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Abstract.
Spiking neuronal networks are biologically plausible implementations of brain circuit computations, meaning that they can

provide a way to manipulate symbols embedded as numeric vectors that carry semantic information. More precisely, the Neural
Engineering Framework (NEF), relying on a vector symbolic architecture (VSA) formalism, bridges the gap between tightly
interleaved numerical and symbolic (including formal) computations. Determining how the brain can implement such processing
is an important issue.

In the present work, following this track, we consider such a VSA-based formalism, and propose an implementation at a
macroscopic level, thus a higher order of magnitude of scale than usual mesoscopic implementations. We also attempt to provide
a better natural representation of usual human symbolic operations, considering an implementation of modal logic.

Beyond usual VSA data structures such as associative memories we also introduce the notion of “relation maps” corresponding
to relational memories, as observed in the brain.

An open-source implementation is provided with a benchmark and experimental observation of the method’s performance and
limitations.

Keywords: Vector Symbolic Architecture, Semantic Pointer Architecture, Modal Logic, Neuro-symbolism

1. Introduction

1.1. Biologically plausible neurosymbolic representations

As a possible entry point to considering a biologically plausible implementation at a symbolic level, vector sym-
bolic architectures (VSAs) were introduced as a way to manipulate symbolic information represented as numeric
vectors (see, e.g., [22] for an introduction). VSAs have been proven to help model high-level cognition and account
for multiple biological features [13, 16]. More specifically, the semantic pointer architecture (SPA) [13] instanti-
ates so-called semantic pointers (i.e., vectors that carry semantic information) and makes it possible to manipulate
them in networks of spiking neurons. This approach takes a significant step towards the unification of symbolic and
sub-symbolic processing, providing a way to translate the former into the latter. Consequently, complex knowledge
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representations in the form of compositional structures that are traditionally restricted to symbolic approaches can
now be distilled in numerical and even neural1 systems [8].

How can we represent a symbol in a neuronal assembly? A localist representation (one neuron or neuron group
represented by a symbol) does not correspond to what is observed in the brain, and the basic idea is that a symbol
corresponds to a pattern of activity distributed over the whole assembly. Let us consider a spiking neuron network
and quantify its activity using, e.g., the neuron rates or higher-order statistics (see, e.g., [5] for a discussion). As
developed by [14], this includes timing codes and population codes (i.e., relative timing codes between neurons).
In the Neural Engineering Framework (NEF) [14], this high-dimensional set of bounded quantitative values can be
collected and normalized, as a unitary stochastic vector in a high-dimensional space (with more than hundred of
thousand dimensions for a biological neuronal map and often a few hundred dimensions at the simulation level),
thus defining a SPA (building upon a particular case of VSA). The NEF provides a set of principles for implementing
such an architecture through synaptic connections, including a time representation in spiking neuron systems (rather
than, e.g., other representations based on synchrony within the neural assembly; (see [14] for technical details). This
framework is a rather scalable alternative for a biologically plausible implementation of VSA, and it has already
been implemented into a simulator called Nengo [1].

In the present study, we consider these developments as prerequisites and will simply consider that neural assem-
bly activity is represented by a high-dimensional unary stochastic vector. We also need to specify transformations
and define them at this abstract algebraic level. Mainly, following [24], we will consider the auto-association mech-
anism, as developed in [36], and functional transformations, as detailed in [14].

1.2. What is this paper about?

We first revisit how to encode symbols within the VSA approach based on the framework introduced in [13],
targeting a macroscopic level of modeling. We describe how to generalize symbol encoding considering a related
degree of belief, beyond binary information, and following [24], we explain the semantic interest of such a gen-
eralization. We consider the Vector-Derived Transformation Binding (VTB) operator [17], for which we recall its
algebraic properties in Appendix C.

We then consider hierarchical knowledge structures in the sense of, e.g., [12], as a complement to associative and
sequential memorization, and we revisit how to implement such a memory structure using the VSA formalism. To
this end, we review VSA data structures and demonstrate that they are related to cognitive memory classification
according to [12]. To better understand their computational properties, we also illustrate how such data structures
compare to programming language containers, in Appendix B. We introduce a new data structure implementing
“relational maps” expressing semantic knowledge [28]. This data structure is important for a class of symbolic
derivations and exemplifies the benefits of our macroscopic implementation.

We then illustrate the proposed mechanism comparing to an existing simulation at the mesoscopic level, utilizing
Nengo simulator [1], with a simulation at the macroscopic scale. We show that such computations may be, up to a
certain point, approximated without explicitly performing mesoscopic computations at the vector component level;
instead, an algorithmic ersatz can be used.

We finally discuss the applications and limit of this alternative approach.

Notations and Layout. We write vectors and matrices in bold letters (bold capital letters for matrices), and scalars
in italic. The dual quantity of a vector x is represented as its transpose xT . The dot product between two vectors x · y
can thus also be written xT y. Components of vectors and matrices are represented here using subscripts.

We use the Kronecker notation δP
def
=

{
1 if P is true
0 if P is false

In this paper, we consider normal distributionsN (0, σ), i.e., Gaussian distribution with a null mean and a standard
deviation σ, and we write the related random variable ν(σ).

Notice: In order to the paper easily readable, we provide verbal evidences in the text, while demonstrations
of statements are given in footnotes, and non straightforward derivations are done within a symbolic computing
environment (our open-source program is available at https://gitlab.inria.fr/line/aide-group/macrovsa).

1The term “neural” refers to any type of nerve cell, whereas “neuronal” is specifically related to neurons.

https://gitlab.inria.fr/line/aide-group/macrovsa
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2. Symbolic information encoding

Let us first revisit how VSA approaches implement symbolic computation, providing complementary details to
be used for the macroscopic simulation of mesoscopic mechanisms.

2.1. Symbol encoding

At the numerical level, each symbol is implemented as a randomly drawn fixed unit d-dimensional vector x ∈ Rd.
Typically, d ≃ 100 · · · 1000, and we expect to manipulate k ≃ 100 · · · 10000 symbols at the simulation level. Here,
our macroscopic implementation uses a dimension of 256, also typically found in related studies such as [24]. In
a cortical or brain map, the order of magnitude is higher since the vector corresponds to the neuronal map activity
(close to 105···6) and the number of encoded symbols depends on which map is considered, bute could be rather
high (about 103···4).

The vector components are drawn from a normal distribution N (0, 1/
√

d), to have an average magnitude2 of 1.
A similarity measure is now introduced to semantically compare two vectors. Classically, the cosine similarity

(i.e., normalized dot product, denoted ·) is used to compute the semantic similarity between two unit vectors3:

x · y def
= x⊤y = cos (x̂, y) ,

where x⊤ denotes the transpose of x. This measure also corresponds to the angular distance between the vectors.
The key property is that, provided that the space dimension d is large enough, two randomly chosen different

vectors will be approximately orthogonal. More precisely4,
xT y ∼ δx=y + ν(1/d),

i.e., it is almost 1 if equal and 0 otherwise, plus centered normal noise [33]. At the numerical level, using basic mean
and standard-deviation calculi5, drawing vectors from such a distribution, and measuring the magnitude, orthogo-
nality, and standard-deviation average values, we have verified for d ≃ 100 · · · 1000 that we generate unary vectors
with a relative precision on the magnitude below 0.3%, while orthogonality is verified with a relative precision
below 0.4%; the noise standard deviation prediction relative precision is below 0.3%.

This allows us to define a hypothesis to decide whether the H0 hypothesis x · y = 0 can be rejected, as detailed
in Appendix A.

2.2. Modality encoding

2.2.1. The notion of belief
Most VSA approaches consider that two vectors x and y contain equivalent information, when the similarity

τ equals 1. They also can contain other information. There are different ways to interpret this result. Here, we
enrich the notion of something being either false or true using a numeric representation of, e.g., partial knowledge,
as illustrated in Fig. 1. The true value corresponds to 1 (fully possible and fully necessary), the false value to -1
(neither possible nor necessary, i.e., impossible), and the unknown value to 0, which corresponds to a fully possible
but not necessary value.

2Given independent normal samples of zero mean and standard-deviation σ, the square of the magnitude is the sum of d independent normal
samples product, thus a chi-square distribution of standard-deviation 1/d. Its sum is thus of standard-deviation 1 and so is the magnitude.

3Let us consider two vectors v1 = u + w1 and v2 = u + w2, carrying the same semantic information encoded in u, plus some additional
information w1 and w2 independent from u and from each other. Since independent vectors are orthogonal, vT

1v2 = uT u = 1: this is the meaning
of semantic similarity.

4It is known, that the product of these two zero mean random variables of standard-deviation 1/
√

d is a random variable of standard-deviation
1/

√
d
2

.
The product of these two normal random variables is not a normal variable but a linear combination of two independent Chi-square random
variables, but we approximate then by a normal distribution, which is a conservative choice as detailed in Appendix A.
The dot-product can be considered as the d times the average value of this chi-square combination distribution over d samples, thus of the same
variance, since an average value over d samples divides the variance by d, which is multiplied by d in this case.

5See https://raw.githubusercontent.com/vthierry/onto2spa/main/figures/z_score.mpl for the open-source code used in this subsection.

https://raw.githubusercontent.com/vthierry/onto2spa/main/figures/z_score.mpl
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Fig. 1. Representation of partial truth τ ∈ [−1, 1] in relation to necessity and possibility, as defined in the possibility theory. The interpretation
is that something partially possible but not necessary is unlikely, whereas what is likely is entirely possible but only partially necessary. Such a
formulation corresponds qualitatively to the human appreciation of the degree of belief as proposed by, e.g., [34].

Our representation is in one-to-one correspondence with the dual notions of necessity and possibility represen-
tation in the standard possibility theory. Information is always related to a certain degree of what is called “belief”
in this formalism. While almost all partially known information is related to probability, Piaget proposed that the
human “level of truth” is more subtle and related to possibility and necessity [34], as formalized in modal logic.
These notions are further developed in the possibility theory discussed in [10] and [11].

In other words, the possibility theory is devoted to the modeling of incomplete information, which is related to an
observer’s belief regarding a potential event and surprise after the event’s occurrence. This is considered representa-
tive of what is modeled in educational science and philosophy [32]. Furthermore, in symbolic artificial intelligence,
i.e., knowledge representation and logical inference, a link has been drawn between this necessity/possibility dual
representation and ontology [38]. This must be understood as a deterministic theory, in the sense that partial knowl-
edge is not represented by randomness6. This modal notion of partial belief has several semantic interpretations
depending on the context [15] (i.e. not only epistemic7 or doxastic8 but also deontic9 and so on). This representation
has also been designed to be compatible with the ternary Kleene logic, in addition to being coherent with respect to
the possibility theory, as discussed in detail in [42], where this deterministic representation of partial knowledge is
generalized to include a probabilistic representation (using a 2D representation).

2.2.2. Implementing partial similarity knowledge
Let us now propose a design choice to apply this quantification to VSA symbols. A symbol representing a piece

of information with a partial degree of belief τ ∈ [−1, 1] could be defined as:

x̂ def
= τ x,

where x corresponds to the numerical grounding of a symbol, and x̂ corresponds to the numerical grounding of a
symbol, given its degree of belief τ.

Interestingly enough, this representation is coherent with the semantic similarity in the following sense: Are two
vectors containing similar information? Considering x ·y, if this value is close to 1, then it is considered true, and the
modal representation and semantic similarity are coherent. If it is almost equal to 0, then the modal representation is
not true. Since our design choice is to consider being in an open world in which all that is not true is not necessarily
false, but that we simply can not claim is its true, say it is unknown. To take this a step further, if this value is
negative (down to −1), the modal representation considers that it is false, i.e., that the contrary is true, which is
coherent with the semantic similarity, although negative values are not explicitly used, to the best of our knowledge,
in the literature quoted in this paper.

Given these atomic ingredients, let us now study how they can be stored and manipulated in different data struc-
ture.

6This deterministic representation of partial knowledge can be generalized to also include a representation of the randomness belief. In the
vanilla possibility theory, the possibility can be seen as an upper probability: Any possibility distribution defines a set of admissible probability
distributions, i.e., a consonant plausibility measure in the Dempster–Shafer theory of evidence [2]. In [40, 42], it is proposed to bound the
approximate probability, reconsidering the original notion of necessity, in order to also consider a lower bound of probability. This could be an
interesting extension of the present work.

7Epistemic modal logic is concerned with reasoning about knowledge.
8Doxastic logic is a type of logic concerned with reasoning about beliefs.
9Deontic logic is the field of logic that is concerned with obligation, permission, and related concepts.
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3. Knowledge structure encoding

3.0.1. Using bundling and binding to store information
As developed in detail in Appendix B and summarized in Table 1, the VSA formalism makes it possible to imple-

ment different data structures corresponding to different memory architectures, as defined by [12]. This corresponds
to different programming containers. Further details on a scalable biologically plausible knowledge representation
can be found in [8]. A key point of the present work is to verify that these VSA mechanisms generalize to modal
symbol encoding (see Appendix B for an exhaustive development, after [24] who introduce such a design choice).

All data structures rely only on the two following operations:

– The bundling operation of N symbolic vectors si corresponds to a simple addition s def
=

∑N
k=1 si while the

similarity operator s · s j allows to detect if the symbol related to s j belongs to the bundling s.

– The binding operation of a symbol s1 with another symbol s2 writes s def
= Bs1 s2 and enjoys the property that

the corresponding unbinding operator Bs∼
1

allows to retrieve s2, i.e., s2 ≃ Bs∼
1

s.

A reader not familiar with the related VSA formalism will find in Appendix B a didactic introduction, while the
choice of the binding operator from among several available binding operators [33] is discussed in Appendix C.
For this section to be self-contained, one may simply consider that binding makes it possible to create a key-value
symbol pair, while the unbinding operation makes it possible to retrieve the value from the key, as discussed below.

