
A Mathematical
Framework
and a Suite of Learning
Techniques
for Neural-Symbolic
Systems

Journal Title
XX(X):2–85
©The Author(s) 2025
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Charles Dickens1, Connor Pryor1, Changyu Gao2, Alon Albalak3,
Eriq Augustine1, William Wang3, Stephen Wright2, and Lise
Getoor1

Abstract
The field of Neural-Symbolic (NeSy) systems is growing rapidly. Proposed approaches
show great promise in achieving symbiotic unions of neural and symbolic methods.
However, a unifying framework is needed to organize common NeSy modeling
patterns and develop general learning approaches. In this paper, we introduce Neural-
Symbolic Energy-Based Models (NeSy-EBMs), a unifying mathematical framework
for discriminative and generative NeSy modeling. Importantly, NeSy-EBMs allow the
derivation of general expressions for gradients of prominent learning losses, and we
introduce a suite of four learning approaches that leverage methods from multiple
domains, including bilevel and stochastic policy optimization. Finally, we ground the
NeSy-EBM framework with Neural Probabilistic Soft Logic (NeuPSL), an open-source
NeSy-EBM library designed for scalability and expressivity, facilitating the real-world
application of NeSy systems. Through extensive empirical analysis across multiple
datasets, we demonstrate the practical advantages of NeSy-EBMs in various tasks,
including image classification, graph node labeling, autonomous vehicle situation
awareness, and question answering.

Keywords
Neural-Symbolic AI, Energy-based Models, Deep Learning

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

1 Introduction
The promise of mutually beneficial neural and symbolic integrations has motivated
significant advancements in machine learning research. Much of the recent progress
has been achieved in the neural-symbolic (NeSy) computing literature (d’Avila Garcez
et al. 2002, 2009, 2019). NeSy is a large and rapidly growing community that has been
hosting regular workshops since 2005 (NeSy2005) and began holding conferences in 2024
(NeSy2024). At a high level, NeSy research aims to build algorithms and architectures
that combine neural and symbolic components (Xu et al. 2018; Yang et al. 2020; Cohen
et al. 2020; Manhaeve et al. 2021a; Wang et al. 2019; Badreddine et al. 2022; Ahmed et al.
2022a; Pryor et al. 2023a). With the continued growth of the field, NeSy requires a solid
theoretical foundation built on a unifying framework. Such a framework should support
understanding and organizing the strengths and limitations of existing NeSy approaches,
while guiding design decisions to better match the requirements of specific applications.
Furthermore, it should enable the development of general-purpose and widely applicable
NeSy inference and learning algorithms.

In this paper, we introduce Neural-Symbolic Energy-Based Models (NeSy-EBMs), a
mathematical framework for NeSy. NeSy-EBMs are a family of Energy-Based Models
(EBMs) (LeCun et al. 2006) defined by energy functions that are compositions of neural
and symbolic components. The neural component consists of a collection of deep models,
and its output is provided to the symbolic component, which measures the compatibility of
variables using domain knowledge and constraints. This formulation serves as a foundation
for characterizing NeSy modeling paradigms and for developing general-purpose inference
and learning algorithms. Moreover, by grounding NeSy in the well-established EBM
perspective, NeSy-EBMs connects NeSy to the broader machine learning literature.

The insights derived from the NeSy-EBM framework motivate the development of a
comprehensive system that supports key modeling paradigms. To this end, we introduce
Neural Probabilistic Soft Logic (NeuPSL), an open-source, expressive, and efficient
library for constructing NeSy-EBMs. NeuPSL uses the principled and comprehensive
semantics of Probabilistic Soft Logic (PSL) (Bach et al. 2017) to create a NeSy-EBM
symbolic component. Then, the neural component can be built using any deep modeling
library and seamlessly integrated with the PSL symbolic component. Further, to ensure
differentiability properties and provide principled forms of gradients for learning, we

1University of California Santa Cruz
2University of Wisconsin Madison
3University of California Santa Barbara

Corresponding author:
Charles Dickens, Department of Computer Science and Engineering University of California, Santa Cruz,
CA 95060, USA
Email: cadicken@ucsc.edu

Prepared using sagej.cls

A Mathematical Framework for NeSy 3

present a new formulation and regularization of PSL inference as a constrained quadratic
program.

Further, we develop a suite of principled neural and symbolic parameter learning
techniques for NeSy. NeSy-EBM predictions are typically obtained by finding a state
of variables with high compatibility (i.e., low energy). The high compatibility state is
found by minimizing the energy function via an optimization algorithm, for instance, an
interior point method for continuous variables (Nocedal and Wright 2006) or a branch-and-
bound strategy for discrete problems (H. Papadimitriou and Steiglitz 1998). The complex
prediction process makes finding a gradient or descent direction of a standard machine
learning loss with respect to the parameters difficult. To formalize these challenges and
propose solutions, we introduce a categorization of learning losses based on the complexity
of the relation to the NeSy-EBM energy function. We derive general expressions for
gradients of the categorized learning losses with respect to the neural and symbolic
parameters when the loss is differentiable. Additionally, we introduce four NeSy-EBM
learning algorithms: one for learning the neural and symbolic weights separately and
three for end-to-end learning. Our end-to-end learning algorithms make use of ideas
from the bilevel optimization and reinforcement learning literature. Moreover, we discuss
the strengths and limitations of each algorithm and describe its applicability to various
modeling paradigms.

We empirically investigate the utility of NeSy-EBM’s for four use-cases: 1) constraint
satisfaction and joint reasoning, 2) fine-tuning and adaptation, 3) few-shot and zero-shot
reasoning, and 4) semi-supervised learning. We simultaneously analyze multiple NeSy-
EBM modeling paradigms and learning algorithms in an extensive empirical analysis
across numerous variations of seven datasets. We show compelling results for real-world
applications, including graph node classification, computer vision object detection, and
natural language question answering. Notably, NeSy-EBMs are shown to enhance neural
network prediction accuracy, enforce constraints, and improve label and data efficiency in
semi-supervised and low-data settings, respectively.

This paper integrates and expands on our prior work on NeSy integrations and
applications via the NeSy-EBM framework (Pryor et al. 2023a; Dickens et al. 2024a,b).
The strengths of NeSy-EBM models have been demonstrated on a variety of tasks,
including dialog structure induction (Pryor et al. 2023b), natural language (Pan et al.
2023; Dickens et al. 2024b) and visual question answering (Yi et al. 2019), autonomous
vehicle situation awareness (Giunchiglia et al. 2023), human activity recognition (Arrotta
et al. 2024), recommendation (Carraro et al. 2022), and autonomous agent navigation and
exploration (Zhou et al. 2023). Additionally, the NeSy-EBM framework has enabled a
deeper understanding of the connections and capabilities of NeSy systems (Dickens et al.
2024b). Moreover, general NeSy inference and learning algorithms have been developed
(Dickens et al. 2024a) along with new open-source NeSy implementations (Pryor
et al. 2023a). The NeSy-EBM framework has become a powerful tool for formalizing
connections and capabilities of NeSy models and for developing new NeSy architectures
and learning algorithms. In this work, we organize and advance our prior work to 1)
present NeSy-EBMs, a mathematical framework for NeSy, 2) introduce NeuPSL, an
open-source tool for building NeSy-EBMs, 3) develop a suite of general NeSy learning

Prepared using sagej.cls

4 Journal Title XX(X)

techniques, and 4) simultaneously demonstrate the value of NeSy and analyze our learning
techniques with an extensive empirical analysis.

This paper is organized as follows. In Section 2 we discuss related work on NeSy
frameworks and NeSy applications. In Section 3, we formally define NeSy-EBMs and
introduce three practical NeSy modeling paradigms. Next, in Section 4, we introduce
NeuPSL, a scalable and expressive NeSy-EBM implementation. In Section 5, we present
a suite of NeSy learning techniques. Then, in Section 6, we use NeuPSL to build NeSy-
EBMs for our empirical analysis of NeSy use cases, modeling paradigms, and learning
algorithms. Finally, we discuss limitations, takeaways, and future work in Section 7 and
Section 8.

2 Related Work
There is a long, rich history of research on the integration of symbolic knowledge and
reasoning with neural networks, which has rapidly evolved in the past decade. In this
work, we establish a unifying framework for achieving such integration by connecting
two foundational areas of machine learning research: Neural-Symbolic (NeSy) AI and
energy-based modeling (EBMs). The remainder of this section provides an overview of
NeSy frameworks and applications. Additionally, we provide an extended related work in
Appendix B, covering EBMs, and bilevel optimization.

Neural-Symbolic Frameworks
NeSy empowers neural models with domain knowledge and reasoning through integrations
with symbolic systems (d’Avila Garcez et al. 2002, 2009, 2019; De Raedt et al. 2020;
Besold et al. 2022). Various taxonomies have been proposed to categorize NeSy
literature. Bader and Hitzler (2005), d’Avila Garcez et al. (2019), and most recently
Besold et al. (2022) provide extensive surveys using characteristics such as knowledge
representation, neural-symbolic connection, and applications to compare and describe
methods. Similarly, the works of De Raedt et al. (2020) and Lamb et al. (2020) propose
taxonomies to connect NeSy to statistical relational learning and graph neural networks,
respectively. Focused taxonomies are described by Giunchiglia et al. (2022) and van
Krieken et al. (2022) for deep learning with constraints and symbolic knowledge
representations and Dash et al. (2022) for integrating domain knowledge into deep neural
networks. Marconato et al. (2023) characterizes the common reasoning mistakes made by
NeSy models, and Marconato et al. (2024) presents an ensembling technique that calibrates
the model’s concept-level confidence to attempt to identify these mistakes. Recently, Wan
et al. (2024) explored various NeSy AI approaches primarily focusing on workloads on
hardware platforms, examining runtime characteristics and underlying compute operators.
Finally, van Krieken et al. (2024) propose a language for NeSy called ULLER that aims to
unify the representation of major NeSy systems, with the long-term goal of developing a
shared Python library. Each of these surveys and taxonomies contributes to the comparison,
understanding, and organization of the diverse collection of NeSy methodologies. We
contribute to these efforts by introducing a common mathematical framework (Section 3)
and describe a collection NeSy modeling paradigms (Section 3).

Prepared using sagej.cls

A Mathematical Framework for NeSy 5

We organize our exposition of related NeSy AI frameworks into three research areas:
learning from constraints, differentiable reasoning layers, and reasoner agnostic systems.
The first subsection discusses NeSy learning losses. Whereas, the second and third
subsections cover NeSy approaches to both learning and inference. In the following
subsections, we define each of the research areas and describe prominent examples of
NeSy models belonging to the area.

Learning from Constraints Learning from constraints is using domain knowledge and
common sense to construct a learning loss function (Giunchiglia et al. 2022; van Krieken
et al. 2022). This approach encodes the knowledge captured by the loss into the weights
of the network. A key motivation is to ensure the compatibility of predictions with domain
knowledge and common sense. Moreover, learning with constraints avoids potentially
expensive post-prediction interventions that would be necessary with a model that is
not aligned with domain knowledge. However, consistency with domain knowledge and
sound reasoning are not guaranteed during inference for NeSy models in this class. This is
because there is no symbolic reasoning performed to obtain predictions from the system.

Demeester et al. (2016), Rocktäschel and Riedel (2017), Diligenti et al. (2017b),
Bošnjak et al. (2017), and Xu et al. (2018) are prominent examples of the learning-with-
constraints NeSy paradigm. Demeester et al. (2016) incorporates domain knowledge and
common sense into natural language and knowledge base representations by encouraging
partial orderings over embeddings via a regularization of the learning loss. Similarly,
Rocktäschel and Riedel (2017) leverage knowledge represented as a differentiable loss
derived from logical rules to train a matrix factorization model for relation extraction.
Diligenti et al. (2017b) use fuzzy logic to measure how much a model’s output violates
constraints, which is minimized during learning. Xu et al. (2018) introduces a loss
function that represents domain knowledge and common sense by using probabilistic
logic semantics. More recently, Giunchiglia et al. (2023) introduced an autonomous
event detection dataset with logical requirements, and Stoian et al. (2023) shows that
incorporating these logical requirements during the learning improves generalization.

Differentiable Reasoning Layers Another successful area of NeSy is in differentiable
reasoning layers. The primary difference between this family of NeSy approaches and
learning from constraints is that an explicit representation of knowledge and reasoning
is maintained in the model architecture during both learning and inference. Moreover, a
defining aspect of differentiable reasoning layers is the instantiation of knowledge and
reasoning components as differentiable computation graphs. Differentiable reasoning
layers support automatic differentiation during learning and symbolic reasoning during
inference.

Pioneering works in differentiable reasoning include those of Wang et al. (2019), Cohen
et al. (2020), Yang et al. (2020), Manhaeve et al. (2021a), Derkinderen et al. (2024),
Badreddine et al. (2022), Ahmed et al. (2022a) and Ahmed et al. (2023a). Wang
et al. (2019) integrates logical reasoning and deep models by introducing a differentiable
smoothed approximation to a maximum satisfiability (MAXSAT) solver as a layer.
Cohen et al. (2020) introduces a probabilistic first-order logic called TensorLog. This
framework compiles tractable probabilistic logic programs into differentiable layers.

Prepared using sagej.cls

6 Journal Title XX(X)

A TensorLog system is end-to-end differentiable and supports efficient parallelizable
inference. Similarly, Yang et al. (2020) and Manhaeve et al. (2021a) compile tractable
probabilistic logic programs into differentiable functions with their frameworks NeurASP
and DeepProblog, respectively. NeurASP and DeepProblog use answer set programming
(Brewka et al. 2011) and ProbLog (De Raedt et al. 2007) semantics, respectively. Winters
et al. (2022) proposes DeepStochLog, a NeSy framework based on stochastic definite
clause grammars that define a probability distribution over possible derivations. Recently,
Maene and Raedt (2024) proposes DeepSoftLog, a superset of ProbLog, adding embedded
terms that result in probabilistic rather than fuzzy semantics. The logic tensor network
(LTN) framework proposed by Badreddine et al. (2022) uses neural network predictions
to parameterize functions representing symbolic relations with real-valued or fuzzy
logic semantics. The fuzzy logic functions are aggregated to define a satisfaction level.
Predictions can be obtained by evaluating the truth value of all possible outputs and
returning the highest-valued configuration. Badreddine et al. (2023) has expanded upon
LTNs and presents a configuration of fuzzy operators for grounding formulas end-to-end
in the logarithm space that is more effective than previous proposals. Recently, Ahmed
et al. (2022a) introduced a method for compiling differentiable functions representing
knowledge and logic using the semantics of probabilistic circuits (PCs) (Choi et al. 2020).
Their approach, called semantic probabilistic layers (SPLs), performs exact inference over
tractable probabilistic models to enforce constraints over the predictions and uses the PC
framework to ensure that the NeSy model is end-to-end trainable.

As pointed out by Cohen et al. (2020), answering queries in many (probabilistic)
logics is equivalent to the weighted model counting problem, which is #P-complete
or worse. Similarly, the MAXSAT problem studied by Wang et al. (2019) is NP-hard.
Thus, since deep neural networks can be evaluated in time polynomial in their size, no
polysize network can implement general logic queries unless #P=P, or MAXSAT solving,
unless NP=P. For this reason, researchers have made progress towards building more
efficient differentiable reasoning systems by, for example, restricting the probabilistic
logic to tractable families (Cohen et al. 2020; Ahmed et al. 2022a; Maene et al. 2024), or
performing approximate inference (Wang et al. 2019; Manhaeve et al. 2021b; van Krieken
et al. 2023).

Reasoner Agnostic Systems More recently, researchers have sought to build NeSy
frameworks with more general reasoning and knowledge representation capacities with
expressive mathematical program blocks for reasoning. Mathematical programs are
capable of representing cyclic dependencies across variables and ensuring the satisfaction
of prediction constraints during learning and inference. Moreover, the system’s high-level
inference and training algorithms are agnostic to the solver used for the mathematical
program.

Prominent reasoner-agnostic systems include the works of Amos and Kolter (2017),
Agrawal et al. (2019a), Vlastelica et al. (2020), and Cornelio et al. (2023). Amos and
Kolter (2017) integrate linearly constrained quadratic programming problems (LCQP)
as layers in deep neural networks with their OptNet framework, and show that the
solutions to the LCQP problems are differentiable with respect to the program parameters.

Prepared using sagej.cls

A Mathematical Framework for NeSy 7

The progress of OptNet was continued by the work of Agrawal et al. (2019a) with the
application of domain-specific languages (DSLs) for instantiating the LCQP program
layers. DSLs provide a syntax for specifying LCQPs representing knowledge and
constraints, making optimization layers more accessible. Vlastelica et al. (2020) propose
a method for computing gradients of solutions to mixed integer linear programs based on
a continuous interpolation of the program’s objective. In contrast to the works of Amos
and Kolter (2017) and Agrawal et al. (2019a), the approach introduced by Vlastelica
et al. (2020) supports integer constraints and achieves this by approximating the true
gradient of the program output. Cornelio et al. (2023) takes a different approach from
these three methods by employing reinforcement learning techniques to support more
general mathematical programs. Specifically, the neural model’s predictions are interpreted
as a state in a Markov decision process. Actions from a policy are taken to identify
components that violate constraints to obtain a new state. The new state is provided to a
solver, which corrects the violations, and a reward is computed. The solver is not assumed
to be differentiable, and the REINFORCE algorithm (Williams 1992) with a standard
policy loss is used to train the system end-to-end without the need to backpropagate
through the solver.

Applications
We highlight five proven applications NeSy: 1) constraint satisfaction and joint reasoning,
2) post-training, 3) few-shot and zero-shot reasoning, 4) semi-supervised learning, and 5)
reasoning with noisy data. This list of use cases is not exhaustive. However, the efficacy of
the NeSy approach in these applications is well established, and we will illustrate four of
these use cases in our empirical evaluation. The following subsections define the problem
and the high-level motivation for utilizing NeSy techniques in such settings. Additionally,
we discuss collections of existing NeSy systems for each application.

Constraint Satisfaction and Joint Reasoning In real-world settings, a deployed model’s
predictions must meet well-defined requirements. Additionally, leveraging known
patterns or dependencies in the output can significantly improve a model’s accuracy
and trustworthiness. Constraint satisfaction is finding a prediction that satisfies all
requirements. NeSy systems perform constraint satisfaction by reasoning across their
output to provide a structured prediction, typically using some form of joint reasoning.
In other words, NeSy systems integrate constraints and knowledge into the prediction
process.

A commonly used example of constraint satisfaction and joint reasoning with NeSy
techniques is puzzle-solving. Many NeSy frameworks are introduced with an evaluation
on visual Sudoku and its variants (Wang et al. 2019; Augustine et al. 2022). In the visual
Sudoku problem, puzzles are constructed with handwritten digits, and a model must
classify the digits and infer numbers to fill in the empty cells using the rules of Sudoku.
Empirical evaluations of NeSy systems that perform constraint satisfaction and joint
reasoning on visual Sudoku problems can be found in Wang et al. (2019), Augustine et al.
(2022), Pryor et al. (2023a), and Morra et al. (2023). Similarly, Vlastelica et al. (2020)
introduces the shortest path finding problem as a NeSy task. Images of terrain maps are

Prepared using sagej.cls

8 Journal Title XX(X)

partitioned into a grid, and the model must find a continuous lowest-cost path between two
points. The works of Vlastelica et al. (2020) and Ahmed et al. (2022a) perform constraint
satisfaction and joint reasoning with NeSy models for shortest path finding.

Constraint satisfaction and joint reasoning with NeSy models are also effective for real-
world natural language tasks. For instance, Sachan et al. (2018) introduces the Nuts&Bolts
NeSy system to build a pipeline for parsing physics problems. The NeSy system jointly
infers a parsing from multiple components that incorporates domain knowledge and
prevents the accumulation of errors that would occur from a naive composition. In another
work, Zhang et al. (2023) propose GeLaTo (generating language with tractable constraints)
for imposing constraints on text generated from language models. GeLaTo generates text
tokens by autoregressively sampling from a distribution constructed from a pre-trained
language model and a tractable probabilistic model encoding the constraints. More recently,
Pan et al. (2023) introduced the Logic-LM framework for integrating LLMs with symbolic
solvers to improve complex problem-solving. Logic-LM formulates a symbolic model
using an LLM that uses prompts of the syntax and semantics of the symbolic language.
Finally, Abraham et al. (2024) introduced CLEVR-POC, which requires leveraging logical
constraints to generate plausible answers to questions about a hidden object in a given
partial scene. They then demonstrated remarkable performance improvements over neural
methods by integrating an LLM with a visual perception network and a formal logical
reasoner.

Computer vision systems also benefit from the constraint satisfaction and joint reasoning
capabilities of NeSy models. For instance, semantic image interpretation (SII) is the task
of extracting structured descriptions from images. Donadello et al. (2017) implemented
a NeSy model for SII using the Logic Tensor Network (LTN) (Badreddine et al. 2022)
framework for reasoning about “part-of” relations between objects with logical formulas.
Similarly, Yi et al. (2019) propose a NeSy visual question-answering framework (NS-
VQA). The authors employ deep representation learning for visual recognition to recover
a structured representation of a scene and then language understanding to formulate a
program from a question. A symbolic solver executes the formulated program to obtain
an answer. Sikka et al. (2020) introduced Deep Adaptive Semantic Logic (DASL) for
predicting relationships between pairs of objects in an image given the bounding boxes
and object category labels, i.e., visual relationship detection. The DASL system allows
a modeler to express knowledge using first-order logic and to combine domain-specific
neural components into a single deep network. A DASL model is trained to maximize a
measured truth value of the knowledge.

Post-training We are in the era of foundation models in AI (Bommasani et al. 2022). It
is now commonplace to adjust a model that is pre-trained on large amounts of general
data (typically using self-supervision) for downstream tasks. Post-training is the process
of updating the parameters of a pre-trained model to perform in a new domain (Devlin
et al. 2019; J. Hu et al. 2022). Fine-tuning and alignment are two example post-training
techniques that adjust the pre-trained model parameters by minimizing a learning objective
over a dataset, both of which are specialized for the downstream tasks. These are necessary
steps in the modern AI development process.

Prepared using sagej.cls

A Mathematical Framework for NeSy 9

NeSy frameworks are used in post-training to design principled learning objectives that
integrate knowledge and constraints relevant to the downstream task and the application
domain. Giunchiglia et al. (2022) provides a recent survey of the use of logically specified
background knowledge to train neural models. NeSy learning losses are applied in
the work of Giunchiglia et al. (2023) to post-train a neural system for autonomous
vehicle situation awareness (Singh et al. 2021). In another computer vision task, Arrotta
et al. (2024) develop a NeSy loss for training a neural model to perform context-aware
human activity recognition. NeSy post-training has also been explored in the natural
language processing literature. Recently, Ahmed et al. (2023b) proposed the pseudo-
semantic loss for detoxifying large language models. The authors disallow a list of toxic
words and show this intuitive approach steers a language model’s generation away from
harmful language and achieves state-of-the-art detoxification scores. Feng et al. (2024)
has explored directly learning the reasoning process of logical solvers within the LLM
to avoid parsing errors. Finally, Cunnington et al. (2024) introduced NeSyGPT, which
post-trains a vision-language foundation model to extract symbolic features from raw data
before learning some answer set program.

Few-Shot and Zero-Shot Reasoning Training data for a downstream task may be limited
or even nonexistent. In few-shot settings, only a few examples are available, while in
zero-shot settings, no explicit training data is provided for the task. In these settings,
few-shot and zero-shot reasoning techniques are used to enable a model to generalize
beyond the limited available training data. Leveraging pre-trained models and domain
knowledge are key ideas for succeeding in few-shot and zero-shot contexts.

NeSy techniques have been successfully applied for various few-shot and zero-shot
settings. Integrating symbolic knowledge and reasoning enables better generalization from
a small number of examples. NeSy systems can utilize symbolic knowledge to make
deductions about unseen classes or tasks. For instance, providing recommendations for
new items or users can be viewed as a few-shot or zero-shot problem. Kouki et al. (2015)
introduce the HyPER (hybrid probabilistic extensible recommender) framework for
incorporating and reasoning over a wide range of information sources. By combining
multiple information sources via logical relations, the authors outperformed the state-
of-the-art approaches of the time. More recently, Carraro et al. (2022) developed an
LTN-based recommender system to overcome data sparsity. This model uses background
knowledge to generalize predictions for new items and users quickly. Few-shot and zero-
shot reasoning tasks are also prevalent in object navigation. The ability to navigate to
novel objects and unfamiliar environments is vital for the practical use of embodied agents
in the real world. In this context, Zhou et al. (2023) presents a method for “exploration
with soft commonsense constraints” (ESC). ESC first employs a pre-trained vision and
language model for semantic scene understanding, then a language model to reason from
the spatial relations, and finally PSL to leverage symbolic knowledge and reasoning to
guide exploration. In natural language processing, Pryor et al. (2023b) infers the latent
dialog structure of a goal-oriented conversation using domain knowledge to overcome
the challenges of limited data and out-of-domain generalization. Sikka et al. (2020)
(mentioned above) also finds that the few-shot and zero-shot capabilities of NeSy models

Prepared using sagej.cls

10 Journal Title XX(X)

help in visual relationship detection. Specifically, the addition of commonsense reasoning
and knowledge improves performance by over 10% in data-scarce settings.

Semi-Supervised Learning Semi-supervised approaches facilitate learning from labeled
as well as unlabeled data by combining the goals of supervised and unsupervised machine
learning. We refer the reader to the excellent recent survey on semi-supervised approaches
by E. van Engelen and H. Hoos (2020). In short, supervised methods fit a model to
predict an output label given a corresponding input, while unsupervised methods infer the
underlying structure in the data. The ability to leverage both labeled and unlabeled data
leads to performance improvements, better generalization, and reduced labeling costs.

NeSy is a functional approach to semi-supervised learning that leverages knowledge
and domain constraints to train a model. This is achieved with loss functions that encode
domain knowledge and structure and depend only on the input and output; that is, they do
not require a label. Early work on semi-supervision with knowledge was carried out by
Chang et al. (2007), who unify and leverage task-specific constraints to encode structure in
the input and output data and possible labels. They evaluate their semi-supervised learning
method on the task of named entity recognition in citations as well as advertisements.
More recently, Ahmed et al. (2022b) introduced the neuro-symbolic entropy regularization
loss to encourage model confidence in predictions satisfying a set of constraints on the
output. They demonstrate that the regularization improves model performances in the task
of entity relation extraction in text. Additionally, Stoian et al. (2023) studied the effect
of various t-norms used to soften the logical constraints for the symbolic component and
demonstrated on a challenging road event detection dataset with logical requirements
(Giunchiglia et al. 2023) that the incorporation of a symbolic loss drastically improves
performance.

3 A Mathematical Framework for NeSy
In this section, we introduce Neural-symbolic energy-based models (NeSy-EBMs):
a unifying mathematical framework for NeSy. Intuitively, NeSy-EBMs formalize the
neural-symbolic interface as a composition of functions. In other words, NeSy-EBMs
organize modules by roles, specifically perception and reasoning. The theory and notation
introduced in this section are used throughout the rest of this paper.

Neural Symbolic Energy-Based Models
NeSy-EBMs are a family of EBMs (LeCun et al. 2006) that integrate deep architectures
with explicit encodings of symbolic relations via an energy function. EBM energy
functions measure the compatibility of variables, where low energy states correspond
to high compatibility. For NeSy-EBMs, high compatibility indicates that the variables
are consistent with domain knowledge and common sense. In the following section, the
formal NeSy-EBM definition is grounded with intuitive examples of NeSy modeling
paradigms.

As diagrammed in Fig. 1, a NeSy-EBM energy function composes a neural component
with a symbolic component, represented by the functions gnn and gsy , respectively. The

Prepared using sagej.cls

A Mathematical Framework for NeSy 11

neural component is a deep model (or collection of deep models) parameterized by weights
from a domain Wnn, that takes a neural input from a domain Xnn and outputs a real-
valued vector of dimension dnn. The symbolic component encodes domain knowledge
and is parameterized by weights from a domain Wsy. It maps the inputs of a domain
Xsy , target (or output) variables from Y , and neural outputs from Range(gnn) to a scalar
value. In other words, the symbolic component measures the compatibility of targets,
inputs, and neural outputs with domain knowledge. Intuitively, the neural component has
the capacity and responsibility to perform low-level perception or generation, while the
symbolic component has the role of performing high-level symbolic reasoning.

