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Abstract.
Recent advances in Artificial Intelligence (AI) and especially in deep learning have manifested an increasing concern in trust-

worthiness. Neuro-symbolic methods, which mix some elements of neural networks with some elements of symbolic reasoning,
have shown great potential for some aspects of trustworthiness, particularly for interpretability. In this paper, we provide an
overview of the various ways Neuro-Symbolic methods have been used to increase the trustworthiness, in the latest literature of
the leading conferences. In particular, we focus on the contributions of the recent articles that discuss the interpretability of using
the NeSy systems, while also considering contributions in a broader sense, such as safety, fairness, and privacy. We also did a
categorization of the existing contributions along several key dimensions related to the symbolic structures they are exploiting,
and the type of interpretability they provide.
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1. Introduction

The field of Artificial Intelligence (AI) is in a continuous state of exploration, with its potential applications
appearing to be endless. AI decision-making systems have demonstrated superior performance, frequently outper-
forming humans. However, this comes with a notable drawback: the decision processes of these systems lack trans-
parency and are often incomprehensible. This issue becomes increasingly critical as AI systems begin to handle
sensitive data and make crucial decisions in various sectors, ranging from autonomous driving to criminal justice.
As a result, the demand for trustworthiness in AI systems is escalating. Particularly, the subject of interpretability
has seen a significant rise in interest in recent years, and is now a major research focus. This increase is a direct con-
sequence of recognizing that many top-tier AI systems are non-transparent and difficult to interpret, leading them
to be labeled as “black boxes”. A common trend observed is that the larger the AI model, the more challenging it
is to interpret its internal workings. These complex models pose a problem, as it becomes increasingly difficult to
identify errors or biases within the system. Shifting towards more interpretable systems would cultivate greater trust
in their decisions, enhance social acceptance, and encourage stakeholder discussions about their implementation [1].
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Neuro-Symbolic AI (NeSy), which combines Machine Learning (ML) with mechanisms related to Knowledge
Discovery and Data Mining (KDD), seeks to integrate neural networks with symbolic processing techniques. This
field attracts interest from two distinct perspectives [2]. From a cognitive science perspective, while human brains
exhibit connectionist characteristics similar to neural networks, they also have the ability to process complex sym-
bolic structures. This capability is believed to play a crucial role in the superiority of human intelligence over other
animals. Additionally, from a conceptual perspective, it appears that symbolic and neural approaches complement
each other, each with their own strengths and weaknesses. For example, deep learning systems, trained on raw data,
show robustness against outliers, a feature less prominent in symbolic systems. In contrast, symbolic systems can
directly utilize expert knowledge and are generally more self-explanatory compared to their neural counterparts.

The self-explanatory nature of Neuro-Symbolic methods is especially relevant when considering trustworthiness
and especially interpretability. Indeed, one of the main criticism toward the current neural models is their lack of
transparency, but symbolic systems do not have this issue. Therefore, in tasks where the state-of-the-art is largely
consisting of neural methods, developing a neuro-symbolic approach offers the opportunity to exploit the inter-
pretability that the symbolic aspect provides.

In this paper, we present a systematic review of recent literature (from 2021 to 2022) on Neuro-Symbolic ap-
proaches with a focus on achieving high trustworthiness. We considered different trustworthiness dimensions: pri-
vacy, fairness, safety, or interpretability. However, all but two of these papers concentrated on interpretability, so we
made it a focus of this work. These papers were further categorized using a traditional taxonomy in three dimen-
sions: global versus local methods, self-explainable versus post-hoc explainability methods, and model-agnostic
versus model-specific methods. We also reviewed papers dealing with interpretability based on the symbolic struc-
tures used. This review provides an overview of the current trends in this domain, highlighting areas that have been
thoroughly explored, and pinpointing promising directions for future research.

Our paper is organized as follows. Section 2 provides an extensive background of the core concepts involved in
this survey, as well as grounding for our taxonomy and the presentation of related works. Section 3 presents the
survey’s methodology, its framing and some observations on the papers found. Section 4 develops on the different
types of symbolic knowledge used by the selected papers and presents each paper’s contribution. Section5 analyzes
the different types of interpretability provided by these papers. Section 6 presents additional learnings from our
review and further discussions.

2. Background

2.1. History of Neuro-Symbolic AI

The genesis of Neuro-Symbolic (NeSy) research is deeply intertwined with the history of Artificial Intelligence
(AI), its roots arguably dating back to a seminal 1943 paper by McCulloch and Pitts [3]. This pioneering work used
propositional logic to model neural connections, setting the foundation for what would evolve into NeSy. Histori-
cally, the field of AI has been bifurcated into two primary paradigms: symbolism and connectionism. Symbolism
approached intelligence through the lens of logic and rules, while connectionism favored learning driven by prob-
abilistic methods. From the mid-1950s to the late 1980s, symbolic models dominated the early AI landscape, as
researchers predominantly pursued this approach to create problem solving systems [4]. However, the field encoun-
tered unexpected hurdles, leading to the infamous “AI winter” of the 1980s, marked by a significant decline in AI
interest and funding [5]. Despite this setback, research on symbolic AI persisted, albeit overshadowed by the resur-
gence of connectionist AI in the early 2010s. This revival, fueled by the impressive capabilities of deep learning in
areas such as image classification, brought new attention to the field. Nevertheless, alongside these advancements
came increasing concerns over the limitations of connectionist systems, such as vulnerability to adversarial attacks,
low interpretability, challenges in integrating expert knowledge, limited reasoning capabilities, and inherent biases.