Container VSA mechanism Cognitive usage Main available operations

Set Bundling or superposition Self-associative memory
+ Element insertion/modification
+ Membership check
- No enumeration∗.

Map or dictionary Binding superposition
Auto-associative and hetero-
associative memory∗∗

+ Element insertion/modification
+ Value·s check from key
+ Key·s check from value
+ Symbol check from approximate input
- No enumeration∗.

Indexed and chained list
Ordinal binding superposi-
tion

Sequential memory
+ Element insertion/modification
+ Value enumeration.

Relational map (see next subsection) Hierarchical memory
+ Element insertion/modification
- No enumeration∗.

(∗) Through, using imperative programming, such data structures do have enumeration capabilities, for VSA implementations, symbol enumeration is also easily implementable, but using an

external mechanism.

(∗∗) It is worth noticing that, for instance, associative maps are not necessarily defined combining bundling/binding operations, but we make the choice to restrain here to such algebraic

definition in order to have an homogeneous setup to specify it at the macroscopic level.
Table 1

Biologically plausible data containers, using usual VSA implementations; see Appendix B for details..

3.0.2. Relational maps
From early artificial intelligence knowledge representation to modern web semantic data structures, one10 basic

idea of symbolic representation is to express knowledge through relationships, i.e., triple statements of the form

10Of course, other expressive frameworks, such as logical representations, frame-based semantics, and hyper-graphs, offer alternative models,
which could be richer and more nuanced, than the ontology framework targeted here:
- On one hand, the link between the ontology framework and logical representations, namely description logic, is well established and developed,
the key point being to propose a more expressive framework than propositional logic, but less expressive than first-order logic, in order to guar-
anty that the core reasoning problems for description logic are (as much as possible) decidable. Several level of specification allow the underlying
description logic features of an ontology language level to exhibit different balance between expressive power and reasoning complexity. See,



6 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

($subject, $predicate, $object), as schematized in Fig. 2, [4, 20]. We consider this structure here to
demonstrate that beyond existing data structures implemented with VSA, we can also easily define more complex
structures at a macroscopic level.

Here we target to define a set of relations between symbols, each predicate relating subjects to objects, thus
defining a relation between subjects and objects. We propose11 to call this a “relational map”.

Fig. 2. Atomic representation of knowledge: To express some knowledge regarding a symbol, the subject, we define a feature with a predicate
that has an object as an attribute (i.e., a quantitative data value or a qualitative symbol).

Such information can be implemented through a distributed representation using bundling and binding opera-
tions, i.e., associative maps. Following and generalizing [24], we propose to start with an architecture of combined
associative memories as represented in Fig. 3. Each associative map stands for a predicate, as proposed and devel-
oped by, e.g., [35]. It integrates a demultiplexer which is nothing but another associative map, allowing to index the
previous subject → object associative maps. At the algebraic level, this writes:

tpso
def
=

∑
i Bpi tpi , with tpi

def
=

∑
j,pi=p j

Bs j o j,

where:

– si, pi, oi are vectors encoding the subject, predicate and object symbols;
– each By x is a binding which corresponds to a key-value pair (the key is y and the value is x);
– combining these with bundling (i.e., a simple sum) in tpi allows to define an associative map, which unbinding

operation allows to retrieve the object of a given subject and predicate:
Bs∼

i
tp j ≃ oi j + unknown;

where “unknown´´ stands for a vector which is almost orthogonal, thus not similar, to any other vectors, as
made explicit in Appendix B.

– selecting the associative map, given a predicate, is also done through the tpso, implementing the demultiplexer:

Bp∼
i

tpso = tpi + unknown.

To obtain such properties the choice of a non-commutative binding operator from among several available binding
operators [33] is important, in order not to mix predicates, subjects, and objects.

Given a triple (s0,p0, o0.), it is straightforward to verify to what extent it is stored in the relational map through
unbinding:

(Bs∼
o

Bpo∼ tpso · o0).

for instance [18] for a development.
- On the other hand, frame-based semantics is a very interesting alternative to ontology frameworks to ease data and reasoning specifications,
while it directly maps onto ontology frameworks, as discussed for instance in [21]. This mapping does not make this approach useless: On the
contrary it allows another way to express knowledge. However, at our implementation level, we can consider that the mapping of such represen-
tation on ontology will allow one to open the possibility to extend the present work to this class of representation.
- A step further, hyper-graph representations intrinsically offers a richer representation than the previous ones, standing on labeled graph repre-
sentations. Despite the fact that there is a trivial one to one mapping for an hyper-graph onto a bipartite graph, more precisely a Levy graph, it
appears of interest to discuss specific adapted VSA implementation, beyond the scope of this work. This is briefly discussed in the conclusion.

11The choice of the term “relational map” is closely related to relational data models, which is exactly the idea of an ontology. Furthermore,
“relational mapping” allows one to map an object model into a relational data model, usually a data-base, but not exclusively. Reciprocally,
“object–relational mapping” allows to convert data between a relational database and a data-structure of an object-oriented representation. What
we propose here is not a “mapping” (i.e. a transformation) but a data-structure, thus a “map”. A step further, the term “relationship mapping”
represents the connections between different entities (e.g. friendship between people), but in quite different contexts. Finally, “relation maps” is
a mathematical term that define maps from, to or between relations.

https://en.wikipedia.org/wiki/Hypergraph
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Fig. 3. A relational map as a row of associative memory. For each predicate, an associative memory stores the hetero-associations between
subject and object. An input associative memory acts as a demultiplexor allowing to choose for a given predicate which associative memory to
choose. At the algebraic level, this corresponds to a simple combination of bundling and binding operations.

This obviously generalizes to a triple multiplied by a modal τ value, while the related τ value is simply the product
of the element’s τ value.

We can also further obtain all objects of a given subject for a given property,

tp j,s j

def
=

∑
p j=pi,s j=si

oi ≃ Bs∼
j

Bp∼
j

tpso + unknown,
using the notation of Appendix C. We can also easily define:

tp j,o j

def
=

∑
p j=pi,o j=oi

si ≃ Bs∼
j

B↔ Bp∼
j

tpso + unknown.

However such a construction, up to the best of our knowledge, cannot allows to retrieve, for instance each pred-
icate of a given subject. More precisely, there is no operation to recover ts j or ts j,o j from tpso, and no operation

to recover tp j or tp j,o j from tspo. nevertheless, to this end, a dual construction, tspo
def
=

∑
i Bsi Bpi oi, with similar

decoding formulae makes it possible to further access the properties of a given subject ts j

def
=

∑
i,s j=si

Bpi oi or the

properties of a given subject-object couple ts j,o j

def
=

∑
i,s j=si,o j=oi

pi using similar formulae. We thus shave now two
relation maps tpso and tspo. This is an important constraint, and it would be interesting to verify if such a constraint
is observed at the level of the brain’s semantic memory.

Again, in order to enumerate the different elements of these maps t•, we need the corresponding indexing mech-
anisms discussed previously. If the basic operation is to enumerate all triples, with order constraints, then the choice
of the storage architecture is not crucial; this is going to be the case later in this paper.

To take this a step further, we can also consider an additional symbol “something,” and each time a triplet
(si,pi, oi.) is added, we can also add (σ,pI , oi.), (si, σ, oi.), and (si,pI , σ.). This makes it possible to retrieve the
fact that there is a link between the predicate and object, subject and object, and subject and predicate, without
requiring the enumeration of the different elements12.

At the cognitive level, this corresponds to cognitive maps interacting with each other and is a proposal to formalize
the notion of hierarchical memory organization, as discussed in, e.g., [12].

12This has been proposed by Gabriel Doriath Döhler (unpublished research report).
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At the computer programming level, this corresponds to a “triple store” used in ontology reasoners and is in
fact a distributed representation of an oriented graph, in the form of an adjacency set for tspo construction and a
hierarchical edge set for tpso construction.

However, comparing to existing development in the literature, defining and manipulating such relational maps,
especially when considering rather large data ensembles, might becomes intractable to simulate at the microscopic
level, or even at the mesoscopic level, and it might be useful for large scale application to study to what extent this
could also be implemented at a macroscopic level, as developed now.

4. Implementation at the macroscopic scale

The VSA, when implemented using the NEF, allows a microscopic simulation of the neuronal processes, at the
spiking neuronal network level, for memorization and processing operations. At a higher scale, when the VSA is
implemented as described in Appendix C using linear algebra and permutation operations, we are at a mesoscopic
scale, allowing us to perform the same operations without explicitizing the neuronal state value and evolution, but
only random vectors linear algebra. This is one major advantage of this class of approaches.

To take this a step further, at a higher macroscopic scale, we could directly consider the previous operations,
predicting the results of the different algebraic operations without explicitly working at the vector component level.
Let us describe how this approach can be designed and implemented using what could be called an “algorithmic
ersatz”.

It is important to describe the implementation up to the data structure choice, in order to precisely exppalin what
is taken into account and what is not.

4.1. Symbol indexing and specification

In the VSA, each symbol of the vocabulary is associated with a d-dimensional random vector. At the macroscopic
scale, we only need to register each unary vector uk using an integer number k, incremented for each new symbol. At
the input/output level, the human-readable string (sk) representation of the symbol is utilized, but it is not considered
further here.

Weighted symbols of index i, correspond to a unary vector number ki, with also a “belief” value τi ∈ [−1, 1], as
discussed in subsection 2.2, that is equal to 1 by default. They are also estimated up to a certain normal centered
additive noise ν(σ) of standard deviation σi ⩾ 0, which is equal to 0 by default when no approximate operation has
been applied to the symbol.

Two symbols may thus have the same unary vector number but different belief levels or different noise levels.
The associative table of symbols is thus a simple associative array data structure of (ki, τi, σi), corresponding to

xki = τi uki + ν(σi),

as illustrated in a more programmatic format in Fig. 4.
If and only if comparison with mesoscopic computation is required, the explicitization of the unary vector value

with ∥uki∥ = 1 is added to the data structure.
With this representation

- Two symbols x and x′ are approximately colinear if and only if they have the same unary vector index.
- Two colinear symbols x and x′ are indistinguishable if and only if:

0 ≃ ∥x− x′∥ ≃ (τ− τ′)uk + ν(σ+ σ′),

up to the first order, with |τ− τ′| < σ+ σ′ as developed in Appendix A.
- The similarity between two symbols x and x′ writes:

xT x′ ≃ τ τ′ δk=k′ + ν(σ+ σ′),

up to the first order.
At this stage we thus have specified atomic symbol, or the dual of such a symbol.
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Symbol : {
unsigned int key; // index
double tau; // belief level
double sigma; // noise level
enum type; // symbol type
string name; // human readable name
double mesoscopic_value[dimension]; // optional vector

}

Fig. 4. Programmatic implementation of a symbol at the macroscopic scale, adding an optional mesoscopic numeric vectorial value, to compare
macroscopic and mesoscopic calculations.
The symbol type can be atomic, i.e. scalar, such a symbol is only defined by its name, without including binding or bundling, or either bundling
or binding with a complementary data structure, as developed below.

4.2. Symbolic derivation of compounded symbols

Given atomic symbols that are randomly drawn, using the enumerating operations given in Appendix C, we have
to compute compounded symbols composed through bundling and binding (while unbinding is a simple binding
with the dual symbol, thus taken into account with binding), while in order to compute entailment rules, we need to
be able to compute the similarity between any of these compounded symbols.

At the macroscopic level, it is straightforward to define an “oracle” that can calculate the result of all operations
as follows:

Bundling canonical representation. A symbol corresponding to the bundling of other symbols is fully defined by
the symbol set and their corresponding τ and σ values. The key point is to have chosen an implementation that
allows to maintain a normalized representation of the bundling elements, as follows.

The programmatic implementation of a bundling is an associative map:
symbol-id −→ Symbol

the Symbol data structure being defined in Fig.4.
- When a new symbol is added,
if the symbol index is already present in the bundling, the τ and σ values are updated,
otherwise a new map entry is created, making use of commutativity to group all symbol with same index.

- If the added symbol is itself a bundling, its components are directly expanded, making use of associativity, i.e., the
fact that a bundling of bundling is a bundling.
- Deleting a symbol is not explicitly defined in usual VSA implementation. At the mesoscopic level, this corresponds
to subtract a vector to the bundling, i.e., add it with a negative τ value, while the σ value is updated to take into
account the fact this numeric operation is performed with some additive noise.

Usual operation over a bundling (such as binding or computing similarity) mainly results from applying the
operation to each element.

The representation is canonical in the sense where, if equality is well-defined on their components, two bundlings
are semantically equal, if and only if they are syntactically equal, i.e., if they have the same symbol map, and each
corresponding symbols are equal, more precisely indistinguishable, when considering noise.

Associative map canonical representation. A symbol corresponding to an associative map is a binding of bundling,
thus implementable using the two other mechanisms. However, to obtain the best performances, we consider a
specific canonical data structure corresponding to an associative multi-map, i.e., a map mapping a key symbol to a
set of symbol values. We use:

symbol-id −→ (Symbol, (symbol-id −→ Symbol))
in words a map mapping key IDs (i) to the related symbol and (ii) to the map of all symbol values.

The symbol addition mechanism is entirely similar to the bundling mechanism, since we reuse here the
symbol-id −→ Symbol representation. Conversion to the binding of bundling form is obvious to implement.
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Binding canonical representation. A symbol corresponding to the binding of one symbol onto another is fully
defined by the pair of symbols and yields either a reduction if it is the corresponding unbinding operation or a
binding combination.

Then, to reduce such an expression we thus simply have to recursively13:
+ Expands By x binding on the y argument if it is a bundling.
+ Expands By x binding on the x argument if it is a bundling.
+ Reduces dual By By∼ x or By∼ By x binding/unbinding operation, on elementary or compounded symbols.

