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Abstract
Image retrieval remains a challenging task due to the complex interaction between human visual perception, memory,
and computational processes. Current image search engines often struggle to efficiently retrieve images based on natural
language descriptions, as they rely on time-consuming preprocessing, tagging, and machine learning pipelines. This
paper introduces the Human-Oriented Retrieval Search Engine for Images (HORSE), a novel approach that leverages
neuro-symbolic indexing to improve image retrieval by focusing on human-oriented indexing. By integrating cognitive
science insights with advanced computational techniques, HORSE enhances the retrieval process, making it more aligned
with how humans perceive, store, and recall visual information. The neuro-symbolic framework combines the strengths
of neural networks and symbolic reasoning, mitigating their individual limitations. The proposed system optimizes image
retrieval, offering a more intuitive and efficient solution for users. We discuss the design and implementation of HORSE,
highlight its potential applications in fields such as design error detection and knowledge management, and suggest future
directions for research to further refine the system’s metrics and capabilities.
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Introduction

At the intersection of human expertise and artificial
intelligence lies a fundamental challenge: how to effectively
bridge the gap between human knowledge and computational
intelligence. Traditional Symbolic AI approaches, which
attempt to codify human expertise into rule-based systems,
have long struggled with the closed world assumption
problem—they can only reason within the boundaries of
explicitly defined knowledge, limiting their adaptability to
novel situations. Conversely, modern Machine Learning
(ML) approaches excel at pattern recognition but suffer
from two critical limitations: biased outputs reflecting their
training data and a lack of explainability that renders their
decision-making processes opaque to human understanding.
This paper is organized as follows: first, we introduce the
image retrieval tasks, their current solution approaches, and
their drawbacks. Afterwards, we present the NeSy approach
and explain how it can be integrated with image retrieval.
Finally, we propose our HORSE algorithm and discuss it.

”Great living starts with a picture, held in your imagi-
nation, of what you would like to do or be” (Harry Emer-
son Fosdick, (1)). This concept of envisioning outcomes
resonates with the Human-Oriented Image Retrieval System
(HORSE), which aims to improve image retrieval by focusing

on how humans mentally visualize and describe images.
By leveraging neurosymbolic indexing, HORSE bridges the
gap between human cognition and computational systems,
enabling users to retrieve images based on natural language
descriptions, much like imagining a desired outcome and
bringing it into reality.
Recent research highlights the potential of Neuro-Symbolic
(NeSy) to enhance interpretability and bridge neural compu-
tation with human logic, offering a compelling foundation for
building transparent and human-aligned AI systems (2). Our
proposed HORSE algorithm offers a novel solution through
a unique NeSy integration approach. Unlike conventional
NeSy systems where reasoning processes are merely layered
atop neural network outputs, HORSE begins by extracting
relevant human knowledge and then implements AI processes
specifically aligned with this knowledge foundation. This
human-oriented integration ensures that computational rea-
soning remains compatible with human logic while lever-
aging the pattern recognition strengths of neural networks.
Retrieving visual information exemplifies the challenges this
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approach addresses. Current image retrieval systems face
significant limitations in terms of human usability, often
employing complex pipelines of preprocessing, tagging, and
ML algorithms that create redundant feature storage while
failing to optimize for previously viewed images. These
systems frequently return results that, while algorithmically
relevant, do not align with human perception and memory
processes.
This research explores an alternative paradigm where users
can retrieve previously viewed images by describing them
in their natural language, creating a more intuitive human-
computer interaction model. By optimizing retrieval pro-
cesses around human memory and description capabilities,
we aim to develop systems that work in harmony with human
cognitive processes rather than requiring humans to adapt
to machine limitations. The research aims to achieve the
following outcomes:

• A better understanding of the image retrieval process
from both human and computer perspectives.

• Insights into the interaction between human memory,
storage, description, and retrieval.

• Development of human-computer metrics for evaluat-
ing the end-to-end retrieval process.

• An optimized image retrieval solution that improves
accessibility and retrieval efficiency.

Image Search Engines versus Image Retrieval
and Indexing Engines
The domain of visual information discovery and manage-
ment is divided primarily between two types of systems,
each serving distinct purposes and user needs. Image search
engines, exemplified by Google Images (3) and Bing Images
(4), are designed for general users seeking to discover web-
based images through text queries. These consumer-oriented
platforms offer straightforward interfaces with basic filtering
options for characteristics like size, color, and image type,
prioritizing accessibility and breadth of coverage over tech-
nical sophistication.
In contrast, image retrieval and indexing engines serve tech-
nical and enterprise applications with specialized capabili-
ties for managing curated image collections. Systems like
Apache Solr with image extensions (5) and Elasticsearch
with image plugins (6) support both text-based and content-
based queries, enabling more precise access to visual assets.
These platforms incorporate advanced features including
visual/image similarity matching*(7) or Structural Simi-
larity Index (SSIM)†, automated feature extraction‡, con-
tent classification§, and comprehensive metadata index-
ing—capabilities that support professional workflows in
fields ranging from digital asset management to medical
imaging.