NeSy emerged as a beacon of hope to address these challenges. Although its conceptual roots span several
decades, it was not until the 1990s that NeSy began to crystallize as a distinct field of study, gaining more structured
research attention in the early 2000s [6]. NeSy aims to synthesize the strengths of both symbolic and neural ele-
ments, striving to create systems that exhibit robust learning capabilities (able to improve from raw data) and strong
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reasoning prowess (capable of abstraction and combinatorial reasoning). Although neural networks have shown im-
pressive performances, logic remains a cornerstone in modeling thought and behavior [7]. The integration of these
paradigms holds the promise of retaining their respective strengths while mitigating their weaknesses. However, this
integration is challenging due to their fundamentally different methodologies: statistical inductive learning and dis-
tributed representations in connectionism, contrasted with logical deductive reasoning and localist representations
in symbolism [4].

NeSy has shown its utility in various ways, such as leveraging symbolic knowledge bases and metadata to en-
hance deep learning systems, providing greater explainability through background knowledge, and solving complex
problems that benefit from symbolic reasoning structures [2]. Furthermore, NeSy has found successful applications
in diverse industrial contexts, including business process modeling, trust management in e-commerce, coordination
in large-scale multi-agent systems, and multimodal processing and applications [7].

2.2. Background on Trustworthiness

The concept of trustworthiness is paramount in any decision-making system. At its core, a system is deemed
trustworthy if it can be relied on for high-stakes decisions with minimal or no supervision. Although this certainly
includes performance, as a high-performing system is a prerequisite for trustworthiness, in the realm of AI, trustwor-
thiness encompasses several additional dimensions: interpretability, fairness, robustness, privacy, and safety [8–10].

Fairness focuses on ensuring that AI models do not harbor biases that could lead to discrimination against cer-
tain groups [11]. This is especially pertinent in AI applications involving the classification of people, such as risk
assessments in criminal recidivism or automatic resume screening, both of which are rapidly gaining traction [12].
Studies have uncovered biases in some deployed systems against racial minorities, even in the absence of explicit
racial data input. Addressing these biases to ensure fairness towards all groups is a critical concern.

Privacy relates to safeguarding the private data used to train AI models [8]. There is a risk that interaction with
the deployed models or analysis of those could inadvertently expose sensitive training data, a situation that raises
significant privacy concerns.

Robustness is about the system’s ability to function correctly in scenarios that deviate from its training data
distribution [11]. This is vital across AI applications, as it is often impossible to anticipate all potential scenarios a
system may encounter. The susceptibility of deep neural networks to adversarial attacks is particularly concerning,
when subtle manipulations of input data can lead to incorrect interpretations by the AI, despite being obvious to
humans. Since robustness is intertwined with performance, it’s often unclear when research specifically focuses on
robustness; hence, papers primarily addressing robustness were not included in our review.

Safety is a critical aspect of trustworthiness that focuses on preventing accidents and unintended harmful behaviors
in machine learning systems [10]. These issues can arise due to errors in the specification of objectives, oversights
in the learning process, or other implementation mistakes. As AI systems are increasingly deployed in complex
environments with real stakes, ensuring their safety becomes paramount. This involves creating scalable solutions
to mitigate risks and avoid potential adverse impacts on society, making AI systems not only effective but also
reliable and secure.

2.3. Background on Interpretability

Interpretability is the most extensively addressed aspect of trustworthiness, experiencing exponential growth
as a research domain [13, 14]. There is little consensus on the precise definition of interpretability, but it can be
broadly defined as the extent to which a system’s operations can be understood by users [1, 15]. This includes
access to mechanisms or reasoning that underpin the system’s predictions. Simpler systems are naturally more
interpretable, which is why this was not a major topic in earlier AI systems that used simpler methods like decision
trees. However, with the complexity of deep neural networks, interpretability has become a critical concern, both
for societal acceptance and regulatory compliance, with both the US and EU mandating a right to explanation for
consumers [13]. We also argue that interpretability is crucial for a better understanding of the systems, which will
help to develop them further and to overcome their flaws.



4 C. Michel–Delétie and M.K. Sarker / Neuro-symbolic methods for Trustworthy AI

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The characterization and approach to interpretability in AI is a subject of ongoing debate. Although many papers
use explainability and interpretability interchangeably, some argue that explainability is a stronger concept than
interpretability [13, 16, 17]. Since the frontiers between these two concepts is quite vague, our review is based on
the terminology used by the authors of the papers, which may not always align with this distinction; thus explainable
and interpretable should be understood as interchangeable in our paper. Generally, interpretability is self-assessed
by researchers, leading to calls for more rigorous taxonomies and evaluations [15, 18–20]. It’s also important to
note that explainability isn’t the “silver bullet” for AI trustworthiness. Studies have shown that while explainability
can enhance AI collaboration with novices, it doesn’t necessarily do so with experts [21]; a combination of AI and
human decision-making can be quicker but less accurate when AI provides explanations [19]; and there is a risk
that explanations, even if not particularly useful, can unduly increase public acceptance, leading to over-reliance on
AI [22, 23].

