
Learning Semantic Association Rules
from Internet of Things Data

Journal Title
XX(X):1–16
©The Author(s) 2024
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Erkan Karabulut1, Paul Groth1 and Victoria Degeler1

Abstract
Association Rule Mining (ARM) is the task of discovering commonalities in data in the form of logical implications. ARM
is used in the Internet of Things (IoT) for different tasks, including monitoring and decision-making. However, existing
methods give limited consideration to IoT-specific requirements such as heterogeneity and volume. Furthermore, they
do not utilize important static domain-specific description data about IoT systems, which is increasingly represented as
knowledge graphs. In this paper, we propose a novel ARM pipeline for IoT data that utilizes both dynamic sensor data
and static IoT system metadata. Furthermore, we propose an Autoencoder-based Neurosymbolic ARM method (Aerial)
as part of the pipeline to address the high volume of IoT data and reduce the total number of rules that are resource-
intensive to process. Aerial learns a neural representation of a given dataset and extracts association rules from this
representation by exploiting the reconstruction (decoding) mechanism of an autoencoder. Extensive evaluations on 3
IoT datasets from 2 domains show that ARM on both static and dynamic IoT data results in more generically applicable
rules while Aerial can learn a more concise set of high-quality association rules than the state-of-the-art, with full
coverage over the datasets.

Keywords
association rule mining, neurosymbolic AI, semantic web, autoencoder, internet of things, sensor data

Introduction

Association Rule Mining (ARM) is a common data
mining task that aims to discover associations between
features of a given dataset in the form of logical
implications (Agrawal et al. 1994). In Internet of Things
(IoT) systems, ARM methods are utilized for various tasks,
including monitoring, decision-making, and optimization,
for example, of a system’s resources (Sunhare et al. 2022).
Some IoT application domains in which ARM has been
successfully utilized include agriculture (Fan et al. 2021),
smart buildings (Degeler et al. 2014), and energy (Dolores
et al. 2023). However, most applications of ARM in IoT give
limited consideration to characteristics of IoT data, such as
heterogeneity and volume (Ma et al. 2013), as they are mere
adaptations of rule mining methods not specifically tailored
to IoT requirements.

IoT systems can produce or use data from diverse sources,
which can be categorized as static and dynamic. Static
data refers to data that is not subject to frequent changes,
such as system models, while dynamic data is subject to
frequent changes, for instance, sensor data. The static part
of IoT systems is increasingly represented as knowledge
graphs (Rhayem et al. 2020; Karabulut et al. 2024), large
databases of structured semantic information (Hogan et al.
2021). ARM algorithms are often run on the dynamic part of
IoT data, not utilizing the valuable information in knowledge
graphs. In addition, ARM algorithms can generate a high
number of rules as the input dimension increases (Kaushik
et al. 2023; Telikani et al. 2020), which is time-consuming to
process and maintain. Generating a high number of rules can

be the case for large-scale IoT environments, as each sensor
is treated as a different data dimension.

To address these two issues, this paper presents two
new contributions. The first contribution is a novel ARM
pipeline for IoT data that combines knowledge graphs
and sensor data to learn association rules with semantic
properties, semantic association rules (Section Problem
Statement), that represent IoT data as a whole (Section
Pipeline). We hypothesize that semantic association rules
are more generically applicable than association rules based
on sensor data only, requiring fewer rules to have full data
coverage. We define generically applicable as having high
support—the frequency with which a rule appears in the
data—and high coverage—the proportion of the dataset to
which the rule applies. As an example, an association rule
based on sensor data only looks as follows: ‘if sensor1
measures a value in range R, then sensor2 must measure a
value in range R2’. This rule can only be applied to sensor1
and sensor2 measurements. In contrast, semantic association
rules are more contextual as seen in the following example
in the Water Distribution Network (WDN) domain: ‘if a
water flow sensor wf1 placed in a pipe P1 with diameter
≥ A1 measures a value in range R, then a water pressure
sensor wp1 placed in a junction J1 connected to P1 measures
a value in range R2’. The semantic association rule is

1University of Amsterdam, The Netherlands

Corresponding author:
Erkan Karabulut, University of Amsterdam, Science Park 904, 1098 XH,
The Netherlands
Email: e.karabulut@uva.nl

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

no longer about individual sensor measurements only, but
rather with their semantic properties as well. Therefore,
they are more semantically expressive, explainable and can
reveal further associations in the IoT data beyond sensor
measurements.

However, enriching sensor data with semantics from a
knowledge graph increases input size and may result in
a high number of rules. Hence, the second contribution
of this paper is an Autoencoder-based (Vincent et al.
2008) Neurosymbolic ARM method (Aerial) as part of the
proposed pipeline that can learn a concise set of high-quality
rules with full data coverage (Section Rule Extraction from
Autoencoders). Aerial learns a neural representation of a
given input data and then extracts association rules from the
neural representation. This approach can be supplemented
by and is fully compatible with other ARM variations that
aim to mine a smaller subset of high-quality rules, such
as top-k rules mining (Fournier-Viger et al. 2012), and
ARM with item constraints (Baralis et al. 2012; Srikant
et al. 1997). An extensive set of experiments (Section
Evaluation) is performed and the results show that ARM
on knowledge graphs and sensor data together results in
more generically applicable rules with high support and data
coverage in comparison to ARM on sensor data only (Section
Discussion). Furthermore, the results show that the proposed
Aerial approach is capable of learning a concise set of high-
quality rules with full coverage over the entire data.

In summary, the two contributions of this paper are:
(1) a pipeline of operations to learn contextual semantic
association rules from both static and dynamic IoT data
as opposed to existing methods which consider sensor
data only; and (2) an Autoencoder-based ARM approach
for learning a more concise set of high-quality semantic
association rules than the state-of-the-art, with full data
coverage. This approach is orthogonal and can be used with
other ARM variations.

Related Work
This section introduces the related work and background
concepts.

Association Rule Mining
ARM is the problem of learning commonalities in data
in the form of logical implications, e.g., X → Y , which
is read as ‘if X then Y’. Initial ARM algorithms such
as Apriori (Agrawal et al. 1994) and HMine (Pei et al.
2001) focused on mining rules from categorical datasets.
The initial methods needed pre-discretization for numerical
data, struggled with scaling on big high-dimensional data,
and produced a high number of rules that are costly to
post-process. FP-Growth (Han et al. 2000), a widely used
ARM algorithm, has many variations to tackle some of the
aforementioned issues. ARM with item constraints (Srikant
et al. 1997) is an ARM variation that focuses on mining rules
for the items of interest rather than all, which reduces the
number of rules and execution time (Baralis et al. 2012).
Guided FP-Growth (Shabtay et al. 2021) is an FP-Growth
variation for ARM with item constraints. Other variations
include Parallel FP-Growth (Li et al. 2008) and FP-Growth
on GPU (Jiang and Meng 2017) for better execution times.

Recently, a few Deep Learning (DL)-based ARM
algorithms have been proposed. Patel et al. (2022) proposed
to use Autoencoders (Chen and Guo 2023) to learn frequent
patterns in a grocery dataset, however, no source code or
pseudo-code was given. Berteloot et al. (2023) also utilized
Autoencoders (ARM-AE) to learn association rules directly
from categorical tabular datasets. However, ARM-AE has
fundamental issues while extracting association rules from
an Autoencoder, which we elaborate on in Section Setting 2:
Aerial vs state-of-the-art.

Numerical Association Rule Mining (NARM) aims to
identify intervals for numerical variables to generate high-
quality association rules based on specific quality criteria.
Following the recent systematic literature reviews (Telikani
et al. 2020; Kaushik et al. 2023), the state-of-the-art in
NARM is nature-inspired optimization-based algorithms
which include evolutionary, differential evolution, swarm
intelligence, and physics-based approaches. They employ
heuristic search processes to find association rules that
optimize one or more rule quality criteria and are used for
both numerical and categorical datasets (Fister et al. 2018).
However, optimization-based ARM methods too suffer from
handling big high-dimensional data, together with other
broader issues in NARM such as having a large number of
rules, and explainability as also mentioned by Kaushik et al.
and other works (Telikani et al. 2020; Berteloot et al. 2023;
Kishore et al. 2021).

Association Rule Mining in Internet of Things
In IoT, both exhaustive ARM, such as Apriori and FP-
Growth, and the optimization-based NARM methods are
used for various tasks. Shang et al. (2021) utilized the Apriori
algorithm for big data mining in IoT in the enterprise finance
domain for financial risk detection. Sarker and Kayes (2020)
utilized an exhaustive ARM approach with item constraints
on phone usage data to learn user behaviors. Khedr et al.
(2020) proposed a distributed exhaustive ARM approach
that can run on a wireless sensor network. Fister Jr et al.
(2023) proposed TS-NARM, an optimization-based NARM
approach, and evaluated it on a smart agriculture use case
with 5 optimization-based methods.

Sequential or temporal ARM is another ARM variant used
in IoT (Wedashwara et al. 2019). The goal is to learn patterns
between subsequent events, rather than events that happen
in the same time frame, concurrent events. In this paper,
we focus on mining association rules for concurrent events,
rather than sequential events which is a different task.

Based on recent surveys (Karabulut et al. 2024;
Listl et al. 2024), semantic web technologies such as
ontologies (Gruber 1993) and knowledge graphs (Hogan
et al. 2021) have been used for knowledge representation
in IoT, providing valuable knowledge related to IoT
systems and its components. Naive SemRL (Karabulut et al.
2023) is the only ARM method that utilizes semantics
when learning rules from pre-discretized sensor data. It
is based on FP-Growth, however, the paper does not
provide a complete evaluation. We adopt a similar semantic
enrichment approach but develop a completely new DL-
based pipeline, and provide an extensive evaluation.

Note that the term semantic association rules is also used
when mining rules from knowledge graphs (Barati et al.

Prepared using sagej.cls

Karabulut et al. 3

Table 1. Input notation, explanations, and examples from water networks domain.