The fundamental differences between these system types lie
in their scope, query methodologies, and technical depth as
can be seen in Table 1. While search engines cast a wider
net across the public web with primarily text-based queries,
retrieval systems offer deeper analysis capabilities within
defined collections using multiple query methods. This dis-
tinction reflects their different purposes: search engines con-
nect users with previously unknown images, while retrieval
systems help users efficiently locate and leverage known
visual assets within managed repositories. The technical
sophistication of retrieval systems comes with increased
complexity but enables the precision and analytical capabili-
ties required for professional and enterprise applications.

Background and Related Work

Our proposed approach begins by examining the human
image retrieval process. Human memory is capable of rapidly
encoding visual information and storing it compactly for
long-term retrieval (10), a characteristic that our approach
seeks to leverage for efficient indexing and storage in
computer systems. The novelty of this work lies in its
integration of human cognitive factors into image retrieval,
which, to the best of our knowledge, has not been widely
explored.
HORSE translates these characteristics into NeSy rules.
These rules are then used as human knowledge, enhancing
further ML and retrieval steps. As far as we know, this
integration has not been done before. Additionally, the
translation of human memory into NeSy rules is unique in
the field.
Our algorithm addresses the growing need for accessible
image retrieval systems in the context of the increasing
volume of images stored and shared on social media
platforms and personal devices. The findings of this research
will also have significant implications for improving
image accessibility, knowledge management, and aiding
professionals like designers and draftsmen in detecting
design errors.

∗Image similarity can be thought of as a numerical representation of how
alike two images are in terms of their visual content. There are several
dimensions along which images can be similar, such as color, shape, texture,
and composition.
†A commonly used metric that evaluates the structural similarity between
two images. It takes into account luminance, contrast, and structure,
providing a score ranging from -1 (completely dissimilar) to 1 (identical).
‡It employs specialized algorithms or deep networks to automatically extract
features from signals or images, eliminating the need for human intervention
(8).
§It classifies images into predefined categories based on their visual content
(9).
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Characteristic Image Search Engines Image Retrieval and Indexing
Engines

Target Users General consumers Technical professionals and enter-
prises

Primary Purpose Web-based image discovery Management of curated image col-
lections

Examples Google Images, Bing Images Apache Solr with image extensions,
Elasticsearch with image plugins

Indexing Methodol-
ogy

Web crawling with indexing based
on surrounding text, file names, and
basic visual features

Sophisticated multi-dimensional
indexing structures (k-d trees,
R-trees, locality-sensitive hashing)

Query Types Primarily text-based queries Multiple query paradigms: text-
based, query-by-example, query-
by-sketch, hybrid approaches

Query Processing Keyword matching against indexed
text

Complex similarity searches across
feature vectors with semantic
understanding

Feature Extraction Basic image features and metadata Advanced visual feature extraction
with domain-specific optimizations

Data Sources Public web content Curated collections with structured
metadata

Data Management Continuous discovery via web
crawling with limited dataset
control

Carefully maintained collections
with version control and access
permissions

Analytical Capabili-
ties

Basic filtering (size, color, type) Advanced capabilities (object
detection, scene understanding,
facial recognition)

Computational Focus Speed and relevance across massive
datasets

Precision within defined domains
with domain-specific algorithms

Integration Options Limited API access Robust APIs and integration frame-
works for enterprise applications

Customization Generalized algorithms across all
content

Can be tailored for domain-specific
visual patterns and use cases

Technical Complex-
ity

Designed for ease of use Higher complexity with more
sophisticated controls

Scope Broader coverage across public web Deeper analysis within defined
collections

Scalability Focus Horizontal scaling for billions of
images

Precise indexing and retrieval for
domain-specific collections

Table 1. Comparison between Image Search Engines and Image Retrieval and Indexing Engines

Key Approaches and Algorithms in Image
Retrieval and Indexing Systems

Image retrieval and indexing systems rely on various
approaches and algorithms that help efficiently manage
and search visual data. One key area is feature extraction

(8), which involves extracting information from images in
different forms. Color features, for example, are often used
to capture the distribution of colors across an image, with
techniques like color histograms, color moments, and color
correlograms (11). Color histograms track the distribution of
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colors, while color moments capture the mean, variance, and
skewness of color distributions, and the color correlogram
represents the spatial correlation of colors within an image.
Dominant color descriptors are also important for identifying
key colors that characterize the overall appearance of an
image.
Texture features focus on analyzing the surface properties
of images (12), with methods such as the Gray Level
Co-occurrence Matrix (GLCM), which studies the spatial
relationships between pixel intensities (13). Gabor filters
detect specific frequency content in various directions (14),
and Local Binary Patterns (LBP) capture local texture
patterns (15). Wavelet transforms offer a multi-resolution
approach to texture analysis, which is crucial in many
applications (16).
Shape features are another critical aspect, and methods
like edge detection, including Canny and Sobel operators,
highlight the edges of an image (17). Contour representations
capture the shape outline (18), while moment invariants
provide a way to describe shapes in a rotation- and scale-
invariant manner (19). Shape contexts are also employed
to capture the spatial relationships between points on the
shape’s boundary, offering a distinct representation of an
object.
Deep learning-based approaches have gained significant
attention, especially with Convolutional Neural Networks
(CNNs), which are commonly used for feature extraction.
Pre-trained models like Visual Geometry Group (VGG),
Residual Network (ResNet), and Inception are often
employed to generate feature vectors that serve as effective
image descriptors (20). Siamese networks have become
popular for learning similarity metrics between image
pairs, improving the ability to distinguish between similar
and dissimilar images (21). Auto-encoders are applied for
dimensionality reduction, simplifying the data representation
while preserving key features. Self-supervised learning
methods, which allow for better representations of images
without requiring labeled data, have also proven beneficial
in enhancing retrieval performance.
Indexing structures are essential for efficient search and
retrieval. Tree-based methods, such as KD-trees (K-
Dimensional) for low-dimensional features and R-trees for
spatial indexing, are commonly used (22). M-trees are
suitable for indexing in metric spaces (23), and VP-
trees (Vantage-Point) are particularly effective for high-
dimensional data (24). Hashing methods, including Locality
Sensitive Hashing (LSH), Semantic Hashing, Spectral
Hashing, and Product Quantization, also play a vital role in
reducing the complexity of retrieval tasks, allowing for faster
searches by encoding data into more compact representations
(25).
Similarity measures are used to assess the closeness between
images based on their features (26). Euclidean distance is
commonly used for comparing feature vectors, while cosine

