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BeliefNet: A neurosymbolic model to
enhance context based traversability
predictions for autonomous agents in complex
environments
Tom Scott, Argyrios Zolotas and Yang Xing
Centre for Autonomous and Cyber-Physical Systems, Cranfield University, UK

Abstract. Knowing how to traverse complex unstructured environments is a difficult and multivariate challenge, but one which
humans can achieve through logic, reasoning and experience, yet some of the most beneficial use-cases for autonomous systems,
require them to operate effectively in complex environments without regular or significant human intervention. Furthermore,
for machines to support humans in some of the more critical use-cases, trust in decision making will be crucial, ensuring op-
erators have confidence to deploy the capabilities. Despite its importance, enabling autonomous agents to navigate effectively
and reliably in complex terrain is a difficult and unsolved challenge. Advances in neurosymbolic AI present an opportunity to
significantly enhance performance in complex, explainable, and uncertain decision making, such as autonomous traversability
analysis, by drawing together symbolic reasoning with the learning capability of neural networks. The challenge of complex
environments is complicated by its non-deterministic nature, terrain will adapt and change through domains, and its properties
can adapt rapidly based on external factors like weather, or objects that are in proximity, which is true for one location on one
day, will not persist. This paper presents a new neurosymbolic model structure that was designed specifically for this task. It
uses experience to build a world model, similar to that of a neural network, but with some key delineating features, such as full
explainability, through life adaptation or evolution and zero-shot capability, enabling it to perform as both a reasoning engine and
a memory representation for an autonomous system. This provides the reasoning backbone for an autonomous agent to determine
the level of risk each object presents based on its context and therefore determine the best possible route.

Keywords: Neurosymbolic AI, Machine learning, Knowledge based learning, Autonomous systems, Complex environments

1. Introduction

Autonomous systems present an opportunity to transform the way humans complete some of the most danger-
ous, unpleasant, or persistent tasks, especially within domains such as Defence or Search and Rescue. These use
cases present some of the greatest beneficiaries of autonomous systems, but have some of the most demanding
requirements, most notably the ability to operate reliably in very complex terrain and dynamic domains, whilst
maintaining a high degree of trust by their operators to complete their task at hand. Robustly operating in com-
plex environments requires platforms to operate in both unstructured and uncertain terrain, where clear transition
points between features may not exist, with high variation in slope, roughness and unpredictable terrain features like
holes or depressions [66], [69], [70]. Furthermore, the characteristics of an object cannot be determined effectively
without understanding the context in which it is found. Navigating requires inductive and deductive reasoning, an
understanding of the environmental conditions, probabilistic judgment, and the ability to handle uncertainty. When
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considering autonomous agents, neither a symbolic nor a neural approach replicates them all sufficiently. Neural
approaches generally fail to reason effectively and suffer from a lack of explainability but can be adaptive to out-
of-distribution data, whilst symbolic approaches can reason but require a significant upfront knowledge base and
cannot effectively generalise. Fundamentally, performing these activities within an autonomous platform is not a
simple extrapolation of either approach. The traversal of complex environments remains an outstanding challenge
in the field of autonomous systems [16], [73].

Navigating complex terrain can be considered across a number of fields of research, such as perception, localisa-
tion, cognition and motion control [56]. This paper focusses on cognition and specifically on how to enable an agent
to determine the traversability of a target object. When considering the prediction of traversability for a given object
within complex environments, the continuous, layered structure of individual objects means that assessment of an
object in isolation is insufficient for making an accurate prediction. The images in 1 show an example of two sepa-
rate examples of the same trail object, both of which have separate performances, caused as a result of the adjacent
objects. Furthermore, terrain characteristics are not consistent in all domains and environments, the performance of
grass changes if it rained in the last hour, and in winter this may be the last day. As a result, such environmental
information is the context and parameters of the overall prediction. Consideration must also be made to the rapid
domain evolutions and inconsistencies required when operating within such an environment, meaning traversability
predictions must have a broad generalisation capacity, enabling routine handling of previously unseen situations.

Vehicles will operate in close proximity to humans who, for both safety and functional reasons, need confi-
dence in actions and to understand why a decision is to be made. As a result, operator trust must be considered
within any agent cognition. This constraint makes any potential for context prediction within a conventional neural
network-based solution [29], [76], [19], [75] a barrier to practical deployment, as any decision justification would
be concealed within the black-box nature of the model, inhibiting explainability. Conversely explicit reasoning and
logic are easier to interpret than neural architectures [77], as reasoning transcends the originator, it is communicable
and can be understood externally [51]. Through explicit reasoning, operators can interpret decisions and understand
errors, making the prediction more deterministic and increasing trust [25].

Fig. 1. An example of two instances of trail objects with their surrounding context, resulting in separate risk assessments

This concept paper builds on the concept of the world model[41], using neurosymbolic methods [33] to develop a
human-like approach to solving the challenge of autonomy in complex environments. It presents a model structure
which enables an agent to make traversability predictions which account for an objects context, learn dynamically
with new experiences, and use causal relationships to generalise across evolving domains. This paper outlines Be-
liefNet, a model designed to support explainable context-based prediction for complex environments.
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BeliefNet uses a symbolically built neural architecture to form experience based beliefs, overtime generating
causal relationships between a target object, it’s context and traversability risk. The model is designed to train
through life, learning with an agent’s experience, enabling adaptation to new environments. The model seeks to
extrapolate causal relationships, enabling it to generalise effectively to different domains. It uses belief-based in-
ference to form deterministic and explainable predictions, improving prediction accuracy, domain adaptation, and
enhancing operator trust.

The contributions of this paper are as follows.

– The proposal of BeliefNet, a Neuro[Symbolic] model structure for context-based traversability prediction for
autonomous systems.

– A demonstration of the performance of BeliefNet in an adapted version of the Yamaha CMU [78] dataset, to
increase the performance of agent cognition in complex environments.

– Comparison of context-based terrain traversability prediction and object-based prediction.
– A high-level traversability taxonomy for ground platforms based on risk and speed.

2. Existing work

2.1. Traversability assessment

The field of traversability has received significant attention in recent years, leading to the development of three
primary approaches emerging to conduct traversability assessment: terrain mapping, terrain classification, and end-
to-end solutions [6]. Lidar analysis has been used extensively in traversability mapping approaches, both in direct
obstacle avoidance [71][39], or in more complex feature segmentation [23] [2] [79]. Whilst delivering promising
results, such approaches are spatial in nature, potentially over simplifying the traversability calculus by ignoring the
environmental and situational semantics. Furthermore, the active nature of Lidar presents challenges in use cases
where light emissions have negative secondary effects.