Interpretability in AI systems has been tackled through a variety of methods, which can usually be divided into
two categories depending on what kind of interpretability they provide: either ante-hoc or post-hoc [14, 18, 20]. A
wide range of systems are inherently designed to be easily interpretable from the inside, termed as self-explainable or
ante-hoc explainable methods. These systems are structured so that their internal processes are straightforward and
clear. Another common approach is to create an interpretable layer for systems that are not inherently transparent,
known as post-hoc explainability. This method is particularly versatile, as it can be applied to virtually any system,
allowing for the continued use of high-performance models. However, a drawback of post-hoc explainability is that
the explanations it provides might not always accurately reflect the true workings of the system. This concern is
highlighted by Rudin [24], who argues against the use of such explainability, suggesting that it can be misleading.
Conversely, Gilpin et al. [17] argued that when using post-hoc explanations, it’s crucial to clearly inform users about
their potential limitations. There are also approaches that fall somewhere between these two extremes [25, 26].
These methods aim to train systems in a way that makes their decision-making processes easier to interpret, without
fundamentally altering their core structure.

In terms of the scope of explanations, they can range from local to global [14, 18, 20]. Local explanations are
tailored to individual instances, providing insights on specific decisions or similar cases. A well-known example of
a local explanation method is LIME [27], which is designed to offer explanations for particular data points. On the
other end of the spectrum, global explanations aim to shed light on the system’s behavior as a whole, irrespective
of individual inputs. Some methods [28, 29] provide explanations for a specific category of inputs, allowing a more
targeted understanding of the system’s decisions in particular scenarios. These diverse approaches to interpretability
demonstrate the complexity and varied nature of making AI systems transparent and understandable.

2.4. Link between Interpretability and NeSy

Neuro-symbolic AI (NeSy) and interpretability are intrinsically connected, primarily because symbols serve as an
effective medium for explanations. Common practices in generating explanations include the use of decision trees or
logic rules, which are inherently symbolic. Kambhampati et al. [30] have even suggested that symbols are essential
for effective communication between humans and AI systems. Although visual representations like saliency maps
are also popular for explanations, these may not be adequate for complex human-AI interactions that require a
blend of implicit and explicit task knowledge. Since NeSy inherently involves dealing with symbols within decision
systems, it naturally possesses a strong potential for high interpretability.

Another perspective on the connection between NeSy and interpretability is their shared role as intermediaries
linking deep learning with neuroscience. As Angelov et al. [13] have pointed out, a key objective of explainability
is to mimic human-like reasoning in a manner that elucidates the predictions made by AI systems. This goal aligns
closely with the principles of NeSy, which integrate aspects of human cognitive processes and neural network-based
learning. Therefore, the synergy between NeSy and interpretability is not only practical in terms of implementing
symbolic representations for explanations but also fundamental in achieving a deeper, more human-like understand-
ing of AI decision-making processes.
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2.5. Related Works

Trustworthiness, being a broad and multifaceted concept in AI, encompasses a diverse range of studies and
reviews, often focused on specific domains within the field. A notable comprehensive survey by Liu, Wang et
al. [31] addresses recent techniques for enhancing AI trustworthiness. This work examines trustworthiness over six
dimensions: explainability, robustness, accountability /auditability, privacy, fairness, and environmental well-being.
Another notable review in the realm of trustworthy Machine Learning was conducted by Serban et al. [32], providing
valuable insights into methods to foster trust in AI systems.

Interpretability methods in AI have received considerable attention, with numerous reviews dedicated to this
topic. In the latest reviews, the focus is usually expressed with the word explainability (XAI), but as discussed
in Section 2.3, the core idea is the same as interpretability. For instance, Speith et al. [14] conducted an analysis
of various taxonomies used to categorize interpretability methods. Their study revealed that these taxonomies are
based on different criteria, such as the methods used, the type of explainability produced, or the conceptual approach,
sometimes combining several of these aspects. They argued that the choice of taxonomy should align with the user’s
needs and proposed a unified taxonomy to guide users. Similarly, the very comprehensive review by Barredo Arrieta
et al. [20] analyzed and synthesized the existing taxonomies of XAI, and proposed to assess explanability based on
the targeted audience. They also proposed both a review of existing transparent (ie. self-interpretable) methods
and a review of post-hoc explainability methods. Lastly, they extended their review to what they call "Responsible
AI", a concept roughly equivalent to Trustworthy AI. Another relevant review by Weller [22] explored the concept
of transparency, putting it in perspective with the different stakeholders of AI. This consideration of the different
stakeholders is also of key importance in the frameworks of Kasizadeh [1] and Langer et al. [33]. Vilone et al. [34]
have performed extensive classifications of explainable artificial methods, focusing on the formats of their outputs.
This approach is highly beneficial for users seeking the most suitable system for their specific requirements.