similarity is often employed in high-dimensional spaces.
Earth Mover’s Distance is useful for comparing histograms
by measuring the cost of transforming one distribution
into another (27). Hamming distance is applied to binary
features (28), and Mahalanobis distance is used when the
data involves correlated features, providing a more accurate
similarity measure in such cases (29).
Content-Based Image Retrieval (CBIR) is one of the most
popular retrieval techniques, allowing systems to retrieve
images based on their content (30). Query by Example
(QBE) and relevance feedback mechanisms are often used to
refine searches, and multi-feature fusion strategies combine
multiple types of features for improved retrieval accuracy
(31). Cross-modal retrieval, which includes techniques such
as text-to-image search and image-to-text mapping, allows
for retrieving images based on textual descriptions and vice
versa (32). These techniques rely on joint embedding spaces
that bridge the gap between different modalities.
Modern optimization approaches like Approximate Nearest
Neighbor (ANN) search are widely used to improve retrieval
efficiency (33). Tools like FAISS (Facebook AI Similarity
Search), Annoy (Spotify’s ANN library), and HNSW
(Hierarchical Navigable Small World) enable faster nearest
neighbor searches, reducing computational overhead in large
datasets (34). When evaluating retrieval systems, metrics
such as precision and recall, Mean Average Precision (MAP),
and Normalized Discounted Cumulative Gain (NDCG) are
commonly used to assess the relevance and ranking of
results (35). Other important factors include retrieval time
and memory efficiency, which are critical in real-world
applications.
For real-world implementation, several considerations must
be addressed. Scalability is crucial to handle large datasets,
and update mechanisms are required to accommodate
dynamic collections. Storage optimization ensures efficient
data storage, while query optimization improves the speed of
query processing. Load balancing in distributed systems is
also necessary to handle varying demands and ensure smooth
operation.
Enhanced retrieval methods, such as using multiple query
images and query expansion, can help improve retrieval
accuracy (36). Semantic search techniques improve retrieval
by understanding the meaning behind search queries (37),
while attribute-based filtering allows for more fine-grained
searches based on specific image attributes (38). Spatial
verification is another technique that ensures the returned
results align with the spatial characteristics of the query
image (39).
Finally, advanced topics in image retrieval and indexing
include fine-grained image retrieval, which focuses on
retrieving images with subtle differences, and instance-level
retrieval, which targets specific instances of objects. Cross-
view image matching addresses challenges in matching
images of the same object from different angles (40), and
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zero-shot image retrieval enables retrieval of images without
prior examples or training data (41). Continuous learning
systems, which adapt and improve over time through new
data, are another emerging area in the field, ensuring that
image retrieval systems remain effective as they evolve (42).

Notable Image Retrieval and Indexing Engines
There are various notable image retrieval and indexing
engines, which can be categorized into commercial, open
source, and deep learning-based solutions. Commercial
solutions include Elastic Image Search (43), which offers
visual search capabilities within the Elasticsearch ecosystem,
and Amazon Rekognition (44), an AWS service designed
for image analysis and similarity search. Google Cloud
Vision Product Search enables visual product search and
cataloging (45), while Microsoft Azure Computer Vision
provides image analysis and visual search capabilities (46).
Additionally, Algolia Visual Search serves as a visual
search add-on for their search platform (47). Open-source
solutions include Milvus, a distributed vector database that
handles image feature vectors (48), and FAISS (Facebook
AI Similarity Search), a high-performance similarity search
library (49). Qdrant is another vector similarity search
engine that offers extended filtering support (50), while
Vearch is a high-performance vector similarity search engine
developed by Jina AI (51). Vespa is a real-time big data
serving engine that also supports image search (50), and
the ImageHash Python library allows simple image matching
using perceptual hashes (52).
LIRE (Lucene Image REtrieval) is a Java library designed for
image retrieval based on Lucene (53). On the deep learning
front, CLIP (Contrastive Language Image Pre-Training) is a
model developed by OpenAI for text-to-image search (54),
and DupDetector uses neural networks to identify duplicate
or similar images (55). DeepSight is another deep learning-
based visual search engine (56). These solutions typically
offer several key features such as CBIR, reverse image
search, near-duplicate detection, feature vector indexing,
perceptual hashing, and multimodal search, which combines
text and images, all with scalable distributed indexing
capabilities. A comparison of these image search solutions
and their technical approaches is provided in Table 2, which
summarizes their key approaches and core algorithms.

