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Abstract.

It is generally accepted that all cyber attacks can not be prevented, and it is therefore necessary to have the ability to detect
and respond to cyber attacks. Both connectionist and symbolic approaches are currently being employed for this purpose, but
far less work has been done on the intersection of the two. This paper argues that the cyber security domain holds significant
potential for applying neurosymbolic Al. We identify a set of challenges faced in cyber security today, and from this, we propose
a set of neurosymbolic use cases that can help address the challenges. Feasibility is demonstrated through multiple experiments
that apply neurosymbolic Al to cyber security. We find a significant overlap between the challenges in cyber security and the
promises of neurosymbolic techniques, making it an interesting research direction for both the neurosymbolic Al and cyber
security communities.

This paper is an extended version of a paper published at the NeSy 2024 conference [49]. The main additional contributions
are further experimental evidence for our hypothesis that NeSy offers real benefits in this domain and a more in-depth treatment
of knowledge graphs for cyber security.

Keywords: Al neurosymbolic Al, cyber security, incident detection and response

1. Introduction

Protecting assets in the cyber domain requires a combination of preventive measures, such as access control and
firewalls, and the ability to defend against cyber operations when the preventive measures were not sufficient.!

Our focus in this paper is on defending against offensive cyber operations, and before going into details, we put
in place some concepts and terminology:

*Corresponding author. E-mail: Gudmund.Grov @ffi.no.
't is generally accepted that preventive measures are not sufficient in cyberspace. An analogy is that we still need smoke detectors and a
fire brigade, even if we take all possible preventive measures to reduce the risk of a fire.
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2 Eckhoff et al. / NeSy for defending against cyber attacks

Terminology & concepts The focus of this paper is to defend assets against threats in cyberspace. An as-
set can be anything from information, physical infrastructure, and people - to the internal processes of an
enterprise. Threats manifest themselves in the form of cyber operations (or cyber attacks) conducted by an
adversary (or threat actor). In the context of defending, the term incident is used for an event that is deemed to
have a negative impact on assets. This event can potentially be an attack, and the process of defending comes
under the area of incident management [25].

This is typically carried out in a Security Operations Centre (SOC), which consists of people, processes,
and tools [40]. One of the objectives of a SOC is to detect and respond to threats and attacks, where security
analysts play a crucial role. Knowledge of threats in the cyber domain is developed by conducting intrusion
analysis and producing and consuming Cyber Threat Intelligence (CTI). Networks and systems to be protected
are monitored, and events — e.g., network traffic, file changes, or processes executing on a host — are forwarded
and typically stored in a security information and event management (SIEM) system, where events can be
investigated, correlated and enriched — and queried. We will use the term observations for such events resulting
from monitoring. Suspicious activity that is observed may raise alerts, which may indicate an incident that
has to be analysed and responded to in the SOC. Finally, Neurosymbolic Al [43], which aims to combine
connectionist and symbolic Al, will be abbreviated NeSy.

Why is a SOC relevant for NeSy? A SOC essentially conducts abductive reasoning by observing traces and iden-
tifying and analysing their cause in order to respond. This involves sifting through masses of events for suspicious
behaviour, an area in which extensive research has been conducted for several decades using statistics and machine
learning. Identifying the cause of observed suspicious behaviour requires situational awareness, achieved by com-
bining different types of evidence, applying reasoning, and deriving knowledge. There are various ways in which
evidence and knowledge can be represented, such as structured events and alerts, unstructured reports, and semantic
knowledge [82, 122].

In a SOC, the ability to learn models to detect suspicious activities and the ability to reason about identified
activities to understand their cause and respond to them is thus required. These abilities are at the core of NeSy, and
our hypothesis is as follows:

A SOC provides an ideal environment to study and apply NeSy with great potential for both scientific and
financial impact.

Some early work has explored NeSy in the cyber security domain [31, 55, 59, 90, 102, 108] and our goal with this
paper, which extends [49], is to showcase the possibilities and encourage the NeSy community to conduct research
in the SOC field?> with an emphasis on experiments.

Methodology: The identified SOC challenges are derived from a combination of existing published studies, the
experience and expertise of the authors, and further discussions with SOC practitioners. The use cases result from
reviewing NeSy literature in the context of the identified challenges, and the preliminary experiments conducted are
based on a subset of the identified use cases.

Contributions: This paper is an extended version of [49], published at the NeSy 2024 conference. We outline how
Al is used today in a SOC and identify and structure a set of challenges faced by practitioners who use Al. We then
create a set of promising use cases for applying NeSy in the context of a SOC, review current NeSy approaches in
light of them, and demonstrate feasibility through proof-of-concept experiments. In this paper, we extend [49] with
a more profound treatment of the use of knowledge graphs when defending against cyber attacks, and crucially, we
address the main limitation of [49] — limited experimental evidence — with the following experiments:

— Our experiment with Logic Tensor Networks (LTN) [12] in [49] is remade with an LTN using the same structure
as a published ML model for network introduction detection [116], and extended with further experiments
addressing explainability aspects and prioritising crucial knowledge.

2This paper focuses on the use of NeSy to defend against cyber attacks. Consequently, approaches that address NeSy in the context of Al
security, such as [90], are not considered in scope.
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Eckhoff et al. / NeSy for defending against cyber attacks 3

— A NeSy technique called Embed2Sym [9] is explored to analyse and contextualise alerts from intrusion detec-
tion systems.

— Building on [23, 24], we explore the integration of large language models with a symbolic approach for threat
hunting.

— We extend our previous work using data-driven enrichment of (symbolic) knowledge [123] with experiments
using newly released data and explore the advantages NeSy provides for this challenge.

Paper structure: In §2, we describe the typical use of Al in a SOC and the identified challenges. In §3, we make
the case for NeSy and introduce the different NeSy techniques discussed in this paper. In §4, we outline the NeSy
use cases and suggest NeSy techniques to address them. In §5, we describe the proof-of-concept experiments, before
we conclude in §6.

2. Challenges faced when using Al in a SOC

MAPE-K (Monitor-Analyse-Plan-Execute over shared Knowledge) [68] is a common reference model to struc-
ture the different phases when managing an incident.? For each phase of MAPE-K, we below discuss the use of Al,
including underlying representations, and identify key challenges security practitioners face when using AL*

2.1. Monitor

In the monitor phase, systems and networks are monitored and telemetry is represented as sequences of events.
An event could, for instance, be a network packet, a file update, a user that logs on to a service, or a process being
executed. Events are typically structured as key-value pairs. In a large enterprise, tens of thousands of events may
be generated per second. In this phase, a key objective is to detect suspicious behaviours from events and generate
alerts, which are analysed and handled in the later phases of MAPE-K.

This is a topic where machine learning (ML) has been extensively studied by training ML models on the vast
amount of captured event data (e.g., [3]). A challenge with such data is the lack of ground truth, in the sense that for
the vast majority of events we do not know if they are benign or malicious. As most events will be benign (albeit
we do not know which ones), one can exploit this assumption and use unsupervised methods to train anomaly
detectors. This is a common approach. For at least research purposes, synthetic data sets from simulated attacks are
also commonly used [72]. However, synthetic data sets suffer from several issues [8, 37, 67] and promising results
in research papers using synthetic data often fail to be reproduced in real-world settings — whilst anomaly detectors
often create a high number of false alerts® [18, 124]. Our first challenge, which has also been identified by the
European Union Agency for Cybersecurity (ENISA) [106], identifies this performance issue for ML models under
real-world conditions:

Challenge 1. Achieve optimal accuracy of ML models under real-world conditions.

As benign software and malware are continuously updated, the notion of concept drift is prevalent and ML models
therefore must be re-trained regularly. There are some approaches that take such concept drift into account [6, 101].
In addition to the need for scalability, due to the large amount of data, real-world conditions introduce a significant
level of noise (i.e. aleatoric uncertainty) in the data, which is not well reflected in synthetic data.

We know the ground truth of the associated alerts and events for previous incidents that have been handled.
Compared to the set of all events, the alerts related to incidents make up only a tiny fraction. Typically, the majority
of events will be benign, resulting in data sets that are heavily unbalanced. This imbalance is a challenge during

30ther common reference models are the OODA (Observe-Orient-Decide-Act) loop [16] and the IACD (Integrated Adaptive Cyber Defence)
framework [32].

4There have recently been a vast number of proposals for using large language models (LLMs) across MAPE-K. Here, we include what we
currently consider the most promising uses of LLMs and refer to [15, 95] for a more complete discussion. We provide a more detailed account
of LLMs in the NeSy context in §3 and §4.

5 As most events are benign, the base rate fallacy is important in this domain.
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4 Eckhoff et al. / NeSy for defending against cyber attacks

both training and inference of machine learning models. Still, the previous incidents are vital as they are labelled
and contain relevant data — either in terms of actual attacks experienced or false alerts that should be filtered out.
One important challenge, also recognised by ENISA, is the ability to exploit such labelled “incident data sets” and
train ML models based on them:

Challenge 2. Learning with small (labelled) data sets (from cyber incidents).

New knowledge about threats, attacks, malware, or vulnerability exploits is frequently published, often in the form
of threat reports and advisories. The traditional, and still most common, method for threat detection is signature-
based, where knowledge is encoded (often manually) as specific patterns (called signatures). Detection is achieved
by matching events with these signatures and generating alerts. Although signature-based methods have their lim-
itations, such knowledge could improve the performance of ML-based detection models, creating the need for the
ability to extract relevant knowledge and include it in the ML models:

Challenge 3. Extract knowledge (including about threats, malware, and vulnerabilities) and enrich ML-based de-
tection models with it.

In recent years, some work has been done to encode cyber knowledge into Al systems to improve detection [14,
55]. In addition to reports, dedicated knowledge bases, formal ontologies, and knowledge graphs can be used to
enrich ML models with such knowledge. There are also attempts to extend the coverage domain for such ontologies,
including the unified cyber ontology (UCO) [126] and the SEPSES knowledge graph [71]. To represent cyber threat
intelligence (CTI), a commonly used schema is Structured Threat Information eXpression (STIX) [99], with the
associated Threat Actor Context (TAC) ontology [88]. However, the maintenance of ontologies and knowledge
graphs has its own challenges, as real-world domains are rarely static, meaning new concepts emerge, existing
ones evolve, and old ones may become obsolete. In addition, domain-specific ontologies (tailored for specific use
cases) often do not rely on a shared foundation, i.e. foundational ontologies. This causes duplicate efforts with
incompatible structures (reinvention and misalignment of concepts) for common concepts, resulting in fragmented
knowledge representation, which makes cross-domain data integration complex and error-prone. This might impact
inferencing, ultimately leading to incomplete or incorrect results.