Terrain classification presents a method to incorporate semantics. Advances in computer vision, with the intro-
duction of models such as YOLO [62] and approaches such as vision transformers [15] and panoptic segmentation
[80], have made this increasingly feasible, allowing real-time inference on edge-based devices. The use of com-
puter vision enables terrains to be segmented into constituent objects, from which semantic labels and classes can
be subsequently assigned. As the terrain classification of complex environments is non-trivial, resulting from the
discontinuous nature of objects, feature overlap, and environmental conditions [48], this continues to be an area
of active research [12], [17], [24], [11], [74] [2], [70], [18]. Vision and Lidar modalities have been combined to
integrate visual semantics with the spatial representations of Lidar [50].

Terrain classification is formed of two distinct components, first detecting and isolating a specific object within the
scene, then assessing the traversability of the object. Although some, such as [2] have integrated both components,
most of the research focusses mainly on accurately determining the object, not assessing the traversability. One
challenge in this approach is that it can neglect the need to consider the environment and context of a specific
object, ignoring that some objects will directly impact the traversability of others. Without such context, it can
be challenging to make an accurate and reasoned determination, which is exacerbated as the complexity of the
environment increases.

End-to-end deep learning approaches have had success in classifying the traversability of an image [76], [42].
Self-supervised approaches, in which a platform trains a model based on self-extracted features to predict the
traversability of the terrain [65] [67], reducing the volume requirements for labelled data to some degree. Such
approaches can be limited in generalisation performance and crucially limits explainability due to the conventional
neural architecture of end-to-end deep learning approaches. The use of image segmentation, coupled with self-
supervised learning, presents a method to increase explainability, but the computational requirements are prohibitive
and the explicit impact of object context is not explicit and unclear [29]. Although research into traversability as-
sessment for complex environments has been significant, it remains an open area of research and one in which
significant advances are required to enable autonomous systems to complete the desired tasks.
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2.2. Agent cognition

Agent cognition within the field of robotics to model actions with high levels of uncertainty has had signif-
icant success using probabilistic methods. Markov Logic Networks (MLN) in event modelling have been used
successfully to classify events from images based on their context [32], but suffer in complex environments due
to cross-domain adaptation, handling partial rule activation, and probabilistic complexity [13], [34]. Markov Deci-
sion Processes (MDP) have also been used in path planning and path trajectory, with Partially Observable MDPs
(POMDP) used to handle increasing levels of uncertainty and complex environments [40]. Belief states have been
integrated into POMDP to extend planning horizons and mitigate the impact of partial observability [30], [20]. Ap-
plications in robotics and autonomous systems focus primarily on action selection. In which state estimation is used
to determine the best action to take across a given planning horizon, formulation of the reward for a given action
(such as its predicted traversability value) is often adjacent to the model. Probabilistic programming using tools
such as ProbLog has sought to overcome the complexity limitations faced by MDPs and MLNs, such as probability
modelling and handling uncertainties in predictions [55], [72], but requires a firm logical foundation, which may
not be easily available in complex environments.

The concept of a belief within Bayesian epistemology considers that beliefs are not consistent and the degree
to which a belief is believed is adapted to the available body of evidence [44]. Pearl emphasises the centrality of
causality in beliefs, expanding beyond correlation [57]. Pearl introduces a three-layer model that supports causality
in the concept of machine learning: association, intervention, and counterfactual; progression through these layers
supports the classification of causal information and improves the degree of confidence in a given belief [58].
Graph structures have presented a method to effectively communicate causal relationships between entities, noting
that such relationships are not hierarchical or linear [45]. The application of causality to machine learning has
recently been identified as a method to significantly increase generalisation and cross-task adaption. It presents a
complex challenge due to the nature of feature extraction from data, Scholkopf et al. presented a number of potential
approaches, such as self-supervised learning and reinforcement learning. This research outlined the importance of
observation and intervention in learning causal relationships [64]. The applications of causality have been applied to
learn causal relationships and apply them within inference [81], [61], [83]. Causality within AI presents significant
promise, though limited within this challenge by the data volumes required by approaches such as autoencoders.
The application of a priori knowledge to autoencoders has been applied by Komanduri et al. as a method of reducing
upfront data requirements [37].

Advances in probabilistic modelling and decision making have had a significant impact on robotics, but the high
levels of variability in object class, prediction confidence, object separation, and adaptive domains seen in complex
environments make logical grounding and the application of finite rule sets insufficient to effectively model the
complexity. The consideration of belief states and partial observability is very relevant to context-aware traversabil-
ity. The state estimation is considered not as the state of the agent given an action, but estimation of the state of
a beliefs held about an object, it’s context, and the resulting traversability. The ability to make predictions with
partially observed inputs and an incomplete understanding of object interactions, whilst being able to update un-
derstanding when new information is available, is very pertinent to complex environments and domain adaptation.
The concepts of beliefs and causality are also of benefit to this problem set, supporting an agent to both learn from
new experiences, and supporting generalisation when facing uncertainty, both of which are common in complex
environment.

2.3. Neurosymbolic AI

Neurosymbolic AI is a promising area of research in machine decision making, explainability, and reasoning [8].
This area of research presents architectures to integrate the reasoning performance of symbolic reasoning and the
learning power of sub-symbolic, connectionist or neural network-based approaches [33], based on the system-1 /
system-2 approach defined by Kahneman [31]. The field is still growing and there remains diversity in approaches,
but all have in common the structure of perception, integrated with existing knowledge [68], and their explainability
and reasoning performance makes them particularly beneficial in use cases with high levels of human-machine
interaction [4]. Within the broader field of autonomous system navigation, neurosymbolic architectures have been
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used to integrate physics rules into a neural network to determine the vehicle dynamics required to traverse a given
path [84]. Neurosymbolic architectures are commonly represented by six core approaches[? ], [33], two of particular
relevance to this article are defined as NEURO;SYMBOLIC and NEURO[SYMBOLIC] [36].

NEURO;SYMBOLIC represents a system in which a symbolic and neural systems work in concert with each
other, communicating and passing information between them, to achieve a common objective [33]. Examples of
this are knowledge graph integration with neural networks [? ] that allow a neural network to query, input to, and
validate symbolic knowledge graphs. NSNnet, which passes between neural and symbolic modules in an attempt
to solve hand written Sudoku challenges, presents a unique perspective that maps both input and output to a non-
symbolic output, with a central symbolic reasoning engine [1]. Both examples are dependent on a core level of
symbolic reasoning. The Neuro-Symbolic Concept Learner (NCSL) is designed to unify text and visual concepts
through the learning of image and question-answer pairs [49]. This model presents an interesting advance as it
enables symbolic concepts to be learnt, without implicit knowledge being defined upfront.