Let us call “atomic binding case”, when for every By, y is an atomic symbol. When considering all binding
operations regarding used data structures, as discussed in detail in Appendix B, or literature quoted in this paper, we
are in this atomic binding case. In such a case, the iterative application of these three operations allows to obtain all
expressions in a canonical form, written: ∑

k

∏lk
l=1 Bykl xk

where xk and ykl are atomic symbols and ykl ̸= y∼
k(l+1), while we may have lk = 0 thus omitting the binding

operation.
At the programmatic level, binding and unbinding are simply defined by the same operator, with a flag to specify

binding or unbinding.
In order to obtain a canonical representation with respect to (τ, σ) values, we use the 1st order relation discussed

in the sequel, which is directly obtained from the linearity of the binding operator:
Bτ y+ν(σ) (τ

′ x + ν(σ′)) = By (τ τ
′ x + ν(τσ′ + τ′ σ) + O(σσ′)

where O(σσ′) contains second order terms with respect to the 1st order noises. As a consequence the y operator of
a binding is always defined with τ = 1 and σ = 0.

For the sake of generality, let us also discuss canonical forms beyond the “atomic binding case”. Interestingly
enough, there are no more reductions in terms of a flatter or reduced expression in this general case14. In other

13More formally, we consider the following rules:

ey B∑
k yk

x →
∑

k Byk x
ex By

∑
k xk →

∑
k By xk

r1 By By∼ x → x
r2 By∼ By x → x

where
- ey and ex correspond to bundling expansion over binding,
- r1 and r2 correspond to the binding/unbinding reductions.

Applying recursively ey and ex guaranty that there is no bundling in the y and x arguments of the binding, thus yields to an expression of the
form ∑

k
∏

l Bykl xk

where xk are scalar symbols. This simply corresponds to a symbolic expansion of an expression, and it is well established (see, e.g., [3]) that the
recursive application leads to a fixed point, and a canonical form, as for the expansion of, e.g., a polynomial.

Note that ykl is either a scalar symbol or a compounded symbol of the form
∏

h Byhkl xkl, because the binding is associative with respect to the
x argument, since it corresponds to a matrix multiplication, but not with respect to the y argument, as further discussed in the sequel.

Reducible binding couples are of the form By By∼ or By∼ By, where y is either a scalar or a compounded symbol involving bindings, as made
explicit with rules r1 and r2. These rules allows the reduction of such binding or unbinding couples. After such application, there is no guaranty
that that reducible binding couples do not remain. Therefore, we have to apply r1 and r2 recursively on the resulting expression until no more
reducible binding couples left. This again leads to a fixed point since, for instance, the expression positive size reduces at each step.

14Let us consider the idempotent mirroring matrix B↔, and the related dual operator ∼, also well-defined and detailed in appendix C.:

B↔ x = x∼ and B↔ By x = Bx y

We now have to consider expressions where the binding left parameter is also binding, i.e., of the form BBy z x. Thanks to the dual operator, it
expands as:

eb BBy z x → B↔ Bx By z = [Bx By z]∼ .

However, as discussed in Appendix C, beyond idempotence, the dual operator ∼ neither expands nor simplifies over binding operations. It
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words, we still derive a canonical form of an expression with binding.
A tsep further, the notion of approximate colinearity or equality (i.e., indistinguishably) between two binding

symbols is easily defined, as it is simply induced by the same notion on the two left and right symbols.

Limit of the implementation. This symbolic derivation assumes that no symbol with two different names has a
hidden similarity, i.e.:

∀x, y, x · y ≃ 0 and x · y∼ ≃ 0.

These symbolic derivation rules are in fact nothing but a subset of usual algebraic normalization rules, where the
bundling stands for the sum, what it is here, and the bundling is a non-commutative product, with a left-inversion
mechanism. We refer to the symbolic computation textbook for further details (see, e.g., [3]).

4.3. Symbol noise derivation

At the mesoscopic scale, calculations are made up to the floating-point machine precision, which is not taken into
account here. The operations rely on the fact that we consider random vectors in a high-dimensional space, and thus
they are approximately orthogonal up to, up to the first order, a normal centered additive noise. The main operations
are the dot product used to calculate the similarity, as detailed in subsection 2.1, and the approximation of the matrix
inverse using its transpose for unbinding, as detailed in Appendix C.

We must thus consider a level of noise for each symbol and update this level of noise after each calculation; this
noise, up to the first order, can still be represented by a centered normal distribution. This cannot be neglected,
because we also introduce a level of belief value that can be small and thus is not negligible with respect to the
noise level. We denote by σ•

def
= O(1/d) the order of magnitude added by an approximate operation, as discussed

previously in this paper.
On the one hand, considering the similarity operation between two symbols, we obtain15 for the dot product

only expands over bundling. This means that we can not further reduce or normalize binding expressions for which the left argument, named y
here, is not atomic.

In other words, the three form on the left-hand and right-hand size of eb are simply equivalent and do not lead to further derivation, except
trivial useless ones (e.g., adding a zero). Therefore, up to our best understanding, no other expression with x, y, and z, can be semantically equal
to one of the three equivalent expressions.

It means that two expressions for which the right parameter is in canonical form as discussed previously and the left parameter is a binding
itself in canonical form, are semantically equal if and only if they are syntactically equal.

15The derivation is written as follows:
((τi uki + ν(σi)) · (τ j uk j + ν(σ j)) =

τi τ j uki · uk j + τi uki · ν(σ j) + τ j uk j · ν(σ j) + ν(σi)) · ν(σ j).

If ki ̸= k j, then uki · uk j = ν(σ•) since these random vectors are approximately orthogonal up to normal noise with a standard deviation with an
order of magnitude of σ• [43], whereas if ki = k j, then uki · uk j = 1 since these are unary vectors.
Then, uki · ν(σ j) is the dot product, and it is a random variable of mean E

[
uki · ν(σ j)

]
= 0, since vectors are assumed to be independent of

other sources of noise up to the first order, and variance E
[

uT
ki
ν(σ j) ν(σ j)T uki

]
= σ2j since the covariance ν(σ j) · ν(σ j)T = σ2j I because the

noise is isotropic; meanwhile, uT
ki

uki = 1 since it is a unary vector. Note that here, uki is not a random variable; it stands for the mean of the
random vector drawn.
The derivation for uk j · ν(σi) is identical.
Assuming that ν(σi) and ν(σ j) are independent and of zero mean, as hypothesized, its related variance is known to be σ2i σ

2
j . The product of

these two normal distributions is not a normal distribution; instead, it is a linear combination of chi-square distributions in the general case.
However, here, as it is a second-order term, with respect to the expected small values of σi and σ j, it is negligible. Collecting these results, we
obtain that up to the first order,

(τi uki + ν(σi)) · (τ j uk j + ν(σ j)) = τi τ j δki=k j + ν

|τ j|σi + |τi|σ j + |τi τ j|σ•︸ ︷︷ ︸
def
=σi j

 ,
yielding the expected result.
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(τi uki + ν(σi)) · (τ j uk j + ν(σ j)) = τi τ j δki=k j + ν(σi j), σi j < σi + σ j + σ•,

up to the first order, considering that the noise is independent of the vector values up to the first order. We can thus
perform this operation without explicitly computing the dot product.

Here, we show a conservative choice by proposing an upper bound for the noise, while the exact value, up to the
first order, of σi j can also easily be used, and is implemented. This design choice is also conservative with respect
to a mesoscopic implementation, because it increases the noise at each operation, whereas at the mesoscopic level,
each numerical random vector is drawn once; thus, depending on the combination of operations, the noise may not
increase. We consider here that noise must be added at each step, and we wonder if this is not more realistic than
a frozen noise value. However, it would have been possible (but quite computationally heavy) to consider freezing
noise values and caching them in some tables.

On the other hand, considering a symbol of index j binded by a symbol of index i and unbinded by a symbol
of index i′ so that k = ki = ki′ , in order to ensure a valid binding/unbinding operation, we obtain, up to the first
order16,

B(τi ui+ν(σi)) (τ j u j + ν(σ j)) = τi τ j ūi j + ν(σ
′
i j), σ

′
i j ⩽ (1 + σi + σ j)σ

1
4
• ,

where ūi j
def
= E [Bui u j] is a new vector orthogonal to ui and u j, while the noise related to the binding operation is

integrated into σ′
i j.

Since an unbinding operation is simply a binding operation with a dual vector, the noise calculation is the same.
Finally, since bundling is a simple summation, additive noise standard-deviations simply add. The tricky point is

the approximation of τ, as summarized here17:∑I
i=1 xi = τ• u• + ν(

∑
i σi), τ•

def
=

√∑
k(

∑
i,ki=k τi)2,

where u• is a new unary vector approximately orthogonal to the others, while τ• is the related magnitude. We thus
will use τ• as the approximate value of a bundling belief, which is rather arbitrary at this stage but could easily be
improved.

4.4. Other possible features

Similar considerations would easily allow us to implement the same approach at a macroscopic for the dual
operator ∼, related to the commutator operator B↔ and the composition operator ⊘ given in Appendix C. However,

16As made explicit in Appendix C, the binding of two independent vectors y and x is a random vector and we can write

B(τi ui+ν(σi)) (τ j u j + ν(σ j)) =

τi τ j Bui u j + τi Bui ν(σ j) + τ j Bν(σi) u j + Bν(σi) ν(σ j) =

τi τ j E [Bui u j] + τi τ j ν(1/d1/4) + τi σ j ν(1/d1/4) + τ j σi ν(1/d1/4) + σ j σi ν(1/d1/4) ≃
τi τ j ūi j + (τi τ j + τ j σi + σ j σi) ν(1/d1/4) ≃

τi τ j ūi j + ν

(|σi σ j| + |τi|σ j + |τ j|σi)σ
1/4
•︸ ︷︷ ︸

σ′
i j

 ,
up to the first order, since ν(σ) is a random vector of magnitude σ, while

E [Bui ν(σ j)] = E
[
Bν(σi) u j

]
= E

[
Bν(σi) ν(σ j)

]
= 0,

because these random vectors correspond to centered random vectors.
17 ∑

i xi =
∑

i τi uki + ν(σi)

=
∑

k τk uk + ν(
∑

i σi) τk
def
=

∑
i,ki=k τi

= τ• u• + ν(
∑

i σi)

with:

τ• ≃
√∑

k τ
2
k , ∥u•∥ = 1,

since uk are approximately orthogonal.
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as explored in the previous section, unless explicitly used to define expressions, they a not useful in our case. This
is also the case for the i identity element.

Interesting enough, deriving a macroscopic ersatz of complex instead of real VSA specification, seems straight-
forward, since algebraic relations easily generalizes to these case, as reviewed in Appendix C.

Furthermore, we consider binding/unbinding operations using the VTB algebra, but the same reasoning could
also be performed for other binding/unbinding operations, including and especially for heavily calculated operators,
including if a commutative binding operation is considered, yielding obvious additional reduction rules.

This is another argument to consider macroscopic algorithmic ersatz: while VTB-algebra or almost one order
of magnitude heavier than, for instance, convolution operators (O(d3/2) instead of O(d log(d))), and this is also
the case for other non-commutative binding operations (see Appendix C), the macroscopic simulation of both have
similar computational costs.

4.5. Available implementation

We are thus in a position to propose an algorithmic ersatz of the usual VSA mesoscopic linear algebra calculations
involving high-dimensional random vectors. This has been implemented and made available as public documented
open-source code18. For the generation of a symbol, at a given level of belief τ and for a given level of first-order
random normal noise with a standard deviation σ, the usual similarity, bundling, and binding operations are made
available, and the data-structures made explicit here also19.

5. Experimental results

5.1. Calibrating macroscopic simulation

Symbolic expression syntax. In order to input or output expression we use the usual JSON20 syntax in a weak
form21, namely:
- Bundlings are represented by lists:

[symbol_1 ...].
- Bindings are represented by the construct:

{b y: symbol x: symbol },
where b stands for binding and is replaced by u for unbinding.
- Atomic symbols are represented by the construct:

{ name: symbol-name tau: tau-value sigma: tau-value },
tau and sigma being optional, while atomic symbols with tau=1 and sigma=0 are also represented by strings.
At the implementation level, this requires no more than a few lines of code.

Symbolic derivation examples. In Table 2, four illustrative examples of symbolic reduction are given:
-The 1st one illustrates the canonical representation of bundling where, in this case, [a, b] and [b, a] have the same
internal representation, while expansion of binding over bundling is performed for the reduced form.
-The 2nd one illustrates that bundling of bundling is flattened while empty bundling or singleton bundling is reduced,
it also shows an example of tau and sigma computation.
-The 3rd and 4th ones illustrate binding/unbinding reduction and related belief computation including in complex
expressions.