A widely used knowledge base for threat actors and attacks is MITRE ATT&CK [94]. ML, and in particular
natural language processing (NLP), is being explored for extracting CTI into symbolic forms (e.g., STIX) [87] or
to map it to MITRE ATT&CK [80]. Large Language Models (LLMs) are also explored for this topic [53, 81]. Some
limitations have been identified [134], but this is an active area of development with improvements made all the
time. We are unfamiliar with approaches that combine and integrate such knowledge with ML models for detection
trained on events.

A different approach to identify malicious behaviour is cyber threat hunting. This is a hypothesis-driven approach
in which hypotheses are formulated iteratively (typically using CTI) and validated using event logs, as well as other
sources of information [121]. Automating this process is our final challenge for the monitor phase:

Challenge 4. Automated generation of hypotheses from CTI and validation of hypotheses using observations for
threat hunting.

Utilizing Al to facilitate threat hunting is continuously explored [97]. However, most have focused on supporting
hypothesis generation by extracting relevant CTI, and using both ML/NLP [42] and symbolic AI [112]. In addition,
symbolic Al has been used to support validation [24]. Although symbolic and subsymbolic approaches have been
applied, a more comprehensive, integrated, and effective approach is needed.

2.2. Analyse

The goal of the analyse phase is to understand the nature of the observed alerts, determine possible business
impact, and create sufficient situational awareness to support the subsequent plan and execute phases.

Both malware and benign software continuously evolve. This makes it difficult to separate malicious from benign
behaviour [106], even with continuous detection engineering efforts. For example, an update to benign software
may cause a match with an existing malware signature and may also appear as an anomaly in the network traffic. As
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a result, most of the alerts would be either false or not sufficiently important for further investigation [18], causing
so-called alert fatigue among security analysts in a SOC. The analysis phase is, therefore, labour-intensive, where
security analysts must plough through and analyse a large number of alerts — most of them false — to decide their
nature and importance:

Challenge 5. The volume of alerts leads to alert flooding and alert fatigue in SOCs.

Understanding the nature of alerts is essential, and studies have shown that a lack of understanding of the under-
lying scores or reasoning behind the alerts have led to misuse and mistrust of ML systems [100]. Studies [18], along
with guidance from ENISA [106], have highlighted the need for alerts to be reliable, explainable, and possible to
analyse. The use of explainable Al to support this has shown some promise [34], and both knowledge graphs [18]
and LLMs® [57, 61, 70] have been identified as promising approaches.

An alert is often a single observation and needs to be placed into a larger context to determine an incident and
provide the necessary situational awareness as a result of an analysis [38]. Such contextualisation includes enriching
alerts with relevant knowledge from previous incidents, common systems behaviour, infrastructure details, threats,
assets, etc. The same attack — or the same phase of an attack — is likely to trigger many different alerts. Different
ML techniques, particularly clustering, have been studied to fuse or aggregate related alerts [74, 127]. In addition
to understanding an incident and achieving situational awareness, contextualisation will also help a security analyst
understand individual alerts. Similarly to challenge 3, contextualization of alerts will involve extracting a symbolic
representation from a vast amount of available (and typically unstructured) information.

A cyber attack conducted by an advanced adversary will, in most cases, go through several phases to reach its
objectives, creating a need to discover the relationships (between the alerts) across the different phases of an attack.
A common reference model to relate such phases is the cyber kill chain, originally developed by Lockheed Martin
and later refined into the unified cyber kill chain [110]. Other formalisms that enable modelling different phases of
attacks include MITRE Attack Flow [93] and the Meta Attack Language (MAL) [60]. Different approaches have been
studied to relate the different phases, including symbolic approaches [104], Al planning [5, 92], knowledge graphs
[24, 75], state machines [132], clustering [51] and statistics [53]. However, this research topic is considerably less
mature compared with ML models for detection in the monitor phase. We summarise the challenges of combining,
understanding and explaining observations in the following challenge:

Challenge 6. Combine observation with knowledge to analyse, develop, and communicate situational awareness.

Developing cyber situational awareness requires connecting a plethora of different sources, such as alerts and details
about infrastructure and threats. There have been proposals to use knowledge graphs to combine these different
sources to support analysis [82, 122], including providing explanations [18].

When an incident is understood and sufficient situational awareness is achieved, a suitable amount of resources
have to be allocated to handle the incident. There may be multiple incidents requiring some prioritisation between
them. This involves understanding the risk and potential impact of the incident, including any mitigating actions
that may be taken in subsequent MAPE-K phases:

Challenge 7. Understanding the risk, impact, importance, and priority of incidents.
2.3. Plan & Execute

The last two phases of MAPE-K, plan and execute, focus on responding to detected incidents. This involves
finding suitable responses in the plan phase and preparing and executing the response(s) in the execute phase. From
an Al perspective, research in these phases is less mature than in the monitor and analyse phases. Therefore, we will
only focus on the plan phase, which we consider to have more interesting Al-related challenges.

To plan a suitable response, three promising Al techniques are Al planning (e.g., [47]), reinforcement learning
(RL —e.g., [58, 98]) and recommender systems (e.g., [109]). Each of these techniques has pros and cons: Al planning
requires considerable knowledge and formulation of the underlying environment, reinforcement learning requires a

E.g. Microsoft security co-pilot, Elastic Security generative Al [22], and an Elastic/LongChain initiative [33]
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6 Eckhoff et al. / NeSy for defending against cyber attacks

considerable amount of interactions/simulations (often in the millions) and recommender systems typically require
extensive knowledge of previous events. In certain cases, a quick response time is necessary, which means this level
of interaction would be too time-consuming. When generating response actions, their risk and impact must be taken
into account (including the risk and impact of not acting), which is an unsolved problem when using Al. Moreover,
when proposing a response action, an Al-generated solution must be able to explain both what the response action
will do and why it is suitable for the given problem:

Challenge 8. Generate and recommend suitable response actions in a timely manner that take into account both
risk and impact and are understandable for a security analyst.

To support such generation, there are several frameworks and formal ontologies that can be used, such as MITRE
D3FEND [63], RE&CT [10] and CACAO playbooks [89].

2.4. Shared knowledge

The ‘K’ in MAPE-K stands for knowledge shared across the phases. We have, for instance, seen knowledge about
threats and the infrastructure being protected used across different phases. Moreover, this knowledge takes different
forms and representations (structured and unstructured) and is analysed using different techniques (symbolic and
sub-symbolic). In addition to consuming knowledge, it is also important to share knowledge with key stakeholders,
both technical and non-technical [128]. This may be a report about an incident for internal use (e.g., to board
members) or sharing threat information with a wider community, which lead us to our final challenge:

Challenge 9. Generating suitable incident and CTI reports for the target audience.
2.5. Summary

We have shown the need to learn and reason across MAPE-K and that both symbolic and connectionist Al are
being used across the phases. We have identified several challenges, which we in the following section will address
from a NeSy perspective.

3. Neurosymbolic Al to defend against cyber attacks

Kahneman’s [62] distinction between (fast) instinctive and unconscious ‘system I’ processes from (slow) more
reasoned ‘system 2’ processes has often been used to illustrate the NeSy integration of neural networks (system 1)
and logical reasoning (system 2). This interdisciplinary approach integrates neural networks adept at learning from
vast amounts of unstructured data, with symbolic representations of knowledge and logical rules to enhance the
interpretability and reasoning capabilities of Al systems. Building on the above analogy, system 1 can, in a SOC,
be seen as the ML-based Al used to identify potentially malicious behaviour in the monitor phase. Here, a large
amount of noise needs to be filtered out from the large amount of events (thus a need for speed and scalability).
System 2 is the reasoning conducted in the analysis phase, where deeper insight is required, and the need for
scalability is less significant. This dichotomy of requirements entails that neither end-to-end pure statistical nor
pure logical approaches will be sufficient, and a NeSy combination seems ideal. Three commonly used reasons for
pursuing NeSy are to design systems that are human auditable and augmentable, can learn with less and provide
out-of-distribution generalisation [48]. We have seen examples of each of these in the challenges described in §2:
the use of knowledge to contextualise, analyse, and explain alerts; generate and explain response actions; learn from
(relatively few) incidents; and handle concept drifts and noise in order to achieve high accuracy of ML models under
real-world conditions.

There are multiple studies on the current trends in neurosymbolic artificial intelligence [13, 43, 117], which we
will not repeat here. Instead, we will briefly describe the NeSY techniques we have found relevant for the use cases
in §4, categorised according to the taxonomy first introduced by Henry Kautz during his AAAI Robert S. Engelmore
memorial lecture [65]. This taxonomy was later revised at the 2024 Neurosymbolic Al summer school [66]. This
revised Kautz taxonomy consists of the following eight categories:
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— Symbolic — Neuro — Symbolic: Techniques where symbolic input (like language) is converted into non-
symbolic input (like vectors) that is passed to a neural network. The output of the neural network is then turned
back into symbols (like a category or a sequence of symbols).

— Symbolic[Neuro()]: A symbolic problem solver that can call a neural subroutine when needed.

— Neuro = Symbolic: A neural system converts non-symbolic inputs into symbolic structures, which are pro-
cessed by a symbolic reasoning system. The errors can then be propagated back through the symbolic system
to the neural system.

— f: Symbolic — Neuro: Standard deep learning with training based on symbolic rules. By generating training
input-output pairs from symbolic rules, a neural system can train on the pairs. After training, the system can
correctly handle unseen data.

— Neurosympolic: Techniques in which symbolic rules are used as templates for structure within a neural compo-
nent. This means that the expressed logic determines the general structure of a neural network.

— Neuro$Y"™°lic; A neural system is structured in a manner that provides an explicit world model to help it reason
about future consequences of decisions.

— Neuro|L(S ymbolic): Neural systems where symbolic knowledge is encoded in the loss function.

— Neuro[Symbolic()]: A neural engine that can call a symbolic reasoning system. This comprises systems with
deliberate system 2 reasoning with a system 1 engine.

Below we briefly describe the NeSy techniques used in §4 following this taxonomy. Note that (1) we only cover a
subset of the categories and only discuss the ones to which a relevant NeSY technique belongs; (2) many techniques
have aspects that mean they can fit into multiple categories. When this is the case, we have chosen the most relevant
category.

3.1. Symbolic[Neuro()]

Differentiable Probabilistic Answer Set Programming (dPASP) [46] is based on furnishing Answer Set Pro-
gramming (ASP) [17] with neural predicates as interface to both deep learning components and probabilistic
features in order to afford differentiable neurosymbolic reasoning. dPASP is suitable for detecting under
incomplete information, abductive reasoning, analysis of competing hypotheses (ACH) [54], and what-if rea-
soning.