Reviews specifically focusing on NeSy learning have also been published [4, 7, 35–37]. Sarker et al. [35] pro-
vided a systematic review of Neuro-Symbolic methods presented in leading conference proceedings, applying two
different taxonomies to categorize these methods and noting a recent increase in their popularity. Besold et al. [7]
presented a more subjective review of the neural-symbolic field, discussing its foundations, current applications, and
future challenges. Berlot-Attwell [36] explored the use of NeSy AI in Visual Question Answering (VQA), while
Hamilton et al. [37] offered a detailed analysis of NeSy methods in Natural Language Processing (NLP), highlight-
ing the challenges in classifying papers as NeSy due to the term’s ambiguity. Wang et al. [4] conducted a systematic
overview of recent advances in neuro-symbolic computing and described a taxonomy in four dimensions, inspired
by Bader and Hitzler [38].

While we kept in mind the learnings from the existing reviews, we believed that the intersection between NeSy
and interpretability was an interesting novel area to review. To our knowledge, this paper may be the first to review
Neuro-Symbolic methods specifically through the lens of Trustworthy AI, marking a unique contribution to the
field.

3. Survey

3.1. Methodology

The aim of this survey was to capture the current state of research in the application of Neuro-Symbolic tools
for enhancing trustworthiness in AI. We focused on papers published in top academic venues from 2021 to 2022
(latest publications at the time of writing). While we are aware of emerging venues such as the NeSy AI Journal
and those hosted by IOS Press and Sage, many of them were either very recent or not yet fully established at the
time of our review. Additionally, although several well-regarded AI journals exist, their primary focus did not align
specifically with the neuro-symbolic AI domain. As a result, we concentrated our literature review on top-tier AI
conference proceedings, where substantial and timely research in this area was more readily accessible. We selected
papers from the following conferences: NeurIPS, AAAI, IJCAI, IJCL, ICML, NeSy, AACM FAccT, and KDD. The
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volume of papers presented at these conferences, exceeding 10,000 over the last two years, required a more strategic
approach to identify relevant papers, rather than reviewing each one individually.

In our commitment to transparency, we employed a detailed and systematic methodology. Using the dblp
database, we initially filtered papers based on titles that contained keywords indicative of Neuro-Symbolic meth-
ods. These keywords included symbol, logic (excluding derivatives like biologic or topologic), reason, inducti(on),
abducti(on), concept, hybrid, ontolog(y), relational, compositional, and rule. We then used search-in-page tools
to determine if these papers frequently mentioned key terms related to trustworthiness, such as interpretab(le),
explaina(ble), explanat(ion), trust, fair, faithful, priva(cy), tractab(le), safe and understandab(le). Papers meeting
these criteria were examined in more detail to assess their relevance to our focus.

Additionally, to ensure that we did not overlook papers that explicitly mentioned the use of NeSy methods (but
not in the title), we screened all papers with titles suggesting a focus on trustworthiness. We then reviewed papers
that contained multiple mentions of the keyword symbol for further evaluation. This comprehensive approach was
designed to capture a wide range of relevant research, ensuring a thorough overview of the intersection of Neuro-
Symbolic research and trustworthiness in AI.

2021

18

2022

37

(a) Distribution of papers by year

AAAI

22

NeurIPS

9

KDD

4
ICLR

5
ICML

4

IJCAI
4

NeSy

5

ACM FAccT

0

(b) Conference from which the papers were taken

Fig. 1. Distribution of selected papers

3.2. Framing the survey

Determining whether a paper’s approach qualifies as Neuro-Symbolic presented a significant challenge due to
the broadness and ambiguity surrounding the definition of NeSy. To address this, we established specific criteria:
a paper was included in our review only if it involved some form of symbolic knowledge manipulation (such as
logic propositions, rules, action models, or graphs) directly contributing to trustworthiness. We specifically looked
for papers where this symbolic knowledge played an active role in the process, rather than being a mere output. For
example, if the explanations were presented in the form of a graph that was neither used nor executed in the system,
we did not consider the method to be sufficiently neuro-symbolic.

While we recognize that this approach might have excluded some relevant papers, our objective was to minimize
any systematic bias in our selection process that could lead to a skewed representation of the field. We noticed
that many papers treated interpretability as a beneficial by-product rather than a primary focus, without substantial
discussion or emphasis. To maintain the relevance and specificity of our survey, we chose to include only the papers
where trustworthiness was a central motivation of the research. This decision inevitably introduced a degree of
subjectivity into the selection of papers, but it was a necessary step to ensure the focus and coherence of our survey.
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3.3. Some Statistics

Our comprehensive review yielded a total of 54 papers that employed neuro-symbolic methods with a clear
emphasis on trustworthiness. An interesting pattern emerged from our analysis: the vast majority of these papers,
except for two (one focusing on fairness [39] and another on safety [40]), focused on interpretability. This trend was
notable despite our efforts to encompass a broader range of trustworthiness aspects such as fairness and privacy.
This observation suggests that, currently, NeSy may not be widely utilized to address trustworthiness concerns
beyond interpretability. Another observation is that of a significant increase in relevant publications in 2022, with
37 out of the 54 papers coming from this year alone (Figure 1a), indicating a growing interest and expansion in this
domain. The distribution of these papers across various conferences, as depicted in Figure 1b, reveals that AAAI
is the predominant venue for this type of research. We also noted that no papers from ACM FAccT ended up in
our survey, despite the fact that this conference specifically focuses on trustworthiness issues. Our keyword search
found very few matches in FAccT papers, and the only papers that matched were not proposing a neuro-symbolic
approach in our view. This was quite surprising, but it’s worth mentioning that this is also a conference with quite
few papers compared to the other conferences considered here.