Definition 1
A NeSy-EBM energy function is a mapping parameterized by neural and symbolic
weights from domainsWnn andWsy, respectively, and quantifies the compatibility of a
target variable from a domain Y and neural and symbolic inputs from the domains Xnn
and Xsy , respectively, with a scalar value:

E : Y × Xsy ×Xnn ×Wsy ×Wnn → R. (1)

A NeSy-EBM energy function is a composition of a neural and symbolic component.
Neural weights parameterize the neural component, which outputs a real-valued vector of
dimension dnn:

gnn : Xnn ×Wnn → Rdnn . (2)

The symbolic component maps the symbolic variables, symbolic parameters, and a real-
valued vector of dimension dnn to a scalar value:

gsy : Y × Xsy ×Wsy × Rdnn → R. (3)

The NeSy-EBM energy function is

E : (y,xsy,xnn,wsy,wnn) 7→ gsy(y,xsy,wsy,gnn(xnn,wnn)).

Given inputs and parameters (xsy,xnn,wsy,wnn) ∈ Xsy ×Xnn ×Wsy ×Wnn,
NeSy-EBM energy functions can be used to define several inference tasks, for instance:

• Prediction, classification, and decision making: Find targets minimizing the energy
function.

argmin
ŷ∈Y

E(ŷ,xsy,xnn,wsy,wnn). (4)

• Ranking: Sort a set of targets in order of increasing energy.

E(yr1 ,xsy,xnn,wsy,wnn) ≤ · · · ≤ E(yrp ,xsy,xnn,wsy,wnn) (5)

• Detection: Determine if a target, y, is below a threshold τ .

D(y,xsy,xnn,wsy,wnn; τ) :=

{
1 E(y,xsy,xnn,wsy,wnn) ≤ τ
0 o.w.

(6)

Prepared using sagej.cls

12 Journal Title XX(X)

Figure 1. A neural-symbolic energy-based model.

• Density estimation: Estimate the conditional probability of a target, y. The energy
function is used to define a probability density, such as a Gibbs distribution.

P (y|xsyxnn;wsy,wnn) :=
e−βE(y,xsy,xnn,wsy,wnn)∫

ŷ∈Y e
−βE(ŷ,xsy,xnn,wsy,wnn)

, (7)

where β is the positive inverse temperature parameter.

• Generation: Sample a target variable state using a distribution defined by the energy
function.

y ∼ P (y|xsyxnn;wsy,wnn). (8)

In this paper, we focus on the first and most common task in this list: prediction,
classification, and decision-making (4). Prediction with NeSy-EBMs captures various
forms of reasoning, including probabilistic, logical, arithmetic, and their combinations. It
can represent standard applications of prominent NeSy systems, including, DeepProbLog
(Manhaeve et al. 2021a), LTNs (Badreddine et al. 2022), Semantic Probabilistic Layers
(Ahmed et al. 2022a), and NeuPSL (Pryor et al. 2023a), to name a few.

Modeling Paradigms for NeSy
Using the NeSy-EBM framework, this subsection introduces three typical NeSy modeling
paradigms determined by the nature of the neural-symbolic interface. The paradigms are
characterized by the integration of the neural component within the symbolic component
to define the prediction program in Equation 4.

To formalize the modeling paradigms, we introduce an additional layer of abstraction
we refer to as symbolic potentials, denoted by ψ. Further, we collect symbolic potentials
into symbolic potential sets, denoted by Ψ. Symbolic potentials organize the arguments
of the symbolic component by the role they play in formulating the prediction program in
(4).

Prepared using sagej.cls

A Mathematical Framework for NeSy 13

Definition 2
A symbolic potential ψ is a function of variables from a domain Vψ and parameters from
a domain Paramsψ , outputting a scalar value:

ψ : Vψ × Paramsψ → R. (9)

A symbolic potential set, denoted by Ψ, is a set of potential functions indexed by JΨ.

With this formalization, a modeling paradigm is defined by specifying a set of symbolic
potentials along with their respective domains. We introduce three key modeling paradigms
in the following subsections: deep symbolic variables (DSVar), deep symbolic parameters
(DSPar), and deep symbolic potentials (DSPot). In the following section, we present a
novel NeSy framework that supports all of the outlined modeling paradigms. Additionally,
Appendix C formalizes three widely used NeSy approaches—DeepProbLog (Manhaeve
et al. 2021a), Logic Tensor Networks (Badreddine et al. 2022), and Semantic Loss (Xu
et al. 2018)—within these modeling paradigms. While these modeling paradigms capture
the fundamental characteristics of many NeSy systems, some approaches may not fit
neatly into these categories.

Deep Symbolic Variables The deep symbolic variables (DSVar) paradigm trains neural
components efficiently with a loss that captures domain knowledge. Concisely, the neural
component directly predicts the values of target or latent variables in a symbolic potential.*
In other words, there is a one-to-one mapping from the neural output to the targets.
However, note that the mapping is not necessarily onto, that is, there may be target or
latent variables without a corresponding neural output. Prominent NeSy approaches
exemplifying this paradigm include logic tensor networks Badreddine et al. (2022),
learning with logical constraints Giunchiglia et al. (2022), semantic-based regularization
Diligenti et al. (2017a), and deep logic models Marra et al. (2019).

Definition 3
In the deep symbolic variables (DSVar) modeling paradigm the symbolic potential
set is a singleton Ψ = {ψ} with a trivial index set JΨ = {1} such that Ψ1 = ψ.
Further, the neural prediction is treated as a variable by the symbolic potential;
thus Vψ = Y × Xsy × Rdnn . Then, the symbolic parameters are the symbolic weights,
Paramsψ =Wsy. The neural component controls the NeSy-EBM prediction via this
function:

IY(y,gnn(xnn,wnn)) :=

{
0 yi = [gnn(xnn,wnn)]i , ∀i ∈ {1, · · · , dnn}
∞ o.w.

, (10)

where yi and gnn(xnn,wnn)i denote the i’th entry of the variable and neural output
vectors, respectively. Then, the symbolic component expressed via the symbolic potential

∗This section focuses on deep symbolic variables in the context of target variables. Extending to latent variables
is straightforward.

Prepared using sagej.cls

14 Journal Title XX(X)

(a)

(b)

(c)

Figure 2. (a) A NeSy-EBM for solving a Sudoku board constructed from handwritten digits.
The neural component classifies handwritten digits. Then, the symbolic component uses the
digit classifications and Sudoku rules to quantify the compatibility of the inputs, neural
predictions, and targets. (b) In the DSVar modeling paradigm inference process, the neural
component predicts squares with digits, while the symbolic component measures
incompatibility and predicts the latent (blank) squares. (c) In the DSPar modeling paradigm
inference process, the neural component predicts squares with digits, and the symbolic
component can alter these predictions to adhere to symbolic constraints.

is:

gsy(y,xsy,wsy,gnn(xnn,wnn)) (11)
:= ψ([y,xsy,gnn(xnn,wnn)] ,wsy) + IY(y,gnn(xnn,wnn)),

where [·] denotes concatenation.

The DSVar modeling paradigm typically yields the most straightforward prediction
program compared to the other modeling paradigms. This is because the neural model fixes
a subset of the decision variables, making the prediction program smaller. This is achieved

Prepared using sagej.cls

A Mathematical Framework for NeSy 15

by adding the function (Equation 10) in the definition above to the symbolic potential, so
that infinite energy is assigned to variable values that do not match the predictions of the
neural model. However, for the same reason that this modeling paradigm typically has a
simpler prediction program, the symbolic component cannot be used to resolve constraint
violations made by the neural component. Rather, DSVar models rely on learning to train
a neural component to adhere to constraints. The DSVar paradigm is demonstrated in the
following example.

Example 1
Visual Sudoku (Wang et al. 2019) puzzle solving is the problem of recognizing handwritten
digits in non-empty puzzle cells and reasoning with the rules of Sudoku (no repeated digits
in any row, column, or box) to fill in empty cells. Fig. 2 shows a partially complete Sudoku
puzzle created with MNIST images (LeCun et al. 1998) and a NeSy-EBM designed for
visual Sudoku solving. The neural component is a digit classifier predicting the label of
MNIST images, and the symbolic component quantifies rule violations.

Formally, the target variables, y, are the categorical labels of both the handwritten
digits and the empty entries in the puzzle, i.e., the latent variables. The symbolic inputs,
xsy , indicate whether two puzzle positions are in the same row, column, or box. The neural
model, gnn(xnn,wnn), is the categorical label of the handwritten digits predicted by
the neural component. Then, the symbolic parameters, wsy , are used to shape the single
symbolic potential function, ψ, that quantifies the amount of Sudoku rule violations.

The DSVar modeling paradigm is specifically designed to allow the neural component
to directly influence the random variables within the symbolic model. Although this
paradigm allows direct influence on the predictions of a symbolic model, its scope is
strictly confined to random variables. In scenarios where the neural model must exert
indirect influence on variables or interact with other elements of the symbolic model,
such as entire symbolic potentials or parameters associated with individual constraints, a
different modeling paradigm becomes necessary. The following subsection introduces a
paradigm that extends the neural component’s influence, enabling connections to other
parameters or constants within the symbolic model, beyond just the random variables.

Deep Symbolic Parameters The deep symbolic parameters (DSPar) modeling paradigm
allows targets and neural predictions to be unequal or represent different concepts.
Prominent NeSy frameworks supporting this technique include DeepProbLog (Manhaeve
et al. 2021a), and semantic probabilistic layers (Ahmed et al. 2022a). Succinctly, the
neural component is applied as a parameter in the symbolic potential. This paradigm
allows the symbolic component to correct constraints violated by the neural component
during prediction.

Definition 4
In the deep symbolic parameters (DSPar) modeling paradigm, the symbolic potential
set is a singleton Ψ = {ψ} with a trivial index set JΨ = {1} such that Ψ1 = ψ.
Further, the neural prediction is treated as a parameter by the symbolic potential, thus
Paramsψ =Wsy × Rdnn . Then the symbolic variables are the targets and the symbolic
inputs: Vψ = Y × Xsy. The symbolic component expressed via the single symbolic

Prepared using sagej.cls

16 Journal Title XX(X)

potential is:

gsy(y,xsy,wsy,gnn(xnn,wnn)) := ψ([y,xsy] , [wsy,gnn(xnn,wnn)]).

This paradigm is demonstrated in the following example.

Example 2
Again, consider the Visual Sudoku puzzle-solving problem illustrated in Fig. 2. As in the
DSVar model, the neural component of the DSPar model is a digit classifier predicting the
label of MNIST images. However, the digit classifications of the neural component are
used as initial predictions in the symbolic component, as a prior for a probabilistic model.
Then, the symbolic component is used to quantify rule violations as well as the difference
between neural outputs and target variables.

The target variables, y, are the categorical labels of both the handwritten digits and the
puzzle’s empty entries. The symbolic inputs, xsy, indicate whether two puzzle positions
are in the same row, column, or box. The neural model, gnn(xnn,wnn) consists of the
categorical labels of the handwritten digits predicted by the neural component. The
symbolic parameters wsy are used to shape the single symbolic potential function ψ that
quantifies the amount of Sudoku rule violations.

The DSPar modeling paradigm is widely applicable. For instance, the DSPar modeling
paradigm is applied for constraint satisfaction, fine-tuning, few-shot, and semi-supervised
settings in our empirical analysis. However, note that the DSVar and DSPar models
have only a single fixed symbolic potential. This property makes these paradigms well-
suited for dedicated tasks but less applicable to open-ended settings, where the relevant
domain knowledge depends on context. To address this challenge, the following modeling
paradigm leverages generative modeling to perform in open-ended tasks.

Deep Symbolic Potentials Deep-symbolic potentials (DSPot), the most advanced
paradigm we propose, enhances deep models with symbolic reasoning tools. The Logic-
LM pipeline proposed by Pan et al. (2023) is an excellent example of this modeling
paradigm. At a high level, the neural component is a generative model that samples
symbolic potentials from a set to define the symbolic component. Specifically, input data
is used as context to retrieve relevant domain knowledge and formulate a program to
perform inference in open-ended problems.

Definition 5
In the deep symbolic potentials modeling paradigm, the symbolic potential set Ψ is the
set of all potential functions that can be created by a NeSy framework. Ψ is indexed
by the output of the neural component, i.e., JΨ = Range(gnn) and Ψgnn(xnn,wnn) is
the potential function indexed by the neural prediction. The variable and parameter
domains of the sampled symbolic potential are Vψ = Y × Xsy, and Paramsψ =Wsy,
respectively. The symbolic component expressed via the symbolic potential is:

gsy(y,xsy,wsy,gnn(xnn,wnn)) := Ψgnn(xnn,wnn)([y,xsy] ,wsy).

This paradigm is demonstrated in the following example.

Prepared using sagej.cls

A Mathematical Framework for NeSy 17

Figure 3. A deep symbolic potential model for answering questions about a set of objects’
order described in natural language. The neural component is an LLM that generates syntax to
create a symbolic potential. The symbolic potential is used to perform deductive reasoning and
answer the question. See Example 3 for details.

Example 3
Question answering is the problem of giving a response to a question posed in natural
language. Fig. 3 shows a set of word problems asking for the order of a set of objects
given information expressed in natural language and a NeSy-EBM designed for question
answering. The neural component is a large language model (LLM) that is prompted with
a word problem and tasked with generating a program within the syntax of a symbolic
framework. The symbolic framework uses the generated program to instantiate a symbolic
component used to perform deductive reasoning.

Formally, the target variables, y, represent object positions, and there is no symbolic
input, xsy, in this example. The neural input, xnn, is a natural language prompt
that includes the word problem. The neural model, gnn(xnn,wnn), is an LLM that
generates syntax for a declarative symbolic modeling framework that creates the
symbolic potential. For instance, the symbolic potential generated by the neural model
Ψgnn(xnn,wnn)([y,xsy] ,wsy) could be the total amount of violation of arithmetic
constraints representing ordering. Finally, the symbolic parameters, wsy, shape the
symbolic potential function.

In our view, DSPot is the only applicable paradigm for truly open-ended tasks. Moreover,
DSPot enhances generative models, such as LLMs, with consistent symbolic reasoning
capabilities. This feature is demonstrated in constraint satisfaction and joint reasoning
experiments in our empirical analysis. DSPot’s limitation is that the neural component
must learn to sample from a large potential set. For instance, in the example, an LLM
must reliably generate syntax to define a symbolic potential for solving the word problem.
LLMs require a substantial amount of computational resources to train and then fine-
tune for a specific NeSy framework. Furthermore, the inference time is dependent on
the sampled symbolic potential. If the neural component samples a complex symbolic
potential, inference may be slow.

Prepared using sagej.cls

18 Journal Title XX(X)

4 Neural Probabilistic Soft Logic and Deep Hinge-Loss Markov
Random Fields

We introduce Neural Probabilistic Soft Logic (NeuPSL), an expressive framework for
constructing a broad class of NeSy-EBMs by extending the probabilistic soft logic
(PSL) probabilistic programming language (Bach et al. 2017). NeuPSL is designed
to be expressive and efficient to support every modeling paradigm and easily be used
for a range of applications. We begin by presenting the essential syntax and semantics
of NeuPSL, encompassing Deep Hinge-Loss Markov Random Fields (deep HL-MRF),
the underlying probabilistic graphical model (see Bach et al. (2017) for an in-depth
introduction to PSL syntax and semantics). Then, we present a new formulation and
regularization of (Neu)PSL inference as a constrained quadratic program. Our formulation
is utilized to guarantee differentiability properties and provide principled gradients to
support end-to-end neural and symbolic parameter learning, instantiating the learning
algorithms introduced in Section 5.

Neural Probabilistic Soft Logic
NeuPSL is a declarative language used to construct NeSy-EBMs. Fundamentally, NeuPSL
provides a syntax for encoding dependencies between relations and attributes of entities
and for integrating neural components in a symbolic model. Specifically, dependencies
and neural component compositions are expressed as first-order logical or arithmetic
statements referred to as rules. Each rule is a template for instantiating, i.e., grounding,
potentials or constraints to define the NeuPSL energy function. Every rule is grounded
over a set of domains, D = {D1, D2, · · · }, where each of the domains Di is a finite
set of elements referred to as constants. For instance, referring to the visual Sudoku
problem described in Example 2, the constant “A1” can denote the cell at position A1 in a
Sudoku puzzle, and the constant “1” can denote the digit 1. Constants are grouped and
aligned with a corresponding domain from D using placeholders or variables. Relations
between constants are predicates. In NeuPSL, a predicate is referenced using its unique
identifier. For instance, CELLDIGIT is a predicate that can represent whether a cell contains
a specified digit. Another example is the predicate SUDOKUVIOLATION representing
whether a Sudoku rule is violated given the digits in two specified cells. Finally, the
predicate NEURALCLASSIFIER is a predicate that represents the predicted digit in a cell
made by a neural network classifier. Predicates with specified constant domains are atoms.
NeuPSL extends PSL with deep atoms: atoms backed by a deep model.

Definition 6
Atom. An atom, A, is a predicate associated with a list of k > 0 domains D′

1, · · · , D′
k

from D:

A : (D′
1 × · · · ×D′

k)→ [0, 1]

where k is the corresponding predicate’s arity.

Prepared using sagej.cls

A Mathematical Framework for NeSy 19

A deep atom, DA, with domains D′
1, · · · , D′

k from D is an atom parameterized by a
set of weights wnn from a domainWnn

DA : (D′
1 × · · · ×D′

k;wnn)→ [0, 1].

A ground atom is an atom with constant arguments.

With the above definition, we can now formally define a NeuPSL rule.

Definition 7
Rule. A rule, R, is a function of s ≥ 1 variables v1, · · · , vs from the domains
D′

1, · · · , D′
s ∈ D, respectively:

R : (D′
1 × · · · ×D′

s)→ [0, 1]

v1, · · · , vs 7→ R(v1, · · · , vs)

Moreover, a rule is a composition of l ≥ 1 atoms, A1, · · ·Al.
All rules are either associated with a non-negative weight and a value q ∈ {1, 2}, or

are unweighted. The weight (or absence of) and value q of a rule determine the structure
of the potentials the rule instantiates. A weighted rule is known as a soft rule, and an
unweighted rule is known as a hard rule.

A logical rule is expressed as a logical implication of atoms.
An arithmetic rule is expressed as a linear inequality of atoms.
A ground rule is a rule with constant arguments, i.e., a rule with only ground atoms.
For instance, the following is an example of two rules for solving visual Sudoku with

NeuPSL.

1.0 : NEURALCLASSIFIER(Pos,Digit) = CELLDIGIT(Pos,Digit)

CELLDIGIT(Pos1,Digit1) ∧ SUDOKUVIOLATION(Pos1,Pos2,Digit1,Digit2)

→ ¬CELLDIGIT(Pos2,Digit2) .

The first rule in the example above is soft as it is weighted with weight 1.0. Moreover,
the first rule is arithmetic and encodes a dependency between the digit label predicted
by a neural classifier and the atom CELLDIGIT(Pos,Digit), i.e., if the neural classifier
predicts the digit Digit is in position Pos, then the Digit is in position Pos. The
second rule is a hard, logical rule that encodes the rules of Sudoku. Moreover, the second
rule can be read as follows: if the digit Digit1 is in position Pos1 and the Digit2 in
Pos2 causes a Sudoku rule violation, then Digit2 is not in Pos2.

Rules are grounded by performing every distinct substitution of the variables in the
atoms for constants in their respective domain. For example, every substitution for the
Pos and Digit variable arguments from the domains of non-empty Sudoku puzzle cell
positions, A1, · · · , I9, and digits 1, · · · , 9 is realized to ground the first rule:

1.0 : NEURALCLASSIFIER(“A1”, “1”) = CELLDIGIT(“A1”, “1”)

...
1.0 : NEURALCLASSIFIER(“19”, “9”) = CELLDIGIT(“I9”, “9”)

Prepared using sagej.cls

20 Journal Title XX(X)

Similarly, every substitution for the Pos1, Pos2, Digi1, and Digit2 variable
arguments from the domains of all Sudoku puzzle cell positions, A1, · · · , I9, and digits
1, · · · , 9 is realized to ground the second rule:

CELLDIGIT(“A1”, “1”) ∧ SUDOKUVIOLATION(“A1”, “A2”, “1”, “1”)

→ ¬CELLDIGIT(“A2”, “1”) .

...
CELLDIGIT(“I9”, “9”) ∧ SUDOKUVIOLATION(“I9”, “I8”, “9”, “9”)

→ ¬CELLDIGIT(“I8”, “9”) .

Deep-Hinge Loss Markov Random Fields
The rule instantiation process described in the previous subsection results in a set of
ground atoms. Each ground atom is mapped to either an observed variable, xsy,i, target
variable, yi, or a neural function with inputs xnn and parameters wnn,i: gnn,i(xnn,wnn,i).
Specifically, all atoms instantiated from a deep atom are mapped to a neural function, and
the observed and target atom partitions are pre-specified. Further, variables are aggregated
into the vectors xsy = [xsyi]

nx
i=1 and y = [yi]

ny

i=1 and neural outputs are aggregated into
the vector gnn = [gnn,i]

ng

i=1.
The ground rules and variables are used to define linear inequalities in a standard form:

ℓ(y,xsy,gnn(xnn,wnn)) ≤ 0, where ℓ is a linear function of its arguments. To achieve
this, logical rules are first converted into disjunctive normal form. Then, the rules are
translated into linear inequalities using an extended interpretation of the logical operators,
namely Łukasiewicz logic (Klir and Yuan 1995). Similarly, arithmetic rules define one
or more standard form inequalities that preserve the rules’ dependencies via algebraic
operations.

Linear inequalities instantiated from hard ground rules are constraints in NeuPSL.
Further, linear inequalities instantiated from soft ground rules define potential functions
of the form:

ϕ(y,xsy,gnn(xnn,wnn)) := (max{ℓ(y,xsy,gnn(xnn,wnn)), 0})q. (12)

Intuitively, the value of potential is the, possibly squared, level of dissatisfaction of the
linear inequality created by the ground rule. Further, each potential is associated with
the weight of its instantiating rule. Weight sharing among the potentials is formalized by
defining a partitioning using the instantiating rules, i.e., every potential instantiated by the
same rule belongs to the same partition and shares a weight. The potentials and weights
from the instantiation process are used to define a tractable class of graphical models,
which we refer to as deep hinge-loss Markov random fields (Deep HL-MRF):

Definition 8 Deep Hinge-Loss Markov Random Field.
Let gnn = [gnn,i]

ng

i=1 be functions with corresponding weights wnn = [wnn,i]
ng

i=1 and
inputs xnn such that gnn,i : (wnn,i,xnn) 7→ [0, 1]. Let y ∈ [0, 1]ny and xsy ∈ [0, 1]nx .

Prepared using sagej.cls

A Mathematical Framework for NeSy 21

A deep hinge-loss potential is a function of the form:

ϕ(y,xsy,gnn(xnn,wnn)) := (max{aT
ϕ,yy + aT

ϕ,xsy
xsy + aT

ϕ,gnn
gnn(xnn,wnn) + bϕ, 0})q

(13)

where aϕ,y ∈ Rny , aϕ,xsy
∈ Rnx , and aϕ,gnn

∈ Rng are variable coefficient vectors,
bϕ ∈ R is a vector of constants, and q ∈ {1, 2}. Let T = [τi]

r
i=1 denote an ordered

partition of a set of m deep hinge-loss potentials. Further, define

Φ(y,xsy,gnn(xnn,wnn)) :=

[∑
k∈τi

ϕk(y,xsy,gnn(xnn,wnn))

]r
i=1

. (14)

Let wsy be a vector of r non-negative symbolic weights corresponding to the partition T .
Then, a deep hinge-loss energy function is:

E(y,xsy,xnn,wsy,wnn) := wT
syΦ(y,xsy,gnn(xnn,wnn)). (15)

Let ack,y ∈ Rny , ack,xsy
∈ Rnx , ack,gnn

∈ Rng , and bck ∈ R for each k ∈ 1, . . . , q and
q ≥ 0 be vectors defining linear inequality constraints and a feasible set:

Ω(xsy,gnn(xnn,wnn)) :={
y ∈ [0, 1]ny |aT

ck,yy + aT
ck,xsy

xsy + aT
ck,gnn

gnn(xnn,wnn) + bck ≤ 0 , ∀ k = 1, . . . , q
}
.

Then a deep hinge-loss Markov random field defines the conditional probability density:

P (y|xsy,xnn) :=

{
exp(−E(y,xsy,xnn,wsy,wnn))∫

ŷ
exp(−E(ŷ,xsy,xnn,wsy,wnn))dŷ

y ∈ Ω(xsy,gnn(xnn,wnn))

0 o.w.

(16)

NeuPSL models are NeSy-EBMs with an extended-value deep HL-MRF energy
function capturing the constraints that define the feasible set. In other words, the symbolic
component of NeuPSL is infinity if the targets are outside of the deep HL-MRF feasible
set, else it is equal to the deep HL-MRF energy function:

gsy(y,xsy,wsy,gnn(xnn,wnn)) (17)

=

{
wT
syΦ(y,xsy,gnn(xnn,wnn)) y ∈ Ω(xsy,gnn(xnn,wnn))

∞ o.w.

Further, NeuPSL prediction is finding the MAP state of the deep HL-MRF conditional
distribution. Note that in deep HL-MRFs, the partition function is constant over the target
variables. Moreover, as the exponential function is monotonically increasing, prediction
is equivalent to finding the minimizer of the negative log probability of the deep HL-
MRF joint distribution. This reduces to minimizing the deep HL-MRF energy function

Prepared using sagej.cls

22 Journal Title XX(X)

constrained to the feasible set. Therefore, deep HL-MRF MAP inference is equivalent to
minimizing the NeuPSL symbolic component in (18):

argmax
y∈Rny

P (y|xsy,xnn) ≡ argmin
y∈Rny

gsy(y,xsy,wsy,gnn(xnn,wnn)) (18)

≡ argmin
y∈Rny

wT
syΦ(y,xsy,gnn(xnn,wnn))

s.t. y ∈ Ω(xsy,gnn(xnn,wnn)) (19)

Deep HL-MRF potentials are non-smooth and convex. Thus, as Deep HL-MRF energy
functions are non-negative weighted sums of the potentials, they are also non-smooth and
convex. Moreover, Deep HL-MRFs feasible sets are, by definition, convex polyhedrons.
Therefore, Deep HL-MRF inference, as defined above in (19), is a non-smooth convex
linearly constrained program. A natural extension of the definition above that is often
used in practice adds support for integer constraints on the target variables. This change
is useful in discrete problems and for leveraging hard logic semantics. However, adding
integer constraints breaks the convexity property of MAP inference. Nevertheless, for
many problems of practical scale, global minimizers or high-quality approximations of
the MAP inference problem with integer constraints can be quickly found with modern
solvers.

A Smooth Formulation of Deep HL-MRF Inference
This subsection introduces a primal and dual formulation of Deep HL-MRF MAP
inference as a linearly constrained convex quadratic program (LCQP) (see Appendix
D for details). The primal and dual LCQP formulation has theoretical and practical
advantages. Theoretically, the new formulation will be utilized to prove the continuity
and curvature properties of Deep HL-MRFs that are valuable for learning. Practically,
LCQP solvers (e.g. Gurobi (Gurobi Optimization 2024)) can be employed to achieve
highly efficient MAP inference. Moreover, features of modern solvers, including support
for integer constraints, can be leveraged to improve prediction.