PyReason [2] is a python framework supporting both differentiable logics and temporal extensions. Additionally,
it enables temporal reasoning over graphical structures with fully explainable traces of inference.

3.2. Neuro = Symbolic

Neuro Symbolic Concept Learner (NS-CL) [86] builds models to learn visual perception, including semantic in-
terpretation of the images without explicit supervision. It learns visual concepts, words, and semantic parsing
jointly.

Neuro-Symbolic Inductive Learner (NSIL) [28] is an approach in which a neural network learns to extract latent
concepts from raw data, while jointly learning a mapping of symbolic knowledge to latent concepts.

Differentiable Inductive Logic Programming (OILP) [35] is a framework that seeks to combine the advantages
of inductive logic programming (ILP) [96] with the advantages of neural networks. It enables learning logic
programs from noisy and structured examples.

DeepProbLog [85] and DeepStochLog [133] incorporate reasoning, probability, and deep learning, by extending
probabilistic logic programmes with neural predicates created from a neural classifier.

Neural Probabilistic Soft Logic (NeuPSL) [111] is a neursosymbolic framework where the output from the
trained neural networks is in (symbolic) Probabilistic Soft Logic (PSL) [11]. This enables reasoning over
low-level perceptions of deep neural networks.

NeurASP [135] is an extension of Answer Set Programming that incorporates neural networks. This is achieved by
treating the output from the neural classifier as a probability distribution over the atomic facts in the ASP. The
ASP rules can also be used to improve the training of the neural networks.
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Deep Symbolic Learning (DSL) [29] is a neurosymbolic system that learns a set of perception functions, mapping
images to symbols while also learning a symbolic function over the symbols in an end-to-end fashion.
STAR [114] combines LLMs with ASP. Knowledge is extracted to predicates using an LLM. ASP can then be

employed to reason over the extracted knowledge.
Logic.py [69] is an approach to solving search-based problems with LLMs. The LL.Ms formalise a given problem
in a domain-specific language Logic.py, which can be solved using a symbolic constraint solver.
Embed2Sym [9] extracts latent concepts from a neural network architecture and assigns symbolic meanings to
these concepts. This enables solving tasks involving both perception and reasoning.

3.3. f: Symbolic — Neuro

Recurrent Reasoning Networks (RRNs) [56] is a neurosymbolic method for training a deep neural network to
perform ontology reasoning. The RNN model is able to reason with an accuracy that is close to symbolic
methods, while being more robust.

3.4. Neurosympolic

Logical Neural Networks (LNN) [115] are designed to simultaneously provide key properties of both neural nets
(learning) and symbolic logic (knowledge and reasoning), enabling both logical inference and injecting de-
sired knowledge into the neural architecture.

Logic Tensor Networks (LTN) [12] is an approach where a membership function for concepts is learnt based on
both labelled examples and abstract (logical) rules. LTN introduces a fully differentiable logical language,
called real logic, where elements of first-order logic can be used to encode the underlying knowledge.

3.5. Neuro[Symbolic()]

Modular Reasoning, Knowledge and Language (MRKL) [64] systems present a neurosymbolic architecture to
improve the utility of LLMs. The system consists of a set of expert modules and a router that routes incoming
natural language to appropriate modules. The modules can be both neural (e.g. LLMs or vision modules) or
symbolic (e.g. a calculator or an API call).

Phenomenal Yet Puzzling [113] presents an approach for inductive reasoning with language models. Inductive
reasoning is done through iferative hypothesis refinement, and consists of three steps: proposing, selecting,
and refining hypotheses. When coupled with a symbolic interpreter, accurate feedback can be given to refine
the hypotheses.

Large Language Models Are Neurosymbolic Reasoners [36] investigates the application of LLMs as symbolic
reasoners in text-based games. The LLM agents are given information about their role, observations, a set of
valid actions arising from both the game environment, and a symbolic module. With this, agents can interact
with the environment and solve text-based games involving symbolic tasks.

Symbolic Deep Reinforcement Learning (SDRL) [84] is a framework in which symbolic planning is introduced
into deep reinforcement learning. This enables both high-dimension sensor input and symbolic planning.

Knowledge Graph Enhanced Retrieval Augmented Generation [76] deals with the limitations of large language
models — like hallucinations and difficulty with factual data — by integrating knowledge graphs (KGs) for
more reliable and contextually grounded outputs. This approach constructs a richer semantic context through
ontology-based schemas and vector embeddings, enabling more effective retrieval and reasoning.

4. Neurosymbolic AI use cases to improve defending against cyber attacks

From the challenges in §2, we here outline a set of NeSy use cases we believe are promising. For each use case,
we identify suitable NeSy tools and techniques that show potential. We note that this work is incomplete and should
be seen as a starting point (see §6). Moreover, this section is speculative by nature, but we provide some evidence
in terms of existing work and experiments conducted in §5 for selected use cases.

O O d oy U W NP

[ T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO



O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

Eckhoff et al. / NeSy for defending against cyber attacks 9
4.1. Monitor

The ability to integrate relevant knowledge into ML-based detection models (challenge 3) falls directly under the
NeSy paradigm, and could both improve performance under real-world conditions (challenge 1) and help reduce
the number of false alerts (challenge 5):

Use case 1. Use (symbolic) knowledge of threats and assets to guide or constrain ML-based detection engines.

A similar case for such a NeSy use case is made in [108]. Logical Neural Networks (LNN) [115] enables injecting
knowledge about threats, vulnerabilities, or infrastructure into the neural architecture. Here, it both learns from data
and considers cyber security knowledge. Similarly Logic Tensor Networks (LTN) [118], can learn from data while
taking into account knowledge. Cyber security specific knowledge can be encoded as real logic rules, and help
constrain the training of the neural detection engine. LTN has been studied to detect suspicious behaviour [14, 102]
and is the topic of one of our experiments in §5. Knowledge about threats and assets can provide good indications
of when (and even how) we can expect concept drift. Existing works on addressing concept drift in general [41],
and tailored for network intrusion detection [6], are mainly based on identifying concept drift from the data or
the model’s performance. Embedding knowledge about the expected change into an LNN or an LTN could help
retraining models to be resilient to concept drift.

In challenge 2, we highlighted the need to learn from (relatively small) data sets, which is one of the key features
of NeSy [48]:

Use case 2. Learn detection models from a limited number of (labelled) incidents.

Additional embedded knowledge in an LNN or LTN can help reduce the amount of required training data. NS-
CL[86] has shown that it can be trained on a fraction of the data required by comparable methods — albeit in a
different domain with different data sources. NeSy-based inductive logic programming variants, such as dILP [35],
would also be able to learn from small data sets. The learnt logic program will also be inherently explainable (see
challenge 6).

Threat hunting involves generating suitable hypotheses, applying and validating them, then updating and iterating
(challenge 4). Work has started investigating LL.Ms for this challenge [107]. It has been argued for symbolism in
LLMs [52], and based on that we define an LLM-based NeSy threat hunting use case:

Use case 3. LLM-driven threat hunting using symbolic knowledge and reasoning capabilities.

LLMs have been used for hypothesis generation in other domains [113], which can be further investigated for threat
hunting. Similarly, LLMS used as a symbolic reasoner in text-based games [36] also seems interesting to port to
such threat hunting.

Hypothesis generation is typically driven by CTI, which can be captured in a knowledge graph. The integration of
LLMs and knowledge graphs is an active research field [76, 105]. In addition, symbolic or computational methods
could be used for other steps in the hunting process, including: planning how to answer the hypothesis; reasoning
about available data sources to execute this plan; ensuring correct translation to the required query language’ to
validate the hypothesis using the observations; and finally, reason about the results from the execution and provide
input for any refinement of the hypothesis for a new hunting iteration. Additionally, answer set programming tech-
niques, such as dPASP [46], can leverage existing LLM-ASP integrations to perform threat hunting, thus utilizing
both knowledge and reasoning [114].

4.2. Analyse
A prominent characteristic of NeSy is its ability to combine learning and reasoning. Such a combination is de-

sirable in a SOC, and our next use case, which cuts across the monitor and analyse phases, addresses several of the
challenges from §2:

"Events are stored in a SIEM system, which will have a query language.
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Use case 4. Incorporate learning of detection models with the ability to reason about their outcomes to understand
and explain their nature and impact.

In [108], the case for such integration of detection and analysis using NeSy is also made. One way to achieve this
is to simultaneously train a neural network (for detection) with related symbolic rules that can be used for con-
textualisation, analysis, and explanation (challenge 6). Two NeSy techniques that can accomplish this are Deep
Symbolic Learning (DSL) [29] and Neuro-Symbolic Inductive Learner (NSIL) [28]. LLM-based Modular Reason-
ing, Knowledge and Language (MRKL) systems [64], which consists of both neural and symbolic modules, provides
a promising architecture for explaining the nature and impact of an outcome. Answer set programming-based neu-
rosymbolic techniques like dPASP [46] and NeurASP [135] — and DeepProbLog [85] and DeepStochLog [133],
which incorporates reasoning, probability and deep learning — also seem promising for this use case.

Use case 4 is rather generic and can be broken down into several smaller sub-cases. The first such sub-case is the
extraction of symbolic alerts, in order to support alert contextualisation, analysis, and explanation:

Use case 5. Extracting alerts in a symbolic form.

In [55], symbolic alerts are extracted from a graph neural network (GNN) based detection engine. A combination
of GNNExplainer [136] and DL-Learner [79] is used to extract symbolic alerts. The symbolic rules learnt by both
DSL and NSIL may also provide such symbolic alert representation, and the use of e.g. JILP for detection will learn
symbolic alerts by design. Embed2Sym [9] can be used to encode symbolic alerts by utilizing its ability to extract
concepts from neural networks and assign a symbolic meaning, while LLM-based methods, such as Logic.py [69],
have shown the ability to produce symbolic representations.

A SOC typically receives a large volume of threat intelligence, which is too large to thoroughly analyse manually.
Such intelligence is used to contextualise alerts, and it is thus desirable to enrich the SOCs knowledge bases with
relevant intelligence reports:

Use case 6. Use statistical Al to enrich or extract symbolic knowledge.

This use case addresses challenge 6. In §2, we discussed several approaches to extract knowledge in a suitable
symbolic form from reports [80, 81, 87]. NeSy-based LLM approaches, such as STAR [114] and Logic.py, could
also be used to extract knowledge in a suitable symbolic form amendable for reasoning.