Google’s Various Image Search and Retrieval Technolo-
gies Google’s innovations in image search and retrieval
technologies play a pivotal role in reshaping how users
interact with and access visual information online. Google
has developed various advanced image search and retrieval
technologies. Google Images, the standard consumer-facing
search engine, supports reverse image search using advanced
computer vision and ML techniques, and integrates with
Google Lens technology (57).
Google Lens is a mobile-first visual search tool that can
identify objects, text, and landmarks in real-time and provides

shopping capabilities for visual product search, along with
text extraction and translation features (58). It is available as
a standalone app and is integrated into other Google products.
For enterprise applications, Google Cloud Vision AI offers
multiple services, including Product Search for building retail
catalog search systems, Vision AI for general-purpose image
analysis and classification, AutoML Vision for custom model
training (59), and the Video Intelligence API for analyzing
video content (60).
Google’s internal technologies include PlaNet, a model for
geographic location estimation from images (61), DELF
(DEep Local Features) for landmark recognition (62), SwAV
(Swapping Assignments between Views) for self-supervised
learning in image understanding (63), and MUM (Multi-
modal Unified Model), which processes both text and images
simultaneously (64).

Neuro-Symbolic Approaches to Image
Information Retrieval

NeSy approaches to image information retrieval combine
the strengths of neural networks and symbolic reasoning
to enhance the effectiveness of retrieval systems (65).
Traditional information retrieval models typically rely on
either neural networks or symbolic approaches, each with
distinct advantages and limitations. Neural networks excel at
processing high-dimensional data and recognizing patterns
within visual content, while symbolic reasoning offers
interpretability, logical consistency, and the integration of
structured human knowledge. The integration of these
complementary strengths in NeSy systems provides a
promising framework to address the complex challenges of
image retrieval, bridging the semantic gap between low-level
image features and high-level human understanding.
NeSy approaches offer several key advantages for image
retrieval systems (66). One major benefit is the ability
to maintain interpretability while leveraging the pattern
recognition capabilities of neural networks (2). Unlike pure
neural models, which often function as ”black boxes,”
NeSy systems retain transparency through their symbolic
components, making the reasoning behind their decisions
more understandable. Additionally, these approaches can
explicitly integrate domain knowledge, human expertise, and
cognitive principles that are difficult to capture through data
alone. This knowledge integration is particularly valuable
in specialized fields where labeled data may be scarce or
incomplete.
Moreover, the incorporation of symbolic reasoning allows
NeSy systems to perform logical inferences about spatial
relationships, object properties, and semantic contexts—key
aspects of human-like image understanding. This ability to
reason about images adds a layer of depth that pure neural
systems cannot match. The inclusion of symbolic knowledge
also reduces the dependency on massive datasets, making
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Solution Key Approaches Core Algorithms

Elastic Image Search Vector-based similarity search with CNN
feature extraction

HNSW graphs
Approximate k-NN
Dense vector scoring
Cosine similarity computation

Amazon Rekognition Multi-model approach combining detec-
tion and recognition

Deep CNNs
Cascade classifiers
Siamese networks
YOLO variants

Google Cloud Vision AutoML-based custom model training
with efficient feature extraction

EfficientNet backbone
Contrastive learning
Deep metric learning
BERT text-image matching

Microsoft Azure Vision Transformer-based architecture with multi-
task capabilities

ResNet extraction
Scene graph generation
Faster R-CNN
Few-shot learning

Milvus Distributed vector search with multiple
index support

IVF/HNSW/ANNOY indexing
GPU acceleration
Dynamic quantization
SIMD optimization

FAISS High-performance similarity search with
compression

Product Quantization
Inverted File Index
Multi-probe LSH
Cluster-based indexing

Qdrant Graph-based vector search with filtering HNSW indexing
Payload filtering
Segment storage
Query optimization

CLIP Contrastive learning between image and
text

Vision Transformer
Zero-shot classification
Cross-modal attention
Temperature scaling

ImageHash Perceptual hash-based image matching Average hashing
Difference hashing
Wavelet hashing
Color moment hashing

LIRE Traditional computer vision features SIFT/SURF descriptors
Color/Edge detection
Gabor textures
Edge histograms

Table 2. Comparison of Image Search Solutions and Their Technical Approaches

NeSy approaches more viable in scenarios where training
data is limited. Finally, the symbolic component acts as a
safeguard, providing robustness against the common failure
modes seen in purely neural approaches and improving
overall system consistency and reliability.
The unique challenges of image retrieval make NeSy