In contrast, the NEURO[SYMBOLIC] system is one in which a neural network learns to reason about relation-
ships between neural entities [33] [38], in effect forming a neural network of symbolic entities. This is perhaps the
most complex and least mature area of research within the field. Logic Tensor Networks (LTN) and Logic Neural
Networks (LNN), which form networks from symbolic relationships and enable weighted training of the relation-
ship using back-propagation based on a set of first-order logic statements [3] [63]. The pLogicNet model mostly
precedes the core definitions of neurosymbolic AI represents a method similar to Logic Tensor Networks based
on the application of Markov Logic Networks [60]. The LTN and pLogicNet are designed to improve, validate, or
deconflict a set of a priori logical statements. The challenge with these approaches when applied to an agent-based
approach is that they require upfront knowledge that may not be practical to achieve. Models such as the Neuro
Symbolic Reinforcement Learner, INSIGHT, by Luo et al uses a neural network to learn symbolic policies that
support the agent in its decision-making, enabling reasoning to be learnt from the environment [47].

Neurosymbolic systems have shown significant promise in vision and multimodal tasks, such as visual question
answering and scene graph generation [43], [5], [28]. Despite success in these areas, multimodal neurosymbolic
systems remain challenged in ensuring consistency between modalities as the deployment domain evolves [46].
From an autonomous system perspective, this might have the most impact at the point that multiple sensors were
combined into a single collaborative neurosymbolic architecture, such as the camera and Lidar, as shown previ-
ously, a common approach. Although this remains an open challenge, it could limit the breadth of neurosymbolic
architecture application in autonomous vehicles.

The current state of neurosymbolic AI presents significant advances in both reasoning and explainability, the
NEURO[SYMBOLIC] concept of a single neural network which encapsulates symbolic reasoning, presents an
opportunity to represent an agent’s world model. As with probabilistic approaches, current methods often rely on a
set of a priori logic statements, leading to similar constraints on domain adaptation. As a result, BeliefNet has taken
the concept of a symbolic network trained using sub-symbolic approaches, but in a manner that reflects the domain
learning capabilities of models such as INSIGHT or the NSCL in which beliefs can be inferred from training. In
the generation of beliefs, in opposition to rules, BeliefNet provides the ability to learn continuously from an agent’s
experience, avoiding the constraint of domain-specific logic that fails to support out-of-distribution inference.

3. Approach

3.1. Overview

BeliefNet is a directed graph-based network in which nodes represent symbolic information, and unlike a neural
network, edges are not fully connected, but instead form relationships based on observation and counterfactual
evidence. The network nodes and edges then act as neurons and connections in a neural network supporting weight
optimisation. This structure enables the model to make traversability adaptions very small amounts of data when
compared with a conventional neural network, whilst retaining absolute explainability in the models deduction.
The relationship between a given set of input predicates and output results represents a belief within the model.
Beliefs are something the system has some degree of confidence in being true [54], based on its own experiences.
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Conceptually, human beliefs continually evolve and adapt to our experiences and our current domain, and we learn
through life. When we face something unknown, we find the set of closest beliefs, use them to make a prediction,
then create a new belief that captures the separation between the prediction and the truth, often captured within the
concept of Predictive Coding [53]. It is this function that the BeliefNet model looks to model; conventional neural
networks struggle with this approach requiring full validation after each evolution. In contrast, the graph structure of
BeliefNet makes domain adaptation and counterfactual generation a deterministic function of the model throughout
its use.

The BeliefNet model is designed to operate post perception, so can be agnostic to the object classification model,
or even the modality. It is also capable of integrating new predicates into the model, which means new classes can
be added to a perception model, and these will be incorporated into BeliefNet as they are experienced. The model
is built logically before training, in which connections between objects, their context, or existing relationships (in
the case of counterfactuals) are generated dynamically. After which a forward pass through the model is made,
followed by optimisation and back-propagation using a conventional loss function. This can be achieved using
a conventional upfront training set, and continued further as the agent experiences its environment, providing an
intervention mechanism overtime generating causal beliefs. Combined with the symbolism retained within each
node, the structure provides the ability to activate only relevant sections of the model during inference, aiding
explainability, and providing reasoning in unknown situations. This approach acts as a zero-shot domain adaptation
model, without the need for the high data volumes conventionally required through existing zero-shot approaches.

The model is designed for human interaction. The symbolic nature of the nodes and deliberate relationships means
that any prediction can be traced through the model directly and that contributing nodes can be clearly identified.
This enables operators to interact with the agent’s cognition in novel methods, which are likely to significantly
enhance trust. Operators can clearly determine why a decision was made, and can actively correct the result and
use this to directly train the model. Furthermore, if they hold logic that had not yet been experienced by the model,
this can be integrated as testimonial knowledge, within the network directly. As a result, BeliefNet presents an
approach capable of context-based traversability prediction and the ability to generate trust between the agent and
the operator.

3.2. High level structure

The model is formed of a number of components, some of which are adaptations of existing deep-learning
approaches and some which are specific to BeliefNet. At a high level, the model should be considered as post-
processing of a perception model, it initialises by taking the perception output and transforming this into a graph
structure, known as an instance graph. The instance graph is generated as the output of a semantic segmentation
model, such as YOLO [27]. The predictions are further enhanced through a depth perception model [7], estimated
3D separation between objects, and augmented with environmental tags that represent the weather, light, and do-
main. The instance graph is a dense symbolic representation of a given image. During training the instance graphs
are converted to a series of context graphs, representing a target object and the surrounding objects, distances, and
environmental tags for a given object for which a prediction is made. Context graphs are passed to the building
algorithm, which is a custom training method designed to extract causal relationships between objects, context, and
a traversability value. This will occur even during inference, enabling new relationships to be formed as they are
identified. This forms the basis of the network; each node has an activation function, bias parameter, and each edge
has a connection weight. To make a prediction, the predicates within the context graph are activated and propagated
through relationships in the graph, generating values at the output nodes. When training or when provided with
feedback, the optimisation step occurs, which uses conventional back-propagation, such as the Adam algorithm
[35] to adapt the weights in a supervised manner. It is the combination of the logical build process before the back-
propagation which provides the reasoning capacity and explainability of the structure. The architecture in Figure 2
visually shows how these components fit together within the model.
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Fig. 2. Model Architecture, the high level architecture of the model is based on the structure of a neural network, but with adaptations to enable
the symbolism to be retained throughout training and inference.

3.3. Data structures

3.3.1. Context graph
The context graph represents a target object for which a prediction is to be made, the relevant object, and envi-

ronmental tags detected in proximity to the target object (the context) and how they each relate in proximity and
position. It is the context graph which acts in effect as the input data to the core belief-net model. Within a given
instance, there may be multiple objects about which a traversability assessment may want to be made. For each of
these, a context graph (G) is generated, representing all objects (V) with relationships (E) to the target, such that
G = (V, E). Captured as a subgraph of the overall instance, it captures the target object(t), context object(c), rela-
tionship type (r) and the strength(s). For the traversability use case the relationship is the positional relationship of
the two objects, and strength represents the 3-dimensional Euclidean distance which is generated as post-processing
from semantic segmentation. To ensure that this remains a subgraph, a relationship threshold (τ) is established. The
relationship threshold and category ranges are parameters that can be tuned within the model.