This ability to reason is crucial as the intelligence report may be incorrect or superseded for different reasons,
including underlying (aleatoric) uncertainty, deterioration over time, or they may come from sources one does not
fully trust. It may also simply not be relevant for our purposes, or more importantly, intelligence reports may conflict
with our existing knowledge or our own observations. It is therefore desirable to have the ability to quantify and
reason about knowledge, including the level of trust, from both our own observations and existing knowledge:

Use case 7. Reason about and quantify knowledge.

This use case aims to address challenge 7. It may play a role in the implementation of a technique known as risk-
based alerting [125], which involves using data analysis to determine the potential severity and impact of alerts and
incidents. Probabilistic attack graphs [50] has been used to add probabilities to CTI to support such quantification.
One potential NeSy approach for this use case is Recurrent Reasoning Networks (RRNs) [56]. RRNs could be used
to train an ML model from observations to reason about our existing knowledge graph, e.g., to quantify or identify
inconsistencies. Another NeSy example is Neural Probabilistic Soft Logic (NeuPSL) [111], as the output from the
neural networks is in Probabilistic Soft Logic (PSL) [11], which can be treated by probabilistic graphical models.
NeurASP, dPASP, DeepProbLog, and DeepStochLog also seem applicable here.

As discussed in §2, a cyber attack conducted by an advanced adversary will consist of multiple phases. The ability
to relate these phases is essential when developing cyber situational awareness (challenge 6):

Use case 8. Relate the different phases of cyber incidents.

One concrete NeSy use case would be to merge the statistics- and semantics-driven approaches outlined in [7].
Further, PyReason [2] enables temporal reasoning over graphical structures, such as knowledge graphs, and can be
used to exploit the temporal aspect of relating the different phases. The second experiment in §5 addresses this use
case by exploring temporal reasoning using a combination of LLMs, temporal logic, ASP and plan recognition. The
ontological reasoning supported by RRNs also seems promising for this type of problem.
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4.3. Plan & execute

Neurosymbolic reinforcement learning (NeuroRL) [1] combines the respective advantages of reinforcement learn-
ing and AI planning. NeuroRL can learn with fewer interactions compared to traditional RL by using inherent
knowledge. This ability makes it more applicable than both RL and Al planning when (near) real-time response is
required and a complete model of the environment is infeasible. Moreover, it has the promise of more explainable
response actions, whilst a reasoning engine could, in principle, help to take into account both risk and impact®.
Thus, this seems like a promising approach for challenge 8:

Use case 9. Generating impact and risk-aware explainable response actions in a timely fashion using neurosymbolic
reinforcement learning.

Symbolic Deep Reinforcement Learning (SDRL) [84] is directly applicable to this use case. Other neurosymbolic
reinforcement learning techniques have been used in offensive cyber security settings for penetration testing® [31].
Whilst there are some commonalities with our challenges, defending has their own peculiarities. For example, speed,
risk, impact, and explainability are more prominent when defending against cyber attacks.

4.4. Shared knowledge

A widely applied form of symbolic Al in the context of cyber security is in semantic ontologies. Ontologies
provide a formal and structured way of representing knowledge that both humans and machines can interpret while
accounting for interoperability across systems. Built upon symbolic Al principles, ontologies focus on knowledge
representation, logic, and reasoning, using well-defined structured models of the world. They define concepts, their
composition, and their relationships within a domain, and they provide a clear distinction between the data (and the
information itself) and the underlying model that defines how that information is organised, represented, and pro-
cessed. This paradigm enables model evolution without data disruption, a known limitation of traditional relational
models and other data serialisation formats that inherently combine representations and data elements. This pow-
erful paradigm allows for a more seamless integration of federated and siloed (in too many cases heterogeneous)
data and can provide ensembles of contextual knowledge graphs in support of answering complex questions for
decision-making. In addition, ontologies are the backbone of a knowledge base that can guide learning, ensure con-
sistency, facilitate inference, and provide explainability, making neurosymbolic systems more capable of handling
real-world, knowledge-intensive tasks. Our final use case directly addresses challenge 9. Cyber threat intelligence
is commonly shared in both structured and unstructured forms. LLMs are extensively studied for generating reports
and this is also the case for cyber defence [95]. It is important that the information generated is accurate, something
[76] can help with. The generation process is likely to use symbolism (e.g., knowledge graphs [105]). The reports
need to be correct, which is an area in which symbolic Al can help [52]. We, therefore, rephrase challenge 9 as a
NeSy use case:

Use case 10. Generation of incident reports and CTI reports tailored for a given audience and/or formal require-
ments, using (symbolic) knowledge and LLMs.

4.5. Summary

We have outlined ten different uses of NeSy that can address the challenges outlined in §2, and identified promis-
ing NeSy techniques that can serve as a starting point. Table 1 summarises the relationship between these use cases
and the underlying challenges from §2. In addition, we indicate which use case and challenge each of the experi-
ments in §5 addresses.

8We note that there are additional challenges when generating risk and impact-aware responses, such as both deriving the requirements in
the first place and representing them in a suitable way.
9Penetration tests are simulated attacks against the infrastructure and assets being protected, for instance, to identify vulnerabilities.
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Usecase | Usecase | Usecase | Usecase | Usecase | Usecase | Use case Use case Use case | Use case
1 2 3 4 5 6 7 8 9 10

Challenge 1 v El

Challenge 2 v’

Challenge 3 v El

Challenge 4 v E4

Challenge 5 v E3 v E3

Challenge 6 v E3 v E3 v E5 v E2,3.,5

Challenge 7 v E3

Challenge 8 v’

Challenge 9 v’

Table 1

Relationship between challenges, use cases and conducted experiment. v indicates that a given challenge is addressed by the given use case,
while ‘EN” indicates that the challenge/use case is addressed by experiment N.

5. Proof-of-concept experiments

This section provides experimental evidence for our hypothesis that a SOC is an ideal environment for studying
neurosymbolic approaches. The selection criteria we have used for the experiments is a combination of covering
a broad set of challenges and use cases, as seen in table 1, and that is sufficiently mature and feasible to conduct
within our time frame. A consequence of the latter criteria is that the experiments only cover the monitor and analyse
phases of MAPE-K, as we believe we find the most mature NeSy approaches there. We also note that our approaches
should be seen as proof-of-concepts, and are far away from being in a state that can be used in a operational setting
in a SOC. We have conducted the following five experiments:

— In Experiment 1 (§5.1), we address use case 1 (using knowledge of threats and assets to guide ML-based

5.1.

detection engines.) This is shown by using Logic Tensor Networks (LTN) [12] to illustrate how cyber security
knowledge in symbolic form can be used to improve an ML-based detection engine as well as improving
explainability.

In Experiment 2 (§5.2), we address use case 8 (relating different phases of cyber incidents). Here, LLMs and
ASP are used to elicit and reason about adversary attack patterns and observed alerts for situational awareness.
In Experiment 3 (§5.3), we address use case 4 (learning detection models with the ability to reason about their
outcomes). This experiment also addresses elements from use case 5, use case 7 and use case 8. Here, a NeSy
solution based on the Embed2Sym [9] approach is explored to contextualise alerts. That is, we use ASP and
formalised domain knowledge to label clusters of embeddings according to what cyber kill chain phase they
are likely to represent.

In Experiment 4 (§5.4), we address use case 3 (LLM-driven threat hunting with symbolic knowledge and
reasoning). Here, we build on [23, 24] by exploring the integration of LLMs with a symbolic approach based
on knowledge graphs for threat hunting.

In Experiment 5 (§5.5), we address use case 6 (use statistical Al to enrich or extract symbolic knowledge).
Additionally, some elements of use case 8 is addressed. Here, we extend our previous work using data-driven
enrichment of (symbolic) knowledge [123] with experiments using newly released data and explore the advan-
tages NeSy provides for this challenge.

Experiment 1: LTN for knowledge-aware intrusion detection

ML-based intrusion detection systems need to learn how to correlate data and their classes'®, capturing both
simple and complex relationships. However, information that is not present or prevalent in the data might not be

10Classes could, for instance, represent malicious or benign data — or specific attack steps or attack techniques. This depends on the type of

classifier.
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Fig. 1. Overview of LTN-based approach

used, even if it is obvious to an analyst. For this reason, we use a Logic Tensor Network (LTN) [12] to learn from
data while being guided by expressed knowledge. Most people intuitively know that a vulnerability in Microsoft
Word is not a danger for machines without the software installed. Neural networks, on the other hand, need to learn
this by seeing it repeatedly in training data. Common sense knowledge, such as this, can easily be expressed as
logic statements, which are used to help guide the learning of the LTN model. In detection engineering, analysts
often have information they use to support the detection process that is not expressed explicitly in the logs used by
the detection engine. This information can come from the knowledge or experience of analysts or other sources of
information, such as cyber threat intelligence reports.

This experiment addresses use case 1 and is placed in the monitor phase of MAPE-K. Here, the goal is to detect
malicious traffic by training LTN-based classifiers to detect two types of malicious traffic: brute force attacks and
cross-site scripting (XSS) attacks. A brute force attack is a trial-and-error approach that, for instance, tries to guess
the correct password, while cross-site scripting (XSS) attacks essentially inject malicious code into webpages.

We train two LTN-based classifiers: one classifier that separates brute force attacks from benign traffic and one
classifier that separates XSS attacks from benign traffic.'! Both classifiers use aggregated traffic in the form of
NetFlow entries [26]. A NetFlow entry contains information about traffic between two distinct ports on distinct IP
addresses for a given protocol within a given time frame (which may vary). It will typically contain information
on the number of packets and the amount of data transferred, in addition to a wide range of other features. For our
experiment, we used more than 80 different features extracted from the NetFlows.

The LTN-based intrusion detector will generate an alert if a NetFlow entry is classified as brute force or XSS.
This alert will typically be manually inspected by a SOC analyst — or, as we will see in other experiments below —
further enriched by e.g. other NeSy approaches.

Figure 1 shows an overview of the approach. As the learning is supervised, the model takes the ground truth label
for each NetFlow entry as input in addition to the NetFlow entries themselves. The main difference from a stan-
dard fully connected neural network is that we encode and provide knowledge as real logic statements [118]. This
could, for instance, be general knowledge, knowledge about the systems being protected, or cyber threat intelligence
(CTI) about the threat we are trying to detect. Real logic is a fully differentiable first-order fuzzy logical language,
supporting connectives and quantifiers [12]. This enables expressing knowledge that is hard or even impossible to
express by purely adding extra information to the data points.'> The statements are used in the classifier’s symbolic
part, while the labels and NetFlows are used in its neural part.

"We consider training two binary classifiers more realistic than a multi-class approach for this particular problem. However, note that we
also did train a single multi-class network with comparable results.

