 0.15 33 Moped: 29 (87.88%), Scooter: 2 (6.06%)

Moped: 53 (75.71%), Minivan: 8 (11.43%),

FastLAS 65.73 70
Motorhome: 3 (4.29%), Convertible: 3 (4.29%)
’

)

Moped: 82 (79.61%), Minivan: 8 (7.77%),

Total 71.40 103 Motorhome: 3 (2.91%), Convertible: 3 (2.91%),
Scooter: 2 (1.94%)

Table 25
Rule extraction results of the “offroad vehicle” class of the first iteration on the VE:H1 model for ImageNet.

Total runtime (s)  Total no. rules  Total no. rules per vehicle subclass

Popper 8.60 0 X

FOLD-R++ 0.15 6 Mountain Bike: 6 (100%)

Jeep: 61 (64.89%), Pickup Truck: 12 (12.77%),
FastLAS 115.17 94 Station Wagon: 10 (10.64%), Minivan: 5 (5.32%),
Mountain Bike: 2 (2.13%)

Jeep: 61 (61.00%), Pickup Truck: 12 (12.00%),
Total 123.92 100 Station Wagon: 10 (10.00%), Mountain Bike: 8 (8.00%),
Minivan: 5 (5.00%)

Table 26
Rule extraction results of the “passenger car” class of the first iteration on the VE:H 1 model for ImageNet.

Total runtime (s)  Total no. rules  Total no. rules per vehicle subclass

Popper 7.01 0 X

FOLD-R++ 0.13 20 Station Wagon: 14 (70.00%), Convertible: 2 (10.00%)

FastLAS 69.00 93 Station Wagon: 70 (75.27%), Convertible: 19 (20.43%),
Moving Van: 2 (2.15%)

Total 76,14 113 Station Wagon: 84 (74.34%), Convertible: 21 (18.58%),

Moving Van: 2 (1.77%)
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Table 27
Rule extraction results of the second iteration of the Popper system on the VE:H1 model for ImageNet.

Sample size

25% 50% 100%
VEH1
\% X (0.54,0,0) X (1.76,0,0) X (3.64,1,0)
Table 28

Rule extraction results of the second iteration of the FOLD-R++ system on the VE:H1 model for ImageNet.

Sample size

25% \ 50% \ 100%
Exception ratio
0.25 0.50 0.75 ‘ 0.25 0.50 0.75 ‘ 0.25 0.50 0.75
VEH1
v X(0.01,2,0) X (0.01,20) X (0.01,20)|X(0.01,0,0) X(0.01,0,0) X (0.01,0,0)|X(0.022,0) X(0.0220) X(0.0220)
Table 29

Rule extraction results of the second iteration of the FastLAS system on the VE:H1 model for ImageNet.

Sample size

25% | 50% | 100%
Rule head penalty
1 5 10 | 1 5 10 | 1 5 10
VE:H1
% v (1.39,6,4) v (1.21,6,4) X (1.14,0,0) |/ (3.21,12,7) v (2.91,10,5) v (2.67, 1, 1) |/ (10.76, 14, 9) v (1041, 14,9) v (10.34, 1, 1)
Table 30

Rule extraction results of the “van” class of the second iteration on the VE:H 1 model for ImageNet.

Total runtime (s)  Total no. rules  Total no. rules per vehicle subclass

Popper 5.94 1 X
FOLD-R++ 0.12 12 X
Mini : 40 (62.50 Moving Van: 17 (26.
FastLAS ey 64 inivan ( %), Moving Van: 17 (26.56%),
Scooter: 4 (6.25%), Station Wagon: 2 (3.13%)
Total 0,10 - Minivan: 40 (51.95%), Moving Van: 17 (22.08%),

Scooter: 4 (5.19%), Station Wagon: 2 (2.60%)

Table 31

Top-1 accuracy of the VE:H 1 model on the ImageNet validation set after the second model mending iteration. The left table

shows the overall accuracy at different training epochs, the right table the accuracy for each of the five target classes.

Target class  Top-1 acc. (%)

Epochs  Top-1 acc. (%) LV 90.75

M 96.00

0 2091 ov 91.33
20 90.91 ’

PC 90.75

A% 85.50
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