18https://line.gitlabpages.inria.fr/aide-group/macrovsa.html.
19Additional mechanisms of rule derivations are also present, beyond the present work.
20See https://www.json.org.
21See https://line.gitlabpages.inria.fr/aide-group/wjson.

https://line.gitlabpages.inria.fr/aide-group/macrovsa.html
https://www.json.org
https://line.gitlabpages.inria.fr/aide-group/wjson
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[I]: [ {b y: c x: [a b]} {b y: c x: [b a]}]

[P]: [ B_(c)([ a b ]_<1.4±0>)_<1.4±0.044> B_(c)([ a b ]_<1.4±0>)_<1.4±0.044> ]_<2±0.088>

[R]: [ B_(c)(a)_<2±0.062> B_(c)(b)_<2±0.062> ]_<2.8±0.12>

[I]: [ [{name: a tau: 0.5 sigma: 0.1} [ ]] {name: a tau: 0.5 sigma: 0.1}]

[P]: [ a_<1±0.2> ]_<1±0.2>

[R]: a_<1±0.2>

[I]: {b y: a x: {u y: a x: [ {name: c tau: 2 sigma: 0.1}]}

[P]: B_(a)(B_(a∼)([ c_<2±0.1> ]_<2±0.1>)_<2±0.066>)_<2±0.065>

[R]: c_<8±0.23>

[I]: {b y: c x: {b y: c x: {b y: c x: {u y: c x: {u y: c x: {u y: c x: a}}}}}}

[P]: B_(c)(B_(c)(B_(c)(B_(c∼)(B_(c∼)(B_(c∼)(a)_<1±0.031>)_<1±0.032>)_<1±0.032>)_<1±0.032>)_<1±0.032>)_<1±0.032>

[R]: a_<1±0.19>

Table 2
Four symbolic reduction examples.
- The [I] line corresponds to the Input of the symbolic expression in weak JSON syntax.
- The [P] line corresponds to the Parsed expression.
- The [R] line corresponds to the Reduced expression.
Bundlings are represented as a list between [ ], Binding using the usual syntax, while the < τ ± σ > construct allows to specify the belief
value, when not equal to the default < 1 ± 0 > value.

Binding magnitude verification In Table 3, we have verified another aspect of our formal developments: The VTB
binding magnitudes. This is important, contrary to previous studies because we have introduced the notion of belief
via the τ magnitude parameter. As formally derived ∥By x∥ ≃ 1 and ∥By y∥ ≃

√
2, while other magnitudes have

not been derived a-priory only observed numerically. If simulation is run at the mesoscopic level, these values
matter, and computations must be re-normalized. If the simulation is run at the macroscopic level, the normalization
assumption is always considered.

Dimension: 100 400 1024 2500 4096 10000

∥Byx∥2 1±0.14 1±0.073 1±0.043 1±0.027 1±0.023 1±0.014

∥By∼ Byx∥2 2.1±0.51 2±0.25 2±0.15 2±0.095 2±0.081 2±0.049

∥Byy∥2 2.1±0.2 2±0.1 2±0.059 2±0.039 2±0.033 2±0.02

∥By∼ Byy∥2 5.3±1.2 5.2±0.64 5.1±0.36 5.1±0.25 5.1±0.2 5.1±0.13
Table 3

Mesoscopic computation of VTB binding magnitudes, over N = 1000 samples: mean ± standard-deviation is shown. This allows to verify what
has been derived in Appendix C, regarding this aspect.

Numerical noise estimation. In Table 4, the comparison between mesoscopic similarities measures of elementary
expressions, and the related macroscopic prediction is reported. Noise of order of magnitude O(1/d) for similarities
and O(1/d1/4) for binding has been considered. We observe that with respect to our simple 1st order and con-
servative derivations, noise is overestimated at the macroscopic level, and this overestimation increases with the
dimension.

This overestimation increases almost logarithmically with the space dimension, and may partially be compensated
by a rather simple rule of thumb, which could easily be improved in the future. This is especially important since
macroscopic simulation is mainly useful when the space dimension is to be increased.

After numerical adjustment, it appears that an experimental rule of thumb of:

σ• = O(1/d) ≃ 1

1024 d︸ ︷︷ ︸
σ0•

≃ 1

1024 (6 log10(d)− 11) d︸ ︷︷ ︸
σ1•

leads to reasonable results: using σ0• allows one to maintain the standard-deviation over-estimation above almost 1
and below 5, for d < 105, while using rule of the thumb defined by σ1• allows one to maintain the standard-deviation
over-estimation 0.75 and below 2, for d < 105, which corresponds to the result in Table. 4.
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This allows us to conclude from these numbers that our rather simple, 1st order, estimation of mesoscopic noise,
allowing to predict it at the macroscopic level, being conservative, we observe an expected overestimation of the
noise, which increases with the space dimension. Obtaining such an overestimation is a conservative choice, in the
sense that some deductions may be missed, whereas false deductions will be avoided, as discussed in Appendix A.

A step further, we have investigated to what extents the usual approximation, here and in the literature, of chi-
square distribution by a normal distribution, regarding the dot-product similarity operation is appropriate. This is
shown in Fig. 5. The main result is that this difference is below 1 bit (i.e., we miss less than 1 bit of information,
namely about half a bit, to consider it as a normal distribution instead of a combination of chi-square ones). This
might decrease with the dimension, although the result is not obvious.

Fig. 5. Average divergence in bits (i.e., using log2 in the formula) between the observed mesoscopic noise distribution and a normal distribution
with the same standard-deviation, as a function of the space dimension.

Another interesting aspect is that our macroscopic model is consistent with that of [33], which obtains the fol-
lowing (from Fig. 4 of that paper) for the VTB representation:

d ⪆ 32 (s + 0.575)

represents the minimal dimension d needed to obtain a 99% accuracy with a bundling of size s, using a similarity
calculation to extract vectors from the bundling. Our model does not take the negligible bias 0.575 into account but
allows us to calibrate the level of noise to σ ≃ 0.016

d , in order to perform a simple z-score test under the normal
hypothesis

τ > 2σ

to decide if the related τ value of the similarity is distinguishable from the noise. On the other hand, we do not
consider two vectors to be similar if the similarity is below the standard deviation of the noise, preferring a more
conservative threshold.

To take this a step further, we also implemented the (1/d1/4) noise dependency for unbinding, with the same
calibration.

Studying, at the mesoscopic level, the numerical precision of unbinding on associative maps is to the best of our
knowledge, this was not studied in the papers quoted in this one.

5.2. Benchmarking macroscopic simulation

In order to benchmark this implementation beyond simple tests, let us consider two rather large VSA existing
experiments and test to what extents this can be simulated at the macroscopic level. We have taken into account
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the [44] King John Bible (KJB) data set22. This yields to about 106 input tokens for about 104 terms and about 103

documents. We did not reproduce the whole experiments, but simply have benchmarked our implementation storage
and retrieval with such a rather large scale data set. Numerical results are not expected to be similar, since the [44]
KJB data set pre-processing differs from the present one and since, while the [29] considers another data set.

The [44] experiment makes use of a search engine that needs to be able to assess similarity between terms and
documents.

Regarding document similarity, thanks to the introduction of the τ parameter, now used in an extended manner
and representing a level of activity, one implementation is to simply consider or each document a weighted binding
and compute similarities as the binding vectors similarity:

vdocument =
∑

words τword count sword

This is obviously implemented by adding each word of the document sequence to the document vector vdocument,
and this precisely corresponds to the [44] weight function, namely the column marginal value of the term-document
matrix. The term-document matrix could also be represented with VSA mechanisms considering an associative-
network, as reviewed in subsection B.3, but there is no need at the present stage.

Regarding word similarity, the dual obvious mechanism:
vword =

∑
documents τcount in document sdocument

namely the row marginal value of the term-document matrix. Then [44] proposes the following algorithmic ersatz
: “term vectors can be compared with one another, and the space can be searched for the nearest neighbors of any
given term´´. It is an “ersatz” in the sense that it is not implemented by VSA structures and connections. However,
there exists a biologically plausible mechanisms at the microscopic level as reviewed in section B.1.2, which is
made available in our implementation. Formally we obtain:

vword neighborhood =
∑

words(v
T
word vword) Bνi sword,

where νi is a known ordinal symbol, this indexed list being sorted in decreasing (vT
word vother word) values.

Then, given a word, e.g. fire or water as calculated in Table 2 of [44], we can compute its neighborhood and
obtain in our case the results reported in Table 5. Normalized values are presented, which is easily at a biologically
plausible level in neural network computations using gain control, for instance using impedance adaptation [25].

word τ σ

fire 1.00 2.90 10−05

burn 0.40 1.56 10−05

chapter 0.38 7.10 10−05

out 0.38 4.83 10−05

offer 0.37 1.52 10−05

savour 0.36 9.21 10−06

day 0.34 4.01 10−05

among 0.34 4.00 10−05

even 0.34 4.41 10−05

burnt 0.33 1.72 10−05

word τ σ

water 1.00 1.63 10−05

wash 0.44 7.26 10−06

toucheth 0.44 4.48 10−06

bathe 0.42 2.27 10−06

clothes 0.40 9.94 10−06

issue 0.37 2.43 10−06

unclean 0.36 5.70 10−06

uncleanness 0.36 6.52 10−06

copulation 0.35 1.48 10−06

until 0.35 1.84 10−05

Table 5
Similarity between words as obtained using the macroscopic VSA implementation on the KJB data set.

This result differs from Table 2 of [44] because different “non-significant´´ words have been eliminated during
pre-processing. We however, find expected associations such as fire - burn or water - wash.

22We have considered from https://www.kingjamesbibleonline.org the open PDF document, have segmented each chapter from the table
of contents (treating each chapter as a document), and apply normalization and tokenization rules as detailed in the pre-processing available
documentation. We obtained 1363 documents, 15085 different words and 2701846 words total, to be compared with the 1189 documents and
12818 different words reported by [44] using a different pre-processing: The order of magnitudes are similar, while the pre-processing used in
the former case is more selective.

https://www.kingjamesbibleonline.org
https://line.gitlabpages.inria.fr/aide-group/macrovsa/kjvdemo/makefile
https://line.gitlabpages.inria.fr/aide-group/macrovsa/kjvdemo/makefile


18 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

prefix tail τ2

out land egypt 91

spake moses saying 77

if any man 77

thus saith hosts 76

therefore thus saith 63

thus saith behold 59

our jesus christ 57

word came saying 55

say thus saith 52

saying thus saith 51

τ = 1.1 ± 0.8 ∈ [1, 91] ≈ Γ(degree = 2, rate = 0.5,mode = 0.5)

#{τ, τ = 1} ≃ 93%, #{τ, τ ⩽ 4} > 99%

prefix tail τ

word came saying man 34

written book chronicles kings 34

years old began reign 33

old began reign reigned 32

praise exalt above ever 31

bless praise exalt above 31

spake moses saying speak 30

chapter spake moses saying 28

brought out land egypt 24

forth out land egypt 23

τ = 1.03 ± 0.36 ∈ [1, 34] ≈ Γ(degree = 8, rate = 0.1,mode = 0.7)

#{τ, τ = 1} ≃ 97%, #{τ, τ ⩽ 2} > 99%

Table 6
Prefix tail occurrence count for prefixes of length 2 (on the left) and 3 (on the right). The ten highest values are shown in both cases. The τ
distribution mean, standard-deviation, Gamma-distribution approximation, and indications of value counts are reported.

Macroscopic ersatz Mesoscopic calculation Mesoscopic calculation
for any d (observed) for d = 1024 (observed) for d ≃ 105 (interpolated)

Similarity 310.00 3.00 ≃ 300.00

Bundling add 0.01 0.03 ≃ 3.00

Associative map add 8.00 360.00 ≃ 180000.00

Table 7
Average unary computation time of one operation in µs (micro-second) using a standard Intel©CoreT M i5-8265U CPU @ 1.6GHz x
8 processor. Macroscopic ersatz computation and mesoscopic calculation for d = 1024 times are experimentally observed, while mesoscopic
calculation times for d ≃ 105 is interpolated (computing similarity or bundling at the mesoscopic level is a simple dot-product or sum which
linearly scales with the dimension, while other computation requiring binding computation that scale at about O(d1.35), as obtained in Ap-
pendix C.1). The d ≃ 103 corresponds to usual dimensions considered when computing VSA at the mesoscopic level with standard methods.
The d ≃ 105 value correspond to biologically plausible dimensions of a neural map.

A step further, we follow [29] addressing the question of sequence encoding. In this work, the VSA representa-
tion is implemented using binary values, while we use real value here. The key work is to measure, given a short
sequence of words as prefix, the related tails occurrence. Formally, we can consider the following associative map
data structure:

pl =
∑L

i+l B∑l
j=1 Bν j wi− j

wi

where ν j stands for independent symbols representing ordinal numbers, as developed in Appendix B.4, while wi is
the i-th word in a document. This structure is a simple combination of bindings and bundlings, thus easy imple-
mentable in the VSA framework. Then, if a for a given prefix with τ = 1 the tail occurs several times in the related
bundling, say N times, considering the macroscopic bundling τ combination rule we obtain N = τ2, allowing to
directly estimate the prefix → tail occurrence statistics, reported in Table 6.

Such count mechanism is the basic mechanism of, for instance next word prediction in large language models
(LLM), whereas although about 2.5 105 prefixes has been taken into account throughout the book, we are far from
the data size of what is used from LLM.

These results are not of real interest by themselves, they just allow us to experimentally verify the usage of
this macroscopic implementation, with a relatively large scale experiment. Regarding computation time we have
observed the following experimental results on a standard laptop computer, reported in Table 7.

We observe that similarity is definitely faster at the mesoscopic level, which is expected because it is a simple dot-
product, instead of requiring symbolic derivations. Then, for d ≃ 103 bundling calculation time have of the same
order of magnitude at both mesoscopic and macroscopic scales, but in favor of macroscopic symbolic derivation,
especially at higher dimensions. A step further, as soon as binding is involved, even at rather low VSA dimension
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of d ≃ 103 macroscopic computation is faster (about 45 times), while mesoscopic calculations become heavily
tractable (computation time of the results presented in Table 6 would require about 1 hour for d ≃ 104 and more
than 1 day for d ≃ 105).

This provides a rather precise evaluation of when using VSA computations at a macroscopic scale is of interest.

5.3. A tiny illustrative application

To illustrate the use of macroscopic mechanism beyond basic formulae, we reconsider the example proposed in
[24] which has been simulated at the mesoscopic level and is based on a minimal ontology in Fig. 6.