12As an example, we can express that “all privilege escalation attacks are preceded by an initial access" by the following statement:
Vx : 3y : privEsc(x) = (initAccess(y) N before(y, x))
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The experiments seek to answer the following research question:

Will a classifier enriched with knowledge perform better and provide better insight into what has been learnt
than a purely data-driven classifier?

The experiment consists of two parts: In the first part, a three-layered fully connected neural network is trained
and used as a baseline. In the second part, a LTN with the same underlying neural network structure is enriched with
additional knowledge [12]. In both cases, 70% of the data is used for training and 30% for testing. The experiment
is inspired by [102], where LTN is used in a similar fashion to distinguish benign NetFlows from multiple classes
of attack NetFlows. Our experiment takes this further by also encoding cyber security knowledge into the LTN and
comparing a classifier with and without the knowledge'*.

We use the CICIDS2017 data set [119] for our experiments. This data set simulates benign traffic and attacks
over five days, varying the attacks performed each day. In our experiment, we use the subset called "Tuesday
morning". The labelled flows are categorized into three classes: “Benign”, “Web Attack — Brute Force” and “Web
Attack - XSS”. The classes are significantly imbalanced, with 168, 000 flows in the benign class and 2, 159 flows
in the remaining classes. Such imbalance between benign traffic and attacks is common and will be significantly
more imbalanced in real life. The data set is partitioned into a 30/70 split between a training set and a test set.
To account for class imbalance during training, we undersample the benign class to match the number of samples
from the attack classes and the benign class. We include all features from the NetFlows into the sample except for
the properties source IP, destination IP, and source port as they will cause overfitting and not generalise well. We
one-hot encode the destination port with the 22 most common ports being their own feature and the remaining ports
regarded as “other ports”. We also one-hot encode the protocol feature. All features are normalised using min-max
normalisation. Each NetFlow is represented as a vector of length 92.

The LTN consists of one predicate for class membership:

P(x,class).

This predicate is configured as a fully connected multilayer perceptron with an architecture of 92 input features,
two hidden layers of size 256, and an output layer of size one. ELU is used as the activation function of the hidden
layers, while sigmoid is used for the output layer [27].

Real logic statements are used to shape the training of the neural network. The idea is that such statements should
be created by a cyber security analyst and be based upon knowledge about the system, the current threat landscape,
and any other relevant information the analyst has. Training consists of updating the neural network P to maximise
the accumulated truth value of the axioms [12]. In this experiment, we first define the following axioms:

(1) Vxé€ B:P(x,Benign) (2) Vx¢& BF: P(x,Brute_force) (3) Vxe X: P(x,XSS)

The first three axioms describe how all flows in the training set that are labelled as a given class (B : benign, BF :
brute force, X : xss), should be a member of that class. This encodes the information of the baseline neural network
with no additional knowledge. We then define the following axioms:

(4) Vx € NWS : =(P(x, Brute_force) V P(x,XSS)) (5) Vx €& IT : —~(P(x, Brute_force) V P(x,XSS))

The fourth axiom describes how all NetFlows not going to or from a web server (NWS: Not Web server) cannot be
a web attack. Both the XSS and brute force attack in this data set are for web servers specifically. The information
about what is not a web server is knowledge extracted from the topology of the network we are tasked to defend (i.e.,
the victim of the attack). The fifth axiom defines all traffic between machines in the victim network (IT: Internal
traffic) as not part of an attack. This is because we expect all XSS or brute force attacks to come from outside

13Similar work using LTN for intrusion detection has been done in [14]. Note that this work was published after our initial LTN experiments
[49], which we extend here.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51



O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

Eckhoff et al. / NeSy for defending against cyber attacks 15

the organisation’s network. The knowledge encoded in axioms 4 and 5 is elementary common knowledge, and we
expect domain experts to express more complex relationships. Still, it is sufficient for our work.

We trained one baseline model and one LTN model for each of the two attack classes. Both the baseline and LTN
models use the same training and test sets, and have the same configuration of the underlying neural network. We
trained both models over 80 epochs with a batch size of 250. The results are presented in table 2.

Baseline Neural Network Logic Tensor Network
Labels Precision | Recall F1 | Precision | Recall F1
Brute Force | 0.066 0.847 0.122 | 0.154 1.000 0.267
XSS 0.028 0.929 0.055 | 0.104 0.964 0.188
Table 2

Results from LTN Experiment.

The data set tries to reflect realistic data and is therefore highly unbalanced, with 98.7% NetFlows being normal
benign traffic. As seen by challenge 5, alert flooding is a problem in a SOC with a need to balance high recall,
i.e. a balance between too many false alerts and the potential of missing an attack. This will depend on external
factors; e.g. we may have intelligence that indicates a specific type of attack is imminent, and high recall is therefore
essential.

The results show that both solutions have high recall when distinguishing benign traffic from attacks. The preci-
sion for both solutions is fairly low; however, this is to be expected as the data set is unbalanced. Most importantly,
we can see that the precision of the LTN classifier is more than double that of the baseline classifier (0.154 vs 0.066
for brute force attacks; 0.104 vs 0.028 for XSS), indicating that adding knowledge can improve classification.

As a comparison, we look at two related works using purely neural techniques to create an NIDS on similar data
sets. MLP4NIDS [116] uses a multi-layer perceptron (MLP) to create a multi-class classifier on the CIC-IDS-2017
data set. Kim et al. [73] use a convolutional neural network as a multi-class classifier, testing it on the CSE-CIC-IDS
2018 data set. This paper only looks at a subset of CIC-IDS-2017 with only two attacks: XSS and brute force. Both
works show good results overall. However, as both of them are trained on 16 attack types as opposed to two in the
LTN classifier, we see that the result for classifying XSS and brute force attacks is comparable or worse in both
cases. For MLP4NIDS, all XSS and brute force attacks are misclassified. In Kim et al., the F1 score for XSS is 0.65
and 0.0 for two parts of the data set, compared to 0.27 by the LTN. The F1 score for brute force attacks was 0.3 and
0.0 for the same parts compared to 0.19 for the LTN classifier. It is worth noting that the accuracy function defined
by Kim et al. is actually the F1 score. In general, the LTN classifier outperforms or performs on par with [73, 116]
for XSS and brute force attacks. However, the LTN classifier performs worse than the state-of-the-art classifiers on
average over all classes. We reiterate that the key observation in this experiment is that when trained under the same
conditions, a baseline neural classifier can be improved by the additional knowledge included using an LTN.

5.1.1. Learning insights

Real logic statements in a LTN are an effective way of injecting knowledge into a neural classifier. They can
also help in understanding and influencing the model’s training and focus. Next we explore different ways the
explainability aspects of LTN can be used by a SOC analyst.

During training of the LTN, the goal is to maximize the aggregated truth of all the provided statements. This is
done by deriving the loss of the model from the aggregated truth. Real logic is fuzzy logic, and we would not expect
that all statements hold for all cases. After the training is completed, one can analyse how well the rules hold on
all the provided training data to provide insights into how the model works. This can also be used as feedback to
the analyst to help change or tweak the rules. In figure 2(a), we plot the satisfiability of the five statements for the
training set. Here, we can see that after training, rules four and five are generally satisfied. They are the rules that
reduce false positives (false alerts) for the two attack classes. We can also see that the performance for the third rule,
which classifies XSS, is significantly lower. This is in accordance with the results in table 2.

When creating real logic statements, there is a risk of creating a statement that does not accurately reflect the data.
This can be the result of errors made when defining rules or due to incorrect intuitions. For example, a rule asserting
that only computers are targets of attacks does not accurately capture reality, as mobile phones are also targets. If a
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bad rule is introduced, we would expect that the LTN would have a hard time satisfying this rule at the same time
as the other rules. We can therefore use the low satisfiability of a rule (after training) as an indication that there is a
problem with the rule. The fact that the LTN was not able to find a way to make the rule true is an indication that it
does not describe the data correctly. To demonstrate this, we conduct a small experiment where we introduce a new
rule that is obviously not true stating that all traffic labelled as benign should be classified as brute force:

(6) Vx € B(P(x € B, Brute_force)).

After training an LTN with this incorrect rule, we can see in figure 2(b) that the satisfiability of the false rule is
significantly lower than the other rules.

In addition to expressing rules, an analyst may be interested in expressing the relative importance of different
rules. For example, a rule relating to a rare attack with limited consequences may be given a low priority. Conversely,
arule expressing something very prevalent and critical may be prioritised. To reflect this, we add weights to the rules
to give a simple way of assigning the importance of a rule compared to the others, where a high weight results in
the statement contributing more to the total aggregated truth.

To provide additional insights, the analyst can investigate the satisfiability of the different rules for a given Net-
Flow. For the majority of NetFlows, we expect all rules to hold, as this is what the LTN is optimising for. However,
if some rules are not satisfied, we could pass the information on to an analyst to provide additional explanation and
context for their analysis.

Satisfiability for each axiom in the training set

Satisfiability for each axiom in the training set

100 7

80 1

60

Satisfiability (%)

Satisfiability (%)

201

\‘}B

& & o &

Q\GI \}?; Q\GI \}?; QQ‘
&
Q}}e, Q}}e, Q}}e, Q}}e, * * * @ {a@
(a) Standard rules (b) Standard rules + wrong rule

Fig. 2. Average satisfiability on training set (after training)

To summarise, this experiment illustrates the potential of using NeSy to embed additional knowledge into ML
models to detect suspicious behaviour. We also see how LTNs can help analysts understand what the model learns
and how it predicts. We have showcased that a neural classifier can be improved by adding knowledge in the form
of real logic statements. When using the knowledge-enriched LTN, the number of false alerts was reduced without
impacting recall. The LTN also provides multiple techniques to improve the model’s explainability. By examining
the satisfiability of the statements after training, we can gain valuable insight into what the model has learnt or what
it is not able to learn. With this information, we can change and improve the defined statements. The satisfiability
can also be used to gain insight into the model’s predictions. This shows promise for using NeSy to enrich ML-based
models with (symbolic) knowledge.
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5.2. Experiment 2: LLMs and ASP for situational awareness

Experiment 1 provided an example of how alerts can be raised. In §2 we have also discussed the need for support-
ing alert analysis. In this experiment, we demonstrate such analysis by illustrating the use of NeSy to relate different
phases of an attack (use case 8). Here, alerts sequenced by time are mapped to adversary attack patterns, gleaned
from textual CTI reports into symbolic form using statistical methods (use case 6). The experiment is inspired by
existing work such as: neurosymbolic plan recognition [4], attack plan recognition [5], and the use of LLMs to
extract both linear temporal logic (LTL) [39] and CTI (in the form of MITRE ATT&CK tactics or techniques)14
[53, 103, 137].