In summary, m slack variables with lower bounds and 2 · ny +m linear constraints
are defined to represent the target variable bounds and deep hinge-loss potentials. All
2 · ny +m variable bounds, m potentials, and q ≥ 0 constraints are collected into a
(2 · ny + q + 2 ·m)× (ny +m) dimensional matrix A and a vector of (2 · ny + q + 2 ·
m) elements that is an affine function of the neural predictions and symbolic inputs
b(xsy,gnn(xnn,wnn)). Moreover, the slack variables and a (ny +m)× (ny +m)
positive semi-definite diagonal matrix, D(wsy), and a (ny +m) dimensional vector,
c(wsy), are created using the symbolic weights to define a quadratic objective. Further,
we gather the original target variables and the slack variables into a vector ν ∈ Rny+m.
Altogether, the regularized convex LCQP reformulation of Deep HL-MRF MAP inference
is:

V (wsy,b(xsy,gnn(xnn,wnn))) := (20)

min
ν∈Rny+m

νT (D(wsy) + ϵI)ν + c(wsy)
T ν s.t. Aν + b(xsy,gnn(xnn,wnn)) ≤ 0,

Prepared using sagej.cls

A Mathematical Framework for NeSy 23

where ϵ ≥ 0 is a scalar regularization parameter added to the diagonal of D to ensure
strong convexity. The function V (wsy,b(xsy,gnn(xnn,wnn))) in (20) is the optimal
value-function of the LCQP formulation of NeuPSL inference.

By Slater’s constraint qualification, we have strong duality when there is a feasible
solution to (20) Boyd and Vandenberghe (2004). In this case, an optimal solution to
the dual problem yields an optimal solution to the primal problem. The Lagrange dual
problem of (20) is:

min
µ∈R2·(ny+m)+q

≥0

h(µ;wsy,b(xsy,gnn(xnn,wnn))) (21)

:=
1

4
µTA(D(wsy) + ϵI)−1ATµ

+
1

2
(A(D(wsy) + ϵI)−1c(wsy)

− 2b(xsy,gnn(xnn,wnn)))
Tµ,

where µ is the vector of dual variables and h(µ;wsy,b(xsy,gnn(xnn,wnn))) is the
LCQP dual objective function. As (D(wsy) + ϵI) is diagonal, it is easy to invert, and
thus it is practical to work in the dual space and map dual to primal variables. The
dual-to-primal variable mapping is:

ν ← −1

2
(D(wsy) + ϵI)−1(ATµ+ c(wsy)). (22)

On the other hand, the primal-to-dual mapping is more computationally expensive and
requires calculating a pseudo-inverse of the constraint matrix A.

We use the LCQP formulation in (20) to establish continuity and curvature properties
of the NeuPSL energy minimizer and the optimal value-function provided in the following
theorem:

Theorem 9
Suppose for any setting of wnn ∈ Rng there is a feasible solution to NeuPSL inference
(20). Further, suppose ϵ > 0, wsy ∈ Rr+, and wnn ∈ Rng . Then:
• The minimizer of (20), y∗(wsy,wnn), is a O(1/ϵ) Lipschitz continuous function of
wsy .

• V (wsy,b(xsy,gnn(xnn,wnn))), is concave over wsy and convex over
b(xsy,gnn(xnn,wnn)).

• V (wsy,b(xsy,gnn(xnn,wnn))) is differentiable with respect to wsy . Moreover,

∇wsyV (wsy,b(xsy,gnn(xnn,wnn))) = Φ(y∗(wsy,wnn),xsy,gnn(xnn,wnn)).

Furthermore, ∇wsyV (wsy,b(xsy,gnn(xnn,wnn))) is Lipschitz continuous over wsy .
• If there is a feasible point ν strictly satisfying the i′th inequality constraint of (20),

i.e., A[i]ν + b(xsy,gnn(xnn,wnn))[i] < 0, then V (wsy,b(xsy,gnn(xnn,wnn))) is
subdifferentiable with respect to the i′th constraint constant b(xsy,gnn(xnn,wnn))[i].

Prepared using sagej.cls

24 Journal Title XX(X)

Moreover,

∂b[i]V (wsy,b(xsy,gnn(xnn,wnn)))

= {µ∗[i] |µ∗ ∈ argmin
µ∈R2·(ny+m)+q

≥0

h(µ;wsy,b(xsy,gnn(xnn,wnn)))}.

Furthermore, if gnn(xnn,wnn) is a smooth function of wnn, then
so is b(xsy,gnn(xnn,wnn)), and the set of regular subgradients of
V (wsy,b(xsy,gnn(xnn,wnn))) is:

∂̂wnn
V (wsy,b(xsy,gnn(xnn,wnn))) (23)

⊃ ∇wnnb(xsy,gnn(xnn,wnn))
T∂bV (wsy,b(xsy,gnn(xnn,wnn))).

Proof. See Appendix D.

Theorem 9 establishes the continuity properties of the NeuPSL optimal value-function,
complementing the results in the following section, specifically in Theorem 10. Further, it
provides a simple explicit form of the value-function gradient with respect to the symbolic
weights and a regular subgradient with respect to the neural weights. Thus, Theorem 9
supports the principled application of the end-to-end learning algorithms presented in the
following sections for training both the symbolic and neural weights of a NeuPSL model.

5 A Suite of Learning Techniques for NeSy

Having identified a variety of modeling and inference paradigms, we turn to learning. This
section formalizes the NeSy-EBM learning problem, identifies challenges, and proposes
effective solutions. At a high level, NeSy-EBM learning is finding weights of an energy
function that associates higher compatibility scores (lower energy) to targets and neural
outputs near their true labels provided in training data. Further, predictions with NeSy-
EBMs are obtained by minimizing a complex mathematical program, raising several
obstacles to learning. For instance, NeSy-EBM predictions may not be differentiable with
respect to the model parameters, and a direct application of automatic differentiation
may not be possible or may fail to produce principled descent directions for the learning
objective. Moreover, we will show that even when predictions are differentiable, their
gradients are functions of properties of the energy function at its minimizer that are
prohibitively expensive to compute. We create general and principled learning frameworks
for NeSy-EBMs that address these challenges.

This section is organized into four subsections. We begin with preliminary notation and
a general definition of NeSy-EBM learning. Then, we present a classification of learning
losses and establish theoretical differentiability results for NeSy-EBMs. The learning
losses motivate and organize the exposition of four NeSy-EBM learning frameworks, one
for learning the neural and symbolic weights separately and three for end-to-end learning.

Prepared using sagej.cls

A Mathematical Framework for NeSy 25

NeSy-EBM Learning
We use the following notation and general definition of NeSy-EBM learning throughout
this section. The training dataset, denoted by S , is comprised of P samples and indexed by
{1, · · · , P}. Each sample, Si where i ∈ {1, · · · , P}, is a tuple of inputs, labels, and latent
variable domains. Sample inputs consist of neural inputs, xinn from Xnn, and symbolic
inputs, xisy fromXsy . Similarly, sample labels consist of neural and symbolic labels, which
are truth values corresponding to a subset of the neural predictions and target variables,
respectively. Neural labels, denoted by tinn, are dinn ≤ dnn dimensional real vectors from
a domain T inn, i.e., tinn ∈ T inn ⊆ Rdinn . Target labels, denoted by tiY , are from a domain
T iY that is a dT i

Y
≤ dY subspace of the target domain Y , i.e., tiY ∈ T iY . Lastly, the neural

and symbolic latent variable domains are subspaces of the range of the neural component
and the target domain, respectively, corresponding to the set of unlabeled variables. The
range of the neural component, Rdnn

, is a superset of the Cartesian product of the neural
latent variable domain, denoted by Zinn, and T inn, i.e., Rdnn ⊇ T inn ×Zinn. Similarly,
the target domain Y is a superset of the Cartesian product of the latent variable domain,
denoted by ZiY , and T iY , i.e., Y ⊇ T iY ×ZiY . With this notation, the training dataset is
expressed as follows:

S := {(t1Y , t1nn,Z1
nn,Z1

Y ,x
1
sy,x

1
nn), · · · , (tPY , tPnn,ZPnn,ZPY ,xPsy,xPnn)}. (24)

A learning objective, denoted by L, is a functional that maps an energy function and a
training dataset to a scalar value. Formally, let E be a family of energy functions indexed
by weights fromWsy ×Wnn:

E := {E(·, ·, ·,wsy,wnn) | (wsy,wnn) ∈ Wsy ×Wnn}. (25)

Then, a learning objective is the function:

L : E × {S} → R. (26)

Learning objectives follow the standard empirical risk minimization framework and are
separable over elements of S as a sum of per-sample loss functionals denoted by Li for
each i ∈ {1, · · · , P}. A loss functional for the sample Si ∈ S is the function:

Li : E × {Si} → R. (27)

A regularizer, denoted byR :Wsy ×Wnn → R, is added to the learning objective and
NeSy-EBM learning is the following minimization problem:

argmin
(wsy,wnn)∈Wsy×Wnn

L(E(·, ·, ·,wsy,wnn),S) +R(wsy,wnn) (28)

= argmin
(wsy,wnn)∈Wsy×Wnn

1

P

P∑
i=1

Li(E(·, ·, ·,wsy,wnn),Si) +R(wsy,wnn).

Prepared using sagej.cls

26 Journal Title XX(X)

Learning Losses
A NeSy-EBM learning loss functional, Li, is separable into three parts: neural, value-
based, and minimizer-based losses. In this subsection, we formally define each of the
three loss types. At a high level, the neural loss measures the quality of the neural
component independent from the symbolic component. Then, the value-based and
minimizer-based losses measure the quality of the NeSy-EBM as a whole. Moreover,
value-based and minimizer-based losses are functionals mapping a parameterized energy
function and a training sample to a real value and are denoted by LV al : E × S → R
and LMin : E × S → R, respectively. The learning loss components are aggregated via
summation:

Li(E(·,·, ·,wsy,wnn),Si) (29)

= LNN (gnn(x
i
nn,wnn), t

i
nn) Neural

+ LV al(E(·, ·, ·,wsy,wnn),Si) Value-Based
+ LMin(E(·, ·, ·,wsy,wnn),Si) Minimizer-Based

Neural Learning Losses Neural learning losses are scalar functions of the neural network
output and the neural labels and are denoted by LNN : Range(gnn)× T inn → R. For
example, a neural learning loss may be the familiar binary cross-entropy loss applied in
many categorical prediction settings. Minimizing a neural learning loss with respect to
neural component parameters is achievable via backpropagation and standard gradient-
based algorithms.

Value-Based Learning Losses Value-based learning losses depend on the model weights
strictly via minimizing values of an objective defined with the energy. More formally,
denote an objective function by f , which maps a compatibility score, target variables, and
the training sample to a scalar value:

f : R× Y × {Si} → R. (30)

An optimal value-function, denoted by V , is the value of f composed with the energy
function and minimized over the target variables:

V (wsy,wnn,Si) := min
ŷ∈Y

f
(
E(ŷ,xisy,x

i
nn,wsy,wnn), ŷ,Si

)
:= min

ŷ∈Y
f(gsy(ŷ,x

i
sy,wsy,gnn(x

i
nn,wnn)), ŷ, Si) (31)

Value-based learning losses are functions of one or more optimal value functions. In this
work, we consider three instances of optimal value functions: 1) latent, VZ , 2) full, VY , 3)
and convolutional, Vconv. The latent optimal value function is the minimizing value of
the energy over the latent targets. Further, the labeled targets are fixed to their true values
using the following indicator function:

IT i
Y
(y, tiY) :=

{
0 y = tiY
∞ o.w.

. (32)

Prepared using sagej.cls

A Mathematical Framework for NeSy 27

Figure 4. An illustrated example of a latent optimal value-function with a scalar neural
component output and a discrete latent variable domain Z := {ẑ1, ẑ2, ẑ3}.

The full optimal value function is the minimizing value of the energy over all of the targets.
Lastly, the convolutional optimal value function is the infimal convolution of the energy
function and a function d : Y × Y → R scaled by a positive real value λ ∈ R. Formally:

VZ(wsy,wnn,Si) :=min
ŷ∈Y

E(ŷ,xi
sy,x

i
nn,wsy,wnn) + IT i

Y
(ŷ, tiY),

= min
ẑ∈Zi

Y

E((tiY , ẑ),x
i
sy,x

i
nn,wsy,wnn), latent

(33)

VY(wsy,wnn,Si) :=min
ŷ∈Y

E(ŷ,xi
sy,x

i
nn,wsy,wnn), full

(34)

Vconv(wsy,wnn,Si;y, λ) :=min
ŷ∈Y

E(ŷ,xi
sy,x

i
nn,wsy,wnn) + λ · d(ŷ,y). convolutional

(35)

An illustration of an example latent optimal value-function is provided in Fig. 4. Intuitively,
the latent optimal value-function is the greatest lower bound of the set of symbolic
components defined for each latent variable.

The simplest value-based learning loss is the energy loss, denoted by LEnergy. The
energy loss is the latent optimal value function,

LEnergy(E(·, ·, ·,wsy,wnn),Si) := VZ(wsy,wnn,Si). (36)

Minimizing the energy loss encourages the parameters of the energy function to produce
low energies given the observed true values of the input and target variables. This loss is
motivated by the intuition that the energy should be low for the desired values of the targets.
Notice, however, that the loss does not consider the energy of incorrect target variable
values. An extreme illustration of the issue this causes involves two energy functions.
In the first function, the minimizing point corresponds to the desired true values of the
targets, while in the second function, the maximizing point corresponds to the desired true
values of the targets. Despite these differences, both functions could technically have the

Prepared using sagej.cls

28 Journal Title XX(X)

same energy loss; however, the first energy function is clearly preferred. Thus, the energy
loss does not universally lead to energy functions with better predictions.

The Structured Perceptron loss, denoted by LSP , pushes the energy of the current
energy minimizer up and the energy of the true values of the targets down (LeCun et al.
1998; Collins 2002). Specifically, the structured perceptron loss is the difference between
the latent and full optimal value functions,

LSP (E(·, ·, ·,wsy,wnn),Si) := VZ(wsy,wnn,Si)− VY(wsy,wnn,Si). (37)

Although the structured perceptron loss will technically encourage the target’s desired
values to be an energy minimizer, i.e., a valid prediction, it still has degenerate solutions
for some energy function architectures. For instance, one could minimize the energy for
all target values, leading to a collapsed energy function (equal energy for all targets) with
no predictive power.

The energy and structured perceptron losses require regularization and specific energy
architectures to work well in practice. For instance, energy architectures that naturally
push up on other target values when pushing down on the desired targets. Energies with
limited total energy mass are examples of functions with this property.

The gradient of a value-based loss with respect to neural and symbolic weights is
non-trivial since both the energy function and the point the energy function is evaluated at
are dependent on the neural output and symbolic weights, as exemplified by the definition
of an optimal value function in (31). Nonetheless, Milgrom and Segal (2002) delivers a
general theorem providing the gradient of optimal value-functions with respect to problem
parameters, if they exist. We specialize their result in the following theorem for optimal
value-functions of NeSy-EBMs.

Theorem 10 Milgrom and Segal (2002) Theorem 1 for NeSy-EBMs.
Consider the weights wsy ∈ Wsy and wnn ∈ Wnn and the sample Si =
(tiy, t

i
nn,Zinn,ZiY ,xisy,xinn) ∈ S. Suppose there exists a minimizer of the objective

function f ,

y∗ ∈ argmin
ŷ∈Y

f(E(ŷ,xisy,x
i
nn,wsy,wnn), ŷ,Si),

such that f(E(y∗,xisy,x
i
nn,wsy,wnn),y

∗,Si) is finite.
If the optimal value-function:

V (wsy,wnn,Si) := min
ŷ∈Y

f(E(ŷ,xisy,x
i
nn,wsy,wnn), ŷ,Si),

:= min
ŷ∈Y

f(gsy(ŷ,x
i
sy,wsy,gnn(x

i
nn,wnn)), ŷ, Si),

is differentiable with respect to the neural weights, wnn, then the gradient of V with
respect to wnn is:

∇wnn
V (wsy,wnn,Si) (38)

=
∂

∂1
f(E(y∗,xisy,x

i
nn,wsy,wnn),y

∗,Si) · ∇5E(y∗,xisy,x
i
nn,wsy,wnn),

Prepared using sagej.cls

A Mathematical Framework for NeSy 29

where ∂
∂1f is the partial derivative of f with respect to its 1st argument, and ∇5E is the

gradient of the energy with respect to its 5th argument with all other arguments fixed.
Similarly, if V is differentiable with respect to the symbolic weights, wsy, then the

gradient of V with respect to wsy is:

∇wsyV (wsy,wnn,Si) (39)

=
∂

∂1
f(E(y∗,xisy,x

i
nn,wsy,wnn),y

∗,Si) · ∇4E(y∗,xisy,x
i
nn,wsy,wnn).

Proof. We first establish the partial derivative of the optimal value-function with respect
to each component of the neural output, gnn(xinn,wnn). Then, we use the chain rule to
derive the expression for the gradient of the optimal value-function with respect to the
neural weights, wnn.

For an arbitrary index j ∈ {1, · · · , dnn}, let ej be the j′th standard basis vector of
Rdnn , i.e., ej ∈ Rdnn such that ejj = 1 and ejk = 0 for k ̸= j. Further, to clarify the
relationship between the optimal value-function and the neural component output, define
the following function:

V : Wsy × Rdnn × Si → R
(wsy,u, Si) 7→ min

ŷ∈Y
f(gsy(ŷ,x

i
sy,wsy,u), ŷ,Si)

In other words, the optimal value-function, V , is equal to V evaluated at the neural output:

V (wsy,wnn,Si) ≜ V (wsy,gnn(x
i
nn,wnn),Si).

For any δ ∈ R, by definition we have:

f(gsy(y
∗,xisy,wsy,gnn(x

i
nn,wnn) + δej),y∗, Si)

− f(gsy(y∗,xisy,wsy,gnn(x
i
nn,wnn)),y

∗, Si)

≥ V (wsy,gnn(x
i
nn,wnn) + δej , Si)− V (wsy,gnn(x

i
nn,wnn), Si).

For δ ̸= 0, dividing both sides by δ and taking the limit as δ → 0+ and as δ → 0− yields
upper and lower bounds relating partial derivatives of f to V when f and V are right and
left hand differentiable, respectively.

∂

∂gnn(xinn,wnn)j+
f(gsy(y

∗,xisy,wsy,gnn(x
i
nn,wnn)),y

∗, Si)

≥ ∂

∂gnn(xinn,wnn)j+
V (wsy,gnn(x

i
nn,wnn), Si),

∂

∂gnn(xinn,wnn)j−
f(gsy(y

∗,xisy,wsy,gnn(x
i
nn,wnn)),y

∗, Si)

≤ ∂

∂gnn(xinn,wnn)j−
V (wsy,gnn(x

i
nn,wnn), Si),

Prepared using sagej.cls

30 Journal Title XX(X)

Then, by the squeeze theorem, we obtain the partial derivatives of V with respect to each
component of the neural output when V is differentiable.

∂

∂gnn(xinn,wnn)j
f(gsy(y

∗,xisy,wsy,gnn(x
i
nn,wnn)),y

∗, Si)

=
∂

∂gnn(xinn,wnn)j
V (wsy,gnn(x

i
nn,wnn), Si).

Then, the chain rule of differentiation and the partial derivatives of V with respect to each
component of the neural output derived above yields the gradient in (38).

A similar approach is used to obtain gradients with respect to symbolic weights in (39).

Theorem 10 holds for arbitrary target variable domains and energy functions and is,
therefore, widely applicable. However, it is important to emphasize that Theorem 10 states
if the value-function is differentiable, then the gradients have the form provided in (38)
and (39). Milgrom and Segal (2002) also provide sufficient conditions for guaranteeing
the differentiability of optimal value-functions with arbitrary decision variable domains.
Beyond Milgrom and Segal’s (2002) work, there is extensive literature on analyzing the
sensitivity of optimal value-functions and guaranteeing their differentiability, including the
seminal papers of Danskin (1966) on parameterized objective functions and Rockafellar
(1974) for parameterized constraints. We direct the reader to the cited articles for properties
that guarantee differentiability of value-functions and, hence, NeSy-EBM value-based
losses.

The conditions ensuring differentiability of the optimal value-functions as well as
the tractability of computing the gradient of the symbolic component with respect to
its arguments in (38) and (39) directly connect to the energy function architecture and
modeling paradigms discussed in the previous section. Specifically, if principled gradient-
based learning is desired, then practitioners must design the symbolic potential such that
it is 1) differentiable with respect to the neural output and symbolic potentials, 2) the
gradient of the symbolic potential with respect to its arguments is tractable, and 3) it
satisfies sufficient conditions for ensuring differentiability of its minimizing value over
the targets.

Performance metrics are not always aligned with value-based losses. Moreover, they are
known to have degenerate solutions (LeCun et al. 2006; Pryor et al. 2023a). For example,
without a carefully designed inductive bias, the energy loss in (36) may only learn to
reduce the energy of all target variables without improving the predictive performance of
the NeSy-EBM. One fundamental cause of this issue is that value-based losses are not
directly functions of the NeSy-EBM prediction as defined in (4), i.e., value-based losses
are not functions of an energy minimizer, which is what we turn to next.

Minimizer-Based Learning Losses A minimizer-based loss is a composition of a
differentiable loss, such as cross-entropy or mean squared error, with the energy minimizer.
Intuitively, minimizer-based losses penalize parameters yielding predictions distant from
the labeled training data. In the remainder of this subsection, we formally define minimizer-
based learning losses. Further, for completeness, we derive general expressions for

Prepared using sagej.cls

A Mathematical Framework for NeSy 31

gradients of minimizer-based losses with respect to symbolic and neural weights. However,
as will be shown, direct computation of minimizer-based loss gradients requires prohibitive
assumptions on the energy function and can be impractical to compute. Moreover, the
derivation of the gradients motivates learning algorithms that do not perform direct
gradient descent on minimizer-based losses. For this reason, in the following subsection
we propose algorithms that do not require minimizer gradients.

To ensure a minimizer-based loss is well-defined, we assume a unique energy minimizer
exists, denoted by y∗, for every training sample. This assumption is formalized below.

Assumption 1
The energy function is minimized over the targets at a single point for every input and
weight and is, therefore, a function:

y∗ : Xsy ×Xnn ×Wsy ×Wnn → Y (40)
(xsy,xnn,wsy,wnn) 7→ argmin

ŷ∈Y
E(ŷ,xsy,xnn,wsy,wnn)

Under Assumption 1, d is a mapping of targets and labels to a scalar value:

d : Y × T iY → R, (41)

and a minimizer-based loss is a composition of d and y∗:

LMin(E(·, ·, ·,wsy,wnn),Si) := d(argmin
ŷ∈Y

E(ŷ,xisy,x
i
nn,wsy,wnn), t

i
Y) (42)

:= d(y∗(xisy,x
i
nn,wsy,wnn), t

i
Y)

To ensure principled gradient-based learning, we must further assume that the minimizer
is differentiable.

Assumption 2
The minimizer, y∗, is differentiable with respect to the weights at every point in
Xsy ×Xnn ×Wsy ×Wnn.

Under Assumption 2, the chain rule of differentiation yields the gradient of a minimizer-
based loss with respect to the neural and symbolic weights:

∇wsyLMin(y
∗(xisy,x

i
nn,wsy,wnn)), t

i
Y)

= ∇3y
∗(xisy,x

i
nn,wsy,wnn)

T∇1d(y
∗(xisy,x

i
nn,wsy,wnn), t

i
Y), (43)

∇wnnLMin(y
∗(xisy,x

i
nn,wsy,wnn)), t

i
Y)

= ∇4y
∗(xisy,x

i
nn,wsy,wnn)

T∇1d(y
∗(xisy,x

i
nn,wsy,wnn), t

i
Y), (44)

where ∇3y
∗(xisy,x

i
nn,wsy,wnn) and ∇4y

∗(xisy,x
i
nn,wsy,wnn) are the Jacobian

matrices of the unique energy minimizer with respect to the third and fourth arguments of
y∗, the symbolic and neural weights, respectively, and∇1d(y

∗(xisy,x
i
nn,wsy,wnn), t

i
Y)

is the gradient of the supervised loss with respect to its first argument.

Prepared using sagej.cls

32 Journal Title XX(X)

A primary challenge of minimizer-based learning is computing the Jacobian matrices
of partial derivatives, ∇3y

∗(xisy,x
i
nn,wsy,wnn) and ∇4y

∗(xisy,x
i
nn,wsy,wnn). To

derive explicit expressions for them typically demands the following additional assumption
on the continuity properties of the energy function.

Assumption 3
The energy, E, is twice differentiable with respect to the targets at the minimizer,
y∗, and the Hessian matrix of second-order partial derivatives with respect to the
targets,∇1,1E(y∗(xisy,x

i
nn,wsy,wnn),x

i
sy,x

i
nn,wsy,wnn), is invertible. Further, the

minimizer is the unique target satisfying first-order conditions of optimality, i.e.,

∀y ∈ Y, ∇1E(y,xisy,x
i
nn,wsy,wnn) = 0 ⇐⇒ y = y∗(xisy,x

i
nn,wsy,wnn)

(45)

Assumption 3 is satisfied by energy functions that are, for instance, smooth and strongly
convex in the targets. Under Assumption 3, the first-order optimality condition establishes
the minimizer as an implicit function of the weights, and implicit differentiation yields
the following equalities:

∇1,1E(y∗(xisy,x
i
nn,wsy,wnn),x

i
sy,x

i
nn,wsy,wnn)∇3y

∗(xisy,x
i
nn,wsy,wnn)

(46)

= −∇1,4E(y∗(xisy,x
i
nn,wsy,wnn),x

i
sy,x

i
nn,wsy,wnn)

∇1,1E(y∗(xisy,x
i
nn,wsy,wnn),x

i
sy,x

i
nn,wsy,wnn)∇4y

∗(xisy,x
i
nn,wsy,wnn)

(47)

= −∇1,5E(y∗(xisy,x
i
nn,wsy,wnn),x

i
sy,x

i
nn,wsy,wnn)

Solving for the Jacobians of the minimizer:

∇3y
∗(xi

sy,x
i
nn,wsy,wnn) = −

(
∇1,1E(y∗(xi

sy,x
i
nn,wsy,wnn),x

i
sy,x

i
nn,wsy,wnn)

−1

(48)

∇1,4E(y∗(xi
sy,x

i
nn,wsy,wnn),x

i
sy,x

i
nn,wsy,wnn)

)
,

∇4y
∗(xi

sy,x
i
nn,wsy,wnn) = −

(
∇1,1E(y∗(xi

sy,x
i
nn,wsy,wnn),x

i
sy,x

i
nn,wsy,wnn)

−1

(49)

∇1,5E(y∗(xi
sy,x

i
nn,wsy,wnn),x

i
sy,x

i
nn,wsy,wnn)

)
.

The Jacobians in (48) and (49) applied to (43) and (44), respectively, are referred to
as hypergradients in the machine learning literature and are utilized in hyperparameter
optimization and meta-learning (Do et al. 2007; Pedregosa 2016; Rajeswaran et al. 2019).
Oftentimes, approximations of the (inverse) Hessian matrices are made to estimate the
hypergradient.

Learning Algorithms
Next, we present four principled techniques for learning the neural and symbolic weights
of a NeSy-EBM to minimize the losses introduced in the previous subsection: 1) Modular,

Prepared using sagej.cls

A Mathematical Framework for NeSy 33

2) Gradient Descent, 3) Bilevel Value-Function Optimization, and 4) Stochastic Policy
Optimization. The four techniques are defined, and we discuss their strengths and
limitations in relation to the modeling paradigms in Section 3.

Modular Learning The first and most straightforward NeSy-EBM learning technique is
to train and connect the neural and symbolic components as independent modules. For
instance, the neural component can be trained via backpropagation and Adam to optimize
a neural loss given neural labels. Then, the symbolic component can be trained using an
appropriate method to optimize a value or minimizer-based loss. The neural component
weights are frozen during the symbolic weight learning process.

By definition, modular learning algorithms are not trained end-to-end, i.e., the neural
and symbolic parameters are not jointly optimized to minimize the learning loss. For
this reason, modular approaches may struggle to find a weight setting with a learning
loss as low as end-to-end techniques. Moreover, modular approaches are not suitable for
fine-tuning and adaptation. Additionally, they require labels to train the neural component.
Thus, modular learning is not used to learn neural parameters in unsupervised or semi-
supervised settings.