3.4. Applications of NeSy Systems

While exploring interpretability contributions of the NeSy systems, we found that they were being used for
different applications. Many of the proposed systems were working with visual data: either image classifica-
tion [25, 29, 41, 42], action recognition in videos [43], agent communication about images [44], handwritten math-
ematical expression recognition [45], visual relation detection [46], or visual reasoning [47]. Equally many of the
systems dealt with natural language settings: fake news detection [48–50], question answering [51, 52], unspecified
NLP [28], text classification [39], commonsense reasoning [53], medical diagnosis through dialogue [54], text fic-
tion tasks [55], or news recommendation [56]. A few applications were entirely based on graphs: knowledge graph
completion [57, 58], query answering on knowledge graphs [59], graph classification [60], or imitating algorithms on
graphs [61]. Some researchers worked in settings where an agent has to make different decisions (often trained with
reinforcement learning) [62–65]. In some cases, the methods were explicitly suited for multiple settings [45, 66].
Lastly, many other unique settings were explored: adaptive management [67], time series analysis [68], congestion
control [69], safe execution of programs [40], or computer algebra [70]. The wide range of applications shows how
versatile NeSy methods can be.

4. Analysis based on the type of symbolic knowledge

4.1. The different symbolic structures used

In our categorization of the papers, we found that 16 of them presented rule-learning approaches [71–86]. These
papers typically utilize deep learning to generate logic rules or decision trees for classification purposes. In these
instances, machine learning techniques allow the creation of a symbolic model, which offers a high degree of
transparency and interpretability. Beyond rule-learning approaches, we also analyzed the types of symbolic data
structures employed in other NeSy systems. We identified that these systems could be broadly categorized into three
types based on the symbolic data structures they manipulate: logic, graphs, and other structures. This classification,
depicted in Figure 2, provides insight into the varied approaches within the NeSy field, highlighting the diversity of
methods being explored to improve trustworthiness in AI systems.

Logic, as used in various papers [25, 29, 39, 42, 49, 53, 58, 60, 61, 66, 68, 69, 87], typically involve logic
propositions, often in the form of logic rules (e.g., precondition → class). This approach usually uses symbolic
reasoning as a means to interpret and classify data. Graphs are another prevalent structure in NeSy research, en-
compassing a variety of types. Knowledge graphs are commonly used [55–57, 59], but the category also includes
other types of graphs [45, 48, 50–52, 67], such as scene graphs, proof graphs, or Abstract Meaning Representation
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Fig. 2. Form of the symbolic knowledge (excluding rule learning papers)

(AMR) graphs. These graphical structures are instrumental in representing relationships and dependencies in a vi-
sual and often intuitive manner. The third category, labeled as “other”, encompasses a variety of other symbolic data
forms [26, 28, 41, 43, 44, 46, 47, 54, 62–65, 70]. This includes, for example, symbolic descriptions of objects or
symbolic programming languages. This category is diverse and encompasses a wide range of approaches in which
symbolic representations take on various forms.

4.2. Description of the reviewed papers

Interestingly, each of these three categories—logic structures, graphs, and other structures—encompasses a sim-
ilar number of papers. These varied methodologies highlight the versatility of symbolic representations in AI and
their potential to address different aspects of trustworthiness in sophisticated and nuanced ways. Note that we chose
not to develop about rule-learning papers [71–86] in the following to keep the scope and length reasonable.

4.2.1. Approaches using logic
A common approach for interpretability is to extract symbolic rules that explain the system’s prediction. This

can often involve modifying the system’s structure so that the rule extraction from it can be more feasible and
faithful. For instance, Barbiero et al. [66] proposed a new approach in which the classifier is designed in a way
that allows the extraction of logic rules to explain its predictions. This approach can be related to Lee et al.’s
framework [87], which upgrades a deep model into a self-explainable version by naturally integrating human priors
and rule generation into its predictions. Acting on the training step, Sharan et al. [69] proposed a method to train a
deep model, then extracts from it symbolic rules. Similarly, Kasioumi et al. [25] proposed a new learning method
(Elite BackProb) which promotes activation sparsity of the filters of a convolutional neural network, so that a rule
extraction algorithm can be used to approximate its predictions. In the graph processing domain, Himmelburger et
al. [60] made a framework which extract rules for post-hoc explanation of graph neural networks (GNN). Georgiev
et al. [61] proposed concept-bottleneck GNNs, which are variants of GNNs with a new readout which allows the
production of explanations in propositional logic based on inferred concepts. Cucala et al. [58] proposed a new class
of knowledge graphs transformations that are always equivalent to the application of symbolic rules. Rajapaksha
and Bergmeir [68] proposed a model to produce rule-based explanations of a black-box Global Forecasting Model
on several time series.

Other approaches used logic in original ways, usually involving it in the system’s decision to make it more
interpretable. For example, Chen et al. [49] proposed an approach that decomposes texts into phrases and uses
aggregation logic to classify them as fake or not in an interpretable way. Yao et al.’s framework [39] parses advices
on what a language model is wrongfully using for its prediction into First Order Logic (FOL) and use it to refine the
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weights of the language model. In this case the main goal is about increasing fairness and not interpretability. Ribeiro
and Leite’s framework [29] maps a neural network’s internal states to concepts from an ontology, making it possible
to build explanations from these concepts. Kalyanpur et al. [53] proposed a novel reasoner that combines symbolic
reasoning with statistical functions for fuzzy unification and dynamic rule generation. In the image classification
domain, An et al. [42] proposed a novel rule-guided method called dynamic ablation to provide explanations as well
as visual highlights.