An LLM is first used to elicit formal representations of attack patterns described in CTI reports, affording us a
rapid way to convert CTI to symbolic knowledge. Here, we use the NL2LTL Python library [39] to extract repre-
sentations of attack patterns in LTL; [30], a temporal logic for finite traces. We are using Open Als GPT-4 model
with few-shot learning. We define a custom pattern template Existence EventuallyOther to express the LTL property
Qa A oQb. Each prompt parses two lines from the attack description and finds the appropriate ATT&CK technique
(from the allowed symbols), and an LTL formula. We combine the formulas from each prompt into one long LTL
formula expressing the entire attack pattern. The following is one prompt generated by NL2LTL:

Prompt generated by NL2LTL

Translate natural language sentences into patterns:

ALLOWED_PATTERNS: ExistenceEventuallyOther

ALLOWED_SYMBOLS: T1548 (Abuse Elevation Control Mechanism), T1552 (Unsecured Credentials),
T1133 (External Remote Service), T1059 (Command and Scripting Interpreter ) [...]

## Few shot learning example

NL: The adversary logs into the Kubernetes console.

This leads to: The adversary can view plaintext AWS keys in the Kubernetes console.
PATTERN: ExistenceEventuallyOther

SYMBOLS: T1133, T1552

## Query
NL: Attackers used a known exploit to allow the loading of a DLL that facilitated altering SAML-rules
This Leads to: Attackers modifies SAML-rules allowing lateral movement to occur.

A conceptual adversary attack pattern, sequencing MITRE ATT&CK techniques is visualised in Figure 3.

{11556} ... {r1059} ... {11548} ... {r1059}
[ ] N [ ] cee L] N [ ]
t; tj 173 e 1

LTL, : O(I — 00(£1556 A o0 (11059 A 00(11548 A 00r1059))))

Fig. 3. Adversary attack pattern

Each ‘txxx’, where x is a number, is a unique technique from the ATT&CK framework, I is the initial state, and [J,
o and ¢ are the ‘always’, ‘next’ and ‘eventually’ operators in LTL. Next, telingo [21] is used to postdict possible
attacks. telingo is a temporal ASP solver implementing temporal equilibrium logic for finite traces (TELy) which

14 A MITRE ATT&CK tactic describes why an adversary performs an action, while a MITRE ATT&CK technique describes how the action
is performed [94].

O O d oy U W NP

[ T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO



@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

49
50
51

18 Eckhoff et al. / NeSy for defending against cyber attacks

is syntactically similar to LTL ; but semantically slightly weaker [20]. The te1ingo program encoding the problem
is shown in figure 5. The program details the sequences of observed alerts (lines 5-11), the LTL ; representations of
known attack patterns (lines 14-21), and the relationships between alerts and ATT&CK techniques (lines 25-28).
The attack patterns in the program are acquired by the elicitation step described above, and the sequences of
observed alerts are assumed to come from a SIEM system. That is, the alerts produced are in a structured form
amenable to be represented as Prolog/ASP terms. We assume that this conversion of alerts to symbolic form (use
case 5) exists (see e.g. [55]). Furthermore, they are temporally ordered, inducing a sequence of alerts (where a, is

an alert in symbolic form), as shown in figure 4.

{aaddGrpMem} {abenign} {aexeclam} oo {alatMva aml} {abenign} {aexecWinPsh}
[ ] [ ] [ ] e [ ] [ ] L]
n 12 I3 Iy—2 Iy—1 Iy

Fig. 4. Trace of alert observations

1 #program initial.

2 1 { plan(planl;plan2) } 1

3

4 Y%Trace of alerts

5 &tel{&true

6 ;> alert (addGrpMem)

7 ;> alert(benign)

8 ;> alert (execlam)

9 ;> alert (latMvmSaml)

10 ;> alert(benign)

11 ;> alert (execWinPsh)}.

12

13 YD%Adversary attack plans

14 :— plan(planl), not &tel{

15 >? techn (t1556)

16 & > (>? techn(t1059)

17 & > (>? techn(t1548)

18 & > (>? techn(t1059))))}.

19 :— plan(plan2), not &tel{

20 >? (techn(t1556)

21 & > (>? (techn(t1059) | techn(t1548))))}.
22

23 #program dynamic.

24 Yabduce technique based on alert

25 1 {techn(t1556); techn(tl1548)} 1 :— alert (addGrpMem)
26 1 {techn(t1059)} 1 :— alert(execlam)
27 1 {techn(t1548)} 1 :— alert(latMvmSaml)
28 1 {techn(t1059)} 1 :— alert(execWinPsh)

Fig. 5. Telingo program encoding the problem.

Finally, we assume that all the alerts produced can be associated with ATT&CK techniques, which is the case for
many signature-based alerts. Note, however, that it is a many-to-many relationship: an alert can be an indicator for
several techniques, and a technique can have several alert indicators. This knowledge!> can be represented in ASP

5Extracted from alert rules found at https://github.com/SigmaHQ/sigma.
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with choice rules, as illustrated below:

1 {r1556; 11548} 1 <= QuadGrpmem
1 {f1059} < Aexeclam

1 {1548} < arumtoms ami

1 {t1059} < QexecWinPsh

The outcome of the program’s execution is that there are two stable models. This is shown in figure 5, and tells
us that it is plausible that the input trace is an instance of the attack plan. Had there been no stable models, the
conclusion would have been that this could not have been the case.

The feasibility of using the outlined approach in practice on real data is a matter which requires further
study. However, we note that the LTL-satisfiability problem is PSPACE-COMPLETE and the TEL-satisfiability
is EXPSPACE-COMPLETE [19] and hence both are considered intractable. Furthermore, the alert traces used in
the experiment were much shorter than what can reasonably be expected, and the attack plan formulas are quite
basic with respect to length and operator usage. This naive approach is unlikely to scale to realistic alert traces
that can contain 100.000+ alerts. Thus, it would be worthwhile to look at: (1) less expressive approaches, such as
metric temporal logic, that have been shown to be efficient and scalable in practice for large scale temporal event
processing [130]; and (2) apply alert-reducing techniques such as filtering and alert grouping (i.e. merging similar
alerts to a single instance) to shrink the alert traces into a manageable size.

5.3. Experiment 3: Neurosymbolic alert contextualisation

Deciding which alerts are important and require attention, and understanding how they belong in the bigger pic-
ture, is essential in a SOC. However, this requires contextualising alerts with knowledge, such as about the systems
and networks in which the alerts were raised, cyber threat intelligence, and background knowledge accumulated by
analysts over time. This is illustrated in figure 6, where the context allows an analyst to follow a continuous path
through alerts and log events.

Time

~

Logs

Alerts

Context

Fig. 6. Illustration of how context contributes to creating a continuous path through logs and alerts.

In this experiment, we assume the existence of rule-based and anomaly-based alerts, which differ widely in
contextual richness, and we aim to classify these alerts by the cyber kill chain step to which they are likely to
belong. The experiment mainly addresses use case 4, but also includes aspects of use cases 5, 7 and 8.

Rule-based alerts are generally contextually richer than anomaly-based alerts; the former are mostly hand-crafted
and contextualised with descriptive knowledge as to what type of suspicious behaviour it detects (e.g. which MITRE
ATT&CK technique the alert indicates), while the latter are generally more primitive alerts that flag any abnormal
attribute values (that deviate from normally seen values during training). Thus, these are less descriptive about what
behaviour is detected. Hence, it is, for example, easier to associate cyber kill chain phases with rule-based alerts than
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with anomaly-based alerts.'® On the downside, contrary to anomaly-based alerting, rule-based alerting is unable to
detect novel and previously unseen suspicious behaviour. Both types of alerts are thus useful for detecting cyber
attacks.

Alerts

Embedding | | Classifier labels
function

Alert graph

Knowledge

New
logs

Alert graph
New

alerts

(ASP)

cluster labels

Fig. 7. Embed2Sym adapted to our experiment

For this experiment

we wish to classify alerts according to cyber kill chain steps, yet we have alerts with a highly varying degree of
contextual richness on which to do so.

The approach we explore in this experiment is that of using ASP and formalised domain knowledge to label clusters
of alert embeddings according to what cyber kill chain phase they are likely to represent. Here, the embeddings are
created using a neural component and then clustered into groups. The effect of this is that the clusters are likely
to contain both descriptive and non-descriptive alerts. The task we formalise in ASP is essentially an optimisation
problem, where we use weak constraints to promote cluster labelling. Specifically, we encode the following two
label assignment preferences:

a) The assigned cluster labels (i.e. the predicted cyber kill chain phase of the alerts in the cluster) should comply
with (any) domain knowledge about the detection rules that were the origin of the alerts in the respective
cluster.

Example: the cluster that contains an alert generated by a rule that detects MITRE ATT&CK technique T1548
should ideally be labelled Privilege Escalation.

b) When there are alerts in different clusters that share some context (e.g., same users, or overlapping source and
destination addresses), then the cluster labels should be assigned in such a way that the temporal order of the
alerts and the relative order of the cyber kill chain align.

Example: assume that alert; € cluster) and alerty € clusters, they both involve username user, and alert;
happens before alerts. Then cluster; should ideally be labelled with a cyber kill chain stage that occurs before
the label assigned to clusters, e.g. Lateral Movement before Privilege Escalation.

16We note, however, that a detection rule can be (and often is) an indicator of more than one TTP (tactic, technique or procedure) or cyber
kill chain phase. It is, therefore, non-trivial to uniquely identify it.
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Turning to the technical details, we follow the approach presented in [9], referred to as Embed2Sym, where a
neural perception and reasoning component is combined with a symbolic optimisation component to extract learnt
latent concepts. The neural component is decomposed into two functions: a perception and a reasoning function.
The latter function (reasoning) is designed to solve a downstream task, whereas the perception function creates
vector embeddings of the input data. By solving the downstream task, the reasoning stage discovers structure in the
data relevant to the domain. This is fed back to the perception function, influencing the vector embeddings. Finally,
the embeddings are clustered, and symbolic optimisation using ASP is used to label the clusters according to the
latent concepts.

This experiment is built upon logs and alerts from the data set described in [77] and [78]. We are mainly interested
in alerts, yet most of the contextual information remains in the log messages; hence we need the latter as well in
order to adequately contextualise alerts. The logs and alerts are collected from a testbed emulating a small enterprise
where a multi-step attack is being performed. The data also includes ground truth, making it possible to see exactly
where in the logs and alerts the attack is captured, and also what hostile activity gave rise to each of these log lines
and alerts.