Nevertheless, modular learning approaches are appealing and widely used for their
simplicity and general applicability. Importantly, no assumptions are made about the
neural-symbolic interface; hence, modular learning is effective for every modeling
paradigm presented in Section 3. Notably, minimizers and value-functions of DSPot
models are typically non-differentiable with respect to the neural weights due to the
complex neural-symbolic interface. However, because modular techniques are not end-to-
end, this is not an issue. Moreover, modular learning can be used to train a NeSy-EBM for
constraint satisfaction and joint reasoning, zero-shot reasoning, and reasoning with noisy
data. There are many established and effective modular neural and symbolic learning
algorithms (see Srinivasan et al. (2021) for a recent taxonomy of symbolic weight learning
algorithms).

Gradient Descent A conceptually simple but oftentimes difficult in-practice technique
for end-to-end NeSy-EBM training is direct gradient descent. Specifically, the gradients
derived in the previous subsection are directly used with a gradient-based algorithm
to optimize a NeSy-EBM loss with respect to both the neural and symbolic weights.
Backpropagation and Theorem 10 produce relatively inexpensive gradients for neural and
value-based losses for a general class of NeSy-EBMs. Moreover, for a smaller family of
NeSy-EBMs, gradients of energy minimizers exist and may be cheap to compute. For
instance, if the energy minimizer is determined via a simple closed-form expression (e.g.,
if inference is an unconstrained strongly convex quadratic program or a finite computation
graph).

As shown in Section 5, learning loss gradients for fully expressive NeSy-EBMs
only exist under certain conditions. Further, computing the gradients generally requires
expensive second-order information about the energy function at the minimizer. For this
reason, direct gradient descent only applies to a relatively small class of NeSy-EBMs with
specialized architectures that ensure principled and efficient gradient computation. Such

Prepared using sagej.cls

34 Journal Title XX(X)

specialized architectures are less likely to support more complex modeling paradigms
such as DSPar and DSPot.

Bilevel Value-Function Optimization As shown in the earlier subsection, minimizer
gradients are relatively more computationally expensive to compute and require more
assumptions than value-function gradients. In this subsection, we devise a technique for
optimizing a minimizer-based loss with only first-order gradients. This technique is built
on the fact that the general definition of NeSy-EBM learning (28) is naturally formulated
as bilevel optimization. In other words, the NeSy learning objective is a function of
variable values obtained by solving a lower-level inference problem that is symbolic
reasoning:

argmin
(wsy,wnn)∈Wsy×Wnn

(ŷ1,··· ,ŷP)∈Y1×···×YP

1

P

P∑
i=1

(
LNN (gnn(x

i
nn,wnn), t

i
nn) + LV al(E(·, ·, ·,wsy,wnn),Si)

+ d(ŷi, tiY)

)
+R(wsy,wnn) (50)

s.t. ŷi ∈ argmin
ỹ∈Y

E(ỹ,xi
sy,x

i
nn,wsy,wnn), ∀i ∈ {1, · · · , P}.

Regardless of the continuity and curvature properties of the upper and lower level
objectives, (50) is equivalent to the following:

argmin
(wsy,wnn)∈Wsy×Wnn

(ŷ1,··· ,ŷP)∈Y1×···×YP

1

P

P∑
i=1

(
LNN (gnn(x

i
nn,wnn), t

i
nn) + LV al(E(·, ·, ·,wsy,wnn),Si)

+ d(ŷi, tiY)

)
+R(wsy,wnn) (51)

s.t. E(ŷi,xi
sy,x

i
nn,wsy,wnn)− VY(wsy,wnn,Si) ≤ 0, ∀i ∈ {1, · · · , P}.

The formulation in (51) is referred to as a value-function approach in bilevel optimization
literature (V. Outrata 1990; Liu et al. 2021, 2022; Sow et al. 2022; Kwon et al. 2023). Value-
function approaches view the bilevel program as a single-level constrained optimization
problem by leveraging the value-function as a tight lower bound on the lower-level
objective.

The inequality constraints in (51) do not satisfy any of the standard constraint
qualifications that ensure the feasible set near the optimal point is similar to its linearized
approximation (Nocedal and Wright 2006). This raises a challenge for providing
theoretical convergence guarantees for constrained optimization techniques. Following a
recent line of value-function approaches to bilevel programming (Liu et al. 2021; Sow
et al. 2022; Liu et al. 2023), we overcome this challenge by allowing at most an ι > 0
violation in each constraint in (51). With this relaxation, strictly feasible points exist and,
for instance, the linear independence constraint qualification (LICQ) can hold.

Another challenge that arises from (51) is that the energy function of NeSy-EBMs
is typically non-smooth with respect to the targets and even infinite-valued to represent
constraints implicitly. As a result, penalty or augmented Lagrangian functions derived

Prepared using sagej.cls

A Mathematical Framework for NeSy 35

from (51) are intractable. Therefore, we substitute each instance of the energy function
evaluated at the training sample Si, where i ∈ {1, · · · , P}, and with weights wsy and
wnn in the constraints of (51) with the following function:

M(ŷi,Si,wsy,wnn; ρ) := inf
ỹ∈Y

(
E(ỹ,xisy,x

i
nn,wsy,wnn) +

1

2ρ
∥ỹ − ŷi∥22

)
, (52)

= Vconv(wsy,wnn,Si; ŷi,
1

2ρ
)

where ρ is a positive scalar. For convex E, (52) is the Moreau envelope of the energy
function (Rockafellar 1970; Parikh and Boyd 2013). In general, even for non-convex
energy functions, M is finite for all y ∈ Y and it preserves global minimizers and
minimum values, i.e.,

y∗(xisy,x
i
nn,wsy,wnn) = argmin

ŷi∈Y
M(ŷi,Si,wsy,wnn; ρ), (53)

VY(wsy,wnn,Si) = min
ŷi∈Y

M(ŷi,Si,wsy,wnn; ρ). (54)

When the energy function is a lower semi-continuous convex function, its Moreau envelope
is convex, finite, and continuously differentiable, and its gradient with respect to ŷi is:

∇ŷiM(ŷi,Si,wsy,wnn; ρ) (55)

=
1

ρ

(
ŷi − argmin

ỹ∈Y

(
ρE(ỹ,xisy,x

i
nn,wsy,wnn) +

1

2
∥ỹ − ŷi∥22

))
.

Convexity is a sufficient but not necessary condition to ensure M is differentiable with
respect to ŷi. See Bonnans and Shapiro (2000) for results regarding the sensitivity of
optimal value-functions to perturbations. Further, as M is a value-function, gradients of
M with respect to weights are derived using Theorem 10.

We propose the following relaxed and smoothed value-function approach to finding an
approximate solution of (50):

argmin
(wsy,wnn)∈Wsy×Wnn

(ŷ1,··· ,ŷP)∈Y1×···×YP

1

P

P∑
i=1

(
LNN (gnn(x

i
nn,wnn), t

i
nn) + LV al(E(·, ·, ·,wsy,wnn),Si)

+ d(ŷi, tiY)

)
+R(wsy,wnn) (56)

s.t. M(ŷi,Si,wsy,wnn; ρ)− VY(wsy,wnn,Si) ≤ ι, ∀i ∈ {1, · · · , P},

The formulation (56) is the core of our proposed NeSy-EBM learning framework
outlined in Algorithm 1 below. The algorithm proceeds by approximately solving instances
of (56) in a sequence defined by a decreasing ι. This is a graduated approach to solving
(51) with instances of (56) that are increasingly tighter approximations.

Prepared using sagej.cls

36 Journal Title XX(X)

Algorithm 1 Bilevel Value-Function Optimization for NeSy-EBM Learning

Require: Moreau Param.: ρ, Starting weights: (wsy,wnn) ∈ Wsy ×Wnn

1: ŷi ← (tiY , argminẑ∈Zi
Y
E((tiY , ẑ),x

i
sy,x

i
nn,wsy,wnn)), ∀i = 1, · · · , P

2: ι← maxi∈{1,··· ,P}M(ŷi,Si,wsy,wnn; ρ)− VY(wsy,wnn,Si)
3: for t = 0, 1, 2, · · · do
4: Find wsy,wnn,y

1, · · · ,yP minimizing (56) with ι
5: if Stopping criterion satisified then
6: Stop with: wsy,wnn,y

1, · · · ,yP
7: ι← 1

2 · ι

We suggest starting points for each ŷi to be the corresponding latent inference
minimizer and ι to be the maximum difference in the value-function and the smooth
energy function. At this suggested starting point, the supervised loss is initially 0, and
the subproblem reduces to minimizing the learning objective without increasing the most
violated constraint. Then, the value for ι is halved every time an approximate solution to
the subproblem, (56), is reached. The outer loop of the NeSy-EBM learning framework
may be stopped by either watching the progress of a training or validation evaluation
metric or by specifying a final value for ι.

Each instance of (56) in Algorithm 1 can be optimized using only first-order gradient-
based methods. Specifically, we employ the bound-constrained augmented Lagrangian
algorithm, Algorithm 17.4 from Nocedal and Wright (2006), which finds approximate
minimizers of the problem’s augmented Lagrangian for a fixed setting of the penalty
parameters using gradient descent. To simplify notation, let the constraints in (56) be
denoted by:

c(ŷi,Si,wsy,wnn; ι) :=M(ŷi,Si,wsy,wnn; ρ)− VY(wsy,wnn,Si)− ι, (57)

for each constraint indexed i ∈ {1, · · · , P}. Moreover, let

c(y1, · · · ,yP ,S,wsy,wnn; ι) := [c(ŷi,Si,wsy,wnn; ι)]
P
i=1. (58)

The augmented Lagrangian function corresponding to (56) introduces a quadratic penalty
parameter µ and P linear penalty parameters λ := [λi]

P
i=1, as follows:

LA(ŷ1, · · · , ŷP ,wsy,wnn,S, s;λ, µ, ι) (59)

:=
1

P

P∑
i=1

(
LNN (gnn(x

i
nn,wnn), t

i
nn) + LV al(E(·, ·, ·,wsy,wnn),Si) + d(ŷi, tiY)

)
+
µ

2

P∑
i=1

(
c(ŷi,Si,wsy,wnn; ι) + si

)2
+

P∑
i=1

λi
(
c(ŷi,Si,wsy,wnn; ι) + si

)
+R(wsy,wnn),

Prepared using sagej.cls

A Mathematical Framework for NeSy 37

Figure 5. A stochastic NeSy-EBM. The symbolic weights and the neural component
parameterize stochastic policies. A sample from the policies is drawn to produce arguments of
the symbolic component.

where we introduced P slack variables, s = [si]
P
i=1, for each inequality constraint. The

bound-constrained augmented Lagrangian algorithm provides a principled method for
updating the penalty parameters and ensures fundamental convergence properties of
our learning framework. Notably, we have that limit points of the iterate sequence are
stationary points of ∥c(y1, · · · ,yP ,S,wsy,wnn; ι) + s∥2 when the problem has no
feasible points. When the problem is feasible, and LICQ holds at the limits, they are
KKT points of (56) (Theorem 17.2 in Nocedal and Wright (2006)). Convergence rates
and stronger guarantees are possible by analyzing the structure of the energy function for
specific NeSy-EBMs.

The bilevel value-function optimization technique in Algorithm 1 is an end-to-end
algorithm for minimizing a general NeSy-EBM learning loss with only first-order value-
function gradients. Thus, Algorithm 1 is a more practical and widely applicable technique
for NeSy-EBM learning than modular and direct gradient descent methods. The bilevel
approach can be employed for a broader class of NeSy-EBMs than direct gradient descent
methods and for every motivating application. Moreover, we demonstrate that it can be
used to train DSVar and DSPot NeSy-EBMs in our empirical evaluation.

Stochastic Policy Optimization Finally, another approach to NeSy-EBM learning that
avoids directly computing the energy minimizer’s gradients with respect to the weights
is to re-formulate NeSy learning as stochastic policy optimization. Fig. 5 shows the
modifications to the standard NeSy-EBM framework to create a stochastic NeSy-EBM.
The symbolic and neural weights are used to condition a symbolic weight and neural policy,
denoted by πsy and πnn, respectively. Samples from the policies replace the symbolic
weights and neural output as arguments of the symbolic component. Specifically, given
symbolic and neural weights wsy and wnn and input features xinn from a training sample

Prepared using sagej.cls

38 Journal Title XX(X)

Si ∈ S, hsy and hinn are random variables with the following conditional distributions:

hsy ∼ πsy(hsy |wsy), (60)

hinn ∼ πnn(hinn |gnn(xinn,wnn)). (61)

Moreover, the random variables hsy and hinn are modeled independently, thus the
conditional joint distribution, denoted by π, is:

π(hsy,h
i
nn |wsy,gnn(x

i
nn,wnn)) := πsy(hsy |wsy) · πnn(hinn |gnn(xinn,wnn))

(62)

The stochastic NeSy-EBM energy is the symbolic component evaluated at a sample from
the joint distribution above:

E(y,xisy,x
i
nn,wsy,wnn) := gsy(y,x

i
sy,hsy,h

i
nn) (63)

The NeSy-EBM energy and all of the NeSy-EBM per-sample loss functionals discussed in
Section 5 are, therefore, random variables with distributions that are defined by π. Under
the stochastic policy optimization framework, loss functionals are generally denoted by
the function J i for each i ∈ {1, · · · , P} such that:

J i(gsy(·,xisy,hsy,hinn),Si) := Li(E(·,·, ·,wsy,wnn),Si) (64)

Learning is minimizing the expected value of the stochastic loss functional and is
formulated as:

argmin
(wsy,wnn)∈Wsy×Wnn

1

P

P∑
i=1

Eπ
[
J i(gsy(·,xisy,hsy,hinn),Si)

]
+R(wsy,wnn), (65)

where Eπ is the expectation over the joint distribution π.
We apply gradient-based learning algorithms to find an approximate solution to (65).

The policy gradient theorem (Williams 1992; Sutton et al. 1999; Sutton and Barto 2018)
yields the following expression for the gradients of the expected value of a loss functional:

∇wnn
Eπ
[
J i(gsy(·,xisy,hsy,hinn),Si)

]
(66)

= Eπ
[
J i(gsy(·,xisy,hsy,hinn),Si) · ∇wnn log π(hsy,h

i
nn |wsy,gnn(x

i
nn,wnn))

]
.

∇wsyEπ
[
J i(gsy(·,xisy,hsy,hinn),Si)

]
(67)

= Eπ
[
J i(gsy(·,xisy,hsy,hinn),Si) · ∇wsy

log π(hsy,h
i
nn |wsy,gnn(x

i
nn,wnn))

]
.

The expression for the gradient of the expected loss functional above motivates a family of
gradient estimators. Notably, the REINFORCE gradient estimator for NeSy-EBM learning

Prepared using sagej.cls

A Mathematical Framework for NeSy 39

is:

∇wnnEπ

[
J i(gsy(·,xi

sy,hsy,h
i
nn),Si)

]
(68)

≈ 1

N

N∑
k=1

(
J i(gsy(·,xi

sy,h
(k)
sy ,hi(k)

nn),Si)∇wnn log π(h(k)
sy ,hi(k)

nn |wsy,gnn(x
i
nn,wnn))

)
,

∇wsyEπ

[
J i(gsy(·,xi

sy,hsy,h
i
nn),Si)

]
(69)

≈ 1

N

N∑
k=1

(
J i(gsy(·,xi

sy,h
(k)
sy ,hi(k)

nn),Si)∇wsy log π(h(k)
sy ,hi(k)

nn |wsy,gnn(x
i
nn,wnn))

)
,

where each h
(k)
sy and h

i(k)
nn for k ∈ {1, · · · , N} is an independent sample of the random

variables.
Stochastic policy optimization techniques are broadly applicable for end-to-end training

of NeSy-EBMs because they do require differentiation through the neural-symbolic
interface and the symbolic inference process. Moreover, they can be used for every
modeling paradigm. The tradeoff with the stochastic policy approach, however, is the
high variance in the sample estimates for the policy gradient. This is a common challenge
in policy optimization that becomes more prominent with increasing dimensionality of
the policy output space (Sutton and Barto 2018). Thus, learning with a stochastic policy
optimization approach may take significantly more iterations to converge compared to the
other presented techniques.

6 Empirical Analysis
In this section, we perform an empirical analysis of the NeSy-EBM modeling paradigms
and learning algorithms presented in this work using the NeuPSL system introduced
in Section 4. Our experiments are designed to investigate the following four research
questions:

• RQ1: Can the NeSy-EBM framework enhance the accuracy and reasoning
capabilities of deep learning models?

• RQ2: Can the value-function gradients provided in Theorem 10 be used as a reliable
descent direction for value-based learning losses?

• RQ3: Can symbolic constraints be used to train a deep learning model with partially
labeled data?

• RQ4: What are the prediction performance and runtime tradeoffs among the
presented modular, value-based, and minimizer-based learning approaches?

Our empirical analysis is organized into four subsections. First, in Section 6, we
introduce the neural-symbolic datasets and models used in the experiments. In Section 6,
we study the application of NeSy-EBMs for constraint satisfaction and joint reasoning.
In Section 6, we evaluate the performance of modular learning and the performance

Prepared using sagej.cls

40 Journal Title XX(X)

and empirical convergence properties of the value-based, bilevel, and stochastic policy
optimization learning algorithms presented in Section 5 for fine-tuning and few-shot
learning. Finally, in Section 6, we analyze the effectiveness of the NeSy-EBM framework
for training a neural component in a semi-supervised setting. All code and data for
reproducing our empirical analysis are available at https://github.com/linqs/
dickens-arxiv24.

Datasets and Models
This subsection introduces the NeSy datasets and models, which will be utilized
throughout the empirical analysis. Moreover, any modifications made to answer specific
research questions will be described in the following subsections. Additional details
on the architectures of both the neural and symbolic components are available at
https://github.com/linqs/dickens-arxiv24.

• MNIST-Add-k Dataset: MNIST-Add-k is a canonical NeSy dataset introduced
by Manhaeve et al. (2021a) where models must determine the sum of each pair of
digits from two lists of MNIST images. An MNIST-Addk equation consists of two
lists of k > 0 MNIST images. For instance,

[]
+
[]

= 8 is an MNIST-Add1
equation, and

[
,
]
+
[
,
]
= 41 is an MNIST-Add2 equation.

Evaluation: For all experiments, we evaluate models over 5 splits of the low-data
setting proposed by Manhaeve et al. (2021a) with 600 total images for training and
1, 000 images each for validation and test. Prediction performance in this setting
is measured by the accuracy of the image classifications and the inferred sums.
Constraint satisfaction consistency in this setting is the proportion of predictions
that satisfy the semantics of addition.

Baseline Architecture: The baseline neural architecture for all MNIST-Addk
datasets is a ResNet18 convolutional neural network backbone (He et al. 2016) with
a 2-layer multi-layer perceptron (MLP) prediction head. The baseline is trained and
applied as a digit classifier. Further, to allow the baseline to leverage the unlabeled
training data in the semi-supervised settings, the digit classifier backbone is pre-
trained using the SimCLR self-supervised learning framework (Chen et al. 2020).
Augmentations are used to obtain positive pairs for the contrastive pre-training
process.

NeSy-EBM Architecture: The NeSy-EBM architecture is a composition of the
baseline digit classifier and a symbolic component created with NeuPSL that
encodes the semantics of addition. The target variables of the symbolic component
are the labels of the MNIST digits and their sum. The neural classification is used
as a prior for the digit labels.

• Visual-Sudoku Dataset: Visual-Sudoku, first introduced by Wang et al. (2019), is
a dataset containing a collection of 9× 9 Sudoku puzzles constructed from MNIST
images. In each puzzle, 30 cells are filled with MNIST images and are referred to
as clues. The remaining cells are empty. The task is to correctly classify all clues

Prepared using sagej.cls

https://github.com/linqs/dickens-arxiv24
https://github.com/linqs/dickens-arxiv24
https://github.com/linqs/dickens-arxiv24

A Mathematical Framework for NeSy 41

and fill in the empty cells with digits that satisfy the rules of Sudoku: no repeated
digits in any row, column, or box.

Evaluation: For all experiments, results are reported across 5 splits with 20 puzzles
for training and 100 puzzles each for validation and test. There is an equal number of
MNIST images (600) in the training datasets for Visual-Sudoku and MNIST-Add-k.
Prediction performance in this setting is measured by the accuracy of the image
classifications. Constraint satisfaction consistency in this setting is the proportion
of predictions that satisfy the rules of Sudoku.

Baseline Architecture: The baseline neural architecture for Visual-Sudoku is the
same as that of the MNIST-Addk.

NeSy-EBM Architecture: The NeSy-EBM architecture is a composition of the
baseline digit classifier and a symbolic component created with NeuPSL that
encodes the rules of Sudoku. The target variables of the symbolic component are
the labels of the clues and the empty cells. The neural classification is used as a
prior for the clues.

• Pathfinding Dataset: Pathfinding is a NeSy dataset introduced by Vlastelica
et al. (2020) consisting of 12000 randomly generated images of terrain maps from
the Warcraft II tileset. The images are partitioned into 12× 12 grids where each
vertex represents a terrain with a cost. The task is to find the lowest cost path from
the top left to the bottom right corner of each image.

Evaluation: For all experiments, results are reported over 5 splits generated by
partitioning the images into sets of 10, 000 for training, 1, 000 for validation,
and 1, 000 for testing. Prediction performance in this setting is measured by the
proportion of valid predicted paths, i.e., continuous, and that have a minimum cost.
Constraint satisfaction continuity in this setting is measured by the proportion of
predictions with a continuous predicted path.

Baseline Architecture: The baseline neural architecture for the Pathfinding dataset
is a ResNet18 convolutional neural network. The input of the ResNet18 path-finder
baseline is the full Warcraft II map, and the output is the predicted shortest path.
The model is trained using the labeled paths from the training data set.

NeSy-EBM Architecture: The NeSy-EBM architecture is a composition of the
baseline path-finder and a symbolic component created with NeuPSL that encodes
end-points and continuity constraints, i.e., the path from the top left corner of the
map to the bottom right corner must be continuous. The target variables of the
symbolic component are variables indicating whether a vertex of the map grid is on
the path. The neural classification is used as a prior for the path, and the symbolic
component finds a valid path near the neural prediction.

• Citeseer and Cora Dataset: Citeseer and Cora are two widely studied citation
network node classification datasets first introduced by Sen et al. (2008). Citeseer
consists of 3, 327 scientific publications classified into one of 6 topics, while Cora
contains 2, 708 scientific publications classified into one of 7 topics.

Prepared using sagej.cls

42 Journal Title XX(X)

Evaluation: For all experiments, we evaluate models over 5 randomly sampled
splits using 20 examples of each topic for training, 200 of the nodes for validation,
and 1000 nodes for testing. Prediction performance in this setting is measured by
the categorical accuracy of a paper label.

Baseline Architecture: The baseline neural architecture for the Citation network
settings is a Simple Graph Convolutional Network (SGC) (Wu et al. 2019). SGCs are
graph convolutional networks with linear activations in the hidden layers to reduce
computational complexity. The SGC neural baseline uses bag-of-words feature
vectors associated with each paper as node features and citations as bi-directional
edges. Then, a MLP is trained to predict the topic label given the SGC-transformed
features.

NeSy-EBM Architecture: The NeSy-EBM architecture is a composition of the
baseline SGC and a symbolic component created with NeuPSL that encodes the
homophilic structure of the citation network, i.e., two papers connected in the
network are more likely to have the same label. Target variables indicate the degree
to which a paper has a particular topic. The neural classification is used as a prior
for the labels of the nodes, and the symbolic component propagates this knowledge
to its neighbors.

• RoadR Dataset: RoadR is an extension of the ROAD (Road event Awareness
Dataset) dataset, initially introduced by Singh et al. (2021). The ROAD dataset
was developed to evaluate the situational awareness of autonomous vehicles in
various road environments, weather conditions, and times of day. It contains 22
videos, 122k labeled frames, 560k bounding boxes, and a total of 1.7M labels,
which include 560k agents, 640k actions, and 499k locations. RoadR builds upon
this by adding 243 logical requirements that must be satisfied, further enhancing its
utility for testing autonomous vehicles. For instance, a traffic light should never be
simultaneously predicted as red and green.

Evaluation: For all experiments, we evaluate models with 15 videos for training
and 3 videos for testing. Prediction performance in this setting is measured by
the matching boxes using Intersection over Union (IoU) and then multi-class
f1. Constraint satisfaction consistency in this setting is the proportion of frame
predictions with no constraint violations.

Baseline Architecture: The baseline neural architecture for the RoadR dataset is a
DEtection TRansformer (DETR) model with a ResNet50 backbone (Carion et al.
2020). The baseline is trained and applied to detect objects in a frame, along with a
multi-label classification for its class labels (e.g., car, red, traffic light, etc.).

NeSy-EBM Architecture: The NeSy-EBM architecture is a composition of
the baseline object detector and classifier and a symbolic component created
with NeuPSL that encodes the logical requirements. The target variables are the
classification labels of a bounding box. The neural classification is used as both the
bounding box creation and a prior on the labels that the symbolic component uses
as a starting point to find a valid solution to the constraints.

Prepared using sagej.cls

A Mathematical Framework for NeSy 43

• Logical-Deduction is a multiple-choice question-answering dataset introduced by
Srivastava et al. (2022). These questions require deducing the order of a sequence of
objects given a natural language description and then answering a multiple-choice
question about that ordering.

Evaluation: We report results for a single test set of 300 deduction problems, with a
prompt containing two examples. Prediction performance in this setting is measured
by the accuracy of the predicted multiple-choice answer.

Baseline Architecture: The baseline neural architecture for the Logical-Deduction
dataset is the models presented in Pan et al. (2023) on GPT-3.5-turbo and GPT-4
OpenAI (2024). Each model is run using Standard and Chain-of-Thought (CoT)
(Wei et al. 2022) prompting.

NeSy-EBM Architecture: The NeSy-EBM architecture is a composition of the
baseline LLM that is being prompted to create the constraints within the symbolic
program. Symbolic inference is then performed, and the output is returned to the
LLM for final evaluation. In this sense, the NeSy-EBM writes a program to perform
reasoning rather than depending on the language model to reason independently.

Constraint Satisfaction and Joint Reasoning
We begin our experimental evaluation by exploring the advantages of employing NeSy-
EBMs for performing constraint satisfaction and joint reasoning, which is relevant to
answering research question RQ1. We employ a modular training approach to set up
these experiments to obtain weights for our models’ neural and symbolic components.
Specifically, neural components undergo training using the complete training dataset for
supervision, and symbolic weights are trained using a simple random grid search. After this
modular training phase, NeSy-EBM inference is carried out to predict binary, 0, 1, valued
target variables that align with established domain knowledge and logical reasoning. For
this reason, DSPar NeSy-EBMs are used for MNIST-Add-k, Visual-Sudoku, Pathfinding,
RoadR, Citeseer, and Cora, and a DSPot is used for Logical Deduction.

To investigate constraint satisfaction and joint reasoning, we use the dataset settings
outlined in Section 6 for Visual-Sudoku, Pathfinding, RoadR, Citeseer, Cora, and Logic
Deduction. Additionally, we introduce the following variant of the MNIST-Add-k dataset.

• MNIST-Addk: The k = 1, 2, 4 MNIST-Addk datasets with the sums of the MNIST-
Add-k equations available as observations during inference. Prediction performance
is measured by the accuracy of the image classifications.

The MNIST-Add-k modification allows the NeSy-EBM to use the semantics of addition
and the sum observation to form constraints to correct the neural component predictions.
For instance, consider the MNIST-Add-1 equation

[]
+
[]

= 8. If the neural
component incorrectly classifies the first MNIST image, , as an 8 with low confidence
but correctly classifies the second MNIST image, , as a 5 with high confidence, then it
can use the sum label, 8, to correct the first digit label.