approaches particularly well-suited for this task. Visual
information is inherently hierarchical and relational, with
meaning emerging not only from individual objects but also
from their spatial arrangement, context, and relationships
(67). This complexity aligns well with the capabilities of
NeSy systems. One of the key challenges in image retrieval
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is the substantial gap between pixel-level representations
and semantic understanding. While neural networks can
efficiently process raw visual data, they often struggle to
capture the abstract relationships and contextual knowledge
that humans rely on when describing or searching for
images. Symbolic components help bridge this gap by
explicitly representing higher-level concepts, such as spatial
relationships or object properties, which are crucial for
understanding and interpreting images.
Moreover, natural language queries for image retrieval often
involve imprecise, subjective, or context-dependent terms
that require interpretation beyond simple keyword matching
(68). NeSy systems are particularly adept at handling such
queries by mapping linguistic descriptions to visual features
through symbolic representations of concepts like ”above,”
”larger than,” or ”similar to.” This ability to handle nuanced
language makes NeSy systems more effective in real-world
applications, where queries are rarely straightforward.
Another reason NeSy approaches are well-suited for image
retrieval is that human memory for images operates on
multiple levels of abstraction—from broad impressions to
specific details. This mirrors the complementary processing
of neural and symbolic components in NeSy systems, making
them more aligned with human cognitive processes (69).
This alignment allows NeSy systems to create retrieval
mechanisms that feel intuitive and natural to users, further
enhancing the user experience.
Furthermore, NeSy systems can leverage prior knowledge
about common object relationships and spatial configurations
to make inferences about images (70). This ability reduces
the need for large amounts of training data, which is
often required for pure neural approaches to learn these
relationships. In specialized domains, where training data
may be limited but domain knowledge is rich, this advantage
becomes particularly important. By combining the strengths
of neural and symbolic approaches, these systems offer a
powerful solution for overcoming the challenges of image
retrieval, making them an ideal choice for applications that
require both high accuracy and interpretability.

Key Disadvantages and Limitations of
Traditional Major Approaches to Image Retrieval
Although various image retrieval and indexing techniques
offer promising solutions, each approach is accompanied by
inherent limitations that impact their performance in different
contexts. Table 3 provides a comprehensive overview of
the key disadvantages associated with the most widely used
methods in this field.
Traditional feature extraction methods, such as color, texture,
and shape features, exhibit several drawbacks. Color features,
for instance, are highly sensitive to illumination changes
and perform poorly with grayscale images (11). Texture
features, while useful in many scenarios, are computationally
expensive and sensitive to rotation and scaling. Additionally,

shape features often struggle with occlusions and complex
or deformable objects, and they require clean segmentation
for optimal performance. These limitations underscore the
challenges faced by traditional approaches in real-world
applications.
In contrast, deep learning-based approaches, such as CNNs
and Siamese networks, have shown significant promise in
image retrieval tasks (20, 21). However, these methods come
with their own set of challenges. CNNs, for example, require
large amounts of training data and are computationally
intensive, which can make them impractical in resource-
limited environments. Moreover, both CNNs and Siamese
networks suffer from poor interpretability, and the risk of
overfitting is a constant concern. Additionally, these methods
typically have high memory usage.
Indexing structures, such as tree-based methods and hashing
techniques, also present significant disadvantages (22, 25).
Tree-based indexing approaches degrade in high-dimensional
spaces and suffer from issues related to unbalanced trees and
high memory overhead. Hashing methods, while efficient in
some cases, are prone to information loss due to quantization
and require complex handling of collisions. These issues can
lead to poor retrieval performance, especially in dynamic or
high-dimensional datasets.
Similarity measures, such as Euclidean distance and cosine
similarity, are fundamental in many image retrieval systems
but have limitations that hinder their effectiveness (26).
Euclidean distance, for example, is highly sensitive to outliers
and assumes equal feature weights, which may not always
hold true in real-world data. Similarly, cosine similarity fails
to account for magnitude differences, which can be a critical
factor in certain applications. Both methods also struggle
with high-dimensional data and lack the ability to understand
semantic relationships between features.
Finally, modern optimization techniques, such as ANN
search and cross-modal retrieval, offer advanced capabilities
but are not without their challenges (33). ANN search faces a
trade-off between accuracy and speed, and it requires careful
tuning of parameters to balance performance. Cross-modal
retrieval, which involves the alignment of different types of
data such as images and text, suffers from semantic gaps
between modalities and challenges related to paired data
requirements. Moreover, methods like fine-grained retrieval
require extensive annotations and can be computationally
expensive, which limits their practicality for large-scale
applications.
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Table 3. Popular Image Retrieval and Indexing Approaches and Disadvatanges

Approach Category Key Disadvantages

Color Features Traditional Feature Extrac-
tion • Sensitive to illumination changes

• Ignores spatial relationships
• Fails with similar color distributions
• Poor with grayscale images
• High storage overhead

Texture Features Traditional Feature Extrac-
tion • Computationally expensive

• Sensitive to rotation/scale
• Limited for non-textured images
• Poor with viewpoint changes
• Requires multiple descriptors

Shape Features Traditional Feature Extrac-
tion • Highly sensitive to occlusion

• Struggles with complex shapes
• Poor with deformable objects
• Computationally intensive
• Requires clean segmentation

CNN Features Deep Learning
• Large training data requirement
• High computational cost
• Poor interpretability
• Overfitting risks
• Heavy memory usage

Siamese Networks Deep Learning
• Complex training pair selection
• Training instability
• Limited multi-class handling
• Domain-specific retraining
• High memory requirements

Tree-based Indexing Indexing Structures
• Degrades in high dimensions
• Unbalanced tree issues
• High memory overhead
• Expensive updates
• Poor for dynamic data