Each edge e ∈ E within the context graph is defined as:

e = (t, c, r, s) (1)

By way of an example, consider a target object t = grass_low_1, at position pos(t1) = (1, 1, 0). This is within
the context of two proximal objects:

c1 = tree1, pos(c1) = (100, 50, 300),

c2 = puddle2, pos(c2) = (11, 4, 0),
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And has the environmental tags of:

c3 = season:winter,

c4 = weather:light_rain,

The graph vertices become:

V = {grass_low_1,tree_1,puddle_1,season:winter,weather:light_rain}

Each edge is computed as follows; note the strength and relations are net relevant to tags:

e1 =
(
grass_low_1, tree1, r1 = "high right", s1 = ∥(1, 1, 0)− (100, 50, 300)∥2 = 320

)
,

e2 =
(
grass_low_1, puddle1, r2 = "low left", s2 = ∥(1, 1, 0)− (11, 4, 0)∥2 = 10

)
,

e3 =
(
grass_low_1, season:winter1, r3 = "etag", s3 = 1

)
,

e4 =
(
grass_low_1, weather:light_rain1, r4 = "etag", s4 = 1

)
.

Edges and vertices are only included in the context graph if the relationship strength is below the relationship
threshold. If τ = 30:

G =
(
V = {c2, c3, c4}, E = {e2, e3, e4}

)
3.3.2. Data labels

BeliefNet is fundamentally a supervised model, relying on labelled samples from which to learn. Context graphs
are labelled with a traversability index value. Such a value could be infinitely complex and very specific to an
individual agents performance characteristics, to increase generalised performance, a level of abstraction was se-
lected which outlined the behavioural impact, rather than physical or mechanical. The developed traversability
index categorises expected speed (relative to an agents default) and the level of caution the agent will require in
their traversability. The traversability risk analysis framework proposed by [16], in which multiple metrics such as
risk or collision, slippage, and contact loss are combined into a single risk measure, as the basis for a unitary caution
value. Although traversability risk can be a regression problem [26], discrete values are required for classification.
Through the abstraction of metrics into behavioural categories, 11 distinct values were defined enabling relative
traversability across platforms to be compared. These values are shown in the diagram in Figure 3.

Labels are assigned to a context graph in two ways, depending on the phase of training. Firstly, human labelling
enabling a foundational training set to be developed, in which the target objects are assigned a relevant label based
upon their context. This is used for initial supervised learning, where a large dataset is of value. Secondly, the agent
can self-label the target objects based upon direct traversability experience. BeliefNet provides a prediction of the
behaviour expected when traversing a given object. Once traversed, using methods such as those outlined by Zhao
et al. [84], the separation from expected behaviour is used to generate appropriate labels for the context graph of
objects. This method provides the data structures to support through-life learning of the model and the domain
adaptation.

3.4. Model structure

3.4.1. BeliefNet nodes
BeliefNet is fundamentally based on a graphical structure of nodes and edges. As with a conventional neuron[59],

each node n ∈ N has both an input value, from each edge, ine ∈ In and a weight we ∈ W, there is a bias term b and
an activation function to account for nonlinearity act. That is, the output value of a belief node is:

n′ = act((
∑

In ∗W) + b) (2)
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Fig. 3. Traversability Index, there are 11 discrete traversability components, which increase in complexity as defined by the variables in the right
hand table. These are categories that dictate the relative speed, level of caution the platform requires and the mobility of an object. In this context
caution can be represented as the frequency of cognitive analysis, low caution objects can hold a greater frame separation between detailed
processing, than high caution in which every frame may be analysed. They are assessed based on the individual perception of a single platform,
therefore these cam be considered relative to the performance characteristics of an specific platform.

There are three types of nodes within the model, which are loosely equivalent to a single neuron within a neural
network: an input node ninput ∈ I, nbelief ∈ B and noutput ∈ O. An ninput represents an atomic predicate, it can only exist
once within the model and only holds outgoing relationships to a set of nbelief. The belief nodes represent a logical
grouping of context predicates C, akin to an AND relationship. The belief nodes act as the connection between
the predicates and the output nodes. When combined into belief nodes, predicates and their logical relationship
are retained within the name of the node. This enables individual nodes to be referenced directly and enables the
contributing predicates to be directly identified.

Let c1 = grass_low, c2 = hardcore_smooth,

If ⟨c1, e, n1belief⟩and ⟨c2, e, n1
belief⟩,

n1
belief = grass_low ∧ hardcore_smooth

(3)

The belief nodes can have relationships with other belief nodes, indicating counterfactual or divergent beliefs.
Overtime, this component enables complex reasoning and causal relationships to emerge. If a third predicate c3 was
identified with a different output value when combined with the previous predicates, the following would be true.

n2
belief = (c1 ∧ c2) ∧ c3,

E = {⟨c1, e, n1belief⟩, ⟨c2, e, n1belief⟩, ⟨c3, e, n2belief⟩, ⟨n1belief, e, n
2
belief⟩}

(4)
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The output nodes represent a specific output categorisation. Output nodes are combined into layers, in which
each node represents a traversability index value, and a the layer is indexed to the object being classified. This
provides the model with the ability to classify multiple different objects with the same model backbone. As they
are a multiclass classification output, each output layer is combined with a Softmax function [10]. It is important to
note that the Softmax only applies to the specific prediction object output layer, not all outputs. This approach also
sets the foundation for cross-task generalisation, in which separate layers can exist for multiple tasks. Currently, it
uses for object traversability risk layers; however, this could be more granular, with layers for variables like speed,
roughness, and traction, each using the common model backbone.

3.4.2. The model
The model M can be represented as a combination of nodes N and edges E, in line with any conventional graph.

The nodes are formally grouped into layers, based on their type. The input layer Lx represents all possible atomic
predicates, the output layers are three-dimensional, with separate output layers for each prediction object or predic-
tion task tn, between there are beliefs, as a result:

Linput, Lbelief, Loutput = I, (B + E), {Otn1 ,Otn2 , . . . ,Otnn} (5)

It is important to node that Lbelief is not a linear layer, as relationships frequently exist between belief nodes,
forming chains. There are no constraints to the chain length of these relationships, and there will be varying chain
lengths throughout the model, since such B are logically grouped into a 3D layer for simplicity.