Fig. 6. An example of a simple ontology with three individuals. The black arrows correspond to factual statements input into the database and the
green arrows correspond to inferred statements. Rectangular boxes stand for individuals, round boxes stand for classes, and properties are used
to label arrows. Here, from the fact that a subject eats an object, we deduce that this subject is a Person, and the object is Food. This is illustrated
by a red arrow. From the fact that the object is a Margherita pizza, which is a Pizza, which is a Food, according to the class hierarchy, we deduce
that the object is a Pizza, and re-deduce that it is a Food. Furthermore, because Luigi (among other activities, since it is an open world) eats a
pizza, we deduce that Luigi is a Person. Because of property heritage, meaning that here a Topping is an Ingredient, we also deduce from the
fact that this pizza has mozzarella as a topping that it also has mozzarella as an ingredient. In the macroscopic implementation, this property is
deduced from the fact that Margherita Pizza always has mozzarella as a topping, allowing us to generate compounded inferences. From [24].
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We have considered a symbol encoding dimension of d = 256 to be consistent with previous mesoscopic experi-
ments, such as those in [24]. This is tested with an associative map and relational map, as described in the previous
section, and we have implemented the tiny Pizza experiment23, obtaining, in the simplest case, the expected closure,
as given in Fig. 7.

5.4. Macroscopic implementation of the VSA system

Input triples Inferred triples
(Luigi eats thisPizza) (Luigi rdf:type Person)

(thisPizza rdf:type MargheritaPizza) (thisPizza rdf:type Pizza)

(MargheritaPizza rdfs:subClassOf Pizza) (thisPizza rdf:type Food)

(Pizza rdfs:subClassOf Food) (MargheritaPizza

rdfs:subClassOf Food)

Fig. 7. The expected inferences using the proposed RDFS subset of entailment rules obtained by the macroscopic algorithmic ersatz of the VSA
implementation.

More interesting is what happens when modality is considered, e.g.,
(Luigi 0.5 eats thisPizza).

In other words, it is possible but not completely necessary that Luigi eats the given pizza. In that case,
- it is still possible but no longer entirely true that Luigi is a person;
- it is still entirely true that this pizza is some food, even if Luigi did not eat it, because it is true that it is a pizza,
which is food.
This is what is obtained by the implementation, as shown by the open-source tiny experiment output23.

Although it is far from being complete, this macroscopic implementation of an algorithmic ersatz of VSA meso-
scopic operations seems sound and it is consistent with previous results. It has a final non-negligible advantage: It
is quite “simple” in the sense that it does not require very complicated or twisted mechanisms. It requires a bit more
than 500 lines of formatted C++ code, including formal symbolic operations on the algebraic operators.

6. Discussion and conclusion

6.1. Contributions

In this paper, we have been able to propose, up to the implementation level, a reformulation of the powerful VSA
approach with a few additions:
- We explicitized a degree of belief for each knowledge item that is linked to the possibility theory related to
modal logic, and we revisited the main proposed abstraction of biologically plausible data structures to verify their
compatibility with this generalization while comparing them with usual programming data structures and discussing
how to efficiently scan (i.e., enumerate) such data structures.
- We proposed an implementation of hierarchical or relational semantic data structures within the VSA formalism
in relation to hierarchical cognitive memory, allowing us to introduce symbolic derivations.
- We introduced the idea of simulating such a mechanism at a macroscopic, more symbolic level in order to obtain

23 The source code is available at
https://gitlab.inria.fr/line/aide-group/macrovsa/-/blob/master/src/pizza_experiments.cpp
and it is noticeable that the C/C++ implementation of such rules is straightforward to write, as documented in the source code. This piece of code
output is available at
https://gitlab.inria.fr/line/aide-group/macrovsa/-/raw/master/src/pizza_experiments.out.txt,
per Fig. 7, and it also shows the intermediate inference steps.

https://gitlab.inria.fr/line/aide-group/macrovsa/-/blob/master/src/pizza_experiments.cpp
https://gitlab.inria.fr/line/aide-group/macrovsa/-/raw/master/src/pizza_experiments.out.txt
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computations independent of the VSA dimension space, thus making it possible to scale up such mechanisms.
This idea has been applied to VTB algebra but is also obviously reusable with other VSA algebras, though the
macroscopic implementation is even more interesting for binding operations requiring more operations.

6.2. On biological plausibility and numerical versus semantic grounding

We thus propose an anchoring, i.e., a numerical grounding of semantic information. This, indeed, does not mean
that the brain performs such operations as it, but this anchoring is biologically plausible in the sense that algorithms
can be implemented in a VSA, as developed in this paper, which itself is a model of spiking neuron assembly
activity, as developed by [13] with the NEF approach reviewed in this paper.

Numerical grounding, or anchoring, fundamentally differs from the semantic symbol grounding problem, as
reviewed and discussed in [37], where symbols are linked to their meanings and anchored in sensorimotor features,
which involves the capacity to pick referents of concepts and a notion of consciousness. In a nutshell, this is still
an open problem that we are not going to address here. However, proposals of methods to link abstract symbols
to neuronal reality enrich the issue of how mental states can be meaningful. Furthermore, the fact that our abstract
representation is anchored in sensorimotor features means that it is also a link between symbols and their potential
referents. To take this a step further, when we represent concepts, the chosen design choice associates prototypes,
allowing us to anchor an abstract element to a concrete example.

Another aspect not targeted by the present study is the emergence of symbols, i.e., the fact that a symbolic
representation emerges from a biological or any physical system in interaction with its environment. This issue
corresponds to the ungrounding of concrete signs24, as discussed in, e.g., [30], in relation to the emergence of
symbolic thinking (see, e.g., [41] for a detailed discussion). At the computational neuroscience level, the issue is
addressed in [31] for a toy experiment; that paper emphasizes that to address such an issue, we must avoid explicitly
embedding any symbol anywhere in the model, a priory or a posteriory. Here, we do not address the emergence
issue, but in a sense, we do address a feasibility issue: To what extent can sophisticated symbolic processing be
anchored in numerical processing, not just rudimentary operators? We also address an interpretation issue, i.e., we
consider to what extent sub-symbolic sensorimotor anchored processing corresponds to symbolic processing, as
discussed later in this paper.

6.3. Approach limitations and perspectives

The macroscopic simulator is operational but still limited to basic VSA operations of bundling and binding,
and their applications to set, associative maps, and other data structures detailed in Appendix B. The symbolic
mechanisms are implemented directly at a procedural level, because relatively simple. More complex symbolic
algebra could require specific software such as Maple25 or equivalent ones, but at the cost of relying on close
software or middle-ware and at the cost of a decrease of performances, because using very general mechanisms
instead of tuned dedicated coding. Interestingly enough, the present implementation is easily generalized to other
binding operators or other VSA mechanisms, and also to VSA in with complex numbers, as detailed in appendix C.
As a next step, the present macroscopic package will be used to study biologically plausible inference mechanisms
implemented with VSA.

At another level, we have targeted a representation related to ontology, which logical model is well established
and the link with other frameworks based on relational representations, i.e. labeled graph at the geometric level,
is well studied, including for frame-based semantics as discussed in this paper. The extension to hyper-graphs is
less obvious. Claiming that an hyper-graph can always be represented as a bipartite graph between nodes and edges

24In the semiotic hierarchical meaning of an “icon” built only from sensorimotor features, structures at an “index” level built by concrete
relationships between given objects give rise to a “symbol” in the semiotic sense, which corresponds to abstract general relationships between
concrete concepts or sensorimotor features.

25See https://www.maplesoft.com.

https://www.maplesoft.com
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is technically true and usable for some applications, but reductive26 at the general level. The point is that hyper-
graphs represent higher order knowledge, such inference rules for computing ontology justifications [45] or query
processing [23] and allows to integrate real data bundles as studied by the same authors. We thus consider this as a
limit of the present work.

At a more theoretical level, following the usual VSA approaches, the symbolic information is embedded in a
compact Riemannian manifold with a very simple topology, a hyper-sphere, and we have made explicit the fact that
finally, the number of encodable symbols is rather limited. Other geometries may offer better performances, and
the particular hyperbolic embedding of hierarchical representations benefits from the fact that due to the hyperbolic
negative curvature of the space, even an exponentially growing data structure can be parsimoniously represented
[26] because of the expanding geometry (to make a long story short). The idea to embed the data representation
in non-Euclidean spaces and especially hyperbolic spaces has already been explored in detail, for instance, in [9],
showing that the satisfiability and algorithmic complexity can be drastically different27. This might be an interesting
extension of typical VSA approaches that makes it possible to consider the symbol’s numerical embedding in such
a Riemannian differential manifold. This could be a fruitful perspective of such work.

Acknowledgments Terrence C. Stewart is gratefully acknowledged for his inspiring advice that helped us with
some aspects of this work. Gabriel Doriath Döhler is thanked for his work on clarifying the use of VTB algebra and
introducing interesting ideas during his undergraduate internship. Frédéric Alexandre and Hugo Chateau-Laurent
are gratefully acknowledged for their valuable advice and their contributions to previous works on this subject. We
are especially thankful for the reviewing work on this article, which deeply helped us to make the draft valuable. This
work is supported by the https://team.inria.fr/mnemosyne/en/aide exploratory action. The NAI journal reviewers are
gratefully acknowledged for precious advises allowing us to improve this paper.

Conflict of interest: This work is not subject to any conflict of interest.

References

[1] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T.C. Stewart, D. Rasmussen, X. Choo, A.R. Voelker and C. Eliasmith, Nengo: A Python
tool for building large-scale functional brain models, Frontiers in Neuroinformatics 7 (2014).

[2] M. Beynon, B. Curry and P. Morgan, The Dempster–Shafer theory of evidence: An alternative approach to multicriteria decision modelling,
Omega 28(1) (2000), 37–50. https://www.sciencedirect.com/science/article/pii/S030504839900033X.

[3] B. Buchberger, G.E. Collins, R. Loos and R. Albrecht (eds), Computer Algebra, Computing Supplementa, Vol. 4, Springer, Vienna, 1983.
ISBN 978-3-211-81776-6 978-3-7091-7551-4.

[4] S.T. Cao, L.A. Nguyen and A. Szałas, The Web Ontology Rule Language OWL 2 RL + and Its Extensions, in: Transactions on Compu-
tational Intelligence XIII, N.-T. Nguyen and H.A. Le-Thi, eds, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2014,
pp. 152–175. ISBN 978-3-642-54455-2.

[5] B. Cessac and T. Viéville, On dynamics of integrate-and-fire neural networks with adaptive conductances, Frontiers in Neuroscience 2(2)
(2008). https://hal.inria.fr/inria-00338369.

[6] B. Cessac, H. Paugam-Moisy and T. Viéville, Overview of facts and issues about neural coding by spikes, Journal of Physiology-Paris
104(1) (2010), 5–18. https://www.sciencedirect.com/science/article/pii/S0928425709000849.

[7] B. Cessac, H. Rostro-González, J.-C. Vasquez and T. Viéville, To which extend is the "neural code" a metric ?, arXiv, 2008, arXiv:0810.3990
[physics]. http://arxiv.org/abs/0810.3990.

[8] E. Crawford, M. Gingerich and C. Eliasmith, Biologically plausible, human-scale knowledge representation, Cognitive Science 40(4)
(2016), 782–821.

26Several hyper-graph VSA representations could be considered. In a nutshell, hyper-graph are defined by a set of nodes and labeled hyper-
edges that are subset of nodes (in the non oriented case). It is thus defined as an associative map of label targeting set of nodes, all tools being
available in the VSA framework. Formally, this could be written:

h def
=

∑
hyperedges Bhyperedge symbol

∑
hyperedge nodes snode symbol and h′ def

=
∑

nodes Bnode symbol
∑

node edges shyperedge symbol,

allowing one to access each edge nodes, with a dual construction to access the edges of a symbol, and it is to verify that h = B↔ h′ with the
notations of Appendix C.
However, this is the emerging part of the iceberg, because, as we did for the relational map representation, the hard part is to specify the expected
operations on such data-structure

27A version of these elements intended for a wider audience is available in a science popularization journal: ..

https://neurosymbolic-ai-journal.com
https://www.sciencedirect.com/science/article/pii/S030504839900033X
https://hal.inria.fr/inria-00338369
https://www.sciencedirect.com/science/article/pii/S0928425709000849
http://arxiv.org/abs/0810.3990
https://interstices.info/calculer-dans-un-monde-hyperbolique


Mercier and Viéville / Algorithmic ersatz for VSA 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[9] J.-P. Delahaye, Complexités : Aux limites des mathématiques et de l’informatique, HAL, 2006, Number: hal-00731936. https://ideas.repec.
org/p/hal/journl/hal-00731936.html.

[10] T. Denœux, D. Dubois and H. Prade, Representations of uncertainty in AI: Beyond probability and possibility, in: A Guided Tour of Artificial
Intelligence Research: Volume I: Knowledge Representation, Reasoning and Learning, P. Marquis, O. Papini and H. Prade, eds, Springer
International Publishing, Cham, 2020, pp. 119–150. ISBN 978-3-030-06164-7.

[11] T. Denœux, D. Dubois and H. Prade, Representations of Uncertainty in AI: Probability and Possibility, in: A Guided Tour of Artificial
Intelligence Research: Volume I: Knowledge Representation, Reasoning and Learning, P. Marquis, O. Papini and H. Prade, eds, Springer
International Publishing, Cham, 2020, pp. 69–117. ISBN 978-3-030-06164-7.