Hashing Methods Indexing Structures
• Information loss from quantization
• Hash function dependency
• Complex collision handling
• Multiple table requirements
• Precision-recall trade-off

Continued on next page
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Table 3 continued

Approach Category Key Disadvantages

Euclidean Distance Similarity Measures
• Outlier sensitivity
• Equal feature weight assumption
• Poor in high dimensions
• Fixed-length feature requirement
• No semantic understanding

Cosine Similarity Similarity Measures
• Ignores magnitude differences
• Poor with sparse data
• High-dimension sensitivity
• Vector space limitation
• Simple relationship modeling

Query by Example CBIR
• Query quality dependency
• Semantic gap issues
• Feature representation limits
• No abstract query support
• Multiple example needs

Relevance Feedback CBIR
• Required user interaction
• Time-consuming process
• Convergence issues
• User fatigue
• Implementation complexity

ANN Search Modern Optimization
• Accuracy-speed trade-off
• Complex parameter tuning
• High memory overhead
• Missed relevant results
• Data distribution dependency

Cross-Modal Retrieval Advanced Methods
• Semantic gap between modalities
• Paired data requirement
• Vocabulary limitations
• Modal alignment issues
• Training complexity

Fine-grained Retrieval Advanced Methods
• Detailed annotation needs
• High computation costs
• Visual sensitivity
• Domain-specific features
• Limited generalization
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Neuro-Symbolic Integration
Nesy approaches aim to overcome the limitations of both
by integrating neural networks for pattern recognition with
symbolic reasoning mechanisms for logic and interpretabil-
ity. This integration results in a more robust system capable of
reasoning about images and queries in a way that pure neural
networks or symbolic systems alone cannot.

Neural Components Neural components in a NeSy image
retrieval system primarily handle unstructured data, such
as images, by learning representations that capture the
underlying semantics and visual relationships. In this
section, we will describe the components of Embedding
Generation (71), Feature Learning (72), and Natural
Language Understanding (73), which are essential for
processing both visual and textual data in a neuro-symbolic
image retrieval system.
These components work together to process both visual and
textual data in a meaningful way. Embedding generation is
the first key step, where neural networks transform raw image
data into dense vector representations (71). CNNs and Vision
Transformers (ViTs) are commonly used in this process,
enabling the extraction of image features while capturing
contextual relationships between objects. Following this,
feature learning allows neural models to automatically
discover relevant patterns from raw image data, creating
hierarchical representations at various levels of abstraction
(72). This adaptability helps the system recognize domain-
specific features. Finally, natural language understanding
plays a crucial role in processing text queries, enabling
the system to interpret natural language inputs, resolve
ambiguity, and effectively match visual content with textual
descriptions (73). Through these interconnected processes,
the system is able to bridge the gap between visual and textual
data, providing a robust and efficient retrieval mechanism.

Symbolic Components Symbolic components in a NeSy
system add a layer of reasoning and structure, ensuring
that the retrieved information is logically coherent and
interpretable. This section will describe the components
of Knowledge Representation (74), Reasoning Mechanisms
(75), and Constraint Management (76).
Knowledge Representation involves the use of formal
ontologies and taxonomies to define concepts such as “dog,”
“car,” and “building,” along with their relationships (74).
Symbolic representations, such as scene graphs and spatial
relationships such as ”above,” ”below,” ”contains”, help
to provide a deeper understanding of the image context.
Reasoning Mechanisms utilize methods like forward and
backward chaining to apply logical rules over the learned
representations, clarifying relationships between different
objects or concepts within an image and enhancing the
retrieval process (75). Finally, Constraint Management
ensures that the retrieved images meet specific criteria
by enforcing logical constraints, such as matching certain

attributes or fitting within predefined categories, thus
ensuring the relevance and accuracy of the retrieval results
(76).

Integration Mechanisms The integration of neural and
symbolic components is a key aspect of NeSy systems,
enabling the combination of learning-based and reasoning-
based approaches for enhanced performance. This section
will describe the following integration mechanisms: Neural-
to-Symbolic Translation (77), Symbolic-to-Neural Guidance
(77), and Hybrid Reasoning Paths (78).
One way integration occurs is through Neural-to-Symbolic
Translation, where learned neural representations are
transformed into symbolic forms that can be reasoned
with. Visual features are mapped to symbols that are
understood within the context of a predefined ontology
(77). Another important mechanism is Symbolic-to-Neural
Guidance, where symbolic knowledge, such as logical
rules, influences and refines the neural learning process.
Constraints from the symbolic layer can guide the neural
network outputs, ensuring the generation of more accurate or
contextually appropriate features (77). Additionally, Hybrid
Reasoning Paths combine neural pattern recognition and
symbolic inference in a synergistic manner. In this approach,
the neural component is responsible for initial image feature
extraction, while symbolic reasoning applies logical rules
to filter, refine, and enhance the results, providing a more
comprehensive retrieval mechanism.