Tables 1 to 3 report the prediction performance and constraint satisfaction consistency
of a neural baseline and NeuPSL model on the MNIST-Addk, Visual-Sudoku, Pathfinding,

Prepared using sagej.cls

44 Journal Title XX(X)

Table 1. Digit accuracy and constraint satisfaction consistency of the ResNet18 and NeuPSL
models on the MNIST-Add-k and Visual-Sudoku datasets.

ResNet18 NeuPSL
Digit Acc. Consistency Digit Acc. Consistency

MNIST-Add1

97.60± 0.55

93.04± 1.33 99.80± 0.14 100.0± 0.00
MNIST-Add2 86.56± 2.72 99.68± 0.22 100.0± 0.00
MNIST-Add4 75.04± 4.81 99.72± 0.29 100.0± 0.00
Visual-Sudoku 70.20± 2.17 99.37± 0.11 100.0± 0.00

Table 2. Accuracy of finding a minimum cost path (Min. Cost Acc.) and consistency in
satisfying continuity constraints (Continuity) of the ResNet18 and NeuPSL models on the
Pathfinding dataset.

ResNet18 NeuPSL
Min. Cost Acc. Continuity Min. Cost Acc. Continuity

Pathfinding 80.12± 22.44 84.80± 17.11 90.02± 11.70 100.0± 0.00

Table 3. Object detection F1 and constraint satisfaction consistency of the DETR and NeuPSL
models on the RoadR dataset.

DETR NeuPSL
F1 Consistency F1 Consistency

RoadR 0.457 27.5 0.461 100.0

and RoadR datasets, respectively. Across all settings, the baseline neural models frequently
violate constraints within the test dataset. Further, the frequency of these violations
increases with the complexity of the constraints. This behavior is best illustrated in
the MNIST-Addk datasets, where consistency decreases as the number of digits, k,
increases. This decline can be attributed to the baseline ResNet18 model treating each
digit prediction independently and thus failing to account for the dependencies from the
sum relation. Moreover, in the RoadR experiment, the DETR baseline adheres to road
event constraints only 27.5% of the time. On the other hand, NeuPSL always satisfies
the problem constraints in the MNIST-Addk, Visual-Sudoku, Pathfinding, and RoadR
datasets, achieving 100% consistency. This is because the DSPar NeSy-EBM models
used in these experiments can enforce constraints on all target variables. This allows the
NeSy-EBM models to leverage the structural relations inherent in the constraints to infer
target variables and jointly improve prediction accuracy. Prediction performance gains
from constraint satisfaction and joint reasoning are possible when the neural component
accurately quantifies its confidence. The symbolic component uses the confidence of the
neural component and the constraints together to correct the neural model’s erroneous
predictions. This observation motivates an exciting avenue of future research: exploring

Prepared using sagej.cls

A Mathematical Framework for NeSy 45

whether calibrating the confidence of the neural component can further improve the
structured prediction and joint reasoning capabilities of NeSy-EBMs.

Table 4. Node classification accuracy of the SGC and NeuPSL models on the Citeseer and
Cora datasets.

SGC NeuPSL

Citeseer 65.14± 2.96 66.52± 3.26
Cora 80.90± 1.54 81.82± 1.73

Table 5. Comparison of accuracy in answering logical deduction questions using two large
language models, GPT-3.5-turbo and GPT-4 OpenAI (2024), across three methods: Standard,
Chain of Thought (CoT), and NeuPSL.

LLM Standard CoT NeuPSL

Logical Deduction
GPT-3.5-turbo 40.00 42.33 70.33

GPT-4 71.33 75.25 90.67

Unlike MNIST-Addk, Visual-Sudoku, Pathfinding, and RoadR, which have hard
constraints on the target variables, the citation network datasets showcase the capacity
of NeSy-EBMs to perform joint reasoning with constraints and dependencies that are
not strictly adhered to. For Citeseer and Cora, NeuPSL enhances prediction accuracy by
leveraging the homophilic structure of the citation networks, i.e., papers that are linked
tend to share topic labels. Similarly, in the question-answering logical deduction problem,
NeuPSL uses an LLM to generate rules representing the dependencies described in natural
language. Although the LLM may sometimes fail to generate accurate rules, NeuPSL will
consistently use the rules for logical reasoning.

Tables 4 and 5 report the baseline and NeuPSL NeSy-EBM prediction performance on
the citation network node classification and logical deduction datasets, respectively. In all
instances, NeuPSL outperforms the baseline. The performance gain from NeuPSL in the
citation network experiments is verified to be statistically significant with a paired t-test
and p-value less than 0.05. Further, in the Logical Deduction setting, NeuPSL obtains a
15% improvement over the LLM. This performance gain is achieved despite the fact that
the LLM neural component in NeuPSL could produce invalid syntax or an infeasible set of
logical constraints. The LLM was able to produce valid programs 89.0% and 98.7% of the
time with gpt-3.5-turbo and gpt-4, respectively. This observation motivates a promising
avenue of future research in employing self-refinement approaches similar to that of Pan
et al. (2023) to attempt to correct the infeasible programs and further improve LLM
reasoning capabilities.

The results in this section are evidence for the affirmative answer to the research
question RQ1. Across diverse datasets—MNIST-Addk, Visual-Sudoku, Pathfinding,
and RoadR—the baseline neural models frequently violate constraints, with violations
increasing in complexity. For instance, the baseline model’s performance on MNIST-Addk

Prepared using sagej.cls

46 Journal Title XX(X)

deteriorates as the number of digits increases, and in RoadR, it adheres to constraints only
27.5% of the time. In stark contrast, the NeSy-EBM framework, incorporating symbolic
components to enforce constraints, consistently achieves 100% constraint satisfaction
and improves prediction accuracy. Additionally, in citation network and logical deduction
scenarios, NeSy-EBM facilitates joint reasoning, leveraging the inherent structure and
logical coherence, leading to significant performance gains.

NeSy-EBM Learning
Next, we investigate NeSy-EBM learning, focusing on answering research questions RQ2,
RQ3, and RQ4. Our analysis is divided into two parts. First, we study the performance of
modular learning NeSy-EBM methods in Section 6. Second, we examine the performance
and empirical convergence properties of end-to-end gradient-based NeSy-EBM learning
algorithms in Section 6. All models within this subsection use the DSPar modeling
paradigm.

Modular NeSy-EBM Learning In our modular learning experiments, the neural
components are first trained using supervised neural losses and are then frozen. The
symbolic component is trained using either a minimizer-based or value-based loss.
Specifically, we compare the prediction performance of two value-based losses, Energy
and Structure Perceptron (SP), and two minimizer-based losses, Mean Square Error (MSE),
and Binary Cross Entropy (BCE). The modular learning experiments are conducted on the
seven datasets listed in Table 6 below. The table overviews each dataset’s inference task
and the corresponding prediction performance metric. Additional details on these datasets
are provided in Appendix E.

Table 6. Datasets used for modular experimental evaluations.

Dataset Task Perf. Metric

Debate (Hasan and Ng 2013) Stance Class. AUROC
4Forums (Walker et al. 2012) Stance Class. AUROC
Epinions (Richardson et al. 2003) Link Pred. AUROC
DDI (Wishart et al. 2006) Link Pred. AUROC
Yelp (Kouki et al. 2015) Regression MAE
Citeseer (Sen et al. 2008) Node Class. Accuracy
Cora (Sen et al. 2008) Node Class. Accuracy

Table 7 reports the prediction performance achieved by each of the four learning
techniques across the seven modular datasets. Models trained with bilevel-based losses
consistently achieve better average predictive performance than those trained with value-
based losses. Notably, on the Cora dataset, the NeuPSL model trained with the BCE loss
achieved a remarkable improvement of over six percentage points compared to the SP loss,
which was the better-performing value-based loss. The models trained with the Energy
and SP loss suffered from a collapsed solution, i.e., symbolic parameters giving nearly
equal energy to all settings of the target variables.

Prepared using sagej.cls

A Mathematical Framework for NeSy 47

Table 7. Prediction performance of HL-MRF models trained on value and minimizer-based
losses.

Value-Based Bilevel
Energy SP MSE BCE

Debate 64.76± 9.54 64.68± 11.05 65.33± 11.98 64.83± 9.70
4Forums 62.96± 6.11 63.15± 6.40 64.22± 6.41 64.85± 6.01
Epinions 78.96± 2.29 79.85± 1.62 81.18± 2.21 80.89± 2.32
Citeseer 70.29± 1.54 70.92± 1.33 71.22± 1.56 71.94± 1.17
Cora 54.30± 1.74 74.16± 2.32 81.05± 1.41 81.07± 1.31
DDI 94.54± 0.00 94.61± 0.00 94.70± 0.00 95.08± 0.00
Yelp 18.11± 0.34 18.57± 0.66 18.14± 0.36 17.93± 0.50

End-to-End NeSy-EBM Learning This subsection analyzes the performance and
empirical convergence properties of the three following end-to-end gradient-based NeSy-
EBM learning algorithms.

• Energy: Gradient descent on the value-based energy loss.

• Bilevel: The bilevel value-function optimization for NeSy-EBM learning algorithm.
For all datasets, binary cross-entropy is the minimizer-based loss, and the energy
loss is the value-based loss.

• IndeCateR: The stochastic policy optimization algorithmic framework with the
Independent Categorical REINFORCE gradient estimator (De Smet et al. 2023).
The evaluation metric of the dataset is directly applied as the learning loss.

Theorem 10 in Section 5 is used to compute the learning gradients with respect to the
neural output and symbolic weights for the Energy and Bilevel algorithms. Similarly, the
IndeCateR estimate is used to compute the learning gradients with respect to the neural
output and symbolic weights for stochastic policy optimization. Then, gradients with
respect to the neural parameters are found via backpropagation for all methods. The neural
parameters are updated via AdamW (Loshchilov and Hutter 2019), and the symbolic
parameters are updated using gradient descent with a fixed step size. Additional details
on the hardware and hyperparameters settings of the learning algorithms are provided in
Appendix E.

To investigate the performance of our NeSy-EBM learning algorithms, we use the
dataset settings outlined in Section 6 for Citeseer and Cora. Additionally, we introduce
the following variant of the MNIST-Addk, Visual-Sudoku, and Pathfinding datasets:

• MNIST-Addk: The k = 1, 2 MNIST-Addk datasets with no digit supervision, i.e.,
parameters are learned only from the addition relations.

• Visual-Sudoku: A few-shot setting with 5 labeled examples of each of the 9
possible classes available for training. The remaining images in the training data
are unlabeled, and the model must primarily rely on the Sudoku rules for learning.

Prepared using sagej.cls

48 Journal Title XX(X)

• Pathfinding: A limited supervision setting where only 10% of the training data is
labeled, and the remaining training data is unlabeled. Specifically, only 5% of the
map vertices are observed to be on or off the labeled minimum cost path. In other
words, supervision is distributed across maps, and the minimum cost paths for a
map are only partially observed.

Table 8. The average and standard deviation of the prediction performance of NeuPSL
NeSy-EBMs trained using gradient-based learning algorithms on 7 datasets.

NeuPSL
Energy IndeCateR Bilevel

MNIST-Add1 93.80± 1.12 94.52± 0.99 94.92± 1.40
MNIST-Add2 87.92± 1.63 86.88± 1.82 89.36± 1.54
Visual-Sudoku 98.12± 0.37 TIMEOUT 98.10± 0.19
Path-Finding 22.53± 0.75 TIMEOUT 22.85± 1.33
Citeseer 67.04± 1.82 TIMEOUT 67.96± 1.11
Cora 80.40± 0.74 TIMEOUT 81.88± 0.65

Table 8 presents the average and standard deviation of the prediction performance for the
symbolic component of the NeuPSL NeSy-EBM model across the six datasets examined in
this subsection. In five of the six datasets, the Bilevel learning algorithm achieves the best
results. Notably, in MNIST-Add1, IndeCateR’s performance was comparable to Bilevel’s.
However, as the complexity of the target variable constraints increased, IndeCateR’s
performance deteriorated, exemplified by poor results in MNIST-Add2 and failures to find
viable solutions within the allotted time in the other datasets.

While Energy generally underperformed compared to Bilevel across most settings,
it was the fastest in execution time. For instance, Fig. 6 plots the validation image
classification accuracy of the MNIST-Add1 and MNIST-Add2 NeuPSL NeSy-EBMs
trained with the Energy, IndeCater, and Bilevel learning algorithms versus the training
epoch and wall-clock time for a single fold. The Bilevel and IndeCateR algorithms reach
higher validation performance levels than the Energy algorithm on both MNIST-Addk
datasets for the reported fold. This pattern is consistent with the average prediction
performance results reported in Table 8 for MNIST-Add1. For the MNIST-Add2 dataset,
on the other hand, the IndeCateR algorithm was timed out after 10 hours of training rather
than allowing it to fully converge, which explains the drop in the relatively lower average
test performance results in Table 8. Surprisingly, the IndeCateR algorithm has the best
empirical rate of improvement with respect to training epochs on both datasets; the next
best is Bilevel, and finally, Energy. However, the IndeCateR algorithm’s per-iteration
cost counteracts its advantage, and it has a significantly slower rate of improvement with
respect to wall-clock time. On the other end of the spectrum, Energy has the slowest
rate of prediction performance improvement, but its per iteration cost is low enough that
it converges the fastest with respect to wall-clock time. The Bilevel algorithm balances
the strengths of the two algorithms. It has a lower per-iteration cost because it only uses

Prepared using sagej.cls

A Mathematical Framework for NeSy 49

Figure 6. Validation image classification accuracy versus training (a) epoch and (b) time in
minutes for NeuPSL models trained with the Energy, IndeCateR, and Bilevel NeSy-EBM
learning algorithms.

(a)

(b)

value-function gradients and optimizes a minimizer-based loss. The convergence results
in Fig. 6 motivate future work on training pipelines that pre-train with a value-based loss
and fine-tune with a more expensive minimizer-based loss to achieve the fastest training
time and best final prediction performance.

Semi-Supervision
In this set of experiments, we investigate the effectiveness of the NeSy-EBM framework
in training a deep learning model in a semi-supervised setting. This experiment aims
to further investigate research questions RQ3 and RQ4. Specifically, we compare the
prediction performance of a neural baseline trained solely with a supervised neural loss to
that of a NeuPSL model’s neural component (with the same architecture) trained using
an end-to-end NeSy-EBM loss. In both cases, only a subset of the training set labels
is available to the neural component. To enhance neural performance with a structured
loss, the MNIST-Addk and Visual-Sudoku models in this subsection employ the DSVar
modeling paradigm due to its simplicity and speed, while Pathfinding, Citeseer, and Cora

Prepared using sagej.cls

50 Journal Title XX(X)

models use the DSPar modeling paradigm. We use the following variants of four datasets
for our experiments.

• MNIST-Addk: The k = 1, 2 MNIST-Addk datasets with the proportion of
image class labels available in the training data varying over {1.0, 0.5, 0.1, 0.05}.
Prediction performance in this subsection is measured by the accuracy of the image
classifications.

• Visual-Sudoku: The proportion of image class labels available in the training data
varies over {1.0, 0.5, 0.1, 0.05}.

• Pathfinding: Supervision is distributed across all training maps, so the shortest
paths in the training data are only partially observed. The proportion of vertex labels
available in the training data varies over {1.0, 0.5, 0.1}.

• Citeseer and Cora: The proportion of paper topic labels available in the training
data varies over {1.0, 0.5, 0.1}.

The Bilevel learning algorithm is applied to train the NeSy-EBM neural components for
the MNIST-Addk, Citeseer, and Cora datasets. The Energy learning algorithm is applied
to train the NeSy-EBM neural components for the Visual-Sudoku and Pathfinding datasets.
Additional details on the hardware and hyperparameter settings of the learning algorithms
are provided in Appendix E.

Table 9. Digit accuracy of the ResNet18 models trained with varying levels of supervision.

ResNet18

Supervised NeuPSL
Labeled Semi-Supervised

MNIST-Add1

1.00 97.84± 0.23 97.40± 0.51
0.50 97.42± 0.30 97.02± 0.65
0.10 93.05± 0.69 96.78± 0.80
0.05 75.35± 0.33 96.82± 0.72

MNIST-Add2

1.00 97.84± 0.23 97.22± 0.19
0.50 97.42± 0.30 96.84± 0.42
0.10 93.05± 0.69 95.14± 1.21
0.05 75.35± 0.33 95.90± 0.43

Visual-Sudoku

1.00 97.84± 0.23 97.89± 0.15
0.50 97.42± 0.30 97.26± 0.70
0.10 93.05± 0.69 96.82± 0.32
0.05 75.35± 0.33 96.49± 0.67

Tables 9 to 11 report the average and standard deviation of the prediction performance of
the supervised neural baseline and the semi-supervised neural component on the MNIST-
Addk, Visual-Sudoku, Citeseer, Cora, and Pathfinding datasets. Across all datasets, as

Prepared using sagej.cls

A Mathematical Framework for NeSy 51

Table 10. Topic accuracy of the trained SGC models with varying levels of supervision.

SGC

Supervised NeuPSL
Labeled Semi-Supervised

Citeseer

1.00 76.12± 1.71 75.92± 2.23
0.50 74.70± 1.68 74.38± 1.82
0.10 68.64± 1.06 69.66± 0.16
0.05 64.56± 1.68 66.12± 1.22

Cora

1.00 87.62± 0.97 87.18± 1.08
0.50 85.82± 0.50 86.74± 0.54
0.10 80.88± 2.00 81.96± 2.62
0.05 74.98± 3.32 78.88± 2.85

Table 11. Accuracy of finding a minimum cost path (Min. Cost Acc.) and consistency in
satisfying continuity constraints (Continuity) of the ResNet18 models with varying levels of
supervision.

ResNet18

Supervised NeuPSL
Semi-Supervised

Labeled Min. Cost Acc. Continuity Min. Cost Acc. Continuity

Pathfinding
1.00 80.12± 22.44 84.80± 17.11 80.90± 21.93 83.02± 20.09
0.50 52.06± 14.77 61.86± 14.28 59.84± 16.51 67.94± 14.25
0.10 2.60± 1.04 9.02± 1.90 4.26± 1.40 35.18± 3.40

the proportion of unlabeled data increases, the semi-supervised neural component begins
to outperform the supervised baseline. This behavior indicates that NeSy-EBMs are
able to leverage the unlabeled training data by using the knowledge encoded in the
NeuPSL rules. The benefit of utilizing symbolic knowledge is most evident in the lowest
supervision settings, with the NeuPSL semi-supervised ResNet18 model achieving over
20 percentage points of improvement when there is only 5% percent of the training labels
in the MNIST-Addk and Visual-Sudoku datasets. Surprisingly, this outcome is repeated in
the Citeseer and Cora datasets, where the NeuPSL rules are not always adhered to. In other
words, leveraging domain knowledge becomes more valuable for improving prediction
performance as the amount of supervision decreases, even if the domain knowledge is not
strictly accurate.

The Pathfinding results in Table 11 show there is not only a prediction performance gain
achievable by making use of the symbolic component but also a reliability improvement.
The reported Continuity metric measuring the consistency of the ResNet18 model in
satisfying path continuity constraints is significantly improved when there is limited
supervision and the model is trained with a NeSy-EBM loss. The NeuPSL semi-supervised
ResNet18 model attains an over 25 percentage point improvement in path continuity

Prepared using sagej.cls

52 Journal Title XX(X)

consistency when only 10% of training labels are available. These results show NeSy-
EBMs are valuable for aligning neural networks with desirable properties beyond
accuracy.

7 Limitations
In this section, we discuss the limitations of the NeSy-EBM framework, NeuPSL, and our
empirical analysis. The NeSy-EBM framework is a high-level and general paradigm for
NeSy. The value of the framework is that it provides a unifying theory for NeSy and a
foundation for creating widely applicable modeling paradigms and learning algorithms.
Progress on developing highly efficient NeSy inference algorithms, on the other hand,
may benefit from a perspective that considers the specific structure of the energy function
and inference task. For instance, the inference task of density estimation for NeSy systems
such as semantic probabilistic layers (Ahmed et al. 2022a) is made highly efficient by
levering constraints on the design of the energy function. Similarly, we show prediction
in NeuPSL is a quadratic program, a property that is leveraged by Dickens et al. (2024a)
to create an inference algorithm tailored for leveraging warm starts to realize learning
runtime improvements. In this work, we make limited assumptions on the form of the
energy function to develop modeling paradigms and learning algorithms and do not focus
on building or analyzing specific inference techniques.

The collection of NeSy modeling paradigms introduced in Section 3 is not exhaustive.
For instance, it omits NeSy systems that integrate symbolic knowledge extraction from
deep neural networks (Tran and d’Avila Garcez 2018). Moreover, we do not discuss
DSVar, DSPar, and DSPot model combinations. We leave the exploration of utilizing
multiple NeSy modeling paradigms to fuse neural components operating over multiple
modalities for future work.

The four learning techniques proposed in this manuscript are presented with necessary
assumptions on the energy function. For instance, direct gradient descent can only be
principally applied to minimize a NeSy-EBM loss at points where the energy function is
twice differentiable with respect to the neural output and symbolic weights. Similarly, the
bilevel technique is principled at points where the optimal value-function is differentiable
with respect to the neural output and symbolic weights. We do not explore methods for
extending the gradient descent and bilevel learning techniques to support NeSy-EBMs that
do not satisfy all assumptions. One approach is to substitute the inference program with
an approximation. The modular and stochastic policy optimization learning techniques
require significantly fewer assumptions on the form of the energy function. However,
these two techniques have their own limitations, which we discuss in their respective
subsections.

The NeuPSL system, while expressive, does not support every NeSy-EBM energy
function and inference task. Specifically, NeuPSL can create energy functions defined as
a weighted sum of potentials derived via arithmetic, logic, and Lukasiewicz real-logic
semantics, as described in Section 4. NeuPSL does not support potentials constructed
from other real-logic semantics. Further, NeuPSL is currently only designed to perform
non-probabilistic inference tasks (e.g., prediction, ranking, and detection). This is due to

Prepared using sagej.cls

A Mathematical Framework for NeSy 53

the complexities of computing marginal distributions with the Gibbs partition function
defined from the energy.

Our empirical evaluations do not encompass every NeSy application, for instance,
reasoning with noisy data. Furthermore, although our research advances the incorporation
of commonsense reasoning and domain knowledge into LLMs for question answering, we
have not extended our investigation to more complex reasoning tasks like summarization
or explanation.

8 Conclusion and Future Work
This paper establishes a mathematical framework for neural-symbolic (NeSy) reasoning
with Neural-Symbolic Energy-Based Models (NeSy-EBMs). The NeSy-EBM framework
is a unifying foundation and a bridge for adapting techniques from the broader machine
learning literature to solve challenges in NeSy. Additionally, we introduce Neural
Probabilistic Soft Logic (NeuPSL), an open-source and highly expressive implementation
of NeSy-EBMs. NeuPSL supports the primary modeling paradigms and continuity
properties required for efficient end-to-end neural and symbolic parameter learning.

We show that NeSy-EBMs provide a unifying view of NeSy by categorizing
fundamental NeSy modeling paradigms. Our modeling paradigms organize the strengths
and limitations of NeSy systems and clarify architecture requirements for applications.
NeSy-EBMs and the paradigms are valuable mechanisms for practitioners and researchers
to understand the growing NeSy literature and design effective systems. Further, NeSy-
EBMs illuminate connections between NeSy and the broader machine learning community.
Specifically, we formalize a general NeSy learning loss and the necessary assumptions
for supporting direct gradient descent on the loss. Moreover, we leverage methods from
reinforcement learning and bilevel optimization literature to work around the assumptions
and design more practical and general algorithms.

The insights we gained from creating the mathematical framework, the collection of
modeling paradigms, and the suite of learning techniques shaped the development of the
NeuPSL NeSy modeling library. NeuPSL is built to support every modeling paradigm
and learning technique we cover. We demonstrate the effectiveness of NeuPSL in our
empirical analysis. Specifically, we explore four practical use cases of NeSy. We show
compelling results in real-world applications and see NeSy-EBMs enhance neural network
predictions, enforce constraints, improve label and data efficiency, and empower LLMs
with consistent reasoning.

Looking ahead, several promising avenues for future research have emerged. For
instance, a more extensive exploration into techniques for leveraging symbolic knowledge
to fine-tune and adapt foundation models is a promising direction. The NeSy-EBM
framework and our proposed learning techniques are a solid basis for building pipelines
to fine-tune foundation models. Moreover, stochastic policy optimization for end-to-end
NeSy learning has great potential due to its general applicability to every modeling
paradigm and most NeSy-EBMs. Finally, contributing to the active area of research on
overcoming the challenge of high-variance gradient estimates would be highly beneficial
for improving NeSy learning.

Prepared using sagej.cls

54 Journal Title XX(X)

Acknowledgements

This work was partially supported by the National Science Foundation grants CCF-2023495 and a
Google Faculty Research Award.

Prepared using sagej.cls

A Mathematical Framework for NeSy 55

A Introduction
The appendix includes the following sections: Extended Related work (Appendix B),
NeSy Apporaches as NeSy-EBMs (Appendix C), Extended Neural Probabilistic Soft
Logic (Appendix D), and Extended Empirical Analysis (Appendix E).

B Extended Related Work

Bilevel Optimization
In this work, we use bilevel optimization as a natural formulation of learning for a general
class of NeSy systems (Bracken and McGill 1973; Colson et al. 2007; F. Bard 2013;
Dempe and Zemkoho 2020). The NeSy learning objective is a function of predictions
obtained by solving a lower-level program that encapsulates symbolic reasoning. In the
broader deep learning community, bilevel optimization also arises in hyperparameter
optimization (Pedregosa 2016), meta-learning (Franceschi et al. 2018; Rajeswaran et al.
2019), generative adversarial networks (Goodfellow et al. 2014), and reinforcement
learning (Sutton and Barto 2018). Researchers typically take one of the following three
approaches to bilevel optimization.

Implicit Differentiation. There is a long history of research on analyzing the
stability of solutions to optimization problems using implicit differentiation (Fiacco
and McCormick 1968; Robinson 1980; Bonnans and Shapiro 2000). These methods
compute or approximate the Hessian matrix at the lower-level problem solution to derive
an analytic expression for the gradient of the upper-level objective, sometimes called
a hypergradient. Bilevel algorithms of this type make varying assumptions about the
problem structure (Do et al. 2007; Pedregosa 2016; Ghadimi and Wang 2018; Rajeswaran
et al. 2019; Giovannelli et al. 2022; Khanduri et al. 2023). Building on these foundational
techniques, the deep learning community has proposed architectures that contain layers
that are functions of convex programs with analytic expressions for gradients derived from
implicit differentiation (Amos and Kolter 2017; Agrawal et al. 2019a,b; Wang et al. 2019).

Automatic Differentiation. This approach unrolls inference into a differentiable
computational graph (Stoyanov et al. 2011; Domke 2012; Belanger et al. 2017; Ji
et al. 2021), and then leverages automatic differentiation techniques (Griewank and
Walther 2008). However, unrolling the inference computation creates a large, complex
computational graph that can accumulate numerical errors dependent on the solver.

Bilevel Value-Function Approach. An increasingly popular approach is to reformulate
the bilevel problem as a single-level constrained program using the optimal value of the
lower-level objective (the value-function) to develop principled gradient-based algorithms
that do not require the calculation of Hessian matrices for the lower-level problem (V.
Outrata 1990; J. Ye and L. Zhu 1995; Liu et al. 2021; Sow et al. 2022; Liu et al. 2022, 2023;
Kwon et al. 2023). Existing bilevel value-function approaches are not directly applicable
to NeSy systems as they typically assume the lower-level problem to be unconstrained and
the objective to be smooth. Bilevel optimization with constraints in the lower level problem,
is an open area of research. Until now, implicit differentiation methods are applied with
strong assumptions about the structure of the lower-level problem (Giovannelli et al.

Prepared using sagej.cls

56 Journal Title XX(X)

2022; Khanduri et al. 2023). Our framework is, to the best of our knowledge, the first
value-function approach to work with lower-level problem constraints.