[12] H. Eichenbaum, Memory: Organization and control, Annual Review of Psychology 68(1) (2017), 19–45.
[13] C. Eliasmith, How to Build a Brain: A Neural Architecture for Biological Cognition, OUP, USA, 2013, Google-Books-ID:

BK0YRJPmuzgC. ISBN 978-0-19-979454-6.
[14] C. Eliasmith and C.H. Anderson, Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems, A Brad-

ford Book, The MIT Press, 2002. https://mitpress.mit.edu/books/neural-engineering.
[15] B. Fischer, Modal Epistemology: Knowledge of Possibility & Necessity, 2018. https://1000wordphilosophy.com/2018/02/13/

modal-epistemology/.
[16] R. Gayler, Vector Symbolic Architectures answer Jackendoff’s challenges for cognitive neuroscience, in: Frontiers in Artificial Intelligence

and Applications, 2003, ICCS/ASCS International Conference on Cognitive Science.
[17] J. Gosmann and C. Eliasmith, Vector-Derived Transformation Binding: An Improved Binding Operation for Deep Symbol-Like Processing

in Neural Networks, Neural Computation 31(5) (2019), 849–869.
[18] B.C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider and U. Sattler, OWL 2: The next step for OWL, Journal of Web Semantics

6(4) (2008), 309–322. https://www.sciencedirect.com/science/article/pii/S1570826808000413.
[19] B. Komer, T.C. Stewart, A.R. Voelker and C. Eliasmith, A neural representation of continuous space using fractional binding, in: 41st

Annual Meeting of the Cognitive Science Society, Cognitive Science Society, Montreal, Canada, 2019, p. 6. http://compneuro.uwaterloo.
ca/publications/komer2019.html.

[20] H.J. Levesque, Knowledge Representation and Reasoning, Annual Review of Computer Science 1(1) (1986), 255–287, Publisher: Annual
Reviews.

[21] H.J. Levesque and R.J. Brachman, Expressiveness and tractability in knowledge representation and reasoning, Computational Intelligence
3(1) (1987), 78–93, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8640.1987.tb00176.x.

[22] S.D. Levy and R. Gayler, Vector Symbolic Architectures: A New Building Material for Artificial General Intelligence, in: Frontiers in
Artificial Intelligence and Applications, 2008, p. 6.

[23] M. Masmoudi, S.B.A.B. Lamine, H.B. Zghal, B. Archimede and M.H. Karray, Knowledge hypergraph-based approach for data integration
and querying: Application to Earth Observation, Future Generation Computer Systems 115 (2021), 720–740, Publisher: Elsevier. https:
//hal.science/hal-04456331.

[24] C. Mercier, H. Chateau-Laurent, F. Alexandre and T. Viéville, Ontology as neuronal-space manifold: Towards symbolic and numerical
artificial embedding, in: KRHCAI-21@KR2021, 2021.

[25] M.E. Nelson, A Mechanism for Neuronal Gain Control by Descending Pathways, Neural Computation 6(2) (1994), 242–254.
[26] M. Nickel and D. Kiela, Poincaré Embeddings for Learning Hierarchical Representations, in: Advances in Neural Information Process-

ing Systems, Vol. 30, Curran Associates, Inc., 2017. https://papers.nips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.
html.

[27] A. Nieder, Representation of Numerical Information in the Brain, in: Representation and Brain, S. Funahashi, ed., Springer Japan, Tokyo,
2007, pp. 271–283. ISBN 978-4-431-73021-7.

[28] F. Pulvermüller, How neurons make meaning: brain mechanisms for embodied and abstract-symbolic semantics, Trends in Cognitive
Sciences 17(9) (2013), 458–470. http://www.sciencedirect.com/science/article/pii/S1364661313001228.

[29] J.I. Quiroz Mercado, R. Barrón Fernandez and M.A. Ramírez Salinas, Sequence Prediction with Hyperdimensional Computing, Research
in Computing Science (2025). https://www.academia.edu/54349431/Sequence_Prediction_with_Hyperdimensional_Computing.

[30] J. Raczaszek-Leonardi and T. Deacon, Ungrounding symbols in language development: implications for modeling emergent symbolic
communication in artificial systems, in: Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics,
2018, p. 237.

[31] N.P. Rougier, Implicit and Explicit Representations, Neural Networks 22(2) (2009), 155–160. https://hal.inria.fr/inria-00336167.
[32] A.L. Rusawuk, Possibility and Necessity: An Introduction to Modality, 2018. https://1000wordphilosophy.com/2018/12/08/

possibility-and-necessity-an-introduction-to-modality/.
[33] K. Schlegel, P. Neubert and P. Protzel, A comparison of vector symbolic architectures, arXiv:2001.11797 [cs] 55 (2020). http://arxiv.org/

abs/2001.11797.
[34] L. Smith, The development of modal understanding: Piaget’s possibility and necessity, New Ideas in Psychology 12(1) (1994), 73–87.

https://www.sciencedirect.com/science/article/pii/0732118X94900590.
[35] J. Steinberg and H. Sompolinsky, Associative memory of structured knowledge, Scientific Reports 12(1) (2022), 1–15, Number: 1 Publisher:

Nature Publishing Group. https://www.nature.com/articles/s41598-022-25708-y.
[36] T.C. Stewart, Y. Tang and C. Eliasmith, A biologically realistic cleanup memory: Autoassociation in spiking neurons, Cognitive Systems

Research 12(2) (2011), 84–92. https://linkinghub.elsevier.com/retrieve/pii/S1389041710000525.
[37] M. Taddeo and L. Floridi, Solving the Symbol Grounding Problem: A Critical Review of Fifteen Years of Research, Journal of Experimental

and Theoretical Artificial Intelligence 17 (2005).

https://ideas.repec.org/p/hal/journl/hal-00731936.html
https://ideas.repec.org/p/hal/journl/hal-00731936.html
https://mitpress.mit.edu/books/neural-engineering
https://1000wordphilosophy.com/2018/02/13/modal-epistemology/
https://1000wordphilosophy.com/2018/02/13/modal-epistemology/
https://www.sciencedirect.com/science/article/pii/S1570826808000413
http://compneuro.uwaterloo.ca/publications/komer2019.html
http://compneuro.uwaterloo.ca/publications/komer2019.html
https://hal.science/hal-04456331
https://hal.science/hal-04456331
https://papers.nips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html
https://papers.nips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html
http://www.sciencedirect.com/science/article/pii/S1364661313001228
https://www.academia.edu/54349431/Sequence_Prediction_with_Hyperdimensional_Computing
https://hal.inria.fr/inria-00336167
https://1000wordphilosophy.com/2018/12/08/possibility-and-necessity-an-introduction-to-modality/
https://1000wordphilosophy.com/2018/12/08/possibility-and-necessity-an-introduction-to-modality/
http://arxiv.org/abs/2001.11797
http://arxiv.org/abs/2001.11797
https://www.sciencedirect.com/science/article/pii/0732118X94900590
https://www.nature.com/articles/s41598-022-25708-y
https://linkinghub.elsevier.com/retrieve/pii/S1389041710000525


24 Mercier and Viéville / Algorithmic ersatz for VSA

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[38] A. Tettamanzi, C.F. Zucker and F. Gandon, Possibilistic testing of OWL axioms against RDF data, International Journal of Approximate
Reasoning 91 (2017). https://hal.inria.fr/hal-01591001.

[39] P.V. Tymoshchuk and D.C. Wunsch, Design of a K-Winners-Take-All Model With a Binary Spike
Train, IEEE Transactions on Cybernetics 49(8) (2019), 3131–3140, Conference Name: IEEE Transac-
tions on Cybernetics. https://ieeexplore.ieee.org/abstract/document/8417947?casa_token=vK30j2BWdHYAAAAA:
RcZjyJ1BCa6QE53oMhLBbVuLzetpGSh4FaFtSqu1RXsuqa82umuuPCzEm6KODKTGDBzIfUhP9_I.

[40] T. Vallaeys, Généraliser les possibilités-nécessités pour l’apprentissage profond, Report, Inria, 2021. https://hal.inria.fr/hal-03338721.
[41] T.D. Villiers, Why Peirce Matters: The Symbol in Deacon’s Symbolic Species, Language Sciences 29(1) (2007), 88–101. https://philarchive.

org/rec/DEVWPM-4.
[42] T. Viéville and C. Mercier, Representation of belief in relation to randomness, Research Report, RR-9493, Inria & Labri, Univ. Bordeaux,

2022. https://hal.inria.fr/hal-03886219.
[43] A. Voelker, E. Crawford and C. Eliasmith, Learning large-scale heteroassociative memories in spiking neurons, in: Unconventional Com-

putation and Natural Computation, 2014.
[44] D. Widdows and T. Cohen, Reasoning with Vectors: A Continuous Model for Fast Robust Inference, Logic Journal of IGPL (2014).
[45] H. Yang, Y. Ma and N. Bidoit, Hypergraph-Based Inference Rules for Computing $$\mathcal{EL}\mathcal{}^+$$-Ontology Justifications,

in: Automated Reasoning, J. Blanchette, L. Kovács and D. Pattinson, eds, Springer International Publishing, Cham, 2022, pp. 310–328.
ISBN 978-3-031-10769-6.

Appendix A. Hypothesis testing regarding symbol similarity

The design choice of a symbol implementation as a random normal unary vector, as reviewed in subsection 2.1
allows us to define a hypothesis to decide whether theH0 hypothesis x · y = 0 can be rejected.

In our case, we approximate the chi-square distribution average of x · y by a normal distribution of the same
standard-deviation, which is a conservative choice as shown in Fig. 8.

Fig. 8. Comparison between a chi-square distribution in black (numerically drawn from 105 samples) and the normal distribution of same mean
and standard-deviation, in red: The choice is conservative because much more samples have values close to zero in the former case. More
precisely the kurtosis is of about 6 (i.e. the sharpness estimation with respect to a normal distribution using 4-th order momenta).

We can consider a two-tailed “z-test” with the alternative hypothesis H0, which states that x · y ̸= 0. Here, the
z-score28, with d samples and a known standard deviation with an order of magnitude O(1/d), is the following:

28Given a distribution, the z-score for d samples is defined as

z def
= X̄−µ
σ/

√
d
,

where the expected mean is µ = 0, the a priory standard deviation is σ = O(1/d), and the experimental mean X̄ = (x · y) is obtained from the
dot product.
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z ≡
√

d (x · y).
It follows an almost distribution, which can be easily verified numerically, as shown in Fig. 9 (left column). For
two vectors that are not independent but have an angular dependency, we can numerically observe, in Fig. 9 (right
column), the similarity dependency as a function of the vector’s relative orientation. This obvious fact is quite
important, allowing us to develop a macroscopic simulation of VSA operations.

Fig. 9. Numerical observations of the similarity defined by the dot product of two random vectors for d = 100 in the upper row and d = 1000 in
the lower row. The left column shows the histogram of the z-score (

√
d (x · y)) for two normal vectors, in comparison with a normal distribution.

These experimental distributions have a kurtosis of about 10; this is lower than the kurtosis of a normal distribution, which is expected to have

a kurtosis of 3. The right column shows the z-score as a function of the angle a def
= x̂, y = arccos(x · y), making it possible to visualize the

dispersion with respect to the expected cosine profile.
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This makes it possible, on the one hand, to consider, for instance, a threshold:

θ
def
= ±2σ,

along with considering this z-score to have a confidence interval better than 99%, and to relate the similarity estima-
tion to an angular dependence between two vectors, as detailed in Fig. 9. To the best of our knowledge, this obvious
implementation has not yet been made explicit, and it is used in subsection 5.4, as detailed in section 4, allowing us
to propose to simulate the different operations defined later in this paper at a macroscopic scale.

Appendix B. On VSA data structures

This section revisits the literature, emphasizing the properties of the data structures; it discusses in more detail
their computational properties and limitations and links them to usual programming language data structures.

B.1. Unordered set or bundling

We first consider an unordered set S of N symbols grounded to values {s1, · · · si · · · sN}, and we would like to be
able to store them in such a way that we can check if a given symbol is in the set. Very simply, we ground S to the
vector s:

s def
=

∑
i si,

which provides a solution, because given a symbol s•, we observe that s• · s ≃ 1 if it corresponds to a certain
symbol si, and it is almost 0 otherwise, because random vectors are almost orthogonal, as previously explained.
This is called bundling [33] or superposition.

Furthermore, the representation intrinsically includes a notion of transitivity: If a set includes another subset, by
construction, it includes the subset elements. More precisely,

s def
=

∑
i si and si

def
=

∑
j si j ⇒ s def

=
∑

i j si j,

and thus, si j · s > 0 for all subset elements.
This generalizes to weighted symbols ŝi, i.e., symbols with modality weighting. In that case, s• · s ≃ τ makes it

possible to retrieve the belief weight. This is equivalent to inputting a symbol s• that is approximately similar to a
given symbol si, thus indicating an approximate similarity; however, it neither allows us to retrieve the exact value
of si nor indicates if a positive value below 1 corresponds to a weighted symbol that has been exactly retrieved or to
a symbol approximation.

This has an interesting biological interpretation: S has features in common with a Hopfield network or other
related attractor networks, where information has been stored in a distributed way while activating the map with
an input makes it possible to determine whether the symbol is stored or not. This is also called self-associative.
The main difference with auto-associative, or clean-up memory, is that in the Hopfield network attractor networks
converge to the exact stored value, providing a mechanism of associative memory, which is now developed while
introducing superposition, allowing us to better understand the need for a more sophisticated mechanism.

Let us provide an analogy with programming data structures, explicitizing the similarities and differences between
what is proposed here and what is available in common programming languages29. This unordered set representation
corresponds to a “set” container (e.g., a std::unordered_set in C++ or a set() in Python) that has only an
insertion method and a membership test function, without the capability to intrinsically enumerate the elements, as
formerly discussed.