4.2.2. Approaches using graphs
Among the works using graphs, a few approaches share the common characteristic of using knowledge graphs.

For instance, Zha et al. [57] proposed a method for knowledge graph completion that outputs a pattern in the graph
to explain the predictions, using BERT. Zhu et al. [59] developed an approach that converts logical queries into
circuits including graph neural networks to answer them based on a knowledge graph. Liu et al. [56] proposed a
new method for news recommendation: small anchor graphs are generated via reinforcement learning so that the
similarity of two articles can be estimated by computing the number of paths connecting the two anchor graphs.
Peng et al. [55] designed a reinforcement learning agent that uses a knowledge graph to represent its belief about
the world alongside an attention mechanism to be able to explain its reasoning.

Various approaches also used different types of graphs in original ways. For instance, Ferrer-Mestres et al. [67]
proposed an approach to extract policies of a fixed length from policies or arbitrary lengths so that they are small
enough to be interpretable, in the Mixed Observability Markov Decision Process Setting (policies are represented as
graphs). Wu et al.’s framework [45] decomposes images of mathematical formulas into graphs to make the process of
inferring the formula more interpretable. Zhong et al. [52] proposed a method that produces hybrid chains (mixing
text and table data) and reason on those with a transformer to provide an answer, in a question answering (QA)
setting. For the same task, Deng et al. [51] proposed a method that parses questions into AMR (abstract meaning
representation) graphs and reason on those graphs to answer the questions. For the task of fake-news identification,
Jin et al. [50] took inspiration from human’s information-processing model to make a model that builds claim-
evidence graphs to identify fake news. For a similar task but focusing on the propagation network of fake-news,
Yang et al. [48] designed a framework that reveals which subgraphs of the news propagation network are the most
important in a model’s decision process.

4.2.3. Approaches using other forms of symbolic knowledge
Many papers used various forms of symbolic data, usually specific to their application. Some of them worked

with autonomous agents, often trained with reinforcement learning agents. For instance, Sreedharan et al. [65]
proposed a method to provide contrastive explanations with user-specified concepts in sequential decision-making
settings, by building partial symbolic models of a local approximation of the task. In a similar setting, Jin et al. [64]
developed a framework to learn action models and symbolic options with a symbolic planner, using reinforcement
learning. Also considering agents trained with reinforcement learning, Finkelstein et al. [63] designed a protocol to
apply transformations to the environment model of an autonomous agent in order to produce textual explanations
of it. Targeting a broader range of models, Verma et al. [62] proposed a new approach based on query answering to
estimate a black-box autonomous agent as an interpretable relational model.

In the medical domain, Jang et al. [41] proposed an approach that extracts symbolic representations from images
and rules on these representations to diagnose some diabetes. Another paper in the medical domain, by Liu et
al. [54], presented a method for medical diagnosis, that uses a Bayesian Network as well as conditional probability
and mutual information matrices to direct an inquiry of the symptoms in order to identify a disease.

In the visual domain, Chen et al. [46] proposed a method that combines deep learning with analogical learning
on visual relation detection, using object information and spatial information between objects, so that the relation
identification relies on an interpretable algorithm. For dynamic visual reasoning in videos, Ding et al. [47] proposed
a method that identifies objects and related physics concepts such as speed, then gives them as input to a physical
simulator to predict what will happen next. Hua et al. [43] developed a method that consists of decomposing videos
into object-relation chains, which allows both the classification and the production of explanations based on this
representation.

Lastly, we observed a few original papers which are either generic or have a domain of focus which is not
shared with other papers in this category. For instance, Geiger et al. [26] proposed a training method that allows
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the alignment of the neural network to a high-level causal model. Dessi et al. [44] presented a protocol to train two
deep neural networks with a way of communicating using symbols, which is partially interpretable. Zhang et al.’s
framework [28] extracts from a deep Natural Language Processing (NLP) model the interaction between the words
that influenced the embedding, and outputs a tree structure. Peng et al. [70] proposed a new framework for symbolic
computation that decomposes computations in fundamental transformations, performed by deep models.

5. Classification based on the types of interpretability

To delve deeper into the papers that primarily focus on interpretability, which constitute the bulk of our col-
lection, we classified them based on three widely recognized dimensions in interpretability research: the scope of
explainability, the stage at which the method is applied, and whether or not the method depends on the model’s
architecture (refer to Table 1 for detailed classification). These dimensions are frequently used to analyze papers in
this field [14, 18, 20] (see Section 2.3). In our analysis, we excluded rule-learning methods as they inherently fall
into the ante-hoc, model-specific, and usually global scope categories.

The first dimension, the scope of explainability, differentiates between local and global explanations (Figure 3a).
Local explanations are specific to a given input, providing insights into why a particular decision was made. On
the other hand, global explanations offer a broader understanding, characterizing the behavior of the entire model.
There’s also an intermediate scope, which we might term as “cohort scope”, applicable to a subset of inputs rather
than just one or the entire model. Our review found a relatively balanced number of papers across these different
scopes of explainability.