By way of an example, suppose that the input layer is a set of three atomic predicates:

I = {ninput(grass_low), ninput(puddle), ninput(tree)}

The model build process may then define two belief nodes and two output nodes:

B = {nbelief(grass_low AND puddle), nbelief(grass_low AND puddle AND tree)}

O = {noutput(1), noutput(5)}
(6)

Then edges are defined between the nodes (details explained in the model build section).

e1 = (ninput(grass_low);belief (grass_low AND puddle))

e2 = (ninput(puddle);belief (grass_low AND puddle))

e3 = (nbelief(grass_low AND puddle);belief (grass_low AND puddle AND tree))

e4 = (ninput(tree);belief (grass_low AND puddle AND tree))

e5 = (nbelief(grass_low AND puddle);output (1))

e6 = (nbelief(grass_low AND puddle AND tree);output (5))

(7)

4. Model training and inference

4.0.1. Model build process
The model is designed to be persistent and adaptive throughout the lifecycle of an autonomous agent, meaning

that it can be trained from no beliefs or use new instances, gained through experience, to update existing beliefs,
both use the same build methodology. Conventionally, neural networks have an initialised architecture which re-
mains constant throughout the life cycle of the model, enabling the use of matrix multiplication. However, this
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inhibits adaptability and explainability. As a result, BeliefNet integrates a build phase prior to weight optimisation,
in which relationships between predicates, beliefs, and outputs are dynamically formed, based upon presence within
a supplied context graph. This occurs in the presentation of each context graph, which means that bulk training or
experiential interventions retain the same capability.

The build process uses individual context graphs or instances insm ∈ Ins, formed of a set of the target object
tn, context objects (Cinsm ) and a set of target labels {ϕ(insm)

tn }, where the target label is a subject object and value,
representing the traversability of the object about which a prediction was made. The model first establishes that each
ϕinsm

tn ∈ Φ and that all cinsm
x ∈ I, otherwise new predicate nodes are created. Then it seeks to identify an existing belief

that matches the exact context in which by ≡ Cinsm , if found, it confirms that ϕinsm
tn ∈ Wby , otherwise it creates a new

relationship wby , ϕ
insm
tn . If no direct match is found, the function searches for existing beliefs that host partial matches

such that by ⊂ Cinsm , it then creates a new belief bz formed of w(by, bz) and w(C′, bz) where C′ = Cinsm \by, bz. If no
partial matching beliefs are found, it creates the belief from the relevant input nodes directly. For each relationship,
the parameters are randomly initialised to prevent biasing the model to a local minimum. By way of an example, this
process is demonstrated in Algorithm 1. For an instance in which partial matches were not required, this is shown
as:

insm = (tn1, {cinsm
1 , c

insm
2 , c

insm
3 }, ϕ

insm
(tn1))

I = {cinsm
1 , c

insm
2 , c

insm
3 }

Otn = {ϕinsm
(tn1)), . . .}

B = {b1} = cinsm
1 ∧ cinsm

2 ∧ cinsm
3

E = {⟨cinsm
1 , e, b1⟩, ⟨c

insm
2 , e, b1⟩, ⟨c

insm
3 , e, b1⟩, ⟨b1, e, ϕinsm

(tn1))⟩}

(8)

However, in the event that a partial belief node already existed, it would create a edges with the existing partial
node, such that:

b1 = cinsm
1 ∧ cinsm

2

b2 = (cinsm
1 ∧ cinsm

2 ) ∧ cinsm
3

B = {b1, b2}

E = {⟨cinsm
1 , e, b1⟩, ⟨c

insm
2 , e, b1⟩, ⟨c

insm
3 , e, b2⟩, ⟨b1, e, b2⟩, ⟨b1, e, ϕinsm

(tn2))⟩ ⟨b2, e, ϕ
insm
(tn1))⟩}

(9)

The model build can be augmented with a priori knowledge during the build phase, where testimonial knowl-
edge can be represented in effect in first-order logic. Relationships between specific predicates can be unified as
knowledge with a direct relationship to the output node. This alone would not be sufficient to capture knowledge;
therefore, knowledge nodes are initiated with high default parameter values for the weights and biases, often 1, this
value has obvious impact on the model, so the value must be tested based on the domain. These parameters can be
included or excluded from the optimiser, meaning they can be fixed or adapt with back-propagation. This represents
the fact that knowledge could be permanently infallible, which is useful for human defined ’red lines’, or could be
feasibly disproved by future evidence. Both are viable options within the model. This feature enables the model to
draw on some of the benefits of tools such as the LTN [3], which reasons over a corpus of provided knowledge,
while allowing the system to add or adapt this knowledge based on induction. Unlike comparative models, this is
optional and not a pre-requisite, the model can be very performant without the addition of knowledge.
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Algorithm 1 Node and Relationship Update Procedure
Require: Features F = {grass_low, puddle, tree}, Label L = 1

1: Let N ← grass_low ∧ puddle ∧ tree
2: if Exists(N) then
3: if Exists(Relation(N, e, L)) then
4: Do nothing
5: else
6: CreateRelation(N, e, L)
7: end if
8: else
9: Let P← grass_low ∧ puddle

10: if Exists(P) then
11: Create(N = P ∧ tree)
12: else
13: Create(P = grass_low ∧ puddle)
14: Create(N = P ∧ tree)
15: end if
16: CreateRelation(N, e, L)
17: end if

Knowledge predicates are defined:

KP = {c1, c2, . . . , cn}

A relationship is formed between the knowledge predicates and the output node:

⟨KP, ek, ϕt,n⟩

The relationship weight is dictated by the knowledge type:

wek =

{
wm, if knowledge is mutable, trainable = True
wn, if knowledge is immutable, trainable = False

where wm < wn

(10)

4.0.2. Dynamic activation
The concept of relevant beliefs is also a separation from conventional ML, which has been seen in neurosymbolic

AI through the freezing of specific input nodes and network dissection [52]. The input layer is considered to be all
atomic beliefs (those of the lowest fidelity) from a given context graph; only the atomic beliefs represented in the
graph are activated; this is propagated through the network. Conventionally, layers in a model are defined by depth;
however, as each union of predicates adds additional information to a belief, this is referred to as the fidelity of a
belief. Activated atomic beliefs are combined recursively to activate or partially activate higher-fidelity beliefs. Any
node that has been activated or partially activated can be considered a relevant belief. In the output layer, all relevant
beliefs are passed to the activation function.
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First the atomic predicates are activated in the input layer:

For ai ∈ A,

Ainput =

{
s, if ai ∈ C
0, if ai /∈ C

Higher fidelity beliefs are recursively activated:

∀b ∈ B, Activation(b) = wb

∑
c∈b

Activation(c) if b ∩C ̸= ∅

Resulting in a set of Relevant Beliefs that are used to calculate the output node values:

R = {b ∈ A ∪ B | Activation(b) > 0}

(11)

Fig. 4. An example of the dynamic activation based on relevant beliefs, and how this propagates through the model

4.0.3. Optimisation
Once the model is built, the model weights are then optimised using conventional back-propagation techniques.