Energy-Based Models
Our NeSy framework makes use of Energy-Based Models (EBMs) (LeCun et al. 2006).
EBMs measure the compatibility of a collection of observed (input) variables x ∈ X
and target (output) variables y ∈ Y via a scalar-valued energy function: E : Y × X → R.
Low energy states represent high compatibility. EBMs are appealing due to their generality
in both modeling and application. For instance, EBMs can be used to perform density
estimation by defining conditional, joint, and marginal Gibbs distributions with the energy
function:

P (y|x) := e−βE(y,x)∫
ŷ∈Y e

−βE(ŷ,x)
, (70)

P (y,x) :=
e−βE(y,x)∫

ŷ∈Y,x̂∈X e
−βE(ŷ,x̂)

, (71)

P (x) :=

∫
ŷ∈Y e

−βE(y,x)∫
ŷ∈Y,x̂∈X e

−βE(ŷ,x̂)
. (72)

A fundamental motivation for the use of the Gibbs distribution is that any density function
can be represented by the distribution shown above with a (potentially un-normalized)
energy function E. For this reason, EBMs are a unified framework for probabilistic
and non-probabilistic approaches and are applicable for generative and discriminative
modeling.

EBMs are applied throughout machine learning to model data and provide predictions.
The Boltzmann machine (Ackley et al. 1985; Salakhutdinov and Larochelle 2010) and
Helmholtz machine (Dayan et al. 1995) are some of the earliest EBMs to appear in the
machine learning literature. Hinton (2002) is another seminal work that shows EBMs to be
useful for building mixture-of-expert models. Specifically, a single complex distribution
is produced by multiplying many simple distributions together and then renormalizing.

More recently, the EBM framework has been utilized for generative modeling (Zhao
et al. 2017; Du and Mordatch 2019; Du et al. 2023). Zhao et al. (2017) introduce energy-
based generative adversarial networks (EBGANs), which view the GAN discriminator
as an energy function that attributes low energies (high compatibility) to points near
the data manifold. The EBGAN approach is a principled framework for using GAN
discriminators with a variety of architectures and learning loss functionals to achieve more
stable training than traditional GANs. Du and Mordatch (2019) advocate for using EBMs
directly for generative modeling, citing as motivation their simplicity, stability, parameter
efficiency, flexibility of generation, and compositionality. They show generative results
that achieve performance close to modern GANs, achieving state-of-the-art results in
out-of-distribution classification, adversarially robust classification, and other tasks. In
more recent work, Du et al. (2023) propose an energy-based parameterization of diffusion
models to support compositional generation.

Prepared using sagej.cls

A Mathematical Framework for NeSy 57

The EBM framework was shown recently to improve discriminative modeling
(Grathwohl et al. 2020; Liu et al. 2020). Grathwohl et al. (2020) reinterpret discriminative
classifiers as EBMs to propose the joint energy-based model (JEM). A JEM allows the
parameters of the model to be fit on unlabeled data with a likelihood-based loss, leading
to improved accuracy, robustness, calibration, and out-of-distribution detection. Similarly,
Liu et al. (2020) developed an EBM for out-of-distribution detection to achieve state-of-
the-art performance. Liu et al. (2020) creates a purely discriminative training objective
(in contrast with the probabilistic approach of JEM) and shows that unnormalized energy
scores can be used directly for out-of-distribution detection.

A primary challenge of the EBM framework is learning with a potentially in-tractable
partition function induced by the Gibbs distributions in (70), (71), and (72). Some of
the earliest EBMs worked around the partition function using the contrastive divergence
algorithm (Hinton 2002) to estimate derivatives of the negative log-likelihood loss of an
EBM with Markov chain Monte Carlo (MCMC) sampling from the Gibbs distribution.
Later work on EBMs has improved the traditional biased MCMC sampling-based
approximation methods with a sampler based on stochastic gradient Langevin dynamics
(SGLD) (Welling and Teh 2011). For instance, Du and Mordatch (2019) use SGLD for
training generative EBMs and Grathwohl et al. (2020) for discriminative models with a
negative log-likelihood loss.

Score matching is an alternative probabilistic approach to training an EBM that fits the
slope (or score) of the model density to the score of the data distribution, avoiding the
need to estimate the Gibbs distribution partition function (Hyvarinen 2005; P. Kingma and
LeCun 2010; Song and Ermon 2019). Hyvarinen (2005) initially proposed score matching
for estimating non-normalized statistical models. Later, P. Kingma and LeCun (2010)
used score matching to train an EBM for image denoising and super-resolution. Song and
Ermon (2019) suggested training an EBM to approximate the score of the data distribution
that is then used with Langevin dynamics for generation.

EBMs may also be trained via non-probabilistic losses that do not require estimating the
Gibbs distribution partition function (LeCun et al. 1998; Collins 2002; Scellier and Bengio
2017). For instance, the perceptron loss, which is the difference between the energy of the
observed training data and the minimum value of the energy function (see Section 5 for a
formal definition), has been used for recognizing handwritten digits (LeCun et al. 1998)
and part-of-speech tagging (Collins 2002). More recently, Scellier and Bengio (2017)
proposed equilibrium propagation, a two-phase learning algorithm for training EBMs
with a twice differentiable energy function. The equilibrium propagation algorithm can be
used to train EBMs with an arbitrary differentiable loss. A step of the learning algorithm
proceeds by minimizing the energy given some input (the free phase) and then minimizing
the energy augmented with a cost function (the nudged phase). The gradient of the learning
objective is a function of the results of these two minimizations.

The EBM framework has proven effective for a wide range of tasks in both generative
and discriminative modeling. The versatility of EBMs supports modeling complex
dependencies, the composition and fusion of models, and leveraging both labeled and
unlabeled data. Moreover, EBMs provide a common theoretical framework spanning
probabilistic and non-probabilistic methods.

Prepared using sagej.cls

58 Journal Title XX(X)

C Expressing NeSy Approaches via NeSy-EBMs
Chapter 3 introduced NeSy-EBMs as a unifying framework for understanding neural-
symbolic integration. In this section, we demonstrate how to formulate three widely
recognized NeSy approaches within this framework, highlighting their distinct strategies
for combining neural learning with symbolic reasoning. These approaches differ in how
they incorporate symbolic knowledge, enforce constraints, and structure their overall
modeling paradigms:

• Semantic Loss (SL) (Xu et al. 2018): A probabilistic NeSy approach in which the
neural network outputs define a probability distribution over variables or facts within
probabilistic propositional logical constraints. These constraints are integrated as a
regularization term within the loss function of the neural network. This approach is
typically expressed as a deep symbolic parameter model.

• DeepProbLog (DPL) (Manhaeve et al. 2021a): A probabilistic NeSy approach in
which the neural network outputs define a probability distribution over variables or
facts within a probabilistic logic setting. Probabilistic constraints can be applied
either as a loss regularization term or as an additional reasoning layer on top of the
neural network outputs. This approach is typically expressed as a deep symbolic
parameter model.

• Logic Tensor Networks (LTNs) (Badreddine et al. 2022): A fuzzy NeSy approach
in which the neural network outputs define variable values within a fuzzy logic
system. Fuzzy logic constraints are incorporated through an additional computation
graph layer on the neural network outputs. This approach is typically expressed as
a deep symbolic variable model.

Semantic Loss (SL)
Semantic loss is a probabilistic NeSy approach that interprets neural network outputs
as probability distributions over propositional variables constrained by logical rules (Xu
et al. 2018). It measures the extent to which the neural network’s predictions satisfy the
given constraints, serving as a regularization term to encourage logical consistency by
penalizing violations.

Defintion and Background Formally, let y = {y1, y2, . . . , yn} be a set of n propositional
variables and a world ω is an instantiation of all variables y, i.e., ω = {y1 = v1, · · · , yn =
vn} for vi ∈ {0, 1}. A world ω satisfies a sentence α, denoted ω |= α, if the sentence
evaluates to true in that world. A sentence α entails another sentence β, denoted α |= β,
if all worlds that satisfy α also satisfy β.

In semantic loss, each propositional variable yi ∈ y is assigned a probability pi that
it is true. These probabilities p = {p1, p2, . . . , pn} are defined from a neural network.
The semantic loss, denoted as LSL(α,p), measures how closely the neural network’s
predictions satisfy the sentence α with:

Prepared using sagej.cls

A Mathematical Framework for NeSy 59

LSL(α,p) ∝ − log

∑
ω|=α

∏
i:ω|=yi

pi
∏

i:ω|=¬yi

(1− pi)


The summation is taken over all worlds ω that satisfy α. The product

∏
i:ω|=yi pi

represents the probability of all variables assigned true in ω, while
∏
i:ω|=¬yi(1− pi)

accounts for the probability of all variables assigned false in ω. The right-hand side of
the equation corresponds to the well-known reasoning task of weighted model counting
(WMC) (Chavira and Darwiche 2008), which computes the total probability of satisfying
α under a given probability distribution.

In practice, semantic loss—weighted by a hyperparameter γ—serves as a regularization
term that encourages the neural model to produce predictions consistent with logical
constraints. Formally, semantic loss is incorporated as follows:

Ltotal = Lexisting + γ · LSL(α,p),

where Lexisting represents the original loss function, and LSL(α,p) enforces logical
consistency within the learned predictions.

With the semantic loss formalized, we now illustrate its application through an example:
enforcing mutual exclusivity constraints in multi-class classification.

Example 4
Consider a multi-class classification problem where exactly one of n possible outcomes
should be true. The sentence αexactly one enforces that exactly one of the variables
y1, . . . , yn is true:

αexactly one = (y1 ∧ ¬y2 ∧ · · · ∧ ¬yn) ∨ (¬y1 ∧ y2 ∧ · · · ∧ ¬yn) ∨ · · · ∨ (¬y1 ∧ · · · ∧ yn).

The semantic loss for this multi-class setting is computed as:

LSL(αexactly one,p) ∝ − log

 n∑
i=1

pi

n∏
j=1
j ̸=i

(1− pj)

 ,

where p = {p1, . . . , pn} are the probabilities predicted by the neural network for each
class.

While this demonstrates how more complex logical sentences can be incorporated into
the problem, it is crucial to recognize that this requires computing the weighted model
count (Chavira and Darwiche 2008), a task that is #P-hard. To mitigate this computational
challenge, a common approach in the literature is to compile logical formulas into circuits,
enabling efficient inference across multiple queries (Choi et al. 2020; Kisa et al. 2014;
Manhaeve et al. 2021a). However, while circuit compilation can significantly accelerate
inference, the compilation process itself can be exponential in both time and memory, with
no guarantees that the resulting circuit size remains tractable (van Krieken et al. 2023).

Prepared using sagej.cls

60 Journal Title XX(X)

NeSy-EBM Formulation Semantic loss can be formulated as a DSPar NeSy-EBM where
the propositional variable probabilities are neural network outputs. Since semantic loss
does not take as input any observed random variables, then there are no external parameters,
i.e., let xsy ∈ ∅ and wsy ∈ ∅. Let gnn be a function with parameters wnn ∈Wnn and
inputs xnn ∈ Xnn such that:

gnn :Wnn ×Xnn 7→ [0, 1]n,

where n is the number of propositional variables involved in the constraints, this function
outputs the predicted probabilities:

gnn(xnn,wnn) = [pi]
n
i=1,

where pi represents the predicted probability for the i-th variable.
Define the logical sentence α as a hard constraint CH(ω) using an indicator function

that represents whether a world ω (an assignment of the propositional variables) satisfies
the sentence α:

CH(ω) = I(ω |= α),

where I(ω |= α) is 1 if the world satisfies the constraint α, and 0 otherwise.
Assuming the weighted model count formulation, the symbolic component of the

NeSy-EBM is a DSPar potential function:

gsy(y,xsy,wsy,gnn(xnn,wnn)) = ψSL([y,xsy] , [wsy,gnn(xnn,wnn)])

= − log

 ∑
ω∈{0,1}|y|

CH(ω)

n∏
i=1

pωi
i (1− pi)1−ωi


where ωi is the ith propositional variable value.

Given the symbolic potential and variables defined above, the semantic energy function
is defined as:

ESL(y,xsy,xnn,wsy,wnn) = gsy(y,xsy,wsy, gnn(xnn,wnn)) (73)

= − log

 ∑
ω∈{0,1}|y|

CH(ω)

n∏
i=1

pωi
i (1− pi)1−ωi


DeepProbLog (DPL)
DeepProbLog (DPL) (Manhaeve et al. 2021a), like semantic loss, is a probabilistic
NeSy approach that integrates neural network predictions with symbolic reasoning.
However, while semantic loss is confined to propositional logic, DeepProbLog operates
within a first-order logic framework, allowing for more expressive reasoning capabilities.
Specifically, DeepProbLog assigns neural network outputs as probabilities within the
probabilistic programming language ProbLog (De Raedt et al. 2007) through the use of
neural predicates. This integration allows DeepProbLog to leverage both probabilistic
logic programming and program induction, making it well-suited for reasoning over more
complex symbolic structures and relational dependencies.

Prepared using sagej.cls

A Mathematical Framework for NeSy 61

Definition and Background To begin, we review the basics of probabilistic logic
programming in ProbLog, following the presentation from (Manhaeve et al. 2021a)
(see (De Raedt et al. 2007) for further details).

ProbLog: A ProbLog program consists of two main components:

• A set of probabilistic facts F of the form p :: y, where p is the probability that the
binary target random variable y is true (i.e., y ∈ {0, 1}). Note: this can be extended
to include a set of observed facts or evidence p :: xsy .

• A setR of symbolic rules, which describe how different facts relate to each other.

A subset of the probabilistic facts F ⊆ F defines a possible instantiation, or world ω.
This world includes all facts in F and all facts derivable from F using the rules inR:

ω = F ∪ {y | R ∪ F |= y},

whereR∪ F |= y means that the fact y can be derived from the combination of rulesR
and facts F . The probability of a world ω is given by the product of the probabilities of
the facts in that world:

P (ω) :=
∏
yi∈F

pi
∏

yi∈F\F

(1− pi),

where pi is the probability assigned to fact yi.

Example 5
Consider the following ProbLog program, which models the likelihood of a burglary or
earthquake causing an alarm:

Probabilistic Facts:
0.1 :: burglary, 0.2 :: earthquake,

0.5 :: hearsAlarm(mary), 0.4 :: hearsAlarm(john).

Rules:
alarm : − earthquake.

alarm : − burglary.

calls(X) : − alarm, hearsAlarm(X).

Now, consider the subset F = {burglary, hearsAlarm(mary)} of probabilistic facts.
The corresponding world ω includes the derived facts:

ω = {burglary, hearsAlarm(mary), alarm, calls(mary)}.

The probability of this world is:

P (ω) = 0.1 · 0.5 · (1− 0.2) · (1− 0.4) = 0.024.

Prepared using sagej.cls

62 Journal Title XX(X)

DeepProbLog: A DeepProbLog program extends the syntax and semantics of ProbLog
by introducing neural predicates, allowing the specification of probabilistic facts based on
neural network outputs (Manhaeve et al. 2021a). Specifically, DeepProbLog introduces
neural annotated disjunctions (nADs), which integrate neural network predictions directly
into the logic. A neural annotated disjunction is specified as:

nn(mgnn ,xnn, u1) :: h(xnn, u1) ; · · · ; nn(mgnn ,xnn, un) :: h(xnn, un) ⊨ b1, · · · , bm,
(74)

where xnn is a vector of features accessible to the neural component identified by mgnn
.

The terms u1, . . . , un represent the possible outputs of the neural network, and the atoms
b1, . . . , bm are logical conditions. The output of the neural network, nn(mgnn

,xnn, ui),
is interpreted as the probability that the atom h(xnn, ui) is true, and the sum of the neural
model’s outputs must satisfy:

n∑
i=1

nn(mgnn
,xnn, ui) = 1.

The meaning of the nAD is that whenever all the atoms b1, . . . , bm hold true, each
h(xnn, ui) becomes true with probability nn(mgnn

,xnn, ui).

NeSy-EBM Formulation DeepProbLog can be formulated as a DSPar NeSy-EBM where
the fact probabilities are defined with both the symbolic parameters and the neural network
outputs. Let xsy be the observed random variables (evidence), y be the target random
variables (facts), and wsy be symbolic parameters over facts not parameterized by a neural
network (probabilities). Let gnn be a function with parameters wnn ∈Wnn and inputs
xnn ∈ Xnn such that:

gnn :Wnn ×Xnn 7→ [0, 1]n,

where n is the number of propositional variables involved in the constraints. Without loss
of generality the fact probabilities, p, are paritioned into symbolic parameters and these
neural network outputs:

p =

[
wsy

g(xnn,wnn)

]
where pi represents the predicted probability for the i-th variable.

The probability of a world ω, defined by a subset of probabilistic facts F ⊆ F , is a
function of the fact probabilities p, and therefore a function of wsy and the neural network
outputs g(xnn,wnn):

Pω(wsy, g(xnn,wnn)) =∏
w

j
sy∈F

w
j
sy

∏
w

j
sy∈F\F

(1 − w
j
sy)

∏
g(xnn,wnn)j∈F

g(xnn,wnn)
j ∏
g(xnn,wnn)j∈F\F

(1 − g(xnn,wnn)
j
)

Finally, unlike semantic loss, DeepProbLog typically evaluates probabilities with
respect to queries. A query is a symbolic atom q whose probability we want to compute
based on the probabilistic facts and the neural network outputs. For example, the marginal
probability of a query atom q is computed by summing over the probabilities of all worlds
ω in which q is true.

Prepared using sagej.cls

A Mathematical Framework for NeSy 63

Let CH(ω, q) be the constraint function, which acts as an indicator function returning 1
if the world ω satisfies the condition that the query atom q is true:

CH(ω, q) =

{
1 if q ∈ ω
0 otherwise.

Assuming the weighted model count formulation, the symbolic component of the
NeSy-EBM is a DSPar potential function for a single query q is defined as:

gsy(y,xsy,wsy,gnn(xnn,wnn)) = ψqDPL([y,xsy] , [wsy,gnn(xnn,wnn)])

= d

q, ∑
ω∈{0,1}|y|

CH(ω, q)Pω(wsy,g(xnn,wnn))


Where d(·, ·) is the distance between the predicted probability of the query and its true

probability. Now, the energy function is defined over a sum of all queries q.

EDPL(y,xsy,xnn,wsy,wnn) =

|q|∑
i=1

ψqiDPL([y,xsy] , [wsy,gnn(xnn,wnn)]).

Logic Tensor Networks (LTNs)
Logic Tensor Networks (LTNs) (Badreddine et al. 2022) are a fuzzy Neural-Symbolic
Energy-Based Model (NeSy-EBM) approach, integrating neural network predictions
with logic-based reasoning. In LTNs, neural networks provide real-valued truth values
for predicates, which are then manipulated using fuzzy logic operations to evaluate
logical formulae. The satisfaction levels of the logical formulae are aggregated through
generalized mean semantics, which form the basis of the energy function.

LTNs use product real logic operators to define fuzzy truth values for logical
connectives:

¬(a) := 1− a, ∧(a, b) := a · b, ∨(a, b) := a+ b− a · b, =⇒ (a, b) := a+ b− a · b.

Additionally, LTNs use formula aggregators, such as generalized mean semantics, to
handle existential and universal quantifiers over collections of truth values, denoted by
a = [ai]

n
i=1:

∃(a) :=

(
1

n

n∑
i=1

api

) 1
p

, ∀(a) := 1−

(
1

n

n∑
i=1

(1− ai)p
) 1

p

,

where p ∈ R+ is a hyperparameter controlling the smoothness of the quantifiers.
In LTNs, neural networks instantiate predicates with values from [0, 1], representing

the degree to which a predicate is satisfied. For example, given two entities u and v, the
predicate P (u, v) can be defined as the output of a neural network gnn(X[u],X[v];wnn),
which maps the feature vectors X[u] and X[v] to a truth value in [0, 1].

Prepared using sagej.cls

64 Journal Title XX(X)

Example 6
Consider the following logical formula, which expresses that for each entity u, there exists
some entity v such that both predicates P (u, v) and Q(v) hold true:

∃v ∈ V (P (u, v) ∧Q(v)) .

Let XU and XV represent the feature vectors for the sets of entities U and V ,
respectively. The predicates P (u, v) and Q(v) can be instantiated with neural network
outputs: - P (u, v) is given by the neural network gnn(X[u],X[v];wnn), - Q(v) could be
a constant truth value or another neural network prediction.

Using the generalized mean semantics for the existential quantifier, we define the
real-valued logic function for the above formula as:

hu(XU ,XV ,xQ;wnn) =

(
1

|V|
∑
v∈V

(gnn(X[u],X[v];wnn) · xQ[v])p
) 1

p

,

where xQ[v] is the truth value for the predicate Q(v), and gnn(X[u],X[v];wnn) is the
neural network output for the predicate P (u, v).

The satisfaction level of the formula for all entities u is then aggregated using the
universal quantifier:

G(wnn) = 1−

(
1

|U|
∑
u∈U

(1− hu(XU ,XV ,xQ;wnn))
p

) 1
p

.

This example illustrates how LTNs leverage neural networks to assign fuzzy truth values
to predicates and apply these values in evaluating logical formulas. The next section will
explain how LTNs can be represented as NeSy-EBMs using symbolic constraints.

NeSy-EBM Formulation LTNs can be formulated as a DSVar NeSy-EBM, where the
satisfaction of symbolic constraints is driven by neural network outputs. Let xsy be the
observed random variables (constants), and since the symbolic component does not have
trainable parameters, define wsy ∈ ∅. Let gnn be a function with parameters wnn ∈Wnn

and inputs xnn ∈ Xnn such that:

gnn :Wnn ×Xnn 7→ [0, 1]n,

where n is the number of variables involved in the constraints.
Define CAggS (gnn(xnn,wnn),xsy,wsy) as the soft constraint function that takes as

input the output of a set of neural networks gnn(xnn,wnn) and applies the collection
of aggregation functions Agg in some way that maintains differentability (e.g., the
generalized mean or quantifiers).

The symbolic component of the NeSy-EBM is a DSVar potential function:

gsy(y,xsy,wsy,gnn(xnn,wnn)) = ψLTN ([y,xsy,gnn(xnn,wnn)] , [wsy])

= CAggS (gnn(xnn,wnn),xsy,wsy)

Prepared using sagej.cls

A Mathematical Framework for NeSy 65

Given the symbolic potential and variables defined above, the energy function for LTNs
is defined as:

ELTN (y,xsy,xnn,wsy,wnn) = gsy(y,xsy,wsy,gnn(xnn,wnn))

= CAggS (gnn(xnn,wnn),xsy,wsy).

D Extended Neural Probabilistic Soft Logic
In this section, we expand on the smooth formulation of NeuPSL inference and provide
proofs for the continuity results presented in Section 4.

Extended Smooth Formulation of Inference
Recall the primal formulation of NeuPSL inference restated below:

argmin
y∈Rny

wT
syΦ(y,xsy,gnn(xnn,wnn)) s.t. y ∈ Ω(xsy,gnn(xnn,wnn)). (75)

Importantly, note the structure of the deep hinge-loss potentials defining Φ:

ϕk(y,xsy,gnn(xnn,wnn)) (76)

:= (max{aTϕk,y
y + aTϕk,xsy

xsy + aTϕk,gnn
gnn(xnn,wnn) + bϕk

, 0})pk . (77)

The LCQP NeuPSL inference formulation is defined using ordered index sets: IS for the
partitions of squared hinge potentials (indices k which for all j ∈ tk the exponent term
pj = 2) and IL for the partitions of linear hinge potentials (indices k which for all j ∈ tk
the exponent term pj = 1). With the index sets, we define

WS :=

wIS [1]I 0 · · · 0
0 wIS [2]I
...

. . .

 and wL :=

wIL[1]1
wIL[2]1

...

 (78)

Let mS := | ∪IS tk| and mL := | ∪IL tk|, be the total number of squared and linear
hinge potentials, respectively, and define slack variables sS := [sj]

mS
j=1 and sL := [sj]

mL
j=1

for each of the squared and linear hinge potentials, respectively. NeuPSL inference is
equivalent to the following LCQP:

min
y∈[0,1]ny , sS∈RmS , sH∈RmL

+

sTSWSsS +wT
LsL (79a)

s.t. aT
ci,yy + aT

ci,xsy
xsy + aT

ci,gnn
gnn(xnn,wnn) + bci ≤ 0 ∀ i = 1, . . . , q, (79b)

aT
ϕj ,yy + aT

ϕj ,xsy
xsy + aT

ϕj ,gnn
gnn(xnn,wnn) + bϕj − sj ≤ 0 ∀j ∈ IS ∪ IL.

(79c)

We ensure strong convexity by adding a square regularization with parameter ϵ to
the objective. Let the bound constraints on y and sL and linear inequalities in the
LCQP be captured by the (2 · ny + q +mS + 2 ·mL)× (ny +mS +mL) matrix A and
(2 · ny + q +mS + 2 ·mL) dimensional vector b(xsy,gnn(xnn,wnn)). More formally,

Prepared using sagej.cls

66 Journal Title XX(X)

A := [aij] where aij is the coefficient of a decision variable in the implicit and explicit
constraints in the formulation above:

ai,j :=



0 (i ≤ q) ∧ (j ≤ mS +mL)

aci,y[j − (mS +mL)] (i ≤ q) ∧ (j > mS +mL)

0 (q < i ≤ q +mS +mL) ∧ (j ≤ mS +mL) ∧ (j ̸= i− q)

−1 (q < i ≤ q +mS +mL) ∧ (j ≤ mS +mL) ∧ (j = i− q)

aϕi−q,y[j − (mS +mL)] (q < i ≤ q +mS +mL) ∧ (j > mS +mL)

0 (q +mS +mL < i ≤ q +mS + 2 ·mL + ny)

∧ (j ̸= i− (q +mL))

−1 (q +mS +mL < i ≤ q +mS + 2 ·mL + ny)

∧ (j = i− (q +mL))

0 (q +mS + 2 ·mL + ny < i ≤ q +mS + 2 ·mL + 2 · ny)

∧ (j ̸= i− (q +mS +mL))

1 (q +mS + 2 ·mL + ny < i ≤ q +mS + 2 ·mL + 2 · ny)

∧ (j = i− (q +mS +mL))

(80)

Furthermore, b(xsy,gnn(xnn,wnn)) = [bi(xsy,gnn(xnn,wnn))] is the vector of
constants corresponding to each constraint in the formulation above:

bi(xsy,gnn(xnn,wnn)) (81)

:=



aT
ci,xsy

xsy + aT
ci,gnn

gnn(xnn,wnn) + bci i ≤ q

aT
ϕi−q,xsy

xsy + aT
ϕi−q,gnn

gnn(xnn,wnn) + bϕi−q q < i ≤ q +mS +mL

0 q +mS +mL < i

≤ q +mS + 2 ·mL + ny

−1 q +mS + 2 ·mL + ny < i

≤ q +mS + 2 ·mL + 2 · ny

(82)

Note that b(xsy,gnn(xnn,wnn)) is a linear function of the neural network outputs,
hence, if gnn(xnn,wnn) is a smooth function of the neural parameters, then
b(xsy,gnn(xnn,wnn)) is also smooth.

With this notation, the regularized inference problem is:

V (wsy,b(xsy,gnn(xnn,wnn)))

:= min
y,sS,sH

sSsL
y

T WS + ϵI 0 0
0 ϵI 0
0 0 ϵI

sSsL
y

+

 0
wL

0

T sSsL
y


s.t. A

sSsL
y

+ b(xsy,gnn(xnn,wnn)) ≤ 0. (83)

Prepared using sagej.cls

A Mathematical Framework for NeSy 67

For ease of notation, let

D(wsy) :=

WS 0 0
0 0 0
0 0 0

 , c(wsy) :=

 0
wL

0

 , ν :=

sSsL
y

 . (84)

Then the regularized primal LCQP MAP inference problem is concisely expressed as

min
ν∈Rny+mS+mL

νT (D(wsy) + ϵI)ν + c(wsy)
T ν (85)

s.t. Aν + b(xsy,gnn(xnn,wnn)) ≤ 0.