Notation Explanation Example

C Classes in an Ontology/Data schema Pipe, Junction
R, r Relations (R) in between the classes (C) mapped with

(r)
(Pipe) connectedTo (Junction)

A, a Properties for the classes and relations (Junction).elevation: elevation property of the class
Junction

V Node IDs in the knowledge graph P1, J2
E, e IDs of the edges (E) in between nodes (V) in the

knowledge graph mapped with (e)
(P1) (e1) (J2), P1 and J2 are node IDs, e1 is an edge
ID

L, l Labels for the nodes (V) and edges (E) in the
knowledge graph mapped with (l)

(P1:Pipe) (e1:connected to) (J2:Junction)

P, U, p Property (P) and value (U) pairs for nodes and edges
mapped with (p)

(P1:Pipe).elevation=v1, the elevation of pipe P1 is v1

M, S, F,
s

each timestamp (F) and sensor ID (S) pair is mapped
to a value (M) with (s)

a water flow sensor with the ID s1, measures u1 at a
time t1

V, S, b each sensor (S) is mapped (b) to a node (V) in the
knowledge graph

(S1:Sensor) (:has type) (:WaterFlow), a water flow
sensor

2017) only, which is a different task than rule learning
from sensor data presented in this paper. To the best of
our knowledge, there has been no fully DL-based ARM
algorithm for learning association rules from concurrent
events in IoT data.

Our approach. In contrast to existing work, we utilize
both static knowledge graphs and dynamic sensor data
that represent IoT data as a whole and propose a novel
neurosymbolic ARM approach for learning semantic rules
from IoT data, for concurrent events. Our approach leads
to a more concise set of high-quality association rules with
higher support and data coverage than sensor-only rules with
full coverage over the data. In addition, semantic association
rules facilitate domain knowledge integration as domain
knowledge can also be represented as semantic rules, e.g., as
part of a domain ontology underlying the knowledge graph.

Problem Definition
This research problem relates to learning association rules
from sensor data in IoT systems with semantic properties
from a knowledge graph describing the system and its
components, properties, and the relations between them. We
formulate the problems as follows:

Given a sensor dataset T with sensors mapped to nodes
in knowledge graph G with binding B, produce a set of
association rules with clauses based on T and G.

Association rules are formal logical formulas in the form
of implications, e.g. X → Y , where X → Y is a horn
clause with |Y | = 1 referring to a single literal and |X| ≥ 1
referring to a set of literals. X is referred to as the antecedent,
and Y is the consequent. A horn clause is defined as a
disjunction of literals with at most one positive literal. Note
that p→ q ∧ r can be re-written as p→ q and p→ r, hence
|Y | = 1.

Note that the T is converted to a set of transactions before
the learning process, e.g., by grouping sensor data based on
time frames. G is in the form of a directed property graph
which contains semantic information of the items in T, e.g.,
where a sensor is placed, and binding B maps sensors in T to
a corresponding node in G, assuming that each sensor has a

representation in G. Output rules can express conditions on
the sensor measurements and its context.

Input
This section presents input notation. To help readers
understand easier, Table 1 lists symbols used in the notation,
high-level explanations, and examples from WDN domain.

Knowledge graph. The knowledge graph described in
this section is a property graph with an ontology or data
schema as the underlying structure (Tamašauskaitė and
Groth 2023). We adapt the definition for a property graph,
given in the next paragraph, from (Hogan et al. 2021).

Property Graph. Let Con be a countably infinite
set of constants. A property graph is a tuple G =
(V,E,L, P, U, e, l, p), where V ⊆ Con is a set of node IDs,
E ⊆ Con is a set of edge IDs, L ⊆ Con is a set of labels,
P ⊆ Con is a set of properties, U ⊆ Con is a set of values,
e : E → V × V maps an edge ID to a pair of node IDs,
l : V ∪ E → 2L maps a node or edge ID to a set of labels,
and p : V ∪ E → 2P×U maps a node or edge ID to a set of
property–value pairs.

Ontology/Data Schema. Let O = (C,R,A, r, a) be an
ontology or data schema, where C ⊆ Con is a set of
classes, R ⊆ Con is a set of relations, A ⊆ Con be a set
of properties, r : R→ C × C maps a relation to a pair of
classes, and a : C ∪R→ 2P maps a class or a relation to a
set of properties.

To express that G has O as its underlying structure, we
define; i) L ⊆ C ∪R, meaning that the labels in G can only
be one of the classes or relations defined in O, ii) P ⊆ A,
meaning that the properties of V and E in G, can only be one
of the properties in A.

Sensor data. We define sensor data generically as a
tuple T = (M,S, F, s), where M ⊆ (R ∪ Con) is either
real numbers representing numerical sensor measurements
or constants representing categorical sensor values (states,
e.g., a valve is open or closed), S ⊆ Con is a set of sensor
IDs, F is an ordered numerical sequence of timestamps and
s : (S, F)→M maps every sensor ID and timestamp to a
value. Note, further in this approach, the order of timestamps

Prepared using sagej.cls

4 Journal Title XX(X)

Table 2. Output item forms, explanations, and examples from
the water network domain (#: Equation 1, and the symbols are
described in Table 1)

.
Form Example Explanation

p′#z′ p1.length > 100 Node p1 has length
bigger than 100

m′#z′ (s1:Sensor).value
< 10

Sensor s1 measures a
value smaller than 10

v′l = l′ p1 : Pipe Node p1 has the label
’Pipe’

e′l = l′ e1 : Junction Edge e1 has the label
’Junction’

v′ → v′′ = e′ p1→ p2 = e1 Node p1 connects to p2
via edge e1

is considered only to aggregate sensor measurements into
transactions (of time frames) to enable rule learning, since
the task is not to learn temporal rules.

Binding. It is a tuple B = (V, S, b), where V is the set
of node IDs from G, and S is the set of sensors IDs from
T, b : S → V maps each sensor ID to a node in G, and
b(S) ⊆ V meaning that there is a node ID for each sensor
ID, and there can be node IDs for more e.g., instances of
classes in C.

Output
The output is a set of rules of the form described below.

Let I be a set of items, with the following basic
comparison operations defined for each item: ∀i′ ∈
I (i′ ∈ {p′#z′,m′#z′, v′l = l′, e′l = l′, v′ → v′′ = e′}),
with p′ ∈ P , m′ ∈M , v′, v′′ ∈ V , e′ ∈ E, l′, v′l, e

′
l ∈ L

where v′l refers to a label mapped to a node with the ID v′,
and e′l refers to a label mapped to an edge with the ID e′. z′

refers to a value that is either categorical or numerical, #
refers to one of the comparison operations with a truth value
defined below:

#categorical(p, g) ::= (p = g) | (p ̸= g) | (p ∈ {g}) | (p /∈ {g})
#numerical(p, g) ::= (p = g) | (p ̸= g) | (p > g) | (p < g)

| (p ≤ g) | (p ≥ g)
(1)

X → Y is an association rule where (X,Y ⊆ I) ∧ (|Y | =
1). This means that items of the rule can only consist of
properties of classes or relations defined in the ontology,
and the consequent can only have one item. Examples and
explanations for item forms are given in Table 2. The item
forms consist of comparisons over m ∈M or p ∈ P , labels
l ∈ L, and whether an edge e ∈ E exists for a pair of v ∈ V .
We call rules in this form semantic association rules.

Semantic Association Rules from IoT Data

This section introduces our proposed ARM pipeline for
IoT data and an Autoencoder-based Neurosymbolic ARM
approach (Aerial) as part of the pipeline. The goal is to learn
a concise set of high-quality semantic association rules from
sensor data and knowledge graphs with full data coverage.

Pipeline
Figure 1 depicts the proposed ARM pipeline for IoT data,
which consists of three main stages: (i) data preparation, (ii)
training, and (iii) rule extraction.

Data Preparation. This stage of the pipeline pre-processes
a given sensor dataset and a knowledge graph describing the
IoT system and its components to form transactions, making
the data ready for ARM. First, sensor data is aggregated
into time frames (e.g., average measurements per minute
for all sensors). Each row in the Sensor Data depiction in
Figure 1 refers to a time frame that contains aggregated
sensor measurements, representing the state of the IoT
system within that time frame. Second, the numerical sensor
measurements and the numerical properties in the knowledge
graph are discretized (e.g., by applying equal-frequency
discretization (Foorthuis 2020)). This step is optional when
using a Numerical ARM method as part of the pipeline. Note
that the method of sensor data aggregation and discretization
is domain-dependent, and our approach is independent of the
preferred aggregation and discretization method.

As the last step, binding B is utilized to enrich sensor data
with semantics from the knowledge graph. Given a set of
transactions derived from sensor data T , and the binding B,
the semantic enrichment process augments each transaction
with semantic properties from the knowledge graph G. For
each sensor si ∈ T , we retrieve its corresponding node
vi = b(si) in G. We then determine the location of vi by
identifying adjacent nodes vj such that there exists ek ∈ E
with e(ek) = (vi, vj) or e(ek) = (vj , vi) and l(vj) ∩ C ̸=
∅, i.e., vj is an instance of a class in the ontology. For
both vi and its location node vj , we extract their associated
properties, p(vi) and p(vj). This process is repeated for all
si ∈ T , and the retrieved property–value pairs, together with
the sensor measurements s in the current transaction, are
combined into a semantically enriched transaction. Property
values from neighbors of node vj and the relations can
also be in the transaction set, depending on the application.
Note that the granularity of semantic modeling of knowledge
graphs can impact the quality of the rules learned.

Example: To continue our WDN example, Figure 2 shows
part of a WDN knowledge graph that we constructed for
the LeakDB (Vrachimis et al. 2018) dataset. The figure
contains 3 Pipe nodes in orange, 3 junction nodes in blue,
4 sensor nodes in beige, the properties of Junction 5,
and the connection between the nodes. The figure shows
that Junction 5 has a water pressure and demand sensor,
Junction 4 has a pressure sensor, and Junction 6 has
a demand sensor. Sensor measurements are stored separately
and not on the graph. Assume that the sensor measurements
are aggregated into time frames by applying an average
function per minute of measurements for each sensor, and the
numerical values are discretized into intervals using equal-
frequency discretization applied to each sensor type (e.g.,
all water flow sensors). To apply the semantic enrichment
on the measurements from the pressure sensor placed in
Junction 5, we first retrieve this node from the graph,
its location node Junction 5, and all the properties of

∗https://neo4j.com/

Prepared using sagej.cls

https://neo4j.com/

Karabulut et al. 5

Figure 1. Proposed ARM pipeline for IoT data to learn semantic association rules from sensor data and knowledge graphs.

Junction 5 that are shown on the right side of the figure,
and aggregate them with the sensor measurements. We repeat
this process for all sensors and obtain a single semantically
enriched transaction. This process is then executed for each
transaction. Thus, as the output of the data preparation stage,
we obtain a semantically enriched transaction dataset.