Applications to Image Information Retrieval

In the context of image retrieval, NeSy approaches offer
several key advantages. These systems excel in handling
complex queries that require both pattern recognition and
logical reasoning (66). For example, they can process queries
like ”find images with a red car,” which involves pattern
recognition, as well as more complex requests like ”find
images where the car is in front of a building,” which
necessitate logical reasoning.
Additionally, symbolic reasoning enables semantic search,
where images are retrieved not only based on visual
similarity but also by considering logical constraints and the
semantic relationships between objects. NeSy systems also
support multi-modal search, allowing users to query with a
combination of text and images. For instance, users might
upload a reference image and ask the system to find similar
images, considering both visual features and the semantic
meanings behind them.
Finally, the symbolic layer enhances explainability by
providing interpretable results, allowing users to understand
why certain images were retrieved based on explicit logical
rules and relationships, rather than relying solely on the
opaque decision-making processes of deep learning models.
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Example Architecture for Image Retrieval

A typical architecture for a NeSy image retrieval system
consists of several stages that work together to process and
interpret both visual and textual data (79). The first stage,
image processing, involves CNNs or ViTs, which process
the image data to extract important features such as object
recognition, localization, and contextual understanding.
Following this, the query parsing stage employs a Natural
Language Processing (NLP) module to interpret user queries,
converting text input into symbolic representations. For
example, a query like ”Find images with a red ball” would
be mapped to a search for red-colored objects within images.
Once the query is parsed, symbolic filtering is applied. In
this stage, symbolic reasoning methods are used to refine the
retrieved images based on logical constraints.
For instance, a constraint such as ”only images where the
ball is on a table” would narrow down the results. Finally, in
the retrieval stage, both the neural and symbolic components
collaborate to rank and return the most relevant images,
considering not only visual similarity but also the logical
constraints provided by the symbolic reasoning.

Human-Oriented Image Retrieval System
(HORSE) Methodology and Problem
Definition

As mentioned earlier, NeSy starts from human knowledge.
Since the image retrieval target is to serve human users it has
to be designed to their usage profile. We can diagnose the way
that human approach for image retrieval. The transformation
from retrieving image by using key words to a free language
increase the challenge.
Analyzing the description of images shows that the human
memory plays a main role in this task. As far as we
researched, the human memory retrieval of images consists of
several characteristics: image objects spacial relations, their
size and characteristics such as color and if there are human
also body and facial gesture.
Human memory plays a crucial role in image analysis and
description, as research shows that when humans recall and
describe images, they typically encode and retrieve various
aspects of visual information. In this paper, we define several
meta-rules based on human cognition and map them to the
NeSy. These include spatial relationships between objects,
often referred to as the ”where” information, which helps
to understand the positioning of elements within an image
(80, 81).
Additionally, we consider object properties like size, color,
and shape, which contribute to the detailed recognition of
individual items (82, 83). Finally, the semantic meaning and
contextual relationships of objects within the image play an
essential role in comprehending the broader narrative and
interpretation of the visual content.

Algorithm 1 Human-Oriented Image Retrieval (HORSE)

1: Input: Image dataset
2: Output: Matching images based on query
3:
4: Step 1: Extracting Human Retrieval Patterns
5: Step 2: Translate the Retrieval Patterns into NeuroSym-

bolic Meta Rules
6:
7: for each image do
8: Step 3.1: Detect Meaningful Objects (using OCR, for

instance)
9: Step 3.2: Extract properties of each Meaningful

Object
10: Step 3.3: According to Step 2, find relations between

Meaningful Objects
11: end for
12: Step 4: Index the images using their meaningful objects

and relations
13:
14: Step 5: Enable NLP search query
15: Step 5.1: Extract the query objects and relations
16: Step 5.2: Search the image indexed database for

matching images
17:
18: Output: View the matching images

Human memory plays a crucial role in image analysis
and description, as research shows that when humans recall
and describe images, they typically encode and retrieve
various aspects of visual information. This process is
often hierarchical and gist-based, with people typically
remembering the overall meaning or impression of an image
first, followed by specific details. Additionally, emotionally
significant elements tend to be remembered more vividly,
highlighting the role of emotional salience in memory
retrieval (84, 85).
Moreover, memory retrieval for images involves both bottom-
up (feature-driven) and top-down (knowledge/expectation-
driven) processes working together, rather than relying on
feature extraction alone (86, 87). HORSE algorithm proposes
the NeSy approach, which combines insights from human
memory with AI techniques for image retrieval. The proposed
approach exemplifies the extraction of rules from human
knowledge, supported by psychological insights and the
human memory retrieval system. These rules can be based
on organizational data and generalized beyond past data,
incorporating research on human memory, decision-making,
and brain characteristics.
The HORSE algorithm 1 follows several steps: recognizing
objects in the image and their names, as well as
human emotions; extracting object characteristics like color;
normalizing object sizes and ranking them by relative size;
mapping relationships between objects using 2D and 3D
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relations (such as A being above B, or to the left/right, or
behind/in front); and learning relations based on an image
corpus. For instance, the system learns that, in 99% of
cases, a car is on the ground, the sky is in the upper
part of images, and a house is bigger than a human. The
system can then identify the uniqueness of an image by
comparing it to other images and a ’normal’ baseline. To
develop a solution that bridges the human visual system and
memory with computational systems, it is essential to take an
interdisciplinary approach. Traditional algorithms often fail
to account for human cognitive processes, which can limit
the reliability and efficiency of image retrieval. Thus, our
methodology examines the image retrieval process from both
the human and computer perspectives.
Key parameters for evaluating this solution include human-
side factors such as memory functionality, psychological
aspects, and linguistic description capabilities, as well as
computer-side factors like algorithm complexity, running
time, and storage compactness. By assessing the retrieval
process from these angles, we aim to provide a solution
that optimally balances human needs and computational
efficiency.