By Slater’s constraint qualification, we have strong-duality when there is a feasible
solution. In this case, an optimal solution to the dual problem yields an optimal solution
to the primal problem. The Lagrange dual problem of (85) is

argmax
µ≥0

min
ν∈Rny+mS+mL

νT (D(wsy) + ϵI)ν + c(wsy)
T ν + µT (Aν + b(xsy,gnn(xnn,wnn)))

= argmax
µ≥0

−1

4
µTA(D(wsy) + ϵI)−1ATµ (86)

− 1

2
(A(D(wsy) + ϵI)−1c(wsy)− 2b(xsy,gnn(xnn,wnn)))

Tµ

where µ = [µi]
nµ

i=1 are the Lagrange dual variables. For later reference, denote the negative
of the Lagrange dual function of MAP inference as:

h(µ;wsy,b(xsy,gnn(xnn,wnn))) (87)

:=
1

4
µTA(D(wsy) + ϵI)−1ATµ+

1

2
(A(D(wsy) + ϵI)−1c(wsy) (88)

− 2b(xsy,gnn(xnn,wnn)))
Tµ.

The dual LCQP has more decision variables but is only over non-negativity constraints
rather than the complex polyhedron feasible set. The dual-to-primal variable translation is:

ν = −1

2
(D(wsy) + ϵI)−1(ATµ+ c(wsy)) (89)

As (D(wsy) + ϵI) is diagonal, it is easy to invert and hence it is practical to work in the
dual space to obtain a solution to the primal problem.

Extended Continuity of Inference
We now provide background on sensitivity analysis that we then apply in our proofs on
the continuity properties of NeuPSL inference.

Background

Prepared using sagej.cls

68 Journal Title XX(X)

Theorem 11 Boyd and Vandenberghe (2004) p. 81.
If for each y ∈ A, f(x,y) is convex in x then the function

g(x) := sup
y∈A

f(x,y) (90)

is convex in x.

Theorem 12 Boyd and Vandenberghe (2004) p. 81.
If for each y ∈ A, f(x,y) is concave in x then the function

g(x) := inf
y∈A

f(x,y) (91)

is concave in x.

Definition 13 Convex Subgradient: Boyd and Vandenberghe (2004) and Shalev-Shwartz
(2012).
Consider a convex function f : Rn → [−∞,∞] and a point x with f(x) finite. For a
vector v ∈ Rn, one says that v is a (convex) subgradient of f at x, written v ∈ ∂f(x), iff

f(x) ≥ f(x)+ < v,x− x >, ∀x ∈ Rn. (92)

Definition 14 Closedness: Bertsekas (2009).
If the epigraph of a function f : Rn → [−∞,∞] is a closed set, we say that f is a closed
function.

Definition 15 Lower Semicontinuity: Bertsekas (2009).
The function f : Rn → [−∞,∞] is lower semicontinuous (lsc) at a point x ∈ Rn if

f(x) ≤ lim inf
k→∞

f(xk), (93)

for every sequence {xk} ⊂ Rn with xk → x. We say f is lsc if it is lsc at each x in its
domain.

Theorem 16 Closedness and Semicontinuity: Bertsekas (2009) Proposition 1.1.2..
For a function f : Rn → [−∞,∞], the following are equivalent:

1. The level set Vγ = {x | f(x) ≤ γ} is closed for every scalar γ.

2. f is lsc.

3. f is closed.

The following definition and theorem are from Rockafellar and Wets (1997) and they
generalize the notion of subgradients to non-convex functions and the chain rule of
differentiation, respectively. For complete statements see Rockafellar and Wets (1997)
Rockafellar and Wets (1997).

Prepared using sagej.cls

A Mathematical Framework for NeSy 69

Definition 17 Regular Subgradient: Rockafellar and Wets (1997) Definition 8.3.
Consider a function f : Rn → [−∞,∞] and a point x with f(x) finite. For a vector
v ∈ Rn, one says that v is a regular subgradient of f at x, written v ∈ ∂̂f(x), iff

f(x) ≥ f(x) + ⟨v,x− x⟩+ o(x− x), ∀x ∈ Rn, (94)

where the o(t) notation indicates a term with the property that

lim
t→0

o(t)
t

= 0. (95)

The relation of the regular subgradient defined above and the more familiar convex
subgradient is the addition of the o(x− x) term. Evidently, a convex subgradient is a
regular subgradient.

Theorem 18 Chain Rule for Regular Subgradients: Rockafellar and Wets (1997) Theorem
10.6.
Suppose f(x) = g(F (x)) for a proper, lsc function g : Rm → [−∞,∞] and a smooth
mapping F : Rn → Rm. Then at any point x ∈ dom f = F−1(dom g) one has

∂̂f(x) ⊃ ∇F (x)T ∂̂g(F (x)), (96)

where ∇F (x)T is the Jacobian of F at x.

Theorem 19 Danskin’s Theorem: Danskin (1966) and Bertsekas (1971) Proposition A.22.
Suppose Z ⊆ Rm is a compact set and g(x, z) : Rn ×Z → (−∞,∞] is a function.
Suppose g(·, z) : Rn → R is closed proper convex function for every z ∈ Z . Further,
define the function f : Rn → R such that

f(x) := max
z∈Z

g(x, z).

Suppose f is finite somewhere. Moreover, let X := int(domf), i.e., the interior of the set
of points in Rn such that f is finite. Suppose g is continuous on X × Z . Further, define
the set of maximizing points of g(x, ·) for each x

Z(x) = argmax
z∈Z

g(x, z).

Then the following properties of f hold.

1. The function f(x) is a closed proper convex function.

2. For every x ∈ X ,

∂f(x) = conv {∂xg(x, z) | z ∈ Z(x)} . (97)

Corollary 20
Assume the conditions for Danskin’s Theorem above hold. For every x ∈ X , if Z(x)
consists of a unique point, call it z∗, and g(·, z∗) is differentiable at x, then f(·) is
differentiable at x, and

∇f(x) := ∇xg(x, z
∗). (98)

Prepared using sagej.cls

70 Journal Title XX(X)

Theorem 21 Bonnans and Shapiro (1998) Theorem 4.2, Rockafellar (1974) p. 41.
Let X and U be Banach spaces. Let K be a closed convex cone in the Banach space
U. Let G : X→ U be a convex mapping with respect to the cone C := −K and
f : X→ (−∞,∞] be a (possibly infinite-valued) convex function. Consider the following
convex program and its optimal value function:

vP (u) := min
x∈X

f(x) (P)

s.t. G(x) + u ∈ K.

Moreover, consider the (Lagrangian) dual of the program:

vD(u) := max
λ∈K−

min
x∈X

f(x) + λT (G(x) + u) (D)

Suppose vP (0) is finite. Further, suppose the feasible set of the program is nonempty for
all u in a neighborhood of 0, i.e.,

0 ∈ int{G(X)−K}. (99)

Then,

1. There is no primal dual gap at u = 0, i.e., vP (0) = vD(0).

2. The set, Λ0, of optimal solutions to the dual problem with u = 0 is non-empty and
bounded.

3. The optimal value function vP (u) is continuous at u = 0 and ∂vP (0) = Λ0.

Theorem 22 Bonnans and Shapiro (2000) Proposition 4.3.2.
Consider two optimization problems over a non-empty feasible set Ω:

min
x∈Ω

f1(x) and min
x∈Ω

f2(x) (100)

where f1, f2 : X → R. Suppose f1 has a non-empty set S of optimal solutions over Ω.
Suppose the second order growth condition holds for S, i.e., there exists a neighborhood
N of S and a constant α > 0 such that

f1(x) ≥ f1(S) + α(dist(x,S))2, ∀x ∈ Ω ∩N , (101)

where f1(S) := infx∈Ωf1(x). Define the difference function:

∆(x) := f2(x)− f1(x). (102)

Suppose ∆(x) is L-Lipschitz continuous on Ω ∩N . Let x∗ ∈ N be an δ-solution to the
problem of minimizing f2(x) over Ω. Then

dist(x∗,S) ≤ L

α
+

√
δ

α
. (103)

Prepared using sagej.cls

A Mathematical Framework for NeSy 71

Proofs We provide proofs of theorems presented in the main paper and restate them here
for completeness.

Theorem 11
Suppose for any setting of wnn ∈ Rng there is a feasible solution to NeuPSL inference
(20). Further, suppose ϵ > 0, wsy ∈ Rr+, and wnn ∈ Rng . Then:
• The minimizer of (20), y∗(wsy,wnn), is a O(1/ϵ) Lipschitz continuous function of
wsy .

• V (wsy,b(xsy,gnn(xnn,wnn))), is concave over wsy and convex over
b(xsy,gnn(xnn,wnn)).

• V (wsy,b(xsy,gnn(xnn,wnn))) is differentiable with respect to wsy . Moreover,

∇wsyV (wsy,b(xsy,gnn(xnn,wnn))) = Φ(y∗(wsy,wnn),xsy,gnn(xnn,wnn)).

Furthermore, ∇wsyV (wsy,b(xsy,gnn(xnn,wnn))) is Lipschitz continuous over wsy .
• If there is a feasible point ν strictly satisfying the i′th inequality constraint of (20),

i.e., A[i]ν + b(xsy,gnn(xnn,wnn))[i] < 0, then V (wsy,b(xsy,gnn(xnn,wnn))) is
subdifferentiable with respect to the i′th constraint constant b(xsy,gnn(xnn,wnn))[i].
Moreover,

∂b[i]V (wsy,b(xsy,gnn(xnn,wnn))) = {µ∗[i] |µ∗ ∈ argmin
µ∈R2·ny+m+q

≥0

h(µ;wsy,b(xsy,gnn(xnn,wnn)))}.

Furthermore, if gnn(xnn,wnn) is a smooth function of wnn, then
so is b(xsy,gnn(xnn,wnn)), and the set of regular subgradients of
V (wsy,b(xsy,gnn(xnn,wnn))) is:

∂̂wnnV (wsy,b(xsy,gnn(xnn,wnn))) (104)

⊃ ∇wnnb(xsy,gnn(xnn,wnn))
T ∂bV (wsy,b(xsy,gnn(xnn,wnn))).

Proof of Theorem 9. We first show the minimizer of the LCQP formulation of NeuPSL
inference, ν∗, with ϵ > 0, wsy ∈ Rr+, and wnn ∈ Rng is a Lipschitz continuous function
of wsy . Suppose ϵ > 0 and wnn ∈ Rng is given. To show continuity over wsy ∈ Rr+, first
note the matrix (D+ ϵI) is positive definite and the primal inference problem (21) is an
ϵ-strongly convex LCQP with a unique minimizer denoted by ν∗(wsy,wnn). We leverage
the Lipschitz stability result for optimal values of constrained problems from Bonnans
and Shapiro (2000) and presented here in Theorem 22. Define the primal objective as an
explicit function of the weights:

f(ν,wsy,wnn) := νT (D(wsy) + ϵI)ν + cT (wsy)ν (105)

Note that the solution ν∗ =

s∗Ss∗L
y∗

 will always be bounded, since from (79c) in LCQP we

always have for all j ∈ IS ∪ IL,

0 ≤ s∗j = max(aTϕk,y
y∗ + aTϕk,xsy

xsy + aTϕk,gnn
gnn(xnn,wnn) + bϕk

, 0) (106)

≤ ∥aϕk,y∥+ |aTϕk,xsy
xsy + aTϕk,gnn

gnn(xnn,wnn) + bϕk
|. (107)

Prepared using sagej.cls

72 Journal Title XX(X)

Thus, setting these trivial upper bounds for sj will not change the solution of the problem.
We can henceforth consider the problem in a bounded domain ∥ν∥ ≤ C where C does
not depend on w’s.

Let w1,sy,w2,sy ∈ Rr+ and wnn ∈ Wnn be arbitrary. As ϵ > 0, f(ν,w1,sy,wnn) is
strongly convex in ν and it therefore satisfies the second-order growth condition in ν.
Define the difference function:

∆wsy
(ν) := f(ν,w2,sy,wnn)− f(ν,w1,sy,wnn) (108)

= νT (D(w2,sy) + ϵI)ν + cT (w2,sy)ν −
(
νT (D(w1,sy) + ϵI)ν + cT (w1,sy)ν

)
(109)

= νT (D(w2,sy)−D(w1,sy))ν + (c(w2,sy)− c(w1,sy))
T ν. (110)

The difference function ∆wsy
(ν) over N has a finitely bounded gradient:

∥∇∆wsy
(ν)∥2 =

∥∥∥2(D(w2,sy)−D(w1,sy))ν + c(w2,sy)− c(w1,sy)
∥∥∥
2

(111)

≤ ∥c(w2,sy)− c(w1,sy)∥2 + 2∥(D(w2,sy)−D(w1,sy))ν∥2 (112)
≤ ∥w2,sy −w1,sy∥2 + 2∥w2,sy −w1,sy∥2 ∥ν∥2 (113)
≤ ∥w2,sy −w1,sy∥2(1 + 2C) =: LN (w1,sy,w2,sy). (114)

Thus, the distance function, ∆wsy
(ν) is LN (w1,sy,w2,sy)-Lipschitz continuous over

N . Therefore, by Bonnans and Shapiro (2000) (Theorem 22), the distance between
ν∗(w1,sy,wnn) and ν∗(w2,sy,wnn) is bounded above:

∥ν∗(w2,sy,wnn)− ν∗(w1,sy,wnn)∥2 ≤
LN (w1,sy,w2,sy)

ϵ
=

(1 + 2C)

ϵ
∥w2,sy −w1,sy∥2.

(115)

Therefore, the function ν∗(wsy,wnn) is O(1/ϵ)-Lipschitz continuous in wsy for any
wnn.

Next, we prove curvature properties of the value-function with respect to the weights.
Observe NeuPSL inference is an infimum over a set of functions that are concave (affine)
in wsy. Therefore, by Theorem 12, we have that V (wsy,b(xsy,gnn(xnn,wnn))) is
concave in wsy .

We use a similar argument to show V (wsy,b(xsy,gnn(xnn,wnn))) is convex in the
constraint constants, b(xsy,gnn(xnn,wnn)). Assuming for any setting of the neural
weights, wnn ∈ Rng , there is a feasible solution to the NeuPSL inference problem, then
(20) satisfies the conditions for Slater’s constraint qualification. Therefore, strong duality
holds, i.e., V (wsy,b(xsy,gnn(xnn,wnn))) is equal to the optimal value of the dual
inference problem (86). Observe that the dual NeuPSL inference problem is a supremum
over a set of functions convex (affine) in b(xsy,gnn(xnn,wnn)). Therefore, by Theorem
11, we have that V (wsy,b(xsy,gnn(xnn,wnn))) is convex in b(xsy,gnn(xnn,wnn)).

We can additionally prove convexity in b from first principles. For simplicity, fix other
parameters, and write the objective and the value function as Q(ν) and V (b), respectively.

Prepared using sagej.cls

A Mathematical Framework for NeSy 73

Let us first consider the domain where the optimization is bounded and the optimal solution
exists. Given b1 and b2, let the corresponding optimal solutions of (85) parameterized
by b1 and b2 be ν1 and ν2. Take any α ∈ [0, 1], note that αν1 + (1− α)ν2 is feasible for
the optimization problem parameterized by b = αb1 + (1− α)b2. Because we take the
inf over all νs, the optimal ν for this b might be even smaller. Thus, we have (for convex
quadratic objective Q) that

V (αb1 + (1− α)b2) ≤ Q(αν1 + (1− α)ν2)
≤ αQ(ν1) + (1− α)Q(ν2)

= αV (b1) + (1− α)V (b2),

(116)

which shows that V is convex in b. To establish the convexity when V (b) takes extended
real-values (R ∪ {−∞}) to allow for unbounded optimization problems, it suffices to
consider sequences {νki }∞k=1 for bi (i = 1, 2, b1 ̸= b2) as follows:

(1) If V (bi) is finite, let νki = νi for all k, where νi is the optimal solution.
(2) If V (bi) = −∞, there exists sequence {νki }∞k=1 such that Q(νki)→ −∞ as

k →∞.
Now, for any 0 < α < 1, observe:
Case 1: Both V (b1) and V (b2) are finite. We can reuse the argument above.
Case 2: At least one of V (b1) and V (b2) is −∞. By convexity of Q, Q(ανk1 +

(1− α)νk2) ≤ αQ(νk1) + (1− α)Q(νk2). Therefore, we have Q(ανk1 + (1− α)νk2)→
−∞ as k →∞ when 0 < α < 1. Note that for all k, ανk1 + (1− α)νk2 is feasible
for the optimization problem parameterized by b = αb1 + (1− α)b2. It follows that
V (αb1 + (1− α)b2) = −∞.

Therefore, convexity holds when V (b) takes extended real-values (R ∪ {−∞}).
Next, we prove (sub)differentiability properties of the value-function. Suppose

ϵ > 0. First, we show the optimal value function, V (wsy,b(xsy,gnn(xnn,wnn))), is
differentiable with respect to the symbolic weights. Then we show subdifferentiability
properties of the optimal value function with respect to the constraint constants. Finally,
we apply the Lipschitz continuity of the minimzer result to show the gradient of the
optimal value function is Lipschitz continuous with respect to wsy .

Starting with differentiability with respect to the symbolic weights, wsy, note, the
optimal value function of the regularized LCQP formulation of NeuPSL inference, (20),
is equivalently expressed as the following maximization over a continuous function in the
primal target variables, y, the slack variables, sS and sL, and the symbolic weights, wsy:

V (wsy,b(xsy,gnn(xnn,wnn))) (117)

= −

(
max

y,sH,sL
−
(sSsL

y

T WS + ϵI 0 0
0 ϵI 0
0 0 ϵI

sSsL
y

+

 0
wL

0

T sSsL
y

))

s.t. A

sSsL
y

+ b(xsy,gnn(xnn,wnn) ≤ 0,

Prepared using sagej.cls

74 Journal Title XX(X)

where the matrix Ws and vector wL are functions of the symbolic parameters wsy as
defined in (78). Moreover, the objective above is and convex (affine) in wsy . Additionally,
note that the decision variables can be constrained to a compact domain without breaking
the equivalence of the formulation. Specifically, the target variables are constrained to
the box [0, 1]ny , while the slack variables are nonnegative and have a trivial upper bound
derived from (79c):,

0 ≤ s∗j = max(aTϕk,y
y∗ + aTϕk,xsy

xsy + aTϕk,gnn
gnn(xnn,wnn) + bϕk

, 0)

≤ ∥aϕk,y∥+ |aTϕk,xsy
xsy + aTϕk,gnn

gnn(xnn,wnn) + bϕk
|, (118)

for all j ∈ IS ∪ IL. Therefore, the negative optimal value function satisfies the conditions
for Danskin’s theorem Danskin (1966) (stated in Appendix D). Moreover, as there is a
single unique solution to the inference problem when ϵ > 0, and the quadratic objective
in (20) is differentiable for all wsy ∈ Rr+, we can apply Corollary 20. The optimal value
function is therefore concave and differentiable with respect to the symbolic weights with

∇wsy
V (wsy,b(xsy,gnn(xnn,wnn)) = Φ(y∗,xsy,gnn(xnn,wnn)). (119)

Next, we show subdifferentiability of the optimal value-function with respect to
the constraint constants, b(xsy,gnn(xnn,wnn)). Suppose at a setting of the neural
weights wnn ∈ Rng there is a feasible point ν for the NeuPSL inference problem.
Moreover, suppose ν strictly satisfies the i′th inequality constraint of (20), i.e.,
A[i]ν + b(xsy,gnn(xnn,wnn))[i] < 0. Observe that the following strongly convex
conic program is equivalent to the LCQP formulation of NeuPSL inference, (20):

min
ν∈Rny+mS+mL

νT (D(wsy) + ϵI)ν + c(wsy)
T ν + PΩ\i(ν) (120)

s.t. A[i]ν + b(xsy,gnn(xnn,wnn))[i] ∈ R≤0,

where PΩ\i(ν) : Rny+mS+mL → {0,∞} is the indicator function identifying feasibility
w.r.t. all the constraints of the LCQP formulation of NeuPSL inference in (20) except
the i′th constraint: A[i]ν + b(xsy,gnn(xnn,wnn))[i] ≤ 0. In other words, in the conic
formulation above only the i′th constraint is explicit. Note that R≤0 is a closed convex
cone in R. Moreover, both the objective in the program and the mapping G(ν) :=
A[i]ν + b(xsy,gnn(xnn,wnn))[i] are convex. Lastly, note the constraint qualification
(99) is similar to Slater’s condition in the case of (120) which is satisfied by the supposition
there exists a feasible ν that strictly satisfies the i′th inequality constraint of (20).
Therefore, (120) satisfies the conditions of Theorem 21. Thus, the value function is
continuous in the constraint constant b(xsy,gnn(xnn,wnn))[i] at wnn and

∂b[i]V (wsy,b(xsy,gnn(xnn,wnn))) (121)
= {µ∗[i] |µ∗ ∈ argmin

µ∈R2·ny+m+q

≥0

h(µ;wsy,b(xsy,gnn(xnn,wnn)))}.

Prepared using sagej.cls

A Mathematical Framework for NeSy 75

Moreover, when b(xsy,gnn(xnn,wnn)) is a smooth function of the neural weights wnn,
then we can apply the chain rule for regular subgradients, Theorem 18, to get

∂̂wnn
V (wsy,b(xsy,gnn(xnn,wnn)) (122)

⊃ ∇b(xsy,gnn(xnn,wnn)
T∂bV (wsy,b(xsy,gnn(xnn,wnn)).

To prove the optimal value function is Lipschitz smooth over wsy, it is equivalent to
show it is continuously differentiable and that all gradients have bounded magnitude. To
show the value function is continuously differentiable, we first apply the result asserting the
minimizer is unique and a continuous function of the symbolic parameters wsy . Therefore,
the optimal value function gradient is a composition of continuous functions, hence
continuous in wsy. The fact that the value function has a bounded gradient magnitude
follows from the fact that the decision variables y have a compact domain over which the
gradient is finite; hence a trivial and finite upper bound exists on the gradient magnitude.

E Extended Empirical Analysis
In this section, we provide additional information on the empirical analysis. The
subsequent subsections will examine the modular datasets and the hyperparameters
employed for each experiment. Additional model details, including neural model
architectures and symbolic model constraints, can be found at https://github.
com/linqs/dickens-arxiv24.

Modular Datasets
• 4Forums and CreateDebate: Stance-4Forums and Stance-CreateDebate are two

datasets containing dialogues from online debate sites: 4forums.com and
createdebate.com, respectively. In this paper, we study stance classification,
i.e., the task of identifying the stance of a speaker in a debate as being for or against.

• Epinions: Epinions is a trust network with 2, 000 individuals connected by 8, 675
directed edges representing whether they know each other and whether they trust
each other Richardson et al. (2003). We study link prediction, i.e., we predict if two
individuals trust each other.

In each of the 5 data splits, the entire network is available, and the prediction
performance is measured on 1

8 of the trust labels. The remaining set of labels
are available for training. We use The NeuPSL model from Bach et al. (2017).
The data and NeuPSL model are available at https://github.com/linqs/
psl-examples/tree/main/epinions.

• Citeseer and Cora: Citeseer and Cora are citation networks introduced by Sen
et al. (2008). For Citeseer, 3, 312 documents are connected by 4, 732 edges
representing citation links. For Cora, 2, 708 documents are connected by 5, 429
edges representing citation links. We study node classification, i.e., we classify the
documents into one of 6 topics for Citeseer and 7 topics for Cora.

Prepared using sagej.cls

https://github.com/linqs/dickens-arxiv24
https://github.com/linqs/dickens-arxiv24
4forums.com
createdebate.com
https://github.com/linqs/psl-examples/tree/main/epinions
https://github.com/linqs/psl-examples/tree/main/epinions

76 Journal Title XX(X)

For each of the 10 folds, we randomly sample 5% of the node labels for training
5% of the node labels for validation and 1, 000 for testing. The models for modular
learning performance experiments are extended versions from Bach et al. (2017)
Bach et al. (2017). Specifically, a copy of each rule is made that is specialized for the
topic. Moreover, topic propagation across citation links is considered for papers with
differing topics. For instance, the possibility of a citation from a paper with topic ′A′

could imply a paper is more or less likely to be topic ′B′. The extended models are
available at https://github.com/linqs/dickens-arxiv24/tree/
main/modular_learning/psl-extended-examples. The models for
learning prediction performance experiments are from Pryor et al. (2023a).
The data and models are available at: https://github.com/linqs/
dickens-arxiv24/tree/main/citation/models/symbolic.

• DDI: Drug-drug interaction (DDI) is a network of 315 drugs and 4, 293 interactions
derived from the DrugBank database (Wishart et al. 2006). The edges in the drug
network represent interactions and seven different similarity metrics. In this paper,
we perform link prediction, i.e., we infer unknown drug-drug interactions.

The 5 data splits and the NeuPSL model we evaluate in this paper
originated from Sridhar et al. (2016). The data and NeuPSL models
are available at: https://github.com/linqs/psl-examples/tree/
main/drug-drug-interaction.

• Yelp: Yelp is a network of 34, 454 users and 3, 605 items connected by 99, 049
edges representing ratings. The task is to predict missing ratings, i.e., regression,
which could be used in a recommendation system.

In each of the 5 folds, 80% of the ratings are randomly sampled and available
for training, and the remaining 20% is held out for testing. We use The NeuPSL
model from Kouki et al. (2015). The data and NeuPSL model are available at:
https://github.com/linqs/psl-examples/tree/main/yelp.

Hyperparameters
The hyperparameter ranges were decided upon based on the results presented in
Pryor et al. (2023a), Dickens et al. (2024a), and Dickens et al. (2024b). For the
complete set of hyperparameter settings, please refer to the original papers or visit
https://github.com/linqs/dickens-arxiv24.

References

Abraham SS, Alirezaie M and Raedt LD (2024) Clevr-poc: Reasoning-intensive visual question
answering in partially observable environments. arXiv .

Ackley D, Hinton G and Sejnowski T (1985) A learning algorithm for boltzmann machines.
Cognitive Science 9(1): 147–169.

Agrawal A, Amos B, Barratt S, Boyd S, Diamond S and Kolter J (2019a) Differentiable convex
optimization layers. In: NeurIPS.

Prepared using sagej.cls

https://github.com/linqs/dickens-arxiv24/tree/main/modular_learning/psl-extended-examples
https://github.com/linqs/dickens-arxiv24/tree/main/modular_learning/psl-extended-examples
https://github.com/linqs/dickens-arxiv24/tree/main/citation/models/symbolic
https://github.com/linqs/dickens-arxiv24/tree/main/citation/models/symbolic
https://github.com/linqs/psl-examples/tree/main/drug-drug-interaction
https://github.com/linqs/psl-examples/tree/main/drug-drug-interaction
https://github.com/linqs/psl-examples/tree/main/yelp

A Mathematical Framework for NeSy 77

Table 12. Hyperparameter ranges and final values for the NeSy-EBM learning experiments.