We transform this data into graph form, projecting descriptive features that can be extracted from log messages
onto the alerts they are associated with. We end up with alert graphs, that includes nodes representing other objects
such as network resources, MITRE ATT&CK techniques, detection rules etc. These can be extracted from the log
or alert information and can be used to link alerts through paths in the graph. The latent concepts of interest are the
cyber kill chain stages. The cyber kill chain stages in the experiment are based upon the stages used in the attack
described in [77]:

Reconnaissance
Initial intrusion
Obtain credentials
Privilege escalation
Lateral movement

A

Our instantiation of Embed2Sym is shown in figure 7. The downstream task for the Embed2Sym reasoning function
is in this case to classify alerts according to hostile activity, utilising the ground truth labelling in the data. This
leads to a perception function whose output is an embedding function influenced by context learnt by the reasoning
function.

For the next step in the process, we consider the set of alerts that we wish to analyse. Using the embedding
function, these alerts are transferred into the embedding space, where they are clustered. The intuition behind this
step is that the downstream task of classifying the alerts according to the actual hostile activity should force the
embeddings of alerts from the same stages of the attack closer together in the vector space.

The final step is to apply symbolic reasoning, utilising the alert graph and formalised domain knowledge, to label
the clusters accordingly. The task is encoded as an ASP program, shown in figure 9, and the clustered alerts are
represented as ASP facts, as shown in figure 8.

alert_in_cluster (alertl, clusterl).
happensAt (alertl, 100000).
dst_host (alertl, )
detected(alertl, )
alertl, )
alertl, )
alertl, ).

src_user
dst_user
src_host

Fig. 8. ASP instance encoding

Starting with the encoding of the instance data, lines 1-3 of figure 8 encode that an alert belongs to a cluster,
that it happened at a certain unix epoch time, and the alerted event occurred on a specific host, respectively. Line 5
encodes that the alert was generated by a rule that detects instances of MITRE ATT&CK tactic T1000, while lines
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N R W —

. kill chain_phase (obtainCreds, 3).
kill_chain_phase (initialIntrusion,2). kill_chain_phase(recon,1).
kc_before (P, Ptac) :- kill_chain_phase(P,S), kill_chain_phase(Ptac,Stac), S < Stac.
phase_ttp_map (latMvmt, ("T] i "
phase_ttp_map (privEsc, ( !
phase_ttp_map (recon, ( ; . ") .
(
(

nyq . o

phase_ttp_map (obtainCreds, (" " 0. ")) .
phase_ttp_map (initialIntrusion, (" ";"T1 ")) .
happensBefore (Alert, AlertTac, before(T1l,T2)) :- happensAt (AlertTac, T2), happensAt (Alert, T1l), Tl < T2.

common_feature (Alertl, Alert2,same_source_dest (Dest, Source)) :- dst_host (Alertl, Dest), dst_host (Alert2, Dest)

src_host (Alertl, Source), src_host (Alert2, Source), Alertl != Alert2.
common_feature (Alertl, Alert2,same_source_user (Dest,User)) :- dst_host (Alertl, Dest), dst_host(Alert2, Dest),
dst_user (Alertl,User), dst_user (Alert2, User), Alertl != Alert2.
common_feature (Alertl, Alert2,same_source_user (Dest,User)) :- dst_host (Alertl, Dest), dst_host (Alert2, Dest),
dst_user (Alertl,User), src_user (Alert2, User), Alertl != Alert2.
5% 2. 1f on different hosts, must b rc->dst
common_feature (Alertl, Alert2,source_to_dest (Dest)) :- dst_host(Alertl, Dest), src_host (Alert2, Dest), Alertl != Alert2.
common_feature (Alertl, Alert2, Reason) :- common_feature(Alert2, Alertl, Reason). % symmet

cluster (X) : alert_in_cluster(_,X) .
label(X) :- kill_chain_phase(X,_).
label(X) :- benign_class (X).
benign_class (benign) .

{assigned_label (Cluster, Label) : label(Label)} = 1 :- cluster(Cluster).

:— assigned_label (Clusterl, Label), assigned_label (Cluster2, Label), Clusterl != Cluster2.
alert_label (Alert,Label) :- alert_in_cluster (Alert,ClusterID), assigned_label (ClusterID, Label).

label_ttp_mismatch (Alert, Label,T) :- detected(Alert,T), alert_label (Alert, Label), not phase_ttp_map (Label,T) .

:~ label_ttp_mismatch(Alert,Label,T). [1@2,Alert,Label,T]

%% Constraint b)

kill_chain_sequence_mismatch (S, Stac) :- common_feature (Alert, AlertTac, Just), kc_before(S,Stac), alert_label (Alert,S),
alert_label (AlertTac,Stac), S != Stac, not happensBefore (Alert,AlertTac,_).

:~ kill_chain_sequence_mismatch(S,Stac). [1@1l,S, Stac]

#show assigned_label/2.

Fig. 9. ASP program encoding the problem.

6-8 encode the IP-address that initiated the event that led to the alert, the username associated with the event, and the
username that originally initiated the event (e.g. a su operation), respectively. Lines 1-3 encode facts that all alerts
will contain, while lines 5-8 depend on the underlying alert event type (e.g., network traffic or process execution).

Proceeding to the encoding of the task itself (figure 9), the first part establishes some basic cyber kill chain and
TTP domain knowledge. That is, lines 2-4 define the cyber kill chain phases, and their relative ordering in the chain,
while lines 6-10 map MITRE ATT&CK techniques to the cyber kill chain phases used in our experiment.

The next part introduces rules pertaining to the order and shared features of alerted events. The rule in line 13
captures the temporal order of alerted events, while lines 13-28 capture shared features between alerts, such as
sharing users, source and destination addresses, etc.

The following part, shown in lines 31-34, deals with defining what constitutes labels and clusters, while lines
37-38 are responsible for allocating labels. That is, the choice rule in line 37 ensures that each cluster is assigned
a label, and line 38 ensures that each cluster is only assigned a single label. Line 39 is a convenience rule that in
practice classifies an alert based on the assigned label of the cluster it belongs to. Finally, lines 43-50 capture the
two weak constraints that encode the optimisation tasks described in the beginning of this section.

For the experimental run itself, we clustered 1900 alerts from the data set into six clusters (number of cyber
kill chain steps plus one *benign’). Of these 1900 alerts, 290 had information that associated them with MITRE
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[

Answer: 6

assigned_label ( ,recon) assigned_label ( ,benign) assigned_label ( ,privEsc)
assigned_label ( ,obtainCreds) assigned_label ( ,initialIntrusion) assigned_label ( , latMvmt)
Optimization: 0 1
OPTIMUM FOUND
Models 1 6
Opt imum : yes
Optimization : 0 1
Calls @1
Time : 96.698s (Solving: 0.0ls 1lst Model: 0.00s Unsat: 0.00s

CPU Time : 96.659s

Fig. 10. Clingo console output

ATT&CK tactics. For convenience, we identified the clusters with meaningful names in order to make validation
easier (e.g. cluster2 was named "webshell" ). We then ran the ASP encoding of the task and instance data through
the c1ingo ASP grounder and solver [45], which was able to correctly classify the labels, as shown in figure 10.

Although this experiment was limited to detecting one specific instantiation of a cyber kill chain within a gen-
erated but realistic data set, we believe that the results indicate that the approach is feasible for classifying alerts
according to cyber kill chain steps even when contextual information regarding the alerts varies widely. We note,
however, that deciding if a model is stable and optimal for a disjunctive ASP program with optimization statements
is CO-NPNP-COMPLETE in the grounded propositional case and thus well in the realm of infeasibility [44]. Simi-
larly to the telingo-based experiment 2, this approach is unlikely to scale to realistic alert traces that can contain
100.000+ alerts, hence it would be worthwhile to look at applying alert-reducing techniques such as filtering and
alert grouping.

5.4. Experiment 4: NeSy-driven threat hunting

The previous experiments have focused on intrusion detection and subsequent analysis of the raised alerts. This
experiment focuses on a different approach to discovering malicious behaviour called threat hunting (see challenge
4). The experiment addresses use case 3 and explores the efficacy of leveraging LLMs to develop a taxonomy of
behavioural indicators for the (symbolic) indicators of behavior (I0B) approach to threat hunting [23, 24]. This sym-
bolic threat hunting approach utilises an ontology and semantic reasoning to infer a set of contextualised adversarial
behaviors across a series of logged security event data. Whilst this IOB-concept has previously been demonstrated
[23, 24], it lacks a taxonomy of behaviours and reusable IOB identifiers. Since the IOB knowledge base is an emerg-
ing concept, it requires continuous additions to its knowledge base to increase maturity. We explore the efficacies of
LLMs to aid in the semi-automated development of the IOB taxonomy and knowledge base.

Natural language processing techniques have been utilised for extracting Indicators of Compromise (IOCs) from
CTI Reports [83] and, more recently, extended to the utilisation of LLMs for extracting IOCs from CTI reports
[129]. Here, we explore the implementation of LLMs for developing an IOB taxonomy. The utilisation of LLMs for
generating detection logic from a conceptualised task has been demonstrated in industry [120]. Motivated by this
work, we explore the automated development of semantic rule-based reasoning into our taxonomy in this experi-
ment.

Threat hunting involves the generation of suitable hypotheses, followed by applying and then validating the
hypotheses (see challenge 4). This experiment uses a scenario-driven approach to IOB development, where the
scenario is a hypothesis describing what an adversary, tool or general user is trying to achieve. For a given scenario,
the LLM is tasked with generating a set of low-level behavioural indicators that analyse syntax, commands and
other properties at a low-level of details and reason over these indicators to infer a higher level of abstraction.

A simple example of such a scenario is notepad. exe being launched by the Windows built in system user
and then establishing a network connection. This example is a set of low-level behaviours. By combining these low

17

7https://learn.microsoft.com/en-us/windows/security/identity- protection/access-control/local-accounts

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


https://learn.microsoft.com/en-us/windows/security/identity-protection/access-control/local-accounts

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

24 Eckhoff et al. / NeSy for defending against cyber attacks

level behaviours, a higher level of abstraction can be inferred as an interactive tool being launched by the system
user for the purpose of networking. We can chain this behaviour together with other inferred behaviours to get an
even higher level of abstraction.

To semi-automate this scenario-driven approach to developing an IOB taxonomy, we require an LLM that can:

Contextualise elements of the cyber security domain.

Contextualise how adversaries behave.

Generate behavioural scenarios and transform these scenarios into a chain of events.

Contextualise how tools, systems or programs operate in a given scenario.

Generate a set of reusable IOB identifiers.

Relate low-level security events together to form a higher level of abstraction and context.