Training and Autoencoder Architecture This step of the
pipeline vectorizes the semantically enriched transactions
and trains an under-complete denoising Autoencoder (Vin-
cent et al. 2008) for ARM. Input transactions in standard
ARM literature consist of binary attributes indicating the
presence or absence of feature classes (Agrawal et al. 1994;
Kaushik et al. 2023). In line with the literature, we apply
one-hot encoding to the semantically enriched transactions
and obtain vectors of 0 and 1. The autoencoder is only
aware of the binary vectors, and our rule extraction algorithm
(Algorithm 1) keeps track of which feature value is fed into
which neuron of the autoencoder. Let j be the number of
sensors in T , i be the number of semantic property values in
U mapped to each s1..j , z be the number of classes per input
feature for simplicity, and n be the number of transactions. In
practice, i and z usually are different per s1..j , and property
values p ∈ U can be different per transaction if G changes
over time. Input transactions to the Autoencoder look as
follows:

Figure 2. Part of a WDN knowledge graph for LeakDB
(Vrachimis et al. 2018) using Neo4j*.

[{
m11s1 , . . . ,m1zsj ,

p11s11
, . . . , p1zs11

, . . . , p1zs1i
, . . . , p1zsji

}
,

. . .{
mn1

s1 , . . . ,mnz
sj ,

pn1
s11

, . . . , pnz
s11

, . . . , pnz
s1i

, . . . , pnz
sji

}]
(2)

We employ an under-complete denoising Autoencoder
which creates a lower-dimensional representation of the
noisy variant of its input (encoder) and then reconstructs
the noise-free input from the dimensionally reduced
version (decoder). In this way, the model learns a neural
representation of the input data and becomes more robust
to noise. After the one-hot encoding, a random noise N ∼
[−0.5, 0.5] is added to each item in (2). An under-complete
Autoencoder, by creating a lower-dimensional representation
of the input data (code layer) and then reconstructing the
initial input from the code layer, learns the most prominent
features of the input data rather than all. In the scope of
ARM, we argue (and later show empirically) that this results
in learning rules with high association strength, rather than
obvious rules, hence reducing the number of rules learned.

Our under-complete denoising autoencoder has 3 layers
for encoding and decoding units. During training, tanh(z) =
ez−e−z

ez+e−z is preferred in the hidden layers as activation
function. After the encoding and decoding, the softmax
function σ is applied per feature, σ(zi) = ezi∑n

j=1 ezj
, such that

the values for classes of a feature sums up to 1 (100%). Each
feature fi refers to either sensor measurements (m) or each of
associated semantic property values (p) from G, which was
exemplified in (2), with ci possible class values:

ci∑
j=1

σ(fi)j =

ci∑
j=1

efi,j∑ci
k=1 e

fi,k
=

∑ci
j=1 e

fi,j∑ci
k=1 e

fi,k
= 1 (3)

This leads to having one probability distribution per
feature in the output layer. We will later exploit this to
infer which class(es) of a feature are associated with other
features’ class values. As the loss function, binary cross-
entropy (BCE) loss is applied per feature, and the results are
aggregated:

Prepared using sagej.cls

6 Journal Title XX(X)

BCE(F) =

k∑
i=1

BCE(fi)

=

k∑
i=1

1

ci

ci∑
j=1

[
− yi,j log(pi,j)

− (1− yi,j) log(1− pi,j)

]
(4)

where pi,j refers to σ(fi)j and yi,j refers to initial noise-
free version of f j

i . We then calculate the loss between
the Autoencoder reconstruction and the initial noise-free
input and propagate the loss backward. When learning
to reconstruct a given input, we hypothesize that the
autoencoder also learns the associations between input
feature classes.

Example: Returning to our WDN example (Figure 2),
consider the pressure sensor located at Junction 5. For
simplicity, assume that its measurements are discretized
into three ordinal classes: {r1, r2, r3}, representing low,
medium, and high pressure levels. The sensor is linked
to the Junction 5 node in the knowledge graph,
which has the label Junction—one of five possible types:
{Junction,Pipe,Tank,Pump,Reservoir}. In addition to the
label, Junction 5 has six other semantic properties shown
on the right side of the figure (all except name and id,
e.g., elevation), each discretized into three classes (e.g.,
{rp1

1 , rp1

2 , rp1

3 } for property p1). As a result, this sensor
contributes eight categorical features to the autoencoder
input: one for the measurement, node label, and six for
the node’s properties. This step is repeated for each of
the sensors, forming a transaction. After one-hot encoding,
features become binary vectors. The autoencoder processes
the vectors and outputs probability distributions via softmax
per feature (e.g., eight probability distributions for the
pressure sensor placed at Junction 5). Equation (4)
calculates the difference between the initial noise-free input
and the final output, and propagates the loss backward.

Other parameters used in the training, such as the learning
rate, are described in Section Training and Execution. Note
that some parts of the architecture are kept flexible as
they may vary depending on the downstream task to which
the proposed approach is applied, such as the type of
discretization and sensor data aggregation.

Rule Extraction The last step of our pipeline is to
extract association rules from a trained Autoencoder using
Algorithm 1. Aerial is a neurosymbolic approach to rule
mining as it combines a neural network (an autoencoder)
with an algorithm that can extract associations in the form
of logical rules from a neural representation of input data
created by training the autoencoder. Note that any other
ARM algorithm can be used within the pipeline after the
semantic enrichment step.

Intuition: Aerial exploits the reconstruction loss of a
trained Autoencoder to learn associations. If reconstruction
for an input vector with marked features, test vector, is
more successful than a similarity threshold, then we say
that the marked features imply the successfully reconstructed
features. Marking features is done by assigning 1 (100%)

Algorithm 1 Aerial rule extraction algorithm.

1: procedure AERIAL(X , AE, τs, a)
X: input transactions, AE: trained autoencoder, τs:
similarity threshold, a: max antecedent size

2: R ← ∅
3: C ← COMBINATIONS(X.features, a)
4: for all A ∈ C do
5: v0 ← UNIFORMVECTOR(X.features)
6: V ← MARKFEATURES(v0, A)
7: for all v ∈ V do
8: ŷ ← AE.FORWARD(v)
9: if SIM(ŷA, vA) < τs then

10: continue
11: for all f ∈ X.features \A do
12: if ŷf > τs then
13: R ← R∪ {(A⇒ f)}
14: returnR

probability to a certain class value for a feature, 0 to the
other classes for the same feature, and assigning equal
probabilities to the rest of the features in an input vector.
In the case of IoT data, the input test vector represents
a partially defined environment via the marked features,
and the autoencoder reconstructs the co-occurrences with
the rest of the environment. Therefore, we hypothesize that
the marked feature classes in the test vector represent the
antecedents of a rule, while the reconstructed feature classes
represent the consequents.

Example: Figure 3 depicts an example rule extraction
process. Assume that there are only two features in the input
vector with 2 and 3 possible class values, namely f1 = {a, b}
and f2 = {c, d, e}. One-hot encoded versions of f1 and f2
can be represented with 5 digits. Assume we want to test
whether f1(a) implies a certain class value of f2. First,
we initialize a vector of equal probability distributions per
feature, [0.5, 0.5, 0.33, 0.33, 0.33], where the first two digits
correspond to the classes of f1 and the last three to the
classes of f2 respectively. Next, we mark f1(a) by assigning
a probability of 1 (100%) to the first digit in the vector
and 0 to the rest of the classes of f1, [1, 0, 0.33, 0.33, 0.33].
We call this a test vector. We perform a forward run on
the trained Autoencoder with this vector. Assume that the
output is [0.8, 0.2, 0.9, 0.04, 0, 06]. The third output digit
that corresponds to f2(c) is bigger than the threshold, 0.8.
Therefore, we say that f1(a)→ f2(c).

Algorithm: The rule extraction algorithm is given in
Algorithm 1. The parameters are the set of input vectors (X),
a trained Autoencoder (AE), a similarity threshold (τs), and
a maximum number of antecedents (a) that the rules will

Figure 3. An illustration of association rule extraction from a
trained Autoencoder with our Aerial approach.

Prepared using sagej.cls

Karabulut et al. 7

contain. Note that the input vectors X keep track of which
sensor value or semantic property value is fed into which
neuron, with a dictionary of key value pairs in X.features.
Based on the maximum number of antecedents a, in line 3,
the algorithm creates combinations of features as candidate
antecedents (C). For instance, to test whether values of
features f1 and f2 are associated with other features, a tuple
of (f1, f2) is created. Lines 4-13 go through each feature
tuple A ∈ C and first create an initial test vector with all
equal probabilities per feature (line 5). This corresponds to
the [0.5, 0.5, 0.33, 0.33, 0.33] vector given in the example
above. Line 6 marks feature values in the C with a probability
of 1, and returns a list of test vectors V . This corresponds to
the [1, 0, 0.33, 0.33, 0.33] vector in the example. Lines 7-13
perform a forward run per test vector and; i) check whether
output probabilities for the marked features are higher than
the given threshold (lines 9-10), ii) find features (other
than marked features, no self-implications) that have higher
probability than the given threshold, which are added to the
rule list as consequences together with the marked features
which are the antecedents (lines 11-13). The algorithm’s
time complexity in big O notation is O(|F |a+1) since it
iterates over all combinations of a antecedents from |F |
features and performs operations linear in the total number
of feature classes. Since a is typically small (usually less
than 10 for most practical applications), the complexity is
polynomial in |F |. For the extended analysis of Algorithm 1,
please see Appendix Time Complexity Analysis of Aerial.

Evaluation

Two different experimental settings are used to evaluate
the two main contributions of this paper.

First, to evaluate the impact of utilizing semantics in rule
mining from IoT data (our proposed pipeline), we designed
the Experimental Setting 1 where we run multiple ARM
methods (including ours) with and without semantics. And
we compare the results before and after adding semantics
based on various rule quality criteria and execution times.
Second, in Experimental Setting 2, we evaluate our proposed
Neurosymbolic ARM method Aerial across eight baselines
of different types, including exhaustive, optimization-based,
and DL-based ARM algorithms. We made our best effort
to compare different types of approaches fairly, based on
the number of rules, rule quality, and execution time.
Furthermore, we investigated the impact of the similarity
threshold hyperparameter of Aerial in a separate experiment
(Experiment 3).

This section first describes common elements across both
settings such as datasets, and then describes setting-specific
points including baselines. Additional experiments that are
not directly relevant to the two settings are given in Appendix
Additional Experiments.