Algorithm Parameter Range Final Value

MNIST-Add1

Energy Neural Learning Rate {10−3, 10−4, 10−5} 10−4

Bilevel Energy Loss Coefficient {10−1, 1, 10} 10
Neural Learning Rate {10−3, 10−4, 10−5} 10−4

Policy Energy Loss Coefficient {10−1, 1, 10} 10

Neural Learning Rate {10−3, 10−4, 10−5} 10−4

MNIST-Add2

Energy Neural Learning Rate {10−3, 10−4, 10−5} 10−4

Bilevel Energy Loss Coefficient {10−1, 1, 10} 10

Neural Learning Rate {10−3, 10−4, 10−5} 10−4

Policy Energy Loss Coefficient {10−1, 1, 10} 10
Neural Learning Rate {10−3, 10−4, 10−5} 10−4

Visual-Sudoku

Energy Neural Learning Rate {10−3, 10−4, 10−5} 10−4

Alpha {0.1, 0.5, 0.9} 0.1

Bilevel Energy Loss Coefficient {10−1, 1, 10} 10
Neural Learning Rate {10−3, 10−4, 10−5} 10−3

Alpha {0.1, 0.5, 0.9} 0.1

Policy Energy Loss Coefficient {10−1, 1, 10} 10
Neural Learning Rate {10−3, 10−4, 10−5} 10−3

Alpha {0.1, 0.5, 0.9} 0.1

Path-Finding

Energy Neural Learning Rate {10−3, 10−4, 10−5} 10−3

Bilevel Energy Loss Coefficient {10−1, 1} 1
Neural Learning Rate {5−4, 10−4, 10−5} 5−4

Policy
Energy Loss Coefficient {10−1, 1} 1
Neural Learning Rate {5−4, 10−4, 10−5} 5−4

Alpha {0.1, 0.5, 0.9} 0.1

Citeseer

Energy Neural Learning Rate {10−1, 10−2, 10−3} 10−3

Step Size {10−1, 10−2, 10−3} 10−3

Bilevel
Energy Loss Coefficient {0, 10−1, 1, 10} 1

Neural Learning Rate {10−1, 10−2, 10−3} 10−3

Step Size {10−1, 10−2, 10−3} 10−3

Policy
Energy Loss Coefficient {0, 10−1, 1, 10} 1

Neural Learning Rate {10−1, 10−2, 10−3} 10−3

Alpha {0.1, 0.5, 0.9} 0.1

Citeseer

Energy Neural Learning Rate {10−1, 10−2, 10−3} 10−3

Step Size {10−1, 10−2, 10−3} 10−3

Bilevel
Energy Loss Coefficient {0, 10−1, 1, 10} 1

Neural Learning Rate {10−1, 10−2, 10−3} 10−3

Step Size {10−1, 10−2, 10−3} 10−3

Policy
Energy Loss Coefficient {0, 10−1, 1, 10} 1

Neural Learning Rate {10−1, 10−2, 10−3} 10−3

Alpha {0.1, 0.5, 0.9} 0.1

Agrawal A, Barratt S, Boyd S, Busseti E and M Moursi W (2019b) Differentiating through a cone
program. Journal of Applied and Numerical Optimization 1(2): 107–115.

Prepared using sagej.cls

78 Journal Title XX(X)

Ahmed K, Chang KW and den Broeck GV (2023a) Semantic strengthening of neuro-symbolic
learning. In: AISTATS.

Ahmed K, Chang KW and Van den Broeck G (2023b) A pseudo-semantic loss for autoregressive
models with logical constraints. In: NeurIPS.

Ahmed K, Teso S, Chang KW, Van den Broeck G and Vergari A (2022a) Semantic probabilistic
layers for neuro-symbolic learning. In: NeurIPS.

Ahmed K, Wang E, Chang KW and den Broeck GV (2022b) Neuro-symbolic entropy regularization.
In: UAI.

Amos B and Kolter J (2017) Optnet: Differentiable optimization as a layer in neural networks. In:
ICML.

Arrotta L, Civitarese G and Bettini C (2024) Semantic loss: A new neuro-symbolic approach for
context-aware human activity recognition. Proceeding of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 7(144): 1–29.

Augustine E, Pryor C, Dickens C, Pujara J, Wang WY and Getoor L (2022) Visual sudoku puzzle
classification: A suite of collective neuro-symbolic tasks. In: International Workshop on
Neural-Symbolic Learning and Reasoning (NeSy).

Bach S, Broecheler M, Huang B and Getoor L (2017) Hinge-loss Markov random fields and
probabilistic soft logic. Journal of Machine Learning Research (JMLR) 18(1): 1–67.

Bader S and Hitzler P (2005) Dimensions of neural-symbolic integration - A structured survey.
ArXiv .

Badreddine S, d’Avila Garcez A, Serafini L and Spranger M (2022) Logic tensor networks. AI
303(4): 103649.

Badreddine S, Serafini L and Spranger M (2023) logltn: Differentiable fuzzy logic in the logarithm
space. arXiv .

Belanger D, Yang B and McCallum A (2017) End-to-end learning for structure prediction energy
networks. In: ICML.

Bertsekas D (1971) Control of Uncertain Systems with a Set-Membership Description of Uncertainty.
PhD Thesis, MIT.

Bertsekas D (2009) Convex Optimization Theory. Athena Scientific.
Besold TR, d’Avila Garcez AS, Bader S, Bowman H, Domingos PM, Hitzler P, Kühnberger K,

Lamb LC, Lowd D, Lima PMV, de Penning L, Pinkas G, Poon H and Zaverucha G (2022)
Neural-symbolic learning and reasoning: A survey and interpretation. Neuro-Symbolic Artificial
Intelligence: The State of the Art .

Bommasani R, Hudson D, Adeli E, Altman R, Arora S, von Arx S, S Bernstein M, Bohg J, Bosselut
A, Brunskill E and et al (2022) On the opportunities and risks of foundation models. Arxiv .

Bonnans J and Shapiro A (1998) Optimization problems with perturbations: A guided tour. SIAM
Review 40(2): 228–264.

Bonnans J and Shapiro A (2000) Perturbation Analysis of Optimization Problems. Springer.
Bošnjak M, Rocktäschel T, Naradowsky J and Riedel S (2017) Programming with a differentiable

forth interpreter. In: ICML.
Boyd S and Vandenberghe L (2004) Convex Optimization. Cambridge University Press.

Prepared using sagej.cls

A Mathematical Framework for NeSy 79

Bracken J and McGill JT (1973) Mathematical programs with optimization problems in the
constraints. Operations Research 21(1): 37–44.

Brewka G, Eiter T and Truszczynski M (2011) Answer set programming at a glance. Communication
of the ACM 54(12): 92–103.

Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A and Zagoruyko S (2020) End-to-end object
detection with transformers. In: European conference on computer vision.

Carraro T, Daniele A, Aiolli F and Serafini L (2022) Logic tensor networks for top-n
recommendation. In: International Conference of the Italian Association for Artificial
Intelligence (AIxIA).

Chang MW, Ratinov L and Roth D (2007) Guiding semi-supervision with constraint-driven learning.
In: ACL.

Chavira M and Darwiche A (2008) On probabilistic inference by weighted model counting. Artificial
Intelligence 172(6-7): 772–799.

Chen T, Kornblith S, Norouzi M and Hinton G (2020) A simple framework for contrastive learning
of visual representations. In: ICML.

Choi Y, Vergari A and Van den Broeck G (2020) Probabilistic circuits: A unifying framework for
tractable probabilistic modeling. UCLA.

Cohen WW, Yang F and Mazaitis K (2020) Tensorlog: A probabilistic database implemented using
deep-learning infrastructure. JAIR 67: 285–325.

Collins M (2002) Discriminative training methods for hidden Markov models: Theory and
experiments with perceptron algorithms. In: EMNLP.

Colson B, Marcotte P and Savard G (2007) An overview of bilevel optimization. Annals of
Operations Research 153(1): 235–256.

Cornelio C, Stuehmer J, Xu Hu S and Hospedales T (2023) Learning where and when to reason in
neuro-symbolic inference. In: ICLR.

Cunnington D, Law M, Lobo J and Russo A (2024) The role of foundation models in neuro-symbolic
learning and reasoning. arXiv .

Danskin J (1966) The theory of max-min, with applications. SIAM Journal on Applied Mathematics
14(4): 641–664.

Dash T, Chitlangia S, Ahuja A and Srinivasan A (2022) A review of some techniques for inclusion
of domain-knowledge into deep neural networks. Scientific Reports 12(1): 1040.

d’Avila Garcez A, Gori M, Lamb LC, Serafini L, Spranger M and Tran SN (2019) Neural-symbolic
computing: An effective methodology for principled integration of machine learning and
reasoning. Journal of Applied Logics 6(4): 611–632.

d’Avila Garcez AS, Broda K and Gabbay DM (2002) Neural-Symbolic Learning Systems:
Foundations and Applications. Springer.

d’Avila Garcez AS, Lamb LC and Gabbay DM (2009) Neural-Symbolic Cognitive Reasoning.
Springer.

Dayan P, Hinton G, Neal R and Zemel R (1995) The helmholtz machine. Neural Computation 7(5):
889–904.

De Raedt L, Dumančić S, Manhaeve R and Marra G (2020) From statistical relational to neuro-
symbolic artificial intelligence. In: IJCAI.

Prepared using sagej.cls

80 Journal Title XX(X)

De Raedt L, Kimmig A and Toivonen H (2007) Problog: A probabilistic prolog and its application
in link discovery. In: IJCAI.

De Smet L, Sansone E and Zuidberg Dos Martires P (2023) Differetiable sample of categorical
distributions using the catlog-derivative trick. In: NeurIPS.

Demeester T, Rocktäschel T and Riedel S (2016) Lifted rule injection for relation embeddings. In:
EMNLP.

Dempe S and Zemkoho A (2020) Bilevel Optimization. Springer.
Derkinderen V, Manhaeve R, Martires PZD and Raedt LD (2024) Semirings for probabilistic and

neuro-symbolic logic programming. International Journal of Approximate Reasoning : 109130.
Devlin J, Chang M, Lee K and Toutanova K (2019) Bert: Pre-training of deep bidirectional

transformers for language understanding. Arxiv .
Dickens C, Gao C, Pryor C, Wright S and Getoor L (2024a) Convex and bilevel optimization for

neuro-symbolic inference and learning. In: ICML.
Dickens C, Pryor C and Getoor L (2024b) Modeling patterns for neural-symbolic reasoning using

energy-based models. In: AAAI Spring Symposium on Empowering Machine Learning and
Large Language Models with Domain and Commonsense Knowledge.

Diligenti M, Gori M and Saccà C (2017a) Semantic-based regularization for learning and inference.
Journal of Machine Learning Research 18: 1–45.

Diligenti M, Roychowdhury S and Gori M (2017b) Integrating prior knowledge into deep learning.
In: ICMLA.

Do C, Foo CS and Ng A (2007) Efficient multiple hyperparameter learning for log-linear models.
In: NeurIPS.

Domke J (2012) Generic methods for optimization-based modeling. In: AISTATS.
Donadello I, Serafini L and d’Avila Garcez AS (2017) Logic tensor networks for semantic image

interpretation. In: IJCAI.
Du Y, Durkan C, Strudel R, Tenenbaum J, Dieleman S, Fergus R, Sohl-Dickstein J, Doucet A and

Grathwohl W (2023) Reduce, reuse, recycle: Compositional generation with energy-based
diffusion models and mcmc. In: ICML.

Du Y and Mordatch I (2019) Implicit generation and modeling with energy-based models. In:
NeurIPS.

E van Engelen J and H Hoos H (2020) A survey on semi-supervised learning. Machine Learning
(ML) 109: 373–440.

F Bard J (2013) Practical Bilevel Optimization: Algorithms and Applications. Springer Science &
Business Media.

Feng J, Xu R, Hao J, Sharma H, Shen Y, Zhao D and Chen W (2024) Language models can be
deductive solvers. In: NAACL.

Fiacco A and McCormick G (1968) Nonlinear Programming: Sequential Unconstrained
Minimization Techniques. John Wiley and Sons.

Franceschi L, Frasconi P, Salzo S, Grazzi R and Pontil M (2018) Bilevel programming for
hyperparameter optimization and meta-learning. In: ICML.

Ghadimi S and Wang M (2018) Approximation methods for bilevel programming. Arxiv .

Prepared using sagej.cls

A Mathematical Framework for NeSy 81

Giovannelli T, Kent G and Nune Vicente L (2022) Inexact bilevel stochastic gradient methods for
constrained and unconstrained lower-level problems. Arxiv .

Giunchiglia E, Catalina Stoian M, Khan S and Lukasiewicz T (2023) Road-r: The autonomous
driving dataset with logical requirements. Machine Learning 112(1): 3261–3291.

Giunchiglia E, Stoian MC and Lukasiewicz T (2022) Deep learning with logical constraints. In:
International Joint Conference on Artificial Intelligence (IJCAI).

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio
Y (2014) Generative adversarial nets. In: NeurIPS.

Grathwohl W, Wang K, Jacobsen J, Duvenaud D, Norouzi M and Swersky K (2020) Your classifier
is secretly an energy-based model and you should treat it like one. In: ICLR.

Griewank A and Walther A (2008) Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM.

Gurobi Optimization L (2024) Gurobi optimizer reference manual. URL https://www.gurobi.
com.

H Papadimitriou C and Steiglitz K (1998) Combinatorial Optimization: Algorithms and Complexity.
Courier Corporation.

Hasan KS and Ng V (2013) Stance classification of ideological debates: Data, models, features, and
constraints. In: IJCNLP.

He K, Zhang X, Ren S and Sun J (2016) Deep residual learning for image recognition. In: CVPR.
Hinton G (2002) Training products of experts by minimizing contrastive divergence. Neural

Computation 14(8): 1771–1800.
Hyvarinen A (2005) Estimation of non-normalized statistical models by score matching. Journal of

Machine Learning Research (JMLR) 6: 695–709.
J Hu E, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, Wang L and Chen W (2022) Lora: Low-rank

adaptation of large language models. In: ICLR.
J Ye J and L Zhu D (1995) Optimality conditions for bilevel programming problems. Optimization

33(1): 9–27.
Ji K, Yang J and Liang Y (2021) Bilevel optimization: Convergence analysis and enhanced design.

In: ICML.
Khanduri P, Tsaknakis I, Zhang Y, Liu J, Liu S, Zhang J and Hong M (2023) Linearly constrained

bilevel optimization: A smoothed implicit gradient approach. In: ICML.
Kisa D, den Broeck GV, Choi A and Darwiche A (2014) Probabilistic sentential decision diagrams.

In: KR.
Klir GJ and Yuan B (1995) Fuzzy Sets and Fuzzy Logic - Theory and Applications. Prentice Hall.
Kouki P, Fakhraei S, Foulds J, Eirinaki M and Getoor L (2015) Hyper: A flexible and

extensible probabilistic framework for hybrid recommender systems. In: ACM Conference on
Recommender Systems (RecSys). Vienna, Austria.

Kwon J, Kwon D, Wright S and Nowak R (2023) A fully first-order method for stochastic bilevel
optimization. In: ICML.

Lamb LC, d’Avila Garcez A, Gori M, Prates MOR, Avelar PHC and Vardi MY (2020) Graph neural
networks meet neural-symbolic computing: A survey and perspective. In: IJCAI.

Prepared using sagej.cls

https://www.gurobi.com
https://www.gurobi.com

82 Journal Title XX(X)

LeCun Y, Bottou L, Bengio Y and Haffner P (1998) Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11): 2278–2324.

LeCun Y, Chopra S, Hadsell R, Ranzato M and Huang FJ (2006) A tutorial on energy-based learning.
Predicting Structured Data 1(0).

Liu B, Ye M, Wright S, Stone P and Liu Q (2022) Bome! bilevel optimization made easy: A simple
first-order approach. In: NeurIPS.

Liu R, Liu X, Yuan X, Zeng S and Zhang J (2021) A value-function-based interior-point method for
non-convex bi-level optimization. In: ICML.

Liu R, Liu X, Zeng S, Zhang J and Zhang Y (2023) Value-function-based sequential minimization
for bi-level optimization. Arxiv .

Liu W, Wang X, Owens J and Li Y (2020) Energy-based out-of-distribution detection. In: NeurIPS.
Loshchilov I and Hutter F (2019) Decoupled weight decay regularization. In: ICLR.
Maene J, Derkinderen V and Raedt LD (2024) On the hardness of probabilistic neurosymbolic

learning. arXiv .
Maene J and Raedt LD (2024) Soft-unification in deep probabilistic logic. In: NeurIPS.
Manhaeve R, Dumančić S, Kimmig A, Demeester T and De Raedt L (2021a) Neural probabilistic

logic programming in DeepProbLog. Artificial Intelligence (AI) 298: 103504.
Manhaeve R, Marra G and De Raedt L (2021b) Approximate inference for neural probabilistic logic

programming. In: ICPKRR.
Marconato E, Bortolotti S, van Krieken E, Vergari A, Passerini A and Teso S (2024) Bears make

neuro-symbolic models aware of their reasoning shortcuts. arXiv .
Marconato E, Teso S, Vergari A and Passerini A (2023) Not all neuro-symbolic concepts are created

equal: Analysis and mitigation of reasoning shortcuts. In: NeurIPS.
Marra G, Giannini F, Diligenti M and Gori M (2019) Integrating learning and reasoning with deep

logic models. In: ECMLKDD.
Milgrom P and Segal I (2002) Envelope theorems for arbitrary choice sets. Econometrica 70(2):

583–601.
Morra L, Azzari A, Bergamasco L, Braga M, Capogrosso L, Delrio F, Di Giacomo G, Eiraudo

S, Ghione G, Giudice R, Koudounas A, Piano L, Rege Cambrin D, Risso M, Rondina M,
Sebastien Russo A, Russo M, Taioli F, Vaiani L and Vercellino C (2023) Designing logic
tensor networks for visual sudoku puzzle classification. In: International Workshop on Neural-
Symbolic Learning and Reasoning (NeSy).

NeSy2005 (2005) Neural-Symbolic Learning and Reasoning Workshop at IJCAI.
NeSy2024 (2024) International Conference on Neural-Symbolic Learning and Reasoning.
Nocedal J and Wright S (2006) Numerical Optimization. second edition. Springer.
OpenAI (2024) Gpt-4 technical report. Technical report, OpenAI.
P Kingma D and LeCun Y (2010) Regularized estimation of image statistics by score matching. In:

NeurIPS.
Pan L, Albalak A, Wang X and Wang WY (2023) Logic-lm: Empowering large language models

with symbolic solvers for faithful logical reasoning. In: EMNLP.
Parikh N and Boyd S (2013) Proximal algorithms. Foundations and Trends in Machine Learning

(FTML) 3(1): 123–231.

Prepared using sagej.cls

A Mathematical Framework for NeSy 83

Pedregosa F (2016) Hyperparameter optimization with approximate gradient. In: ICML.
Pryor C, Dickens C, Augustine E, Albalak A, Wang WY and Getoor L (2023a) Neupsl: Neural

probabilistic soft logic. In: IJCAI.
Pryor C, Yuan Q, Liu JZ, Kazemi SM, Ramachandran D, Bedrax-Weiss T and Getoor L (2023b)

Using domain knowledge to guide dialog structure induction via neural probabilistic soft logic.
In: Annual Meeting of the Association for Computational Linguistics (ACL). Toronto, Canada.

Rajeswaran A, Finn C, M Kakade S and Levine S (2019) Meta-learning with implicit gradients. In:
NeurIPS.

Richardson M, Agrawal R and Domingos P (2003) Trust management for the semantic web. In:
ISWC.

Robinson S (1980) Strongly regular generalized equations. Mathematics of Operations Research
5(1): 43–62.

Rockafellar R (1970) Convex Analysis. Princeton University Press.
Rockafellar R (1974) Conjugate duality and optimization. In: Regional Conference Series in Applied

Mathematics.
Rockafellar R and Wets R (1997) Variational Analysis. Springer.
Rocktäschel T and Riedel S (2017) End-to-end differentiable proving. In: NeurIPS.
Sachan M, Dubey KA, Mitchell TM, Roth D and Xing EP (2018) Learning pipelines with limited

data and domain knowledge: A study in parsing physics problems. In: NeurIPS.
Salakhutdinov R and Larochelle H (2010) Efficient learning of deep boltzmann machines. In:

AISTATS.
Scellier B and Bengio Y (2017) Equilibrium propagation: Bridging the gap between energy-based

models and backpropagation. Frontiers in Computational Neuroscience 11.
Sen P, Namata GM, Bilgic M, Getoor L, Gallagher B and Eliassi-Rad T (2008) Collective

classification in network data. AI Magazine 29(3): 93–106.
Shalev-Shwartz S (2012) Online learning and online convex optimization. Foundations and Trends

in Machine Learning (FTML) 4(2): 107–194.
Sikka K, Silberfarb A, Byrnes J, Sur I, Chow E, Divakaran A and Rohwer R (2020) Deep adaptive

semantic logic (dasl): Compiling declarative knowledge into deep neural networks. Technical
report, SRI International.

Singh G, Akrigg S, Di Maio M, Fontana V, Javanmard Alitappeh R, Saha S, Jeddi Saravi K, Yousefia
F, Culley J, Nicholson T, Omokeowa J, Khan S, Grazioso S, Bradley A, Di Gironimo G and
Cuzzolin F (2021) Road: The road event awareness dataset for autonomous driving. IEEE
TPAMI 45: 1036–1054.

Song Y and Ermon S (2019) Generative modeling by estimating gradient of the data distribution.
In: NeurIPS.

Sow D, Ji K, Guan Z and Liang Y (2022) A primal-dual approach to bilevel optimization with
multiple inner minima. Arxiv .

Sridhar D, Fakhraei S and Getoor L (2016) A probabilistic approach for collective similarity-based
drug-drug interaction prediction. Bioinformatics 32(20): 3175–3182.

Srinivasan S, Dickens C, Augustine E, Farnadi G and Getoor L (2021) A taxonomy of weight
learning methods for statistical relational learning. Machine Learning .

Prepared using sagej.cls

84 Journal Title XX(X)

Srivastava A, Rastogi A, Rao A, Shoeb AAM, Abid A, Fisch A, Brown AR, Santoro A, Gupta
A, Garriga-Alonso A, Kluska A, Lewkowycz A, Agarwal A, Power A, Ray A, Warstadt A,
Kocurek AW, Safaya A, Tazarv A, Xiang A, Parrish A, Nie A, Hussain A, Askell A, Dsouza
A, Slone A, Rahane AA, Iyer AS, Andreassen A, Madotto A, Santilli A, Stuhlmuller A, Dai
AM, La A, Lampinen AK, Zou A, Jiang A, Chen A, Vuong A, Gupta A, Gottardi A, Norelli A,
Venkatesh A, Gholamidavoodi A, Tabassum A, Menezes A, Kirubarajan A, Mullokandov A,
Sabharwal A, Herrick A, Efrat A, Erdem A, Karakacs A and et al (2022) Beyond the imitation
game: Quantifying and extrapolating the capabilities of language models. ArXiv .

Stoian M, Giunchiglia E and Lukasiewicz T (2023) Exploiting t-norms for deep learning in
autonomous driving. In: NeSy.

Stoyanov V, Ropson A and Eisner J (2011) Empirical risk minimization of graphical model
parameters given approximate inference, decoding, and model structure. In: AISTATS.

Sutton R and Barto A (2018) Reinforcement Learning: An Introduction. MIT Press.
Sutton R, McAllester D, Singh S and Mansour Y (1999) Policy gradient methods for reinforcement

learning with function approximation. In: NeurIPS.
Tran S and d’Avila Garcez A (2018) Deep logic networks: Inserting and extracting knowledge from

deep belief networks. IEEE Transactions on Neural Networks and Learning Systems 29(2):
246–258.

V Outrata J (1990) On the numerical solution of a class of stackelberg problems. Methods and
Models of Operations Research 34(4): 255–277.

van Krieken E, Acar E and van Harmelen F (2022) Analyzing differentiable fuzzy logic operators.
Artificial Intelligence (AI) 302: 103602.

van Krieken E, Badreddine S, Manhaeve R and Giunchiglia E (2024) Uller: A unified language for
learning and reasoning. arXiv .

van Krieken E, Thanapalasingam T, Tomczak J, van Harmelen F and ten Teije A (2023) A-nesi: A
scalable approximate method for probabilistic neurosymbolic inference. In: NeurIPS.

Vlastelica M, Paulus A, Musil V, Martius G and Rolı́nek M (2020) Differentiation of blackbox
combinatorial solvers. In: ICLR.

Walker MA, Tree JEF, Anand P, Abbott R and King J (2012) A corpus for research on deliberation
and debate. In: LREC.

Wan Z, Liu CK, Yang H, Li C, You H, Fu Y, Wan C, Krishna T, Lin Y and Raychowdhury A (2024)
Towards cognitive ai systems: A survey and prospective on neuro-symbolic ai. arXiv .

Wang P, Donti P, Wilder B and Kolter Z (2019) Satnet: Bridging deep learning and logical reasoning
using a differentiable satisfiability solver. In: ICML.

Wei J, Wang X, Schuurmans D, Bosma M, Xia F, Chi E, Le QV and Zhou D (2022) Chain-of-thought
prompting elicits reasoning in large language models. In: NeurIPS.

Welling M and Teh Y (2011) Bayesian learning via stochastic gradient langevin dynamics. In:
ICML.

Williams R (1992) Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning 8: 229–256.

Winters T, Marra G, Manhaeve R and Raedt LD (2022) Deepstochlog: Neural stochastic logic
programming. In: AAAI.

Prepared using sagej.cls

A Mathematical Framework for NeSy 85

Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z and Woolsey
J (2006) Drugbank: a comprehensive resource for in silico drug discovery and exploration.
Nucleic Acids Research (NAR) 34: D668–D672.

Wu F, Zhang T, Holanda de Souza Jr A, Fifty C, Yu T and Q Weinberger K (2019) Simplifying
graph convolutional networks. In: ICML.

Xu J, Zhang Z, Friedman T, Liang Y and Van den Broeck G (2018) A semantic loss function for
deep learning with symbolic knowledge. In: ICML.

Yang Z, Ishay A and Lee J (2020) Neurasp: Embracing neural networks into answer set programming.
In: IJCAI.

Yi K, Wu J, Gan C, Torralba A, Kohli P and B Tenenbaum J (2019) Neural-symbolic vqa:
Disentanlging reasoning from vision and language understanding. In: NeurIPS.

Zhang H, Dang M, Peng N and Van den Broeck G (2023) Tractable control for autoregressive
language generation. In: International Conference on Machine Learning (ICML).

Zhao J, Mathieu M and LeCun Y (2017) Energy-based generative adversarial networks. In: ICLR.
Zhou K, Zheng K, Pryor C, Shen Y, Jin H, Getoor L and Wang XE (2023) Esc: Exploration with

soft commonsense constraints for zero-shot object navigation. In: International Conference on
Machine Learning (ICML).

Prepared using sagej.cls

	1 Introduction
	2 Related Work
	Neural-Symbolic Frameworks
	Learning from Constraints
	Differentiable Reasoning Layers
	Reasoner Agnostic Systems

	Applications
	Constraint Satisfaction and Joint Reasoning
	Post-training
	Few-Shot and Zero-Shot Reasoning
	Semi-Supervised Learning

	3 A Mathematical Framework for NeSy
	Neural Symbolic Energy-Based Models
	Modeling Paradigms for NeSy
	Deep Symbolic Variables
	Deep Symbolic Parameters
	Deep Symbolic Potentials

	4 Neural Probabilistic Soft Logic and Deep Hinge-Loss Markov Random Fields
	Neural Probabilistic Soft Logic
	Deep-Hinge Loss Markov Random Fields
	A Smooth Formulation of Deep HL-MRF Inference

	5 A Suite of Learning Techniques for NeSy
	NeSy-EBM Learning
	Learning Losses
	Neural Learning Losses
	Value-Based Learning Losses
	Minimizer-Based Learning Losses

	Learning Algorithms
	Modular Learning
	Gradient Descent
	Bilevel Value-Function Optimization
	Stochastic Policy Optimization

	6 Empirical Analysis
	Datasets and Models
	Constraint Satisfaction and Joint Reasoning
	NeSy-EBM Learning
	Modular NeSy-EBM Learning
	End-to-End NeSy-EBM Learning

	Semi-Supervision

	7 Limitations
	8 Conclusion and Future Work
	A Introduction
	B Extended Related Work
	Bilevel Optimization
	Energy-Based Models

	C Expressing NeSy Approaches via NeSy-EBMs
	Semantic Loss (SL)
	Defintion and Background
	NeSy-EBM Formulation

	DeepProbLog (DPL)
	Definition and Background
	NeSy-EBM Formulation

	Logic Tensor Networks (LTNs)
	NeSy-EBM Formulation

	D Extended Neural Probabilistic Soft Logic
	Extended Smooth Formulation of Inference
	Extended Continuity of Inference
	Background
	Proofs

	E Extended Empirical Analysis
	Modular Datasets
	Hyperparameters