Relevant beliefs are activated by passing a scaled distance value, represented within the context graph, where in ≡
cinsm

x , then propagating the resulting values to the output nodes. The truth value is the target label, which is compared
with the output values such that:

loss(t) = Cross Entropy
(
ϕinsm

tn ,max(ϕt)
)

(12)
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The loss is then propagated using an optimisation algorithm, such as Adam [? ], against the parameters existing
within the nodes and edges. As only the relevant nodes were activated, the gradients outside these nodes will be
zero, and therefore not affected. The model can hold multiple output targets (represented as output layers per target),
but the individual forward pass through the model is assessed against a single target object, as such the loss is taken
from ϕtn and not Φ. The model, as with all learning networks, is heavily influenced by the learning rate, which is
managed by a scheduling function. This approach to optimisation is applied regardless of whether this is an initial
bulk supervised training, self-analysis of traversal of a predicted object or a manually labelled sample by a operator
to correct erroneous behaviour.

4.0.4. Prediction formulation
The generation of an output also has some key separations from a conventional neural network. As mentioned

above, no matrix multiplication is conducted as part of the inference process. Although this could have a perfor-
mance impact, this is offset by the overall sparsity of the model; for a given inference, there may only be a small
proportion of the overall model activated at any time. However, the output nodes still need to draw on the precursor
nodes to formulate an output. This is done through recursive activation of nodes, in which each node calls back
through the network, extracting the output of the relevant beliefs rb ∈ RB and calculating the output of the node.
This function is called each time inference is run, similarly to a conventional predict function. In integrating this
function, the model is able to account for new predicates, beliefs and relationships to be integrated into the model.
Uniquely, BeliefNet uses an output layer per prediction object, which provides the model with its generalisation
performance. Each layer has weighted relationships, and means that new output layers can be integrated into model
without having any direct experience of an object and make generalised assessments. The algorithm detailing how
the outputs are generated is shown in 2. The output formulation for a given target tn is such that:

Otn = {ϕ(tn1), ϕ(tn2), . . . ϕ(tnn)}

ϕ(tnn) =

1∑
n

n′(rbn
ϕ(tnn)

)

tn′ = max(Otn)

(13)

4.0.5. Explainability
A key feature of the model structure is the inherent traceability through the model to determine the factors that

have led to a given prediction. This can be advantageous in highly regulated domains or environments where human-
machine collaboration may be high. The traceability is a direct by-product of avoiding fully connected layers,
meaning that an individual belief or input node can be simply and deterministically assessed for its contribution to
a given output. The model nodes retain their previous outputs in state, meaning a critical path to prediction can be
traced from each output node to the input node by recursively presenting the highest n contributors. This has been
integrated directly into the model as an explainability function. A representation of this can then be visualised, as
shown in 5. The contribution Cn for a given node i to a subsequent node j is defined as the combination of the output
ϕ and the weight in the node w:

Cni j = ϕi × wi j (14)

5. Experimentation

To test the BeliefNet approach, we applied the model to a traversability scenario in which it was presented with
a pre-segmented and labelled image, and sought to correctly classify the traversability of specific objects within the
image. Within this scenario, we sought to test three factors:
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Algorithm 2 Output Generation in BeliefNet
1: function GENERATEPREDICTION
2: for all layers t ∈ T do
3: for all nodes n in layer t do
4: if ϕtn has predecessors then
5: for all predecessor nodes p of ϕtn do
6: if ϕtn not computed yet then
7: ϕtn ← CALCULATENODEOUTPUT(p)
8: else
9: ϕtn ← cached value

10: end if
11: end for
12: end if
13: end for
14: if t is the prediction object then
15: ϕt ← SOFTMAX(ϕt)
16: O← ARGMAX(n ∈ t)
17: return O
18: end if
19: end for
20: end function

– Terrain classification comparison: How does BeliefNet compare to a static value approach, a graph neural
network approach, and a random forest classifier?

– Data size comparison: How does BeliefNet compare to a graph neural network and random forests as the size
of the training data increases?

– Activation function comparison: How does the model adapt with different combinations of activation functions
across the model layers?

A comparative test to an end-to-end model was not conducted, due to a reliance upon both Lidar and imagery
for most approaches, and the comparison of a segmented classification and pixel/voxel classification is not a simple
translation.

5.1. Dataset

The experimentation data set is made up of a layered ontology used to label the Yamaha CMU data set
[78] to better reflect the complexity of the environment. This enables object class, environmental meta-data and
class properties to be analysed by BeliefNet. The ontology is hierarchical, with classes, subclasses and types,
increasing the overall class numbers from 11 to 72. Enabling fidelity such as vegetation_grass_low,
vegetation_complex_tall and trail_hardcore_smooth. Instances were generated from this dataset
and a baseline traversability value (as seen in Figure 3) was assigned to each object class. This served as a baseline,
as it accurately represents the current terrain classification approach to the assessment of traversability, by directly
assigning a value to a given class. To build a ground truth dataset, 300 images were re-labelled with human assess-
ments of the traversability value, enabling humans to extract the image context and make a reasoned assessment on
the relative risk associated with each object. This ground truth data is used as the basis for training BeliefNet. The
re-labelled samples are then randomly split to provide a training and a test set, with all test metrics being completed
by evaluating the test set. This established the framework from which the experimentation was conducted.

5.2. Methodology

The test was targeted at generated responses for the ’grass’, ’hardcore’, ’soil’, ’sand’, ’paved’ ontology objects,
which are the primary traversable objects. Multiple instances existed per training image, meaning that in total there
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Fig. 5. The models graph explanation function showing the top 5 critical path contributors to the overall output, this is visualised graphically.
Contributions are calculated recursively, with each layer showing the contribution to the subsequent node.

were c.350 training samples. This is a small amount for a traditional complex network, but represents a reasonable
amount of varied terrain data that an autonomous system could realistically gather about a given domain. It enables
us to test the ability of the model to adapt to smaller perturbations in the domain and data. The test set was extracted
as 20% of the overall training set. At all points in the test, this was used to ensure comparability. The random
samples were then taken from the training set in increasing increments from 25 samples to the entire data set, and
the models for each set were trained. Each model was then tested against the test set and the accuracy was judged
on the correct categorisation of the risk value against the human adjusted value. This was repeated 15 times and
averaged for each model, with a new random test set identified for each iteration. The data holds large variability;
due to its size, randomly selecting test data through multiple iterations ensures a broad set of complex challenges,
especially zero-shot prediction, are represented in the test.