Open source. The source codes of Aerial, base-
lines, and knowledge graph construction are written
in Python and are available online together with all
the datasets: https://github.com/DiTEC-project/semantic-
association-rule-learning.

Hardware. All experiments ran on an AMD EPYC 7H12
64-core CPU with 256 GiB memory. No GPUs were used.

Setup
This section describes the common elements for both of the
evaluation settings.

Datasets. 3 open-source IoT datasets from two different
domains, water networks and energy, are used for all the
experiments. A knowledge graph is created per dataset by
mapping metadata about each component to domain-specific
data structures. LeakDB (Vrachimis et al. 2018) is an
artificially generated realistic dataset in water distribution
networks. It contains sensor data from 96 sensors of various
types, and semantic information such as the formation of the
network, sensor placement, and properties of components. L-
Town (Vrachimis et al. 2020) is another dataset in the water
distribution networks domain with the same characteristics.
It has 118 sensors. LBNL Fault Detection and Diagnostics
Dataset (Granderson et al. 2022) contains sensor data from
29 sensors and semantics for Heating, Ventilation, and Air
Conditioning (HVAC) systems. As semantic properties, it
only includes a type property.

Training and Execution. The Aerial Autoencoder is
trained for each dataset. The training parameters found via
grid search are as follows: learning rate is set to 5e−3, the
models are trained for 5 epochs, Adam (Kingma and Ba
2014) optimizer is used for gradient optimization with a
weight decay of 2e−8, and the noise factor for the denoising
Autoencoder is 0.5. All experiments are repeated 20 times
over 20 randomly selected sensors for each dataset, and the
average results are presented unless otherwise specified. The
random selection is done by picking a random sensor node
on the knowledge graph, and traversing through the first,
second, etc. neighbors until reaching 20 sensor nodes. Equal-
frequency discretization (Foorthuis 2020) with 10 intervals is
used for numerical features for the methods that require pre-
discretization (Table 3).

Evaluation Metrics. The most common way of evaluating
ARM algorithms is to measure the quality of the rules from
different aspects as there is no single criterion that fits
all cases. In the evaluation, we used the standard metrics
in ARM literature which are support, confidence, data
coverage, number of rules, and execution time (Kaushik et al.
2023; Telikani et al. 2020). In addition, we selected Zhang’s
metric (Yan et al. 2009) to evaluate the association strength
of the rules, commonly used in many open-source libraries
including MLxtend (Raschka 2018) and NiaARM (Stupan
and Fister 2022). The definitions are given below:

• Support: Percentage of transactions with a cer-
tain item or rule, among all transactions (D):
support(X → Y) = |X∪Y |

|D| .
• Confidence: Conditional probability of a rule, e.g.,

given the transactions with the antecedent X in, the
probability of having the consequent Y in the same
transaction set: confidence(X → Y) = |X∪Y |

|X| .
• Rule Coverage: Percentage of transactions that

contains antecedent(s) of a rule: coverage(X →
Y) = support(X).

• Data Coverage: It refers to the percentage of
transactions to which the learned rules are applicable.

• Zhang’s Metric: This metric also considers the
case in which the consequent appears alone in
the transaction set, besides their co-occurrence, and

Prepared using sagej.cls

https://github.com/DiTEC-project/semantic-association-rule-learning
https://github.com/DiTEC-project/semantic-association-rule-learning

8 Journal Title XX(X)

Table 3. Overall comparison of evaluated ARM approaches.

Exhaustive DL-based Optimization

Semantic
Assoc.
Rules

Supports Supports Does not
directly
support

Rule Con-
straints

Supports
constraints

Supports
constraints

Does not sup-
port

Number of
Rules

Very high Low with
full data
coverage

Medium to
High

Rule
Length

Controllable Controllable Uncontrollable

Rule Qual-
ity

Controllable Partially
controllable

Partially con-
trollable

Discretization Required Required Not required

therefore measures dissociation as well. A score of
> 0 indicates an association, 0 indicates independence
and < 0 indicates dissociation: zm(X → Y) =

confidence(X→Y)−confidence(X′→C)
max(confidence(X→Y),confidence(X′→Y)) in which X ′

refers to the absent of X in the transaction set.

Hyperparameters. There are two parameters to our
Aerial approach: similarity threshold and number of
antecedents. The effect of similarity threshold on rule quality
is investigated in Experiment 3. The effect of the number
of antecedents on execution time and the number of rules
learned is investigated in Experiment 2.1.

Experimental Settings
This section describes the two core experimental settings
together with baselines in each setting. Please refer to Table
3 for baseline methods described in the settings below.

Setting 1: Semantics vs without Semantics. To show
that semantics can enable learning more generically
applicable rules with higher support and data coverage,
two different ARM algorithms, our Aerial approach and a
popular exhaustive method FP-Growth (Han et al. 2000),
are run with and without semantically enriched sensor data.
Two algorithms are used to show that including semantics
is beneficial regardless of the ARM method applied. The
results are compared based on the number of rules, average
rule support, confidence and coverage, and execution time.
FP-Growth is implemented using MLxtend (Raschka 2018).
This experimental setting does not aim to evaluate the
capability of each ARM algorithm to learn high-quality
rules, but only focuses on the impact of utilizing semantics.
The prior is performed as part of the second experimental
setting.

Setting 2: Aerial vs state-of-the-art. The goal is to
evaluate the proposed Aerial method for IoT data, and the
experiments are run on sensor data with semantics. The only
existing semantic ARM approach, Naive SemRL (Karabulut
et al. 2023), is chosen as a baseline and executed with
the exhaustive FP-Growth (as in the original paper) and
HMine algorithms. In addition, the optimization-based

Table 4. Aerial, baselines, and their parameters (Optimization
refers to TS-NARM and Exhaustive to Naive SemRL. See
Experiment 6 in Appendices for the evaluation of ARM-AE).

Algorithm Type Parameters

Aerial DL-based antecedents=2, similarity=0.8
ARM-AE DL-based antecedents=2, likeness=0.8

DE Optimization F = 0.5, CR = 0.9
GA Optimization pm = 0.01, pc = 0.8
PSO Optimization c1 = 0.1, c2 = 0.1, w = 0.8
LSHADE Optimization NPmax = 18.NP,NPmin =

4.NP,H = 5, p = 0.1, rarc =
2

jDE Optimization F (0) = 0.5, CR(0) = 0.9, τ =
0.1

FP-
Growth

Exhaustive (both) antecedents=2,
min support=(Aerial.rules.
avg support/2),
min confidence=0.8.

HMine Exhaustive

NARM method TS-NARM (Fister Jr et al. 2023) with
standard confidence metric as optimization goal is run with 5
algorithms (as in the original paper), Differential Evolution
(DE) (Storn and Price 1997), Particle Swarm Optimization
(PSO) (Kennedy and Eberhart 1995), Genetic Algorithm
(GA) (Goldberg 1989), jDE (Brest et al. 2006), and
LSHADE (Viktorin et al. 2016)). TS-NARM is implemented
using NiaPy (Vrbančič et al. 2018) and NiaARM (Stupan and
Fister 2022), and FP-Growth and HMine are implemented
using Mlxtend (Raschka 2018). All rule quality criteria
described earlier are used in the comparison.

ARM-AE (Berteloot et al. 2023), another Autoencoder-
based ARM method, uses an Autoencoder with equal-sized
layers (no dimensionality reduction), does not distinguish
between features (e.g., by applying softmax per feature as
in our approach), and assumes that input to the trained
Autoencoder represents a consequent while the output
represents an antecedent. We argue that this assumption
does not hold, and the evaluation of ARM-AE resulted in
exceptionally low rule quality both in their paper (33%
confidence on the Nursery dataset and 50% confidence on the
chess dataset) and also based on our results. Therefore, we
opted not to include it in the core Evaluation section. Please
refer to Experiment 6 in Appendices for the evaluation of
ARM-AE.

Challenges in comparison. The distinct nature of
different types of algorithms makes comparability a
challenge. The exhaustive algorithms can find all rules
with a given support and confidence threshold. The
execution time of the 5 optimization-based approaches (TS-
NARM) is directly controlled by the pre-set maximum
evaluation parameter. And running them longer leads to
better results up to a certain point (Section Aerial vs state-
of-the-art). The quality of the rules learned by the DL-
based ARM approaches depends on the given similarity
threshold parameter (or likeness for ARM-AE). Given
these differences, we made our best effort to compare
algorithms fairly and showed the trade-offs under different
conditions. Table 4 lists the parameters of each algorithm

Prepared using sagej.cls

Karabulut et al. 9

Table 5. Comparison of ARM on sensor data with semantics
(w-s, our pipeline) and without (wo-s), showing a significant
increase in support and rule coverage (cov.) with semantics
(FP-G = FP-Growth, Conf = Confidence).

Rules Support Cov. Conf.

w-s|wo-s w-s|wo-s w-s|wo-s w-s|wo-s

LeakDB
FP-G 103K|9K 0.41|0.19 0.43|0.2 0.95|0.97
Aerial 554|2.5K 0.54|0.25 0.59|0.3 0.91|0.87

L-Town
FP-G 25K|5K 0.86|0.36 0.9|0.38 0.96|0.96
Aerial 1K|2.5K 0.59|0.39 0.65|0.45 0.91|0.88

LBNL
FP-G 7K|2K 0.84|0.73 0.85|0.75 0.98|0.99
Aerial 73|258 0.74|0.65 0.74|0.66 1.0|0.99

for both of the settings, unless otherwise specified. For TS-
NARM, the population size is set to 200 which represents
an initial set of solutions, and the maximum evaluation is set
to 50,000 which represents the number of fitness function
evaluations before convergence. The parameters of the 5
optimization-based methods, population size, and maximum
evaluation count are the same as in the original paper. The
antecedent length of both exhaustive and DL-based ARM
methods is set to 2 for fairness unless otherwise specified.
The minimum support threshold of the exhaustive methods
is set to half of the average support of the rules learned by
our Aerial method so that both approaches will result in a
similar average support value for fairness.

Experimental Results
This section presents the experimental results for both
settings.

Setting 1: Semantics vs without Semantics.
Experiment 1.1: Rule Quality. Table 5 shows the

results for running Aerial and FP-Growth with (w-s) and
without (wo-s) semantic properties. Average support and
rule coverage for both algorithms on all datasets increased
significantly upon including semantics. The rule count is
increased for FP-Growth with semantics, while it decreased
with our Aerial approach. The confidence values did not
change significantly.