B.1.1. Symbol enumeration
At this stage, this structure does not allow us to directly enumerate all symbols si, because from s, it is not possible

to decode the superposed vectors. In [8], for instance, where data structures are defined using superposition, the
intrinsic memory enumeration of the stored information is not addressed. We thus need an external mechanism to

29We will do the same for other cognitive structures because we think that it illustrates the computing capability of the cognitive object.
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select all elements and perform an operation on each one. However, at the implementation level, in NENGO [13],
an explicit list of the defined vocabulary {· · · si · · · } is maintained, and the way to select the elements is to test
(sT si) for each element of the vocabulary. This select operator has a complexity of O(K), where K is the size of
the vocabulary. Later in this section, we will also propose a biologically plausible indexing mechanism, in order, for
instance, to manipulate sequences.

B.1.2. Symbol sorting selection
With the notion of weight vectors by a τ value, another mechanism can be considered in a bundling, either sorting

symbols in decreasing τ value order, or the N′ <= N symbols with the highest τ. Although, this has a complexity of
O(N log(N)) at the programmatic level, or O(N) if selecting without sorting symbols above a threshold, there is a
very efficient not at the mesoscopic, but at the microscopic level [6] in link with rank coding [7], when implementing
as a spiking neural network. In a nutshell, following [39], given two values encoded by spikes, the highest the value,
the shortest the spike time: Therefore, assuming a connectivity where each value is stored, in the arrival order using
a triggered memory, we immediately (i.e., at the end of the emission of the N′ values) a sorting selection. This is
made available at the macroscopic level, taking into consideration the fact that two values are indistinguishable if
too close, as discussed and quantified in this paper.

Formally this performs the transformation:∑
i τi si →

∑
i τi Bνi si

from a weighted bundling to an indexed list, νi being a known vector as developed below in subsection B.4.

B.2. Associative map

We now consider an unordered associative memory, or “map,” of N correspondences {s1 → o1, · · · si →
oi · · · sN → oN} between subjects and objects. To this end, we use the binding operation Bsi , defined in Appendix C,
with a pseudo-inverse, i.e., an unbinding operator, Bs∼

i
:

m def
=

∑
i Bsi oi,

so that
Bs∼

•
m ≃

∑
i,s•=si

oi + unknown,

where unknown def
=

∑
s• ̸=si

Bs∼
•

Bsi oi is an “unknown´´ vector, i.e., a vector that has, in the general case, no simi-
larity with the other vectors.

In other words, the unbinding operation makes it possible to retrieve up to an orthogonal vector unknown the set,
i.e., the additive superposition of all objects oi associated with a given subject s•, while Bs∼

k
m = unknown if none.

Then using a similarity operation:
Bs∼

•
m · o• = δs•→o• + ν(O(1/d1/4))

allows to check whether the value o• is associated to the key s•. Here ν(O(1/d1/4)) comes from the unbinding
operation uncertainty.

This is done up to a level of noise of O(1/d1/4), as derived in Appendix C (while the dot-product with the
unknown vector is of negligible magnitude with respect to the former source of uncertainty), which is rather high
with respect to the similarity precision, which is O(1/d), as observed numerically [33]; however, in biological
neuronal networks, where the dimension is an order of magnitude higher, this is no longer a limitation because d is
high.

This allows us to detect if the information is in the table in one step if this is the case. However, as in the previous
case, no mechanism allows to explicitly retrieve the value of oi, or to generate the enumeration of the map subjects
or objects.

In the literature, the notion of clean-up memory corresponds to auto-associative memory that retrieves an exact
“clean-up´´ value of an existing symbol, given an approximate or noisy input of this symbol [36]. A step further,
the notion of hetero-associative memory corresponds to storing input-output relationships [43]. It must be noted
that in the NENGO simulator of the Neural Engineering Framework (NEF) hetero-associative memory, the biolog-
ically plausible implementation is not directly based on the present binding/bundling algebraic mechanism but an
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input/output architecture with suitable connections is used instead. Each input unit has an encoding vector in which
input weights are tuned to fire for a specific key and drive a connected output vector that is optimized to estimate
the value associated with the related key [43]. An associative memory of structured knowledge has been studied
in detail, for a holographic reduced representation by [35], quantifying, depending on the design parameters, the
memory performances.

This algebraic construction also makes it possible to retrieve the subjects associated with a given object, because
of the commutator B↔, such that

B↔ Boi si = Bsi oi,

yielding

m↔
def
= B↔ m =

∑
i Boi si,

which is now the numerical grounding of the reciprocal map {o1 → s1, · · · oi → si · · · oN → sN}.
The algebraic construction also offers the notion of the identity vector i, with Bi = I, so that

si = i→ Bsi oi = oi.

In other words, the binding reduces to a superposition. Theoretical details underlying the implementation of such
associative memories are available in [36].

As for the previous structure, this obviously generalizes to weighted symbols ŝi and an approximate input s• ≃
ŝi, allowing us to retrieve the object oi weighted by either the modality weighting or the input approximation,
indistinctly.

There are several solutions used to define such binding, unbinding, and commutator operators. A proposed solu-
tion is developed in Appendix C after the work in [17], which was completed by [24]. This design choice is guided
by the fact that we need to avoid spurious inferences: With a binding commutative operator (such as the convolution
operator), Boi si would equal Bsi oi, which could generate nonsense deductions (e.g., for a driver-vehicle map, this
would mean that if Ming-Yue drives a bicycle, then the bicycle drives Ming-Yue unless some additional mechanism
is considered to avoid such nonsense). The proposed VTB algebra avoids such caveats (see [33] for a recent com-
parison of different VSAs)30. A commutative binding operator can be used for auto-associative memory [36] or if
key and values do not belong to the same symbol set, e.g., considering “symbol id´´ and “symbol value´´ [8].

This associative memory mechanism has an interesting biological interpretation: It implements an associative
memory in the biological sense, with the association stored in a distributed way, and activating the associative
memory with an input s• allows us to retrieve the associated symbol. This is what happens in several biological
mechanisms, as reviewed, for instance, in [12].

In particular, a structure of the form

m def
=

∑
n Bsi si

that maps an object onto itself allows the retrieval of an exact symbol from an approximate input, solving the caveats
induced by using only a superposition mechanism that was presented previously. This is exactly what is expected in
an associative encoder (e.g., a Hopfield network); if a symbol is close to an existing symbol, the associative memory
will output a weighted version of the symbol.

At the computer programming level, this corresponds to a “map” container (e.g., a Map in JavaScript or a
dictionary() in Python), again with only insertion and retrieval methods, and without intrinsic iterators.

To take this a step further, we can propose a complementary functionality, defining an additional symbol “some-
thing” whose numerical grounding is fixed to any new random vector σ that is never used elsewhere. This allows
us to enhance the information to be obtained as follows: Each time a piece of information si → oi is added, we also
add si → σ and σ→ oi, i.e., we make explicit the fact that si and oi are defined in this table, which can be retrieved
in one step, without the need to enumerate the different elements. In such a case,

ms j

def
=

∑
i,s j=si

oi = Pσ⊥ Bs∼
i

m + unknown,

30An alternative to VTB algebra is called MBAT algebra; it requires matrix inversion instead of transposition, and thus it is less efficient.
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where Pσ⊥
def
= I− σσT is the projection onto the orthogonal of σ, i.e., we must eliminate the symbol “something”

from the expected values.

B.3. Associative network

We also can consider for N correspondences {s1 → o1, · · · si → oi · · · sN → oN} between subjects and objects,
an associative network of the form:

M def
=

∑
i oi sT

i ,

which is no more a vector, but a matrix, allowing one to explicitly retrieve the object since:
M si = ∥si∥2 oi + ν((N − 1)/d),

as obtained from obvious algebra.
This corresponds to a macroscopic implementation of associative networks, as proposed, e.g. in [8]. With respect

to the previous associative map, we recover directly the object value up to a scale and additive noise, beyond only
testing if it is in the map or not.

It is worth noticing that MT allows us to retrieve keys associated with a given value, while we also can consider
a “multi-map” i.e. associate the bundling of several values to a given key.

B.4. Indexed and chained list

B.4.1. Construction of indexes
In order to define an indexed list, we need indexes, i.e., a mechanism that generates ordinal values. Our main

purpose here is to make explicit that what has been developed using convolution operators [19] still holds with
VTB. We fix the symbol grounding of the “zero” symbol ν0, which is never used elsewhere, and define the following
recursively:

νn+1
def
= Bν0 νn,

i.e., the (n+1)-th ordinal value is obtained by binding the n-th, and we easily obtain, from a few algebra operations,

Bνp νq = Bνq νp = Bνp+q ν0, Bνp ν
∼
q = Bν∼q νp ≃ Bνp−q ν0.

In particular, νn−1 ≃ Bν∼0 νn, so that the definition holds for n ∈ Z .
Here, we only consider the minimal material needed to build an indexed list; numerical information in the brain

is a much more complex subject [27] beyond the scope of this work.
In fact, what has not been noticed previously is the fact that the accumulation of binding operations leads to an

important increase of noise, more precisely:
νn = (Bν0)

n
ν0 + ν(O(n/d1/4))

so that for as soon as n4 > d the noise order of magnitude is higher than 1, i.e., the value order of magnitude.
However, this is not a problem in practice because as soon as we do not repeat the calculation twice, i.e., we do not
redraw the values, but keep a trace of the previous pre-calculated values, so that each “number” has a unique vector
as an identifier.

B.4.2. Indexed list
We can now define an indexed list or array, often called a vector, since the previous mechanism allows us to

generate a “counter” that can be incremented or decremented using the binding or unbinding operator.
To this end, an associative map indexed by these ordinals can be managed as a list whose values can be enumer-

ated. Such a representation is also present at several cognitive levels when considering temporal sequences, actions,
or any enumeration. This is also the tool that allows us to enumerate all elements of a symbol set S, which was
defined previously, or the subjects of an associative map.

To make this mechanism explicit, let us consider a list l def
=

∑
i Bνi li, and a variable index k. A construct of the

form
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for k← ν0; while ∥Bk l∥ > 0; next k← Bν0 k do
li ← Bk∼ l
../..

end for
allows us to enumerate31 all elements, this being indeed only an algorithmic ersatz to illustrate the mechanism
beyond the biologically plausible implementation of sequential memory organization.

At the biological plausibility level, following [12], we may consider that the brain can have three kinds of memory:
associative, sequential, and hierarchical (called schematic by the author of [12]) memory. All three memory types are
present and required for cognitive processes. The VSA approach provides both associative and sequential memory.
Let us consider the third type of memory, which has not, to the best of our knowledge, been addressed concerning
VSAs.

At the computer programming level, this corresponds to an extensible “array” (e.g., a std::vector in C++ or
java.util.AbstractList in Java), with basic edition and retrieval methods available.

B.4.3. Chained list
We can also define a chained list using an associative memory of the form:

first→ second
second→ third

· · ·
last→ END + first

,

where every value of the list acts as a key to the value of its successor in the list, thus enumerating the values. END
is a predefined specific symbol that makes it possible to know when the list ends that we can superpose to a pointer
to the first value in case we need to iterate through the entire list again.

We also could have considered multiple binding32, as proposed in [24].

Appendix C. Using VTB algebra

At the mesoscopic level, symbols represent a numerical grounding to real or complex vectors of dimension d,
with each numerical grounding corresponding to some distributed activity of a spiking neuronal assembly and each
algebraic operation corresponding to some transformation of this activity.

Let us review and further develop one of the algebras used to manipulate such symbols at an abstract level in this
paper: vector-derived transformation binding (VTB) algebra. We follow [17] and complete the developments in that
paper by deriving the different operations at the component level, yielding an optimal implementation, and making
explicit the computational complexity and related first-order noise. This is in particular used in section 4 to derive
the macroscopic computations.

We also have to reconsider the binding output magnitude since vector magnitudes correspond to a belief value,
as discussed in section 2.2.

We consider that d def
= (d′)2 for some integer d′; thus, it is a quadratic number and we start from the standard

definition of the VTB binding operation:

z def
= By x,

where By is a block-diagonal matrix defined as follows:

31In fact, considering l def
=

∑
i Bνi li +Bν−1 λ, where λ is the list length, which is updated when an element is added or deleted, would improve

the algorithmic ersatz implementation, which is not the issue here.
32In such a case, a list of the form l = [v1, v2, · · · ] is encoded without associative memory as

l = Bvalue v1 + Bnext
(

Bvalue v2 + Bnext (· · · + Bnext (list-end))
)
,

allowing us to obtain by unbinding the list’s head value and its tail value, and allowing us to detect its end. This corresponds, for instance, to
the rdf:first, rdf:rest, and rdf:nil symbols of the RDF representation. However, as discussed in Appendix C, chaining unbinding
operations are not numerically very robust due to the additional residual noise.
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By
def
=


B′

y 0 . . . 0
0 B′

y . . . 0
...

...
. . .

...
0 0 . . . B′

y

 , with B′
y

def
=
√

d′


y1 y2 . . . yd′

yd′+1 yd′+2 . . . y2d′

...
...

. . .
...

yd−d′+1 yd−d′+2 . . . yd

 ,
or equivalently33, for i = 1 · · · d,{

[z]i
def
= By x =

√
d′ ∑k=d′

k=1 [y]k+β(i) [x]k+α(i),

[By]i j =
√

d′ δi⩽d′ and j⩽d′ [y]k+β(i)−α(i),

written

{
α(i) def

= d′ ((i− 1) div d′),

β(i) def
= d′ ((i− 1) mod d′),

(1)

with the matrix multiplication explicitized as a sum, which can be easily verified. Here, [z]k stands for the k-th
coordinate of the vector z, and δP is 1 if P is true; otherwise, it is 0. This is our basic definition, and reformulating
the VTB operation using (1) will allow us to better understand its properties.

This operation is bi-linear in x and y, and thus it is distributive with respect to addition and the scalar product.
Since y and x are random vectors [z]i, in (1) it is estimated up to a standard-deviation34 of O

(
1/d

1
4

)
which is

an order of magnitude higher than for similarity estimation, which related standard-deviation was of O (1/d). This
also explains the relatively limited numerical performances of simulations with d < 103, as reported, for instance,
in [33].