Discussion

The proposed HORSE algorithm represents a significant
advancement in the field of image retrieval by addressing
fundamental limitations of traditional approaches. By
incorporating NeSy principles that mirror human cognitive
processes, HORSE offers several advantages that warrant
further discussion.

Alignment with Human Cognitive Processes

Our approach deliberately mirrors the hierarchical and
relational nature of human visual memory. Traditional
computer vision systems often emphasize raw feature
extraction or pure statistical learning, which can create a
mismatch between how machines index images and how
humans naturally recall them. HORSE bridges this gap by
establishing a framework that captures spatial relationships,
object properties, and semantic meanings—the three key
dimensions that characterize human image recall as identified
in our research.
The incorporation of both bottom-up (feature-driven) and
top-down (knowledge-based) processes in our algorithm
acknowledges the bidirectional nature of human image
processing (86, 87). This dual-process approach allows the
system to balance concrete visual features with contextual
understanding, making it particularly effective for natural
language queries that may contain imprecise or subjective
descriptions.

Technical Implications and Advantages
The NeSy foundation of HORSE offers several techni-
cal advantages over purely neural or purely symbolic
approaches. By extracting meta-rules from human cognitive
patterns, the system can operate with greater interpretability
than black-box deep learning models, while maintaining
more flexibility than rigid rule-based systems. This middle-
ground approach is particularly valuable for debugging, sys-
tem refinement, and trustworthiness.
Our indexing strategy based on meaningful objects and
their relationships represents a more efficient computational
approach than exhaustive feature extraction. By focusing on
elements that would be salient to human memory, we poten-
tially reduce the dimensionality of the search space with-
out sacrificing retrieval accuracy. This efficiency becomes
increasingly important as image databases grow in size.
The normalization of object sizes and relative positioning in
three-dimensional space allows HORSE to generalize across
images with different perspectives and scales. This capability
addresses a common limitation in traditional image retrieval
systems, which often struggle with viewpoint invariance.

Limitations and Future Work
Despite its advantages, HORSE faces several challenges that
require further research. First, the extraction of accurate
spatial relationships depends on reliable object detection
and scene understanding, which remain active research
areas. Errors in object recognition can propagate through
the system, potentially affecting retrieval accuracy. Second,
while our approach aims to mimic human memory patterns,
individual differences in visual perception and memory
remain a challenge. Future iterations of HORSE could benefit
from personalization mechanisms that learn individual users’
recall patterns and adjust accordingly.
Third, the current implementation primarily focuses on static
images. Extending the framework to video retrieval would
require additional considerations for temporal relationships
and motion patterns, which are crucial aspects of human
memory for dynamic visual content. Future work should
address these limitations while exploring several promising
directions:

1. Multimodal Integration: Incorporating audio descrip-
tions, text captions, and other contextual meta-
data could enhance retrieval accuracy, especially for
ambiguous queries.

2. Adaptive Learning: Developing mechanisms for
HORSE to continuously refine its understanding of
human memory patterns based on user interactions and
feedback.

3. Cross-Cultural Validation: Testing the system across
diverse cultural contexts to ensure that the extracted
meta-rules generalize across different user populations.
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4. Computational Optimization: Further refining the
indexing structures to balance comprehensiveness with
computational efficiency, particularly for large-scale
image collections.

Broader Applications
The principles underlying HORSE extend beyond simple
image retrieval. The same NeSy approach could be applied
to several adjacent domains:

• Visual Anomaly Detection: By establishing normative
relationships between objects (e.g., ”cars are typically
on roads”), the system could identify unusual or
incorrect images.

• Accessibility Tools: HORSE could facilitate image
descriptions for visually impaired users by focusing on
the aspects of images that sighted humans find most
memorable.

• Educational Applications: The system could support
visual learning by helping students locate relevant
images based on conceptual descriptions rather than
keywords alone.

• Design Assistance: Creative professionals could use
natural language descriptions to retrieve inspirational
images that match their conceptual vision.

Conclusion
In this paper, we proposed a novel approach for human-
oriented image retrieval, utilizing neuro-symbolic indexing.
The method takes into account the user’s cognitive and
linguistic abilities, in addition to standard computational
parameters, to optimize the image retrieval process. Future
work will focus on refining the metrics and exploring
potential applications in areas like design error detection and
knowledge management.
HORSE represents a promising step toward more human-
centric image retrieval systems. By grounding computational
approaches in cognitive science research, we aim to create
systems that feel more intuitive and accessible to users. The
NeSy framework offers a balanced approach that maintains
the advantages of both neural networks and symbolic
reasoning while mitigating their respective limitations.
As visual content continues to proliferate across digital
platforms, the need for effective retrieval systems becomes
increasingly critical. HORSE demonstrates that by better
understanding how humans process, store, and recall visual
information, we can design more effective computational
systems that serve human needs. Future research should
continue exploring this intersection of cognitive science
and computer vision to further enhance human-computer
interaction in visual domains.
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