The results indicate that association rules learned from
sensor data and semantics are more generically applicable
than rules learned from sensor data only, as the support and
rule coverage values are significantly higher. Furthermore,
this experiment is repeated with varying numbers of
sensors, and the results (Experiment 4 in Appendices)
show that a higher number of sensors results in more
generically applicable rules. The comparison of rule count
and confidence for different approaches will be investigated
in Experimental Setting 2.

Experiment 1.2: Execution Time. Figure 4 shows the
effect of including semantics on the execution time of FP-
Growth and Aerial (training + rule extraction time). The
increase in the execution time of FP-Growth is 3-12 times,
while it is 2-3 times in Aerial and is more stable. However,
since the semantic association rules have higher support

Table 6. Association rule examples with (top) and without
(bottom) semantics learned from the LeakDB dataset.

Association Rule Support Coverage

if a water flow sensor s1 is inside
a Pipe with length 843-895, and a
water demand sensor s2 inside a
Junction measures 13-17, then s1
must measure between 23-31.

0.5 0.54

if the water flow sensor inside
Pipe 28 measures between 23-31,
then the water flow sensor inside
Pipe 18 must measure between -
767–471.

0.43 0.52

and data coverage, a smaller number of them can have full
data coverage (which is the case for Aerial and will be
investigated in Experimental Setting 2). Therefore, we argue
that the increment in the execution time is acceptable. Note
that despite FP-Growth running faster with the parameters
given in Table 4, it is strictly dependent on the preset
minimum support threshold value, and it runs slower for
lower thresholds. This is investigated in Experiment 2.1.

Illustration. Table 6 shows two example association rules
learned from the LeakDB dataset. The first rule is based
on the semantics and sensor data and has higher support
and coverage than the second rule, which is only about two
specific water flow sensors.

Setting 2: Aerial vs state-of-the-art
Experiment 2.1: Execution Time and Number of

Rules Analysis. This experiment investigates how execution
time and the number of rules change for the proposed
Aerial approach and baselines depending on their relevant
parameters.

The exhaustive methods’ execution time and number of
rules they mine are strictly dependent on the preset minimum
support threshold and the number of antecedents. Figure 5
shows how the number of rules and execution time change
based on antecedents (for 1, 2, 3, and 4 antecedents) and
minimum support thresholds (for 0.05, 0.1, 0.2, and 0.3). The
results show that the execution time increases as the support
threshold decreases and the number of rules increases above
10 million for LeakDB, while it reaches 1-2 million for
LBNL and L-Town datasets, which are highly costly to post-
process. Similarly, as the number of antecedents increases,

Figure 4. Effect of using semantics (indicated as w-s, and wo-s
for without semantics) on execution time.

Prepared using sagej.cls

10 Journal Title XX(X)

Figure 5. Exhaustive methods have higher execution times
(dotted lines) and produce a larger number of rules (bars) as
the number of antecedents (top chart, conf=0.8, sup=0.1)
increases or min. support threshold (bottom chart,
antecedents=3) decrease.

the number of rules reaches the levels of millions, while
the execution time reaches minutes. The execution did not
terminate for the LeakDB dataset when using 4 antecedents
after 30 minutes.

Execution time, number of rules, as well as the quality
of the rules mined by the optimization-based methods (TS-
NARM) strictly depend on the number of evaluations. Table
7 shows the effect of the maximum evaluations parameter
on the execution time, number of rules, and confidence of
the rules for the LeakDB dataset (the results are consistent
across datasets, see Experiment 5 in Appendices). The results
show that longer executions lead to a higher number of rules
with higher confidence for all 5 algorithms. 50,000 is chosen
as the maximum evaluation for the rule quality experiment
(Experiment 2.2) as this is also the case in the original paper.

Lastly, the rule extraction time of the proposed Aerial
approach is affected by the number of antecedent parameters,
as it increases the number of test vectors used in the
algorithm. Figure 6 shows the effect of increasing the number

Figure 6. Execution time and the number of rules learned by
Aerial depend on the number of antecedents.

Table 7. TS-NARM needs long evaluations (Evals.) for good
performance (LeakDB, Conf=Confidence). The results are
consistent across all datasets (Experiment 5 in Appendices).

Evals. Algorithm # Rules Time(s) Conf.

10000

DE 1388 109.24 0.69
GA 106 120.58 0.47
PSO 3281 115.39 0.81
LSHADE 1786 133.01 0.77
jDE 1578 88.48 0.75

30000

DE 6868 344.73 0.80
GA 472 393.73 0.40
PSO 10491 425.44 0.74
LSHADE 9914 411.82 0.94
jDE 5441 300.94 0.78

50000

DE 32525 782.72 0.81
GA 11578 650.88 0.60
PSO 32502 784.96 0.84
LSHADE 34887 981.07 0.99
jDE 24978 567.10 0.83

of antecedents on the number of rules and execution time.
The number of learned rules is 10-100 times lower than
the exhaustive methods. Exhaustive methods run slower on
datasets with low support rules, LeakDB (see Tables 5 and
8), while running faster on datasets with high support rules,
L-Town and LBNL. Both Aerial and exhaustive methods run
faster than the optimization-based methods for at least a low-
to-medium-size antecedent (1-4).

Table 8. Rule qualities of all algorithms across all datasets
(Exhaustive = FP-Growth and HMine, Sup = Support, Conf =
Confidence, Cov = Data Coverage).

Algorithm # Rules Sup. Conf. Cov. Zhang

LeakDB
Exhaustive 103283 0.41 0.95 1.0 0.82

DE 11841 0.19 0.77 1.0 0.24
GA 663 0.08 0.46 1.0 0.15
PSO 12566 0.08 0.75 1.0 0.16

LSHADE 23605 0.4 0.98 1.0 0.41
jDE 10270 0.25 0.77 1.0 0.29

Aerial 554 0.54 0.91 1.0 0.9
L-Town

Exhaustive 25421 0.86 0.96 1.0 -0.18
DE 15163 0.11 0.76 1.0 0.13
GA 1384 0.03 0.37 1.0 0.05
PSO 15651 0.03 0.75 1.0 0.04

LSHADE 22825 0.39 0.96 1.0 0.39
jDE 11255 0.19 0.78 1.0 0.21

Aerial 1005 0.59 0.91 1.0 0.4
LBNL

Exhaustive 7220 0.84 0.98 1.0 0.01
DE 17393 0.22 0.79 1.0 0.23
GA 580 0.1 0.45 1.0 0.11
PSO 17944 0.06 0.8 1.0 0.07

LSHADE 30799 0.52 0.98 1.0 0.52
jDE 15594 0.28 0.77 1.0 0.29

Aerial 73 0.74 1.0 1.0 0.15

Prepared using sagej.cls

Karabulut et al. 11

Experiment 2.2: Rule Quality Analysis. The goal of
this experiment is to assess the quality of rules found by
Aerial and baselines, highlighting the trade-offs between
algorithms. How to read the results? The evaluation results
are shown in Table 8, and the highest scores are intentionally
not emphasized as ideal rule quality values can vary by task.
As an example, high-support rules can be good at discovering
trends in the data, while low-support rules may be better
at detecting anomalies. The focus is on understanding each
algorithm’s strengths under diverse conditions; therefore,
results should be interpreted together.

Aerial was able to find a concise set of rules that
have full data coverage with 90%+ confidence, the highest
association strength (Zhang’s metric) in the LeakDB and
L-Town datasets, and the second highest in the LBNL
dataset. The FP-Growth and HMine algorithms yield the
same results as they are Exhaustive. They have full data
coverage, resulted in a high number of rules except for
the LBNL dataset, and had very low association strength
on L-Town and LBNL. The optimization-based methods
had low confidence except for the LSHADE, which had a
high confidence score on all datasets, the highest association
strength among other optimization-based methods, and the
highest in LBNL among all algorithms.

These results show that Aerial was able to find prominent
patterns in the datasets that have high association strength
and achieved full data coverage with a concise number
of rules in comparison to state-of-the-art, which was the
initially stated goal. In addition, Experiment 3 shows that
higher similarity thresholds in Aerial lead to even higher
quality association rules.

Experiment 3: Effect of similarity threshold on rule
quality in Aerial. The similarity threshold parameter of our
Aerial method affects the quality of the rules learned. This
experiment investigates the effect of the similarity threshold
parameter of Aerial on all 3 datasets.

Table 9 presents the results for all 3 datasets. We
observe that as the similarity threshold increases, the
number of learned rules decreases, while the average
support, confidence, and association strength (Zhang’s
metric) increase, with the exception when the similarity
threshold is 0.9. In that case, we observe a decrease in the
association strength except in the LeakDB dataset. We argue
that this is due to both the relatively low number of rules (6
and 116) learned in comparison to a relatively higher number
of rules in LeakDB (412), and LeakDB being a low-support
dataset (see Table 5), meaning that the average rule support
for association rules in the LeakDB dataset is significantly
lower than the other two datasets.

These results imply that increasing the similarity threshold
results in more prominent rules but fewer in number,
acting similarly to the minimum confidence threshold of the
exhaustive algorithms.

Discussion
This section discusses and summarizes the experimental
findings.

Semantics for generalizability. The results in Experi-
mental Setting 1 showed that learning association rules from
both static and dynamic data in IoT systems results in rules
that have higher support and data coverage and, therefore,

Table 9. Aerial learns a more concise set of higher quality rules
as the similarity threshold (Sim.) increases (Conf = Confidence,
Cov = Rule Coverage, Zhang = Zhang’s Metric).

Sim. # Rules Support Conf. Cov. Zhang

LeakDB
0.9 412 0.47 0.92 1 0.91
0.8 554.4 0.54 0.91 1 0.9
0.7 1845 0.3 0.88 1 0.83
0.6 3027 0.25 0.84 1 0.79
0.5 9831 0.28 0.73 1 0.58

L-Town
0.9 116 0.7 0.98 1 0.06
0.8 1005.2 0.59 0.91 1 0.4
0.7 1860 0.39 0.82 1 0.33
0.6 3851 0.32 0.76 1 0.32
0.5 23017 0.38 0.65 1 0.2

LBNL
0.9 6 0.75 1 0.71 0
0.8 73 0.74 1 1 0.15
0.7 826 0.66 0.86 1 0.13
0.6 1730 0.64 0.75 1 0.08
0.5 2877 0.63 0.7 1 0.06

are more generically applicable than rules learned from
sensor data only. The experiments also showed that including
semantics is beneficial regardless of the ARM approach, as
the results were similar for both exhaustive FP-Growth and
our proposed Aerial approach.