The comparison models selected were a random forest and a graph neural-network (GraphSAGE) [21] combined
with an XGBoost [14] classification head. The methodology for selecting these models was that they separately
present a neural and a symbolic approach to the problem, and in initial testing against a broad set of models demon-
strated the most potential of extracting sufficient information from a context-based data structure, when compared
to models such as a linear neural network or XGBoost alone. A key contributor to this was the volume of data the
experiment was constrained to, this was a conscious choice as to ensure any outcomes represented how the model
could feasibly be used on a platform. Existing end-to-end approaches favour a continuous traversability classifica-
tion, rather than discrete, making direct comparison not feasible. The input to BeliefNet is segmented objects from a
detection model, for a conventional terrain classification model using state-of-the-art segmentation capabilities such
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as YOLO architectures [27] or vision transformers, this object would be allocated a direct traversability value, this
is directly equivalent to the baseline traversability value. As a result, the baseline comparison value represents the
performance of such approaches.

5.3. Metrics

As the overall classification metrics in this case are risk-based and incremental, performance can also be assessed
by assessing the distance in separation between the predicted and actual values. A model that gets its predictions
closer to the actual classification performs better than a model that is further away. To capture this, we will look at
both an absolute classification and a fuzzy accuracy, which assesses the score as +/- 1 of the absolute.

5.4. Variables

The baseline accuracy is using the default values for an object based on its ontological class and value, compared
with the human edited values; this would be heavily skewed by sampling, so a consistent baseline from the full
dataset was taken as 23% absolute accuracy and 43% with fuzzy accuracy.

In addition to the baseline values, we tested three additional approaches:

– BeliefNet model as described in this paper.
– A random forest classifier [9], which was chosen to as a comparator due to its reasoning capacity with small

datasets, and its ability to explain its results, making it the most similar in output to BeliefNet
– A graph neural network, GraphSAGE which uses an LSTM based architecture [22] to learn and generate

context graph embedding and then passes the embedding to an XGBoost algorithm, acting as a classification
head, to conduct supervised classification [14].

5.5. Results

When BeliefNet was trained to predict the outputs of the traversable object classes in the ontology (grass, hard-
core, soil, sand, complex, rock), using the full dataset it achieved 47% absolute and 81% fuzzy accuracy, this did
not include a priori knowledge. When scaled with the dataset, this is performed as shown in figure 7. This test was
repeated with only grass objects, as these present the highest proportion of the data set and are terrain characteristics
with the highest variation in the traversability index within the class, the results of which are shown in figure 8. The
average results for each model are shown in Table 5.5. The comparison between baseline and BeliefNet against mul-
tiple prediction objects can be seen in figure 6, noting that the number of samples is not consistent between object
types, which is related to the increased variance in some objects over others; for example, the low grass distribution
is significantly lower than tall grass. In the more challenging object, tall grass, due to the higher variation, BeliefNet
outperformed the baseline in both absolute and fuzzy accuracy.

The graph embedding model failed to learn effective patterns within the data; this is likely due to the additional
abstraction generated by the embeddings and the small amount of data for a given prediction, preventing the model
from being able to generalise effectively. This resulted in the model returning the same value for instances of a
given terrain and not identifying any factors that would shift the risk. Even after training using the full dataset, the
model returned an absolute score of 33% and a fuzzy score of 52%. The GraphSAGE model is the comparator to a
conventional neural network, the inability to converge on a solution demonstrates the importance of a neurosymbolic
approach in a complex reasoning task.

The random forest was more successful and was able to make comparable predictions in both actual and fuzzy
accuracy, with the full training data achieving 79% fuzzy accuracy, compared to 81% for BeliefNet, as shown in
Figure 8. Furthermore, random forests present two additional downsides compared to the BeliefNet model.

The nature of random forests means that it is challenging for them to form predictions across multiple classifica-
tions and classification objects. As a result, each classification object, such as grasslow, requireditsownmodel.Whilstthisisastandardpractice, itcomeswithanumbero f drawbacks, f irstlyitpreventsgeneralisedconceptsbeing f ormedacrossmultipleterraintypes, ine f f ectreducingthetrainingdataavailabletoeachmodel, andthiswillimpactdomainadaptation.S econdly, inpractice, therewillbeani/ocosttoloadingnewmodels,whichcouldbeabottleneckinsituationswithmorethanonetraversableob ject.Giventhevolumeo f assessmentsrequiredinacontinuousterrainclassi f ication, thiswillhaveasigni f icantcost.S omeinstancesinthedatasethad f ivetargetob jects,meaning5separatemodelswouldneedtobeloaded f or1image.Incontrast, Belie f Netiscapableo f havingmultipleoutputlayerssimultaneously f orasinglemodelbackbone.Thismeansthatthemodelisabletodrawgeneralisedconceptsratherthanterrain−
speci f icones,whichprovidessigni f icantadvantages,whenthedomainontologyadapts.Thiscanbeseeninthedata; arandom f orestwastrained f oreachob ject,meaningthatthroughoutthetrainingithasalwaysseenarepresentationo f theob jectpreviously,whereasitispossiblethatBelie f Netmakesclassi f icationswithnopriorknowledgeo f anob ject.Inallevaluationruns, Belie f Netwouldmakeapredictiononatleastoneclassthatwasnotinitstrainingdistribution.Thisrepresentsatrade−
o f f betweenaccuracyandgeneralisationandisdemonstratedclearlybytheseparationbetweenabsoluteaccuracyinallpredictionob jects.Althoughthisisaseparationo f3%, itislikelythatthisisthebene f ito f havingaspeci f icmodel f oreachclass.Whilstthisisbene f icial, thisisout−
weightedsigni f icantlybythemodelbeingabletomakepredictionsonunseendataclasses, astheBelie f Netdemonstrates.
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Model Prediction objects Absolute accuracy Fuzzy Accuracy

Baseline All 23% 43%
GraphSAGE + XGBoost All 33% 52%

Random Forest
Grass 35% 72%
All 49% 79%

BeliefNet
Grass 35% 75%
All 47% 81%

Table 1
The summary results using a full dataset over 15 iterations with random test sets for each of the test models.

Fig. 6. Experiment comparison of BeliefNet and the baseline absolute and fuzzy accuracy for individual grass prediction objects, the variance in
prediction value increases in objects left to right.