Regarding the stage of explanation, methods can be categorized as either ante-hoc (also known as self-
explainable) or post-hoc (Figure 3b). Ante-hoc or self-explainable methods are designed to be inherently explain-
able, while post-hoc methods generate explanations after the fact, often for decisions made by an opaque, black-box
model. Post-hoc explanations can take various forms, such as a textual justification of a decision or a simplified
model that mirrors the original model’s decisions.

The third dimension concerns whether the interpretability method is model-agnostic or model-specific (Figure 3c).
Model-agnostic methods can be applied universally across different models, while model-specific methods are tai-
lored to a particular model. Generally, post-hoc explainability methods have the flexibility to be model-agnostic. An
interesting exception we noticed is the work by Seungeon Lee [87], which involved modifying the final layer and
training process of a deep model to enhance explainability.

Our survey found no clear correlation between the scope of explanations and the stage at which the method is
applied, indicating a wide range of approaches addressing interpretability in AI systems.

local
18

global
13

ambiguous

3

(a) Scope

ante-hoc

24

post-hoc

8

ambiguous

2

(b) Stage

model-specific

25

model-agnostic

7
ambiguous

2

(c) Type

Fig. 3. Distribution of the different types of interpretability
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Table 1
Classification of the papers about explainability (see Section 5)

Dimensions (a) (b) ambiguous

local (a) vs global (b) [41–43, 45, 49, 50, 52, 53, 55, 56,
59, 63–68, 70]

[25, 26, 47, 49, 51, 54, 57, 58, 60–
62, 69, 75]

[28, 29, 44]

ante-hoc (a) vs post-
hoc (b)

[41, 43–47, 49–59, 61, 64, 66, 69,
70, 75, 83, 87]

[28, 29, 42, 60, 62, 63, 65, 68] [25, 26]

model-specific (a) vs
model-agnostic (b)

[28, 29, 41, 43–47, 49–
59, 61, 64, 66, 69, 70, 75, 83]

[42, 60, 62, 63, 65, 68, 87] [26, 28]

6. Further Observations

6.1. Lack of applications to Fairness, Privacy and Safety

The primary aim of this review was to explore the application of Neuro-Symbolic (NeSy) systems in addressing
various trustworthiness issues in AI. We did anticipate interpretability to be a predominant focus, but the scarcity
of research on NeSy systems related to fairness and privacy was notably surprising. While some neuro-symbolic
approaches to safety, privacy and fairness may exist, the fact that they did not appear in our survey do show that
they are at least having low visibility.

This suggests that there may be unexploited potential. In the context of privacy, the potential benefits of incor-
porating NeSy systems are not immediately apparent. It could be suggested that NeSy may not offer significant
advantages for enhancing privacy in AI systems. However, caution is advised before making definitive statements
about NeSy’s limitations in this area. With regard to safety, we did find one paper [40], so there seems to be at least
some potential. The scarcity of NeSy approaches to safety could be attributed to the fact that safety is often seen as
a broad concept with a lot of overlap with other dimensions, such as robustness for instance, and it is this dimen-
sion which appears as a clear goal in the publications. Regarding the issue specific to safety, which is the study of
worse-case scenarios and respect of critical constraints, it encompasses considerations that are very specific to the
target applications. Looking for the keyword "safe" in AAAI accepted papers, we observed that it was much less
common than what we could find for "interpretab(le)" and "explainab(le)" combined, and that it appeared mostly in
publications about reinforcement learning settings. We could hypothesize that neuro-symbolic approaches are less
popular in these settings, and that it contributes to the rarity of NeSy approaches to safety.

Considering fairness, there seems to be untapped potential for NeSy integration. In addition to the paper we
mentioned previously [39], we found another work by Wang et al. [88], which approached fairness by imposing
rule-like constraints during the training process. Although this approach was deemed too narrow to qualify as a
comprehensive NeSy integration in our review, it indicates the integration of fairness constraints could be facilitated
by NeSy models. This suggests that further investigation into NeSy’s potential to address fairness in AI should be
pursued. Moreover, there is a close link between interpretability and fairness, since having more understanding of
a system’s decision could help to detect potential biases, as pointed out by Barredo Arrieta et al. [20]. This idea is
supported by some works [89, 90] that address both explainability and fairness simultaneously. However, post-hoc
explainability introduces a new risk of "fair-washing", which is to give in appearance fair explanations to decisions
that were taken because of biases [91]. Overall, since interpretability and fairness are related and NeSy designs have
a high potential for interpretability, we believe that they have a high potential for fairness as well, which definitely
requires further research.

6.2. Lack of grounding based on common taxonomies

Another insight from our review is the wide range of methods encompassed under the NeSy umbrella and the ab-
sence of clear categorization for these methods. The term "neuro-symbolic" itself is often not explicitly used in many
papers. Although review papers like those by Sarker et al. [35] and Wang et al. [4] proposed conceptual taxonomies
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for NeSy systems, these classifications are not universally adopted in the literature. This lack of standardized tax-
onomy makes it challenging to categorize papers without a deep dive into their methodologies. Consequently, there
is a need for more consensus in the research community regarding the taxonomy and terminology of NeSy systems.
Our survey regrouped papers of different NeSy categories according to Wang et al. [4], and these categories re-
grouped papers of different application domains, suggesting that several researchers could face the same challenges
without awareness of the insights from other fields. However, we couldn’t always be sure of each framework’s cate-
gory. More clear grounding on taxonomies would facilitate the identification and comparison of works with similar
methodologies, regardless of their specific applications.