Neurosymbolic methods can help learning a concise
set of high-quality rules. As semantic enrichment of sensor
data increases data dimension, current ARM methods result
in a higher number of rules, which is already identified
as a research problem in the ARM literature. As an
alternative, our proposed Neurosymbolic Aerial rule mining
approach can learn a concise number of rules with full data
coverage, high confidence, and association strength, which
is demonstrated in Experimental Setting 2. We argue that
this is thanks to utilizing an under-complete autoencoder that
can capture more prominent features of the input data in
its code layer, rather than all features, which may lead to
obvious rules with low association strength. Note that rules
from optimization-based methods (e.g., numeric intervals)
are not one-to-one comparable to other methods, while
rules from our neurosymbolic method are generally a subset
of those found by exhaustive/algorithmic methods when
support and confidence thresholds are sufficiently low, but
that comes at the cost of rule explosion and impractical
runtimes. We believe that there is potential in the direction
of neurosymbolic rule learning, and Aerial is a strong initial
step.

Execution time. Semantic enrichment increases execution
time by 2-3 times for Aerial and 3-12 times for exhaustive
methods, as shown in Experiment 1.2. However, semantic
association rules have higher support and rule coverage,
and a substantially smaller number of them can have full
data coverage, therefore, we argue that the increment is
acceptable. The exhaustive methods perform poorly on low-
support (LeakDB) datasets with a low minimum support
threshold and also perform poorly with a high number

Prepared using sagej.cls

12 Journal Title XX(X)

of antecedents, as demonstrated in Experiment 2.1. This
experiment also showed that Aerial runs faster than the
exhaustive methods on low-support datasets, and Aerial’s
execution time does not depend on the datasets’ support
characteristics. Note that Aerial can be parallelized and
run on a GPU (similar to the exhaustive methods). The
optimization-based methods’ execution time is directly
controlled by the preset maximum evaluation parameter.
Longer executions are required to obtain higher-quality rules,
and this also results in a high number of rules, which are
costly to process and maintain. Aerial is faster than the
optimization-based methods for learning rules with low-to-
medium-size antecedents (1 to 4). Note that the number of
antecedents for the optimization-based methods can not be
controlled.

Variations of Aerial. Many existing ideas in ARM
literature can be integrated into our Aerial approach. For
instance, in ARM with item constraints, rules of interest are
described using a taxonomy or an ontology, and then ARM
algorithms focus on those rules only, which speeds up the
execution and leads to a smaller number of rules (Srikant
et al. 1997; Baralis et al. 2012). A similar mechanism can
be implemented in Aerial simply by creating the test vectors
in a way that only the items of interest are marked. This
will reduce the number of test vectors, and thus reduce the
execution time and the number of learned rules. Similarly,
top-k rule mining focuses on mining top-k association rules
with the highest quality (Fournier-Viger et al. 2012). An
analogous process in Aerial is to find the top-k rules with
the highest output probability. As shown in Experiment 3,
higher output probabilities lead to higher quality rules.

Real-world scalability. Real-world large-scale IoT data
differs from the tabular datasets that most state-of-the-art
ARM methods focus on. Each sensor is treated as a different
data dimension, hence resulting in potentially extremely
high-dimensional data, especially upon including semantic
properties. Therefore, utilizing neural networks’ capability
to process high-dimensional data is essential. Both time
complexity (given in Appendix Time Complexity Analysis
of Aerial) and execution time analyses (Experiments 1.2 and
2.1) show that our Neurosymbolic rule mining approach is
scalable on large-scale IoT data. Extrapolating the execution
times (training + rule extraction) shown in Figure 6, Aerial
can scale up to tens of thousands of sensors on a laptop
(see Hardware) in a day. The training is linear over the
number of features (sensor measurements and associated
semantic properties) and the number of transactions, and
the rule extraction stage is polynomial over the number of
feature classes. Algorithm 1 is parallelizable as test vectors
per feature subsets are created and processed independently.
Another advantage of our Neurosymbolic ARM approach
over the commonly used algorithmic approaches, such as FP-
Growth, is the option to leverage neural network–specific
optimizations that significantly speed up execution and
improve scalability. Some examples are batch normalization,
both in training and when performing forward runs with the
test vectors, and quantization and pruning to reduce model
size and inference time without compromising performance.

Practical implications. Besides knowledge discovery,
ARM is a cornerstone of interpretable machine learning
models such as rule list classifiers, which are the standard

approach to high-stakes decision-making (Rudin 2019).
Such models process a given set of association rules to find
a small subset that can be used to explain a certain class
label. One example of such high-stakes decision-making in
the scope of IoT systems, continuing our WDN example,
is leakage detection in WDNs. In this case, our proposed
pipeline can be used to learn association rules with a class
label (e.g., 0: no leakage, 1: leakage) on the consequent side
(ARM with item constraints as explained in the Variations
of Aerial discussion point). The rules are then passed to
a rule-based classifier such as CORELS (Angelino et al.
2018) to build a classifier that can detect leakages. This
example can easily be extended to other anomaly detection
tasks, including digital twins of IoT systems. In addition,
our proposed pipeline and rule mining method Aerial is
integrated into a digital twin architecture of a WDN (Degeler
et al. 2024) to detect such abnormalities.

Conclusion and Future Work

This paper introduced two contributions: i) a novel ARM
pipeline for IoT systems, and ii) a Neurosymbolic ARM
method (Aerial). In contrast to the state-of-the-art, our
pipeline utilizes both dynamic sensor data and static
knowledge graphs that describe the metadata of IoT systems.
Aerial creates a neural representation of the given input data
using an Autoencoder and then extracts association rules
from the neural representation. The experiments showed
that the proposed pipeline can learn rules with up to 2-
3 times higher support and coverage, which are therefore
more generically applicable than ARM on sensor data only.
Moreover, the experiments further demonstrated that Aerial
can learn a more concise set of high-quality association rules
than the state-of-the-art, with full data coverage. Aerial is
also compatible with existing work on addressing the high
number of rule problems in the ARM literature.

In future work, we first plan to investigate other neural
network architectures for their capabilities of learning
associations and develop new methods to extract rules from
neural representations created using various architectures.
This includes experimenting with other Autoencoder
architectures, e.g., an over-complete Autoencoder, as well as
graph neural networks that can better capture the semantic
relation in an IoT knowledge graph, leading to better
semantic enrichment. Secondly, we plan to investigate the
impact of semantic modeling in knowledge graphs on the
rules learned, and measure the capability of our approach to
capture the semantics of the underlying ontology, such as the
symmetry or the transitivity of the relations. Third, we plan to
investigate better semantic enrichment methods, potentially
incorporating graph neural networks to utilize their strength
in capturing graph structures. Finally, we plan to apply our
methods to downstream tasks such as leakage detection in
water networks or fault diagnosis in energy systems.

Funding

This work has received support from The Dutch Research Council
(NWO), in the scope of the Digital Twin for Evolutionary Changes
in water networks (DiTEC) project, file number 19454.

Prepared using sagej.cls

Karabulut et al. 13

References

Agrawal R, Srikant R et al. (1994) Fast algorithms for mining
association rules. In: Proc. 20th int. conf. very large data bases,
VLDB, volume 1215. Santiago, Chile, pp. 487–499.

Angelino E, Larus-Stone N, Alabi D, Seltzer M and Rudin C
(2018) Learning certifiably optimal rule lists for categorical
data. Journal of Machine Learning Research 18(234): 1–78.

Baralis E, Cagliero L, Cerquitelli T and Garza P (2012) Generalized
association rule mining with constraints. Information Sciences
194: 68–84.

Barati M, Bai Q and Liu Q (2017) Mining semantic association
rules from rdf data. Knowledge-Based Systems 133: 183–196.

Berteloot T, Khoury R and Durand A (2023) Association rules
mining with auto-encoders. arXiv preprint arXiv:2304.13717 .

Brest J, Zumer V and Maucec MS (2006) Self-adaptive
differential evolution algorithm in constrained real-parameter
optimization. In: 2006 IEEE international conference on
evolutionary computation. IEEE, pp. 215–222.

Chen S and Guo W (2023) Auto-encoders in deep learning—a
review with new perspectives. Mathematics 11(8): 1777.

Degeler V, Hadadian M, Karabulut E, Lazovik A, van het
Loo H, Tello A and Truong H (2024) Ditec: Digital twin
for evolutionary changes in water distribution networks.
In: International Symposium on Leveraging Applications of
Formal Methods. Springer, pp. 62–82.

Degeler V, Lazovik A, Leotta F and Mecella M (2014)
Itemset-based mining of constraints for enacting smart
environments. In: 2014 IEEE International Conference
on Pervasive Computing and Communication Workshops
(PerCom Workshops). pp. 41–46. DOI:10.1109/PerComW.
2014.6815162.

Dolores M, Fernandez-Basso C, Gómez-Romero J and Martin-
Bautista MJ (2023) A big data association rule mining based
approach for energy building behaviour analysis in an iot
environment. Scientific Reports 13(1): 19810.

Fan J, Zhang Y, Wen W, Gu S, Lu X and Guo X (2021) The
future of internet of things in agriculture: Plant high-throughput
phenotypic platform. Journal of Cleaner Production 280:
123651.

Fister I, Iglesias A, Galvez A, Del Ser J, Osaba E and Fister
I (2018) Differential evolution for association rule mining
using categorical and numerical attributes. In: Intelligent
Data Engineering and Automated Learning–IDEAL 2018: 19th
International Conference, Madrid, Spain, November 21–23,
2018, Proceedings, Part I 19. Springer, pp. 79–88.

Fister Jr I, Fister D, Fister I, Podgorelec V and Salcedo-Sanz S
(2023) Time series numerical association rule mining variants
in smart agriculture. Journal of Ambient Intelligence and
Humanized Computing 14(12): 16853–16866.

Foorthuis R (2020) The impact of discretization method on the
detection of six types of anomalies in datasets. arXiv preprint
arXiv:2008.12330 .

Fournier-Viger P, Wu CW and Tseng VS (2012) Mining top-k
association rules. In: Advances in Artificial Intelligence: 25th
Canadian Conference on Artificial Intelligence, Canadian AI
2012, Toronto, ON, Canada, May 28-30, 2012. Proceedings 25.
Springer, pp. 61–73.

Goldberg DE (1989) Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Professional.