The
√

d′ renormalization factor allows z to have a unary order of magnitude35. However, the magnitude is not
exactly one, but36:

∥By x∥ ≃
{

∥y∥ ∥x∥ if y ⊥ x√
2 ∥y∥ ∥x∥ if y∥x

which is of importance in our context since the magnitude of the vector corresponds to the τ value.
At the algorithmic implementation level, the calculation of z is performed in37 O

(
d

3
2

)
operations, and the yk+β[i]

and xk+α[i] indexing can be tabulated in two fixed look-up tables β[i] and α[i], avoiding any additional calculations.
Furthermore, the fact that

√
d′ is an integer makes it possible to limit numerical approximations in order to improve

33All algebraic derivations reported here are straightforward and were verified using a piece of symbolic algebra code available at https:
//raw.githubusercontent.com/vthierry/onto2spa/main/figures/VTB-algebra.mpl.

34Each component [z]i corresponds to the computation of a dot-product between two d′ dimensional vectors, yielding a standard-deviation
of O (1/d′), renormalized by

√
d′ = d

1
4 , leading to the final order of magnitude. As for similarity estimation, chi-square distribution is

approximated by a normal distribution of the same standard-deviation, which is known as a conservative choice.
35More precisely, two random normalized vectors of dimension d drawn from a random normal distribution of independent samples verify

that x · y ∼ N (0, 1/d′), as described in subsection 2.1. Then, applying a permutation on all indices on a random vector x yields another random
vector, which is not correlated with any vector y if x is not. Thus, when computing the components [z]i in (1) for two general random vectors
x and y, we compute the dot product of two random vectors of dimension d′ renormalized by

√
d′, and thus this dot product comes from the

distribution N (0, 1); this corresponds to drawing a random vector unary on average.
36 We can easily derive:

∥By x∥2 = d′ ∑d
i=1(

∑k=d′

k=1 [y]k+β(i) [x]k+α(i)) (
∑l=d′

l=1 [y]l+β(i) [x]l+α(i))

= d′ ∑
ikl[y]k+β(i) [x]k+α(i) [y]l+β(i) [x]l+α(i)

= d′ ∑
ik([y]k+β(i) [x]k+α(i))

2 + noise ,

the 1st line being obtained by substitution from the definition, the 2nd line by expansion, and the 3rd line is obtained by considering that if k ̸= l
we are multiplying four almost independent random distributions which product expectation cancels in average (i.e., formally: E[YkXkYlXl] =

E[Yk]E[Xk]E[Yl]E[Xl] ≃ 0 by construction). If y ⊥ x we are left with numerically approximating the mean of the square of normal distribution,
i.e., its second momentum, equal to 1. If y∥x we are left with numerically approximating the mean of the fourth power of a normal distribution,
i.e., its fourth momentum, equal to 2 (it is known that if X is centered normal variable of unary standard deviation, then E[X2n] = (2 − 1)!!
where !! denotes the double factorial, i.e., the product of all numbers down to 1 which have the same parity as the argument.)

37Each of the d components [z]i requires a dot product of size d′ =
√

d that is not factorizable in the general case, since involving different
elements of the vectors as readable on the matrix form.

https://raw.githubusercontent.com/vthierry/onto2spa/main/figures/VTB-algebra.mpl
https://raw.githubusercontent.com/vthierry/onto2spa/main/figures/VTB-algebra.mpl
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numerical conditioning. This will be verified for all other explicit formulae later in this paper. We make explicit
these formulae in detail not to re-implement these operations, which are already available in the NENGO simulator,
but to study in detail their complexity and their precision, with the goal of proposing a macroscopic algorithmic
ersatz of these operations.

This can be compared to the fastest binding operation, which is convolution implemented via the fast Fourier
transform [33], and thus it has a complexity of O (d log(d)):

d = 10 d = 100 d = 500 d = 1000 d = 10000
VTB 101.5 103 104 104.5 106

Convolution 101.4 102.6 103.5 103.8 105

Ratio =
√

d
log(d) ≃ 1 ≃ 2 ≃ 3.5 ≃ 4.5 ≃ 10

However, at the implementation level, we are going to observe that due to compiler and online processor optimiza-
tion, the average computation time is an order of magnitude lower, because the VTB binding formula in eq. (1) is
easy to optimize.

As stated in [17] and reviewed in [24], the key point is that this binding operation generates a new vector z that is
almost orthogonal to x and y:

(By x) · x ≃ 0,

and this operation is neither commutative,
(Bx y) · (By x) ≃ 0,

nor associative38, in the following sense:
(B(Bz y) x) · ((Bz By) x) ≃ 0.

These properties ensure that we do not infer spurious derivations.
To take this a step further, in the real case, the random matrix is almost orthogonal, i.e.,

B⊤
y By ≃ I,

for the same reasons evoked above39.
We thus define

By∼
def
= B⊤

y with [y∼]i
def
= [y]σ(i),

with
σ(i) def

= 1 + d′ ((i− 1) mod d′) + (i− 1) div d′.

In other words, B⊤
y has the same structure as By, except that the vector coordinates are subject to a permutation

σ(i), which is idempotent (σ(σ(i)) = i) and thus its own inverse, so that if z′ def
= By∼ x, we obtain

[z′]i =
√

d′ ∑k=d′

k=1 [y]σ(k+β(i)) [x](k+α(i))

(where β(i) and α(i) are the indexing defined to calculate By x explicitly), and this makes it possible to define a left
unbinding operation:

By∼ (By x) = B⊤
y By x = x + noise ≃ x.

38Of course, as a product of matrices, the combination of three bindings or two binding operations and a vector is associative, but the operator
B itself is not, as made explicit in the formula.

39From (1), we derive [
B⊤

y By
]

i j
=

∑d′

k=1[By]ki [By]k j

= d′ ∑d′

k=1[y]k+β(i)−α(i) [y]k+β( j)−α( j)

= d′ ∑d′

l=1[y]l [y]k+(β( j)−β(i))−(α( j)−α(i))

= d′ ∑d′

l=1[y]l [y]k+d′ (( j−i) div d′)−(( j−i) div d′).

-
[
B⊤

y By
]

ii
=

∑d′

l=1[y]
2
l = 1 + noise; and

-
[
B⊤

y By
]

i j,i ̸= j
= 0 + noise, because it is easy to verify that (( j − i) div d′) − (( j − i) div d′) ̸= 0 when i ̸= j, so that the dot product of d′

random components of [y]l with d′ other random components yields approximately normal noise.
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From similar derivations, as detailed in footnote36, also verified at the numerical level, we obtain the magnitude:

∥B∼
y By x∥ ≃

{√
2 ∥y∥2 ∥x∥ if y ⊥ x√
5 ∥y∥2 ∥x∥ if y∥x,

which is to be considered to properly normalize unbinding operations at the mesoscopic level.
The right identity vector i such that Bi = I can be written explicitly as follows:

[i]i = 1√
d′ δi=σ(i).

In other words, we get iB by “unfolding” the identity matrix I′
d line by line, writing a 1, then d times 0, then another

1, and so on.
Considering the mirroring matrix B↔, which is defined as

[B↔]i j
def
= δ j=σ(i)

(which is thus not block-diagonal in the way that a matrix of the form By is), so that:
B↔ x = x∼,

we obtain
B↔ By x = Bx y, while B↔ B↔ = I and B⊤

↔ = B↔,

which makes it possible to define a right unbinding operation:
(Bx∼ B↔) (By x) = Bx∼ Bx y ≃ y,

and expand nested binding operations:
BBy x = B↔ Bx By.

This could extend the actual binding algebra considering the dual operator ∼.
Unfortunately, B↔ is not a binding matrix, i.e., it is not of the form Bz for some vector z, which is easily verified

by the fact that some components that must be equal to 0 for a binding matrix are equal to 1 in B↔. Furthermore,
the left or right multiplication of a binding matrix by this mirroring matrix does not yield a binding matrix, because
of the same observation; components that must be equal to 0 for a binding matrix are equal to 1 in B↔.

Beyond [17], the authors of [24] introduced a vector composition operator ⊘ to make explicit the composition of
two binding operations, namely,

Bv = By Bx ⇔ v def
= y⊘ x,

which can be explicitly written as follows40:

[v]i =
√

d′ ∑k=d′

k=1 [y](i−1) d′+k [x]1+d′ (k−1)+(i−1) mod d′ .

At the algebraic level, the key point is that the product of two binding matrices is still a binding matrix. As a
consequence, this composition operator is bi-linear, and thus it is distributive with respect to addition; it is not
commutative, but it is associative and commutes with the inversion as follows:

(y⊘ x)∼ = x∼ ⊘ y∼,

while x∼ ⊘ x ≃ i; all these results can be easily derived by considering usual matrix properties. This allows us to
combine two binding matrices without an explicit matrix product in O

(
d

3
2

)
operations only. At the numeric level,

since v is up to a
√

d′ factor, the dot product of segments of random vectors of dimension d′, we obtain the same
order of magnitude of noise level, as discussed previously. Altogether this can enrich the actual binding algebra to
obtain more elegant formulas, in particular when combinations of binding operations are used.

40Since By and Bx are block-diagonal matrices, it is easy to verify that Bv is a block-diagonal matrix with a d′ × d′ block Bv
′ = By

′ Bx
′

using the notation from the beginning of this section, and we can explicitly write that

[Bv
′]i j =

√
d′

√
d′ ∑d′

k=1[y]k+(i−1) div d′ [x](k−1) d′+ j,

from which we obtain the desired formula.
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Using VTB algebra in the complex case

All of the developments described in this section generalize to complex numbers. Although it is not directly used
here, such a generalization is of general interest because complex implementations of VSA frameworks have also
been considered [33]. Furthermore, it is also of interest to see if our macroscopic implementation could be easily
adapted to the complex case.

Stating that two resources are semantically equivalent if the unary vectors are aligned can be written in the
complex case as follows41:

x ≃ y⇔< x|y >≃ 1,

while the orientation is usually defined as

x̂ y def
= arccos(Re(< x|y >)),

as explained in the previous footnote.
Provided that the space dimension d is large enough, two randomly chosen different complex vectors x and y42

will also be approximately orthogonal in the sense that

x ̸= y⇔< x|y >≃ 0.

As a consequence, the VTB matrix is almost a unitary matrix, i.e.,

By
∗ By ≃ I,

considering the conjugate transpose.
All other algebraic operations are common to both real and complex linear algebra, and this is also the case for

other VSA binding operators.
More than just a confirmation, these derivations allow us to observe that using a complex representation would be

interesting if the conjugate of a vector could have a semantic interpretation. In that case, if, say, x and y∗ are similar,
then < x|y >≃ I, as easily verified from the previous derivations.

41If we are in the real case x and y ∈ Rd , with ∥x∥2 = ∥y∥2 = 1, then the equality is written as

x = y ⇔ x · y =
∑

i xi yi = cos
(−̂→x −→y

)
= 1 ⇔ −̂→x −→y = 0 (mod 2Π),

i.e., both unary vectors have the same direction; in other words, they are aligned. If we are in the complex case x and y ∈ Cd , let us consider the
canonical embedding in R2 d , i.e., we consider the real (Re) and imaginary (Im) parts as two real coordinates, denoting by −→x the corresponding
vector:

x def
= (x1, x2, · · · )T ⇔ −→x def

= (Re(x1), Im(x1),Re(x2), Im(x2), · · · )T ,

where z∗ is the conjugate of a complex number z, while < x|y > stands for the complex inner product:

< x|y > def
=

∑
i xi y∗

i
=

∑
i(Re(xi)Re(yi) + Im(xi) Im(yi)) + I (Re(xi) Im(yi) − Im(xi)Re(yi))

= −→x · −→y + I −→x ∗ · −→y ,

so that Re(< x|y >) = −→x · −→y and ∥x∥ =
√
< x|x > = ∥−→x ∥ − 2 =

√−→x · −→x , and since vectors are unary,

< x|y >= 1 ⇔ −→x · −→y = 1 ⇔ −→x = −→y ⇔ x = y,
making explicit the obvious fact that unary real or complex vectors are equal if and only if their inner product equals one, while we consider the
“angle” of two complex vectors as the angle of their 2 d real embedding, i.e.,

x̂ y def
= arccos(Re(< x|y >)).

42Considering again the canonical embedding in R2 d and the fact that

< x|y >= −→x · −→y + I
−→
x∗ · −→y ,

because −→x and thus −→x ∗ and −→y are random vectors, their dot product almost vanishes; thus, the real and imaginary parts of < x|y > also almost
vanish.
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C.1. Binding computation duration.

Let us finally observe the VTB binding computation time on a optimized processor in comparison of the O
(

d
3
2

)
order of magnitude.

In Fig. 10, we observe the VTB binding mechanism computation time, which is expected to evolve with O
(

d
3
2

)
.

In fact, at the implementation level, we observe that due to compiler and on-line processor optimization, the average
computation time is an order of magnitude lower, because the VTB binding formula in eq. (1) is easy to optimize,
at both the compilation and multi-core processor levels. Fitting the results we obtain, for one binding computation
average time, something like:

Tmilli−seconds = 0.048 + 0.28 d1.35

10000 ,

on a standard Intel® Core™ i5-8265U CPU @ 1.60GHz × 8 processor, while the obtained result is not
very stable around O

(
d1.35

)
. This instability obviously depends on the processor multi-core actual state, when

running the simulation.

Fig. 10. Binding average computation time as a function of the space dimension. Although not very stable, a better fit is always obtained for a
O (dp) , 1 < p < 3

2
interpolation.

This result is not directly useful for our purpose, but is in favor of using the VTB algebra, including at the
mesoscopic level, despite a less performing computation time.
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