Regarding the interpretability, there are plenty of existing works on the taxonomies (see Section 2), but the papers
are too rarely providing clear grounding of their work on those. For instance, how consistent are the explanations
with the actual decision-making is not often actually assessed; one usually needs to understand in depth the proposed
method to make up his mind about the explanations consistency, despite this issue being of key importance. Another
takeaway from our review is that it is very hard to quantify the degree of explainability and thus compare the different
methods. Although some papers provided user studies [48, 54, 57, 65, 87], it is far from a universal practice, and
user studies are not standardized. More systematic assessment, and standardised metrics, would make it possible to
deduce actionable insights from the comparison of the different methods.

6.3. Common Challenges

One of the main challenges faced by interpretability methods is the trade-off between interpretability and perfor-
mance. The reason for the domination of "black-box" deep models over the state-of-the-art in many domains is that
they have shown empirically to be the best performing. While post-hoc explainability approaches keep the neural
model untouched and thus do not alter their performance, self-interpretable frameworks are designed specifically for
interpretability, thus their performance may not be optimal. However, as it was pointed out in earlier studies [16, 24],
a trade-off between interpretability and performance is not systematic. Indeed, we found that a large part of our sur-
veyed papers claimed new state-of-the-art results for their task, and a few others claimed competitive results with
SOTA (most of the time neural approaches). Even if some of the papers showed performances below the SOTA or did
not provide comparison with non-interpretable approaches, we can definitely say that neuro-symbolic approaches
have the potential to be the best performing while providing interpretability, in a lot of domains. Therefore, we
strongly recommend fellow researchers to explore NeSy options.

A common challenge for NeSy approaches in general is to design the interface between neural components and
symbolic parts. When the symbolic knowledge is altering the training of the neural components (often through
the loss), finding the right integration and the right weight is very challenging. When neural components need to
output intermediate symbolic parts, the model can’t be trained end-to-end, and a main challenge is to choose the
right symbolic space, as well as to get the model to provide outputs in this space. When the symbolic knowledge
is restraining the output space of neural networks or acting directly on the inference process, a main challenge is to
ensure good design so that the learning process is not hampered. On top of these difficulties, ensuring interpretability
should be considered when designing the framework, since NeSy systems are not always interpretable. This often
implies giving a strong enough role to the symbolic structures, especially at the steps leading to the final outputs.
The actual explainability provided by the symbolic representations is also to be considered. All of these design
challenges are common to methods from different domains using similar methodologies, so drawing insights from
designs in other domains is of key importance when approaching a different task.

Another challenge faced by NeSy systems is that of scalability. Regarding the symbolic structures, this means
scaling the symbolic space to increase the potential expressivity and cover more cases, involving richer knowledge.
However, more expressive symbolic spaces make the symbolic integration more difficult. For instance, many meth-
ods build rules in Propositional Logic, which lacks the expressivity of First-Order Logic. It is often difficult to scale
the methods to First-Order Logic, one of the reasons being that it introduces a combinatorial amount of possible for-
mulas and possible reasoning patterns. For the neural components, the problem of scalability is mainly about data.
Indeed, many NeSy approaches require datasets with additional structural information, or datasets of intermediate
symbolic representations. It’s hard to find such data in large quantities, while neural models often require a lot of
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data with a diverse enough distribution to be reliable and robust. Future research should explore ways to enhance
the scalability of NeSy approaches.

7. Conclusion

This research work provides a comprehensive examination of the most recent advancements in Neuro-Symbolic
(NeSy) methods, specifically focusing on their role in enhancing the trustworthiness of AI systems. Our findings
reveal that the primary application of current NeSy methods for trustworthiness is centered around improving inter-
pretability. By converging the fields of AI trustworthiness and NeSy integration, this study proposed a new unified
analysis of these two intertwined domains.

The papers included in our survey were reviewed on the basis of the symbolic structures they were exploiting.
They were also systematically categorized on the basis of the scope, stage, and adaptability of the interpretability
methods they developed. A key insight from our study is the recognition of the immense potential NeSy integra-
tion holds in the realm of interpretability. This potential is not constrained by any specific domain or application,
indicating a broad and versatile utility of NeSy approaches.

However, our study also highlights a significant imbalance in the focus of current NeSy research. While a sub-
stantial part of this research is dedicated to enhancing interpretability, there is a noticeably smaller portion of works
aimed at improving other aspects of AI trustworthiness, such as security. This observation underscores an opportu-
nity for future research to broaden the scope of NeSy applications, extending its benefits to other critical dimensions
of AI trustworthiness, including but not limited to fairness, privacy, and safety. Our study also uncovered a lack of
grounding on existing taxonomies, and the lack of standardized assessment of interpretability.

In conclusion, our review should facilitate a comprehensive understanding of the field, and open avenues for future
exploration in expanding the application of NeSy methods to address a wider array of trustworthiness concerns in
AI systems.
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