Granderson J, Lin G, Chen Y, Casillas A, Im P, Jung S, Benne
K, Ling J, Gorthala R, Wen J, Chen Z, Huang S, and Vrabie
D (2022) Lbnl fault detection and diagnostics datasets. DOI:
10.25984/1881324. URL https://data.openei.org/

submissions/5763.
Gruber TR (1993) A translation approach to portable ontology

specifications. Knowledge acquisition 5(2): 199–220.
Han J, Pei J and Yin Y (2000) Mining frequent patterns without

candidate generation. ACM sigmod record 29(2): 1–12.
He G, Dai L, Yu Z and Chen CLP (2024) Gan-based temporal

association rule mining on multivariate time series data. IEEE
Transactions on Knowledge and Data Engineering 36(10):
5168–5180. DOI:10.1109/TKDE.2023.3335049.

Hogan A, Blomqvist E, Cochez M, d’Amato C, de Melo
G, Gutiérrez C, Kirrane S, Labra Gayo JE, Navigli R,
Neumaier S, Ngonga Ngomo AC, Polleres A, Rashid
SM, Rula A, Schmelzeisen L, Sequeda JF, Staab S
and Zimmermann A (2021) Knowledge Graphs. Num-
ber 22 in Synthesis Lectures on Data, Semantics, and
Knowledge. Springer. ISBN 9783031007903. DOI:10.
2200/S01125ED1V01Y202109DSK022. URL https://

kgbook.org/.
Jiang H and Meng H (2017) A parallel fp-growth algorithm based

on gpu. In: 2017 IEEE 14th International Conference on e-
Business Engineering (ICEBE). IEEE, pp. 97–102.

Karabulut E, Degeler V and Groth P (2023) Semantic association
rule learning from time series data and knowledge graphs.
In: Proceedings of the 2nd International Workshop on
Semantic Industrial Information Modelling (SemIIM 2023) co-
located with 22nd International Semantic Web Conference
(ISWC 2023). pp. 1–7. URL https://ceur-ws.org/

Vol-3647/SemIIM2023_paper_3.pdf.
Karabulut E, Pileggi SF, Groth P and Degeler V (2024) Ontologies

in digital twins: A systematic literature review. Future
Generation Computer Systems 153: 442–456. DOI:10.1016/
j.future.2023.12.013.

Kaushik M, Sharma R, Fister Jr I and Draheim D (2023) Numerical
association rule mining: A systematic literature review. arXiv
preprint arXiv:2307.00662 .

Kennedy J and Eberhart R (1995) Particle swarm optimization. In:
Proceedings of ICNN’95-international conference on neural
networks, volume 4. ieee, pp. 1942–1948.

Khedr AM, Osamy W, Salim A and Abbas S (2020) A novel
association rule-based data mining approach for internet of
things based wireless sensor networks. IEEE Access 8:
151574–151588.

Kingma DP and Ba J (2014) Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 .

Kishore S, Bhushan V and Suneetha K (2021) Applications of
association rule mining algorithms in deep learning. In: Com-
puter Networks and Inventive Communication Technologies:
Proceedings of Third ICCNCT 2020. Springer, pp. 351–362.

Li H, Wang Y, Zhang D, Zhang M and Chang EY (2008) Pfp:
parallel fp-growth for query recommendation. In: Proceedings
of the 2008 ACM conference on Recommender systems. pp.
107–114.

Listl FG, Dittler D, Hildebrandt G, Stegmaier V, Jazdi N and
Weyrich M (2024) Knowledge graphs in the digital twin: A
systematic literature review about the combination of semantic
technologies and simulation in industrial automation. arXiv

Prepared using sagej.cls

https://data.openei.org/submissions/5763
https://data.openei.org/submissions/5763
https://kgbook.org/
https://kgbook.org/
https://ceur-ws.org/Vol-3647/SemIIM2023_paper_3.pdf
https://ceur-ws.org/Vol-3647/SemIIM2023_paper_3.pdf

14 Journal Title XX(X)

preprint arXiv:2406.09042 .
Ma M, Wang P and Chu CH (2013) Data management for internet

of things: Challenges, approaches and opportunities. In:
2013 IEEE International conference on green computing and
communications and IEEE Internet of Things and IEEE cyber,
physical and social computing. IEEE, pp. 1144–1151.

Patel HK et al. (2022) An innovative approach for association
rule mining in grocery dataset based on non-negative matrix
factorization and autoencoder. Journal of Algebraic Statistics
13(3): 2898–2905.

Pei J, Han J, Lu H, Nishio S, Tang S and Yang D (2001) H-mine:
Hyper-structure mining of frequent patterns in large databases.
In: proceedings 2001 IEEE international conference on data
mining. IEEE, pp. 441–448.

Raschka S (2018) Mlxtend: Providing machine learning and data
science utilities and extensions to python’s scientific computing
stack. The Journal of Open Source Software 3(24). DOI:
10.21105/joss.00638. URL https://joss.theoj.org/

papers/10.21105/joss.00638.
Rhayem A, Mhiri MBA and Gargouri F (2020) Semantic web

technologies for the internet of things: Systematic literature
review. Internet of Things 11: 100206.

Rudin C (2019) Stop explaining black box machine learning models
for high stakes decisions and use interpretable models instead.
Nature machine intelligence 1(5): 206–215.

Sarker IH and Kayes A (2020) Abc-ruleminer: User behavioral
rule-based machine learning method for context-aware
intelligent services. Journal of Network and Computer
Applications 168: 102762.

Shabtay L, Fournier-Viger P, Yaari R and Dattner I (2021) A guided
fp-growth algorithm for mining multitude-targeted item-sets
and class association rules in imbalanced data. Information
Sciences 553: 353–375.

Shang H, Lu D and Zhou Q (2021) Early warning of enterprise
finance risk of big data mining in internet of things based on
fuzzy association rules. Neural Computing and Applications
33(9): 3901–3909.

Srikant R, Vu Q and Agrawal R (1997) Mining association rules
with item constraints. In: Kdd, volume 97. pp. 67–73.

Storn R and Price K (1997) Differential evolution–a simple and
efficient heuristic for global optimization over continuous
spaces. Journal of global optimization 11: 341–359.

Stupan Ž and Fister I (2022) Niaarm: a minimalistic framework for
numerical association rule mining. Journal of Open Source
Software 7(77): 4448.

Sunhare P, Chowdhary RR and Chattopadhyay MK (2022) Internet
of things and data mining: An application oriented survey.
Journal of King Saud University-Computer and Information
Sciences 34(6): 3569–3590.

Tamašauskaitė G and Groth P (2023) Defining a knowledge graph
development process through a systematic review. ACM
Transactions on Software Engineering and Methodology 32(1):
1–40.

Telikani A, Gandomi AH and Shahbahrami A (2020) A survey
of evolutionary computation for association rule mining.
Information Sciences 524: 318–352.

Viktorin A, Pluhacek M and Senkerik R (2016) Success-
history based adaptive differential evolution algorithm with
multi-chaotic framework for parent selection performance
on cec2014 benchmark set. In: 2016 IEEE congress on

evolutionary computation (CEC). IEEE, pp. 4797–4803.
Vincent P, Larochelle H, Bengio Y and Manzagol PA (2008)

Extracting and composing robust features with denoising
autoencoders. In: Proceedings of the 25th international
conference on Machine learning. pp. 1096–1103.

Vrachimis S, Eliades D, Taormina R, Ostfeld A, Kapelan Z, Liu
S, Kyriakou M, Pavlou P, Qiu M and Polycarpou M (2020)
Dataset of battledim: Battle of the leakage detection and
isolation methods. In: Proc., 2nd Int CCWI/WDSA Joint Conf.
Kingston, ON, Canada: Queen’s Univ.

Vrachimis SG, Kyriakou MS et al. (2018) Leakdb: a bench-
mark dataset for leakage diagnosis in water distribution net-
works:(146). In: WDSA/CCWI Joint Conference Proceedings,
volume 1.

Vrbančič G, Brezočnik L, Mlakar U, Fister D and Fister I (2018)
Niapy: Python microframework for building nature-inspired
algorithms. Journal of Open Source Software 3(23): 613.

Wedashwara W, Ahmadi C and Arimbawa I (2019) Sequential
fuzzy association rule mining algorithm for plants environment
classification using internet of things. In: AIP Conference
Proceedings, volume 2199. AIP Publishing.

Yan X, Zhang C and Zhang S (2009) Confidence metrics for
association rule mining. Applied Artificial Intelligence 23(8):
713–737.

Time Complexity Analysis of Aerial
This section provides a time complexity analysis of our
Aerial approach, Algorithm 1, in big O notation. We analyze
each line in the algorithm and aggregate the results at the
end.

Line 2 initializes an empty rule setR in O(1).
Line 3 is a combination operation over the input features,

X.features, taken antecedent a at a time, and creates a set
of candidate antecedents C. Let’s assume F is the features
(X.features) for short, and a is the maximum number of
antecedents parameter, then the complexity is O

(|F |
a

)
.

Line 4 iterates over C. Therefore, the operations inside this
outer loop are repeated

(|F |
a

)
times.

Line 5 initiates a vector with equal probabilities per feature
class value. It is linear over the feature class count. ∀f ∈ F ,
Fc =

∑|F |
i=1 |f c

i | where Fc is the total number of classes
across all features F , O(Fc).

Line 6 creates a set of vectors in which class values of the
features A ∈ C are marked with 1. In the worst-case scenario,
this step is linear over feature classes when the C is equal to
all of the features in the input dataset, hence, O(Fc).

Line 7 iterates |V | times over the generated vectors in the
previous line.

Line 8 performs a forward pass with the given test vector.
Since each forward pass performs softmax operations over
the class values of features, this operation is linear over the
number of feature classes, O(Fc), assuming that softmax is
performed in O(1).

Lines 9 and 10 perform a comparison operation to check
whether probabilities inside the ŷ array that corresponds to
the marked features A are higher than a threshold or not.
Assuming the worst-case scenario, this operation is repeated
for each feature class in the input data, O(Fc).

Prepared using sagej.cls

https://joss.theoj.org/papers/10.21105/joss.00638
https://joss.theoj.org/papers/10.21105/joss.00638

Karabulut et al. 15

Lines 11-13 iterate over the features F that are not among
the marked features A (line 11), and check whether the
probability of each feature class is higher than the threshold
(line 12). High-probability features are then stored in line 13
as rules together with A. Since the loop is repeated at most Fc

for each feature class, it is linear over the number of feature
classes, O(Fc).