An additional advantage of BeliefNet over a random forest is related to the fixed inputs required for a random
forest. The input data for the model are a fixed shape array with each item in the array reflecting a possible context
object and the distance from that object. This has two drawbacks, firstly in an ontology such as the one used in this
model, with more than 70 objects, this results in a very sparse set of input data, which can lead to over fitting [82]
and may be a contributor to the flat learning profile. Secondly, the fixed nature means that the model cannot adapt to
new objects identified within the domain. If a new object was identified, based on a new or adapted sensor classifier,
the model would require retraining. In contrast, BeliefNet has a dynamic input length, requiring only the predicates
that are sensed to be passed, and it is designed to be extensible, and when a new predicate is identified, this can
be directly integrated into the model. In this case weights are initialised with a default value, but can then be fine-
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tuned, but in a manner which constrains the adaptation only to the relevant predicates, as only they are activated.
This prevents having an adverse impact on existing and unrelated concepts. This flexibility and adaptive structure is
core to BeliefNet’s domain generalisation and establishes it as a through-life model, which grows with the agent’s
understanding of the world.

Fig. 7. Experiment comparison of BeliefNet and a Random Forest, with a scaled dataset comparing classification of objects ’grass’, ’sand’,
’hardcore’, ’complex’, ’soil’ risk classifications

To validate the performance characteristics of the model, we tested the grass sample set using a number of activa-
tion functions, in doing so, we are able to see how the model adapts over different combinations. Activation functions
were assigned to the input layer and belief nodes separately, noting that they each had separate behaviours. Several
functions were used:

– Leaky-Rectified Linear Unit.
– Linear activation, in effect the identity of the input.
– Hard-sigmoid.
– Learnable Rectified Linear Unit (ReLU), which was generated with a learnable scalar parameter p such that

ReLU(x) ∗ P.

The experiment sought to identify any key variations in the results from the separate activation functions. Each
combination was repeated 15 times and the mean results are shown in Figure 9, using a consistent learning rate of
0.001 and over 15 epochs of learning. The model performed consistently across the models. The best performing
combinations were those that involved a linear function at the input layer. As the input is a function of distance,
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Fig. 8. Experiment comparison of BeliefNet and a Random Forest, with a scaled dataset comparing classification of Grass objects
grasslow, grassmedium, grasstall risk classifications

Table 2

Model Fuzzy Acc Var Abs Acc Mean Abs Acc Var Abs Acc Std Dev Fuzzy Acc Mean Fuzzy Acc Std Dev

Linear-HardSigmoid 0.003302 0.353033 0.000431 0.020770 0.801267 0.057464
Learnable-LeakyReLU 0.000445 0.327467 0.000934 0.030568 0.735500 0.021083
LeakyReLU-LeakyReLU 0.007640 0.324967 0.004002 0.063263 0.713000 0.087407
Linear-Learnable 0.001807 0.367900 0.004646 0.068162 0.814167 0.042511
HardSigmoid-Learnable 0.004052 0.368600 0.002058 0.045362 0.751433 0.063652

this suggests that the model benefits from retaining the symbolic information. The learnable activation functions
performed well, but did not significantly outperform, suggesting that there are sufficient model parameters without
the requirement to augment.

6. Discussion

BeliefNet presents an opportunity to provide a unified reasoning engine to support terrain traversal, in a man-
ner which enables an agent to make an informed decision about risk and traversability. It is inherently extensible
meaning that it can use what it has learnt within one domain, and adapt this to unknown environments, and its
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Fig. 9. Experiment comparison of BeliefNet using separate activation functions (input, belief node) when classifying the grass objects(
grasslow, grassmedium, grasstall)

inherent explainability means that operators and interpret, understand and impact decision making. This approach
significantly increases performance when compared with the static value approach, and enhances the flexibility and
explainability when compared to an end-to-end model. This paper demonstrated the application of the BeliefNet
model within an autonomous agent traversability reasoning task; however, this model structure has potential to be
applied more widely across similar tasks with high complexity and underlying logic, which may not be immediately
accessible. This could be particularly relevant to domains with high-assurance or regulatory requirements, which
traditionally AI struggles to meet.

6.1. Deployment considerations

When the deployment of BeliefNet to an autonomous system is considered, there are a number of topics worthy
of discussion. A key challenge of capability deployment to an autonomous system is that power and space are
finite and broadly shared, and there are competing priorities. As a result, the computational overhead of any single
system must be considered in the context of the system as a whole. As a component of the navigational system,
BeliefNet will be expected to have comparable performance to a perception system likely running at > 10 fps.
Although explicit benchmarking of speed performance was out of scope for this research, the removal of matrix
multiplication could have a negative impact on inference speed as the model scales. This was not seen within this
experimentation, but could be mitigated by the set-based nature of nodes within the model, meaning that model
size will grow logarithmically with experience. This could also be further enhanced through the addition of more
complex conjunctives, such as NOT and OR, which could aggregate beliefs more succinctly.

When considering how BeliefNet fits within a deployed platform, it is valuable to consider the full information
processing pipeline. This research explored the cognition element alone, but has dependencies on both the perception
module and low-level control of the platform. BeliefNet does not require fixing to any given perception model, or
require retraining if the perception model is. However, there is a critical dependency between the two models; for
BeliefNet to make accurate context-based predictions, it depends on accurate classifications of objects within the
scene. Classification errors could have a potentially greater impact on cognition output. Whilst vision was the focus
of this research, BeliefNet was intended to work with any classification modality. Platform low level control both
depends on and provides to BeliefNet. It relies on abstracted traversability values to predict the platform kinematics
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required to effectively traverse an object of a given value. Furthermore, once traversing an object, the performance of
the platform, vs expected, provides a valuable feedback mechanism that can be used directly to inform optimisation.

6.2. Further work

This research outlines the potential for BeliefNet in the domain of complex environment traversability, but there
are opportunities for further development, which could enhance its applicability. Firstly, extending the solution fur-
ther to include the connection of a single, or multimodality sensor module would be the next step towards platform
integration. This would also provide an opportunity for Lidar/Vision combinations to test the capability of BeliefNet
to collaborate across modalities. Secondly, considering the platform conversion of exteroceptive and interoceptive
sensing outputs into a traversability assessment, thus creating a full learning loop for the agent, this could be an-
other application of BeliefNet. Another area to be considered is experimentation with the learning rate for manual
learning/human intervention such that learning is effective, without adversely skewing model outputs. Finally, this
research into the models performance was completed against a single objective function, expanding the research to
support multi-objective optimisation would enable additional agency in more complex situations. For example, the
ability for BeliefNet to support the risk/time trade-off when assessing tactical route planning.

7. Conclusion

In this paper, we have defined the challenge of traversability assessment for autonomous systems when operating
in complex environments, demonstrated the importance of context within predictions, and detailed BeliefNet as a
novel neurosymbolic model capable of generating context-based predictions for traversability. BeliefNet is capable
of learning through life from the experience of an autonomous agent, providing a method to enhance domain adap-
tation, and uses causal beliefs to support predictions in unknown situations. By retaining a symbolic structure within
the network, it remains explainable and provides operators with the ability to interact with model training directly,
enhancing trust. BeliefNet presents an advance towards enabling autonomous system deployment and performance
in complex, demanding environments.
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