Aggregation of the results:

1. The outer loop runs
(|F |

a

)
times.

2. For each iteration of the outer loop, lines 5 and 6
create an initial vector with equal probabilities and
mark some of the feature classes in O(Fc) time.

3. The middle loop (line 7) runs over the V test vectors.
A forward pass and the probability check in lines 8-10
are performed in O(Fc) time.

4. The inner-most loop (line 11) runs in O(Fc) time.

Therefore, the complexity is (O
(|F |

a

)
×O(Fc)) + (|V | ×

2×O(Fc)). Assuming that |V | is linear over the number of
features |F | (as the number of test vectors per antecedent is
bounded due to limited class combinations, and the number
of antecedents scales with |F |), and that the algorithm
performs operations linear in the total number of feature
classes Fc, which is assumed to scale linearly with |F | (as
each feature typically has a small, fixed number of class
values in practice), the first part of the equation becomes the
dominant term. Thus, the time complexity in the worst case
is (O

(|F |
a

)
×O(Fc)).

Rewriting O
(|F |

a

)
as O(|F |a), and assuming that the

feature class count is linear over the number of features |F |
(again as each feature typically has a small, fixed number
of class values in practice), and the number of antecedents
a is a constant (usually less than 10, and between 2-5 in
most practical applications) the complexity of Algorithm 1
is O(|F |a+1).

Additional Experiments
This section contains auxiliary experiments that were not
included in the core part of the paper. The experimental
setups described in Section Experimental Settings are
followed for these additional experiments as well unless
otherwise specified.

Experiment 4: Effect of sensor count on rule support
and coverage. This experiment follows Experimental
Setting 1 and investigates whether the effect of semantic
enrichment of the sensor data is dependent on the number
of sensors in terms of the rule support and coverage. This
is an extension of the Experiments in Section Semantics vs
without Semantics.

Table 10 shows the average rule count, support, rule
coverage, and confidence of the rules mined by FP-Growth
and our Aerial algorithms with varying numbers of sensors
(10, 15, and 20) with (w-s) and without (wo-s) the semantic
enrichment. On all 3 datasets, regardless of the number
of sensors used, the average support and coverage of the
rules increased upon semantic enrichment of the sensor data.
This is consistent with the results presented in Semantics
vs without Semantics section. In addition, the results show
that increasing the number of sensors leads to even higher

Table 10. Comparison of ARM on sensor data with semantics
(indicated as w-s) and without semantics (wo-s) for 10, 15, and
20 sensors (Cov=Coverage, Conf=Confidence, FP =
FP-Growth, AE = Aerial).

Rules Support Cov. Conf.

w-s|wo-s w-s|wo-s w-s|wo-s w-s|wo-s

LeakDB
FP(10) 43K|472 0.23|0.22 0.24|0.23 0.96|0.96
FP(15) 130K|7321 0.27|0.14 0.28|0.15 0.96|0.97
FP(20) 103K|8974 0.41|0.19 0.43|0.2 0.95|0.97
AE(10) 123|109 0.31|0.24 0.33|0.27 0.94|0.91
AE(15) 547|940 0.31|0.27 0.37|0.31 0.88|0.89
AE(20) 554|2521 0.54|0.25 0.59|0.3 0.91|0.87

L-Town
FP(10) 11489|578 0.58|0.35 0.62|0.37 0.94|0.95
FP(15) 19447|2055 0.76|0.33 0.8|0.35 0.95|0.95
FP(20) 25421|5047 0.86|0.36 0.9|0.38 0.96|0.96
AE(10) 72|381 0.61|0.34 0.67|0.39 0.92|0.88
AE(15) 264|1300 0.54|0.35 0.6|0.42 0.9|0.87
AE(20) 1005|2551 0.59|0.39 0.65|0.45 0.91|0.88

LBNL
FP(10) 25|764 0.94|0.24 0.94|0.24 1|0.99
FP(15) 280|181 0.75|0.35 0.75|0.35 1|0.99
FP(20) 7220|2883 0.84|0.73 0.85|0.75 0.98|0.99
AE(10) 422|14 0.73|0.28 0.73|0.29 1|0.97
AE(15) 832|61 0.78|0.42 0.78|0.43 1|0.99
AE(20) 73|258 0.74|0.65 0.74|0.66 1|0.99

support and rule coverage values on average. The FP-
Growth algorithm mined significantly more rules upon
semantic enrichment across all datasets, while the number
of learned rules decreased for our Aerial approach after
semantic enrichment. We argue that due to the static semantic
properties in the knowledge graph, the FP-Growth generates
a high number of association rules between those static
properties, while this is not the case for Aerial. Lastly, the
confidence values did not change significantly.

Experiment 5: Effect of maximum evaluations on
the execution time and rule quality of optimization-
based ARM. This section contains the experiments for
evaluating the effect of maximum evaluation parameters of
the optimization-based methods (TS-NARM) on execution
time and rule quality. The experiment results for the LeakDB
dataset are already given in Experiment 2.1. Therefore, this
section only contains the results for the L-Town and the
LBNL datasets, and the results are consistent across all
datasets.

Tables 11 and 12 show the results for the L-Town and
LBNL datasets, respectively. Similar to the results for the
LeakDB dataset, as the maximum number of evaluation
parameters increases, the number of rules, execution time
as well as average confidence of the rules increase.
The increment in the confidence values decreases as the
maximum evaluations increase. These experiments show that
optimization-based methods require longer execution times
in order to obtain higher-quality rules.

Experiment 6: Extracting Association Rules
with ARM-AE. ARM-AE (Berteloot et al. 2023), an
Autoencoder-based ARM approach, is different than Aerial

Prepared using sagej.cls

16 Journal Title XX(X)

Table 11. TS-NARM needs high numbers of evaluations
(Evals.) for good performance (L-Town, Conf = Confidence).

Evals. Algorithm # Rules Time(s) Conf.

1000

DE 55.5 5.82 0.39
GA 46 5.53 0.26
PSO 67 6.52 0.4
LSHADE 76 7.08 0.36
jDE 76 3.81 0.5

10000

DE 2595 158.4 0.68
GA 270 127.64 0.38
PSO 2215.5 148.22 0.58
LSHADE 2369 131.73 0.75
jDE 2038.5 110.89 0.75

30000

DE 7686.5 610.8 0.75
GA 823.5 576.75 0.36
PSO 11026.5 572.44 0.82
LSHADE 12071.5 616.04 0.94
jDE 6297.5 403.73 0.76

50000

DE 31673.6 778.46 0.81
GA 11239 591.89 0.51
PSO 30570.2 828.5 0.75
LSHADE 35559.4 871.7 0.98
jDE 24245 433.69 0.78

Table 12. TS-NARM needs high numbers of evaluations
(Evals.) for good performance (LBNL, Conf = Confidence).

Evals. Algorithm # Rules Time(s) Conf.

1000

DE 90 6.91 0.49
GA 58.5 5.26 0.51
PSO 104.5 6.93 0.48
LSHADE 132.5 6.15 0.47
jDE 172.5 4.83 0.65

10000

DE 3037.5 115.96 0.72
GA 370.5 107.77 0.51
PSO 2825.5 108.82 0.78
LSHADE 3372.5 95.99 0.82
jDE 2919 51.2 0.73

30000

DE 9751 170.16 0.74
GA 419 185.84 0.5
PSO 8933 188.72 0.96
LSHADE 17624 182.64 0.97
jDE 7958 111.05 0.77

50000

DE 27778.8 479.6 0.77
GA 7945.4 501.37 0.47
PSO 25453.8 530.74 0.79
LSHADE 26864.4 787.79 0.97
jDE 20243.2 421.82 0.77

both in terms of autoencoder architecture and rule extraction
methodology. Its autoencoder is not under-complete but has
equal dimensions in each layer, has a different loss function
(MSE), and the loss function is not applied per feature, but
for the entire output. In the rule extraction stage, it does
not assign equal probabilities to the unmarked features,
but leaves them as 0, and assumes that the output is the
antecedent while the input is the consequent. We argue

Table 13. Evaluation of ARM-AE on all 3 datasets for
experimental setting 2 (Conf = Confidence, Cov = Coverage).

Dataset
Rule

Count Support Conf.
Data
Cov.

Zhang’s
Metric

LeakDB 4400 0.08 0.13 0.05 -0.79
L-Town 5600 0.08 0.11 0.1 -0.89
LBNL 3440 0.36 0.46 0.08 -0.41

that due to these differences, ARM-AE resulted in low rule
quality with a higher number of rules, both in their paper
(33% confidence on the Nursery dataset and 50% confidence
on the chess dataset) and also based on our results presented
in this section. Therefore, we opted not to include it in the
core evaluation section.

In the original paper, ARM-AE is tested on categorical
tabular data only, and to the best of our knowledge, ARM-
AE is the only fully DL-based ARM approach, besides our
approach, at the time of writing this paper. Note that there are
DL-based approaches to sequential ARM (He et al. 2024),
however, that is a different task than the one we tackle in this
paper. We adapted ARM-AE to work with sensor data as part
of our pipeline and used it as a baseline for Experimental
Setting 2. It expects a number of antecedents, a number of
rules per consequent, and a likeness (similarity threshold)
parameter. The number of antecedents is set to 2, the number
of rules per consequent is set to the number of rules learned
by our Aerial approach divided by the number of features (of
the dataset subject to evaluation), and the likeness is set to
80%, similar to our approach for fairness.

The evaluation results, given in Table 13, show that ARM-
AE resulted in exceptionally low rule quality values on all
3 datasets. Therefore, the results were not included in the
core part of the paper, however, for the purpose of having
complete novel baselines, we included them in this section.

Prepared using sagej.cls

	Introduction
	Related Work
	Association Rule Mining
	Association Rule Mining in Internet of Things

	Problem Definition
	Input
	Output

	Semantic Association Rules from IoT Data
	Pipeline
	Data Preparation.
	Training and Autoencoder Architecture
	Rule Extraction

	Evaluation
	Setup
	Experimental Settings
	Setting 1: Semantics vs without Semantics.
	Setting 2: Aerial vs state-of-the-art.
	Challenges in comparison.

	Experimental Results
	Setting 1: Semantics vs without Semantics.
	Setting 2: Aerial vs state-of-the-art

	Discussion

	Conclusion and Future Work
	Time Complexity Analysis of Aerial
	Additional Experiments