Transform an IOB scenario into a symbolic representation.

Transform the detection logic for low-level events into semantic web rules (SWRL)'8.

Be both granular and descriptive to provide context commonly missing from MITRE ATT&CK technique
procedures [24].

These requirements are a mix of concepts and subject areas, where tailored LLMs may struggle to fulfill some
requirements and excel in others. As a results of this, we primarily focus on general-purpose LLMs rather than
purpose-built LLMs. We compare the following models for their ability to semi-automate the development of an
IOB taxonomy:

— GPT4-Omni
GPT3.5-Turbo
Llama 3.2-3b"
SecurityLLM?

The first three models are general purpose, while the last model is purpose-built for the cyber security domain.
Various GPT-models have been used in the cyber security domain for a variety of purposes[95], including payload
generation for offensive security tasks, leveraging knowledge from the MITRE ATT&CK framework and detection
engineering. Llama has been available for research [91], and SecurityLLM is based on Llama with the intent to
provide cyber security guidance [139], including threat hunting, cyber kill chains and MITRE ATT&CK. Both
Llama 3.2-3b and SecurityLLM were used offline for this experiment.

The scale of symbolic security event data makes it inefficient to process line-by-line via an LLM, due to context
size and memory limits. To illustrate, the symbolic event data file generated from a single node in an emulated attack
scenario used for our experiment contains 490, 248 lines, and 24, 161, 441 characters. Instead, we leverage the LLM
to generate IOB scenarios with relevant rule based detection logic, which utilise a reasoning engine for decision
making. We define a set of constraints through prompt instruction and by embedding tasks within the message to
the model to generate these scenarios.

LLMs perform more accurately when prompts utilise chain-of-thought prompting [131] and least-to-most prompt-
ing [138], which we combine in a hybrid approach. Chain-of-thought prompting is used to create a set of behaviors,
an abstract definition, a summary, detection logic and the semantics are different concepts. Least-to-most prompt-
ing is used to create sub-tasks for the model to maintain accuracy and reduce the risk of LLM hallucination. Each
sub-task has an updated prompt instruction set. Each model is tested without a system prompt. The GPT-models
are non-configurable, hosted by the OpenAl, and operated in the web browser. Therefore, no configurations are
available to share. Llama and SecurityLLLM are open and their configurations are included during assessment.

Each model has two tasks:

1. Create the IOB scenario.
2. Create the symbolic representation.

Bhttps://www.w3.org/submissions/SWRL/
https://huggingface.co/meta-llama/Llama-3.2-3B
20https://huggingface.co/ZySec- Al/Security LLM
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(A) Prompt instruction for creating an IOB scenario

I want you to use a scenario-based threat hunting method for high-level abstractions.

All scenarios are post-compromise scenarios. The threat actor has access to the network.
Atomic level / Low level behaviors require a detection analytic.

A detection analytic analyses the data logged by Sysmon in the Sysmon schema.

Focus on the context that commands, parameters and syntax are trying to achieve.

Focus on the context of these commands, parameters and syntax as a chain of events.
Focus on Windows enterprise environments.

Provide an extensive taxonomy rather than a few examples.

Behaviors should focus on common behaviors associated with adversaries.

Summarise with a table at the end.

25

(B) Task instruction for creating an IOB scenario

I want to create a taxonomy of adversarial behavioral indicators. Do not repeat the MITRE ATT&CK frame-
work, I want to compliment it with more detailed levels of abstraction. This is a more detailed level of ab-
straction of what an adversary is trying to achieve over a chain of events.

For this task focus on behaviours related to command prompt and how and adversary can leverage com-
mand prompt for its goals. Focus on the relation command prompt has with other aspects of adversarial
behaviours.

This taxonomy and the behaviors is a tiered approach where very low level atomic behaviors are sub behav-
iors of more abstract concepts. Several medium level behaviors may form a higher level abstraction which
is the adversaries main goal.

Be detailed with the high level abstraction, model it as a scenario and how an adversary may achieve it
through its sub behaviours. The high level abstraction should be a reasoned chain of sub behaviors.

Each behavior has a behavior ID value assigned to it. Prefix with a behavior category and suffix with a
number value. Provide detection analytics for the low level behaviors where possible.

Summarise at the end with a table with the following: Behavior ID, Description, Commands where relevant
and Detection Analytics

(C) Prompt instruction for transforming an IOB detection into SWRL syntax

Use the SWRL syntax for reasoning rules.

Command Line is a dataproperty named "commandLine" in the ontology.

A process is a member of the "Image" class.

A process individual will have the data property "commandLine" and contain some string to check.
The ontology prefix is "threat".

Each Behavior ID is a class.

(D) Task instruction for transforming an IOB detection into SWRL syntax

I will represent an example SWRL rule. Can you transform the example into an SWRL rule for each indi-
vidual command where relevant.
Image(?e) A commandLine(?e,?c) A swrlb : contains(?c,” nc — u/server/share”) — LB1001(?e)

Fig. 11. Prompts used for NeSy-driven threat hunting.
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Behavior ID | Description Commands

HBO001 Data Exfiltration via Command Prompt

MBO001 Collect Sensitive Data

LB001 Search for Files of Interest dir /s %,dir C:\Users\*\Documents\*.docx

LB002 Copy Files to Temporary Location xcopy C:\Users\x\Documents\«.docx
C:\Temp\

LB003 Compress Files for Exfiltration compress.exe /c /s C:\Temp\x.docx

MB002 Stage the Data for Exfiltration

LB004 Encrypt Data for Safe Transmission cipher.exe /e C:\Temp\compressed_data.zip

LB005 Rename Files to Avoid Detection rename C:\Temp\compressed_data.zip
C:\Temp\data.enc

LB006 Move Data to Staging Area move C:\Temp\data.enc
\\StagingServer\Share

MBO003 Exfiltrate the Data

LBO007 Exfiltrate via HTTP curl -X POST -d @C:\Temp\data.enc
http://example.com/upload

LB008 Exfiltrate via FTP ftp -n —-s:ftp_commands.txt

LB009 Use Email for Exfiltration powershell Send-MailMessage
—-From "attacker@domain.com" -To
"attacker@external.com" —-Subject "Data"
—-Attachments "C:\Temp\data.enc"

Fig. 12. An example scenario generated by GPT-4 Omni for generating an IOB taxonomy. This scenario is transformed into an OWL ontology
and processed by a reasoning engine. The behaviors IDs are a URI and identifying property used in the ontology. SWRL reasoning logic is
generated from the list of commands.

The prompt task specification, seen in figure 11, is developed based on the requirements for symbolic threat hunt-
ing, as elucidated in the requirements of an LLM for symbolic threat hunting. Each task specification defines the
constraints and explicit requirements when processing the prompt. Prompts (A) and (B) are examples of how the
scope of the task is defined for creating an IOB scenario and a generalised taxonomy of IOBs. Prompts (A) and (B)
develop a holistic set of interconnected threat actor behaviours forming a scenario. An output of the prompt can be
seen in figure 12.

Prompts (C) and (D) demonstrate the task specification for transforming IOBs into a set of user defined reason-
ing rules. These user-defined reasoning rules utilise the Semantic Web Rule Language (SWRL) for more nuanced
symbolic reasoning. Overall, prompts (A)-(D) demonstrate the generation of symbolic representation aspects of this
experiment.

An output of prompt task specifications (A) and (B) is found in figure 12. Note that each IOB has a Behavior ID.
This Behavior ID is a uniform resource identifier, used to uniquely identify each IOB in the ontology. The prefix is
a naming convention to ascertain which level an IOB is. L is for Low. M is for Medium and H is for High. More
information on these levels can be found in [24] and [23].

5.4.1. Results and observations from NeSy-driven threat hunting

GPT4-Omni was the best-performing model. Without a system prompt, it produced various IOB scenarios and
transformed these into a taxonomy. Like most of the models, it arbitrarily chose an IOB ID rather than generating the
same each time when a system prompt was not provided. The model worked best with a system prompt, producing
consistent IOB scenarios that can be concatenated into a behavioural taxonomy. An example scenario output by
GPT4-Omni can be seen in figure 12.

The scenario in figure 12 creates the top-level behaviour HO!I (“Data Exfiltration via Command Prompt”) and
generates a set of associated behaviours for this scenario. This is the optimal output expected from the LLM. Unlike
Llama, this model was capable of producing an SWRL rule-set based on the possible command examples present
in the IOB scenario. However, without the contextualised prompt instructions, it would create its own taxonomy.
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CommandPromptBehavior — Diagnostics —— SystemHealth—— CMD-SAD-SH-001
—[ CMD-SAD-SH-002
SystemInformation — CMD-SAD-SI-001
—[CMD—SAD—SI—OOZ
FileSystemManipulation — DeletingFiles CMD-FS-OP-DL-001
—[ CMD-FS-OP-DL-002
DiskOperations CMD-FS-DK-001
—[ CMD-FS-DK-002
FileNavigation — CMD-FS-OP-NAV-001
—[ CMD-FS-OP-NAV-002

Fig. 13. Example class hierarchy of IOB Behaviors for the CommandPromptBehavior class. Each indent is a subclass. This class hierarchy was
generated by GPT-4 Omni.

Instead of using SWRLs built-in regular expressions?! to trigger within the "commandLine" data property, it
preferred to create a "commandLine" class and reason over a "hasCommand" relationship. After defining the
scope in the prompt instruction and stating the task, it was capable of correctly generating the SWRL relationships.
An example class hierarchy of IOBs can be seen in Figure 13. These behaviours and sub-behaviors were generated
by the LLM, merged and output as an OWL2 schema??.

The same limitations found in GPT4-Omni were also present in GPT3.5, and there was little variance between
the findings for these two models. Llama 3.2-3b primarily used its default configuration.”> When including a system
prompt, Llama was able to perform the IOB scenario generation task and develop a general taxonomy of behaviours.
However, the model is prone to inconsistencies with its output. Without a system prompt, the model arbitrarily
chooses its IOB identifier, making repeatable scenarios challenging without human input. The model had challenges
when generating SWRL, generating nonsensical URIs to domain concepts that didn’t exist. Similarly, inventing its
own schema and annotation property. An example SWRL rule had to be provided in its task description to ensure
the model consistently produced SWRL rules in the correct syntax. Without this in-context learning the model was
prone to hallucinations. Once this context was provided the model consistently output SWRL rules for any detection
logic generated in the taxonomy task. An example output can be found in figure 14, where events that match the
conditions are classified as the relevant IOB class.

LB1001 SWRL Behavior Classification Rule:

Image(?i) A commandLine(?i, 7c) A swrlb:contains(?c, "nc -u //server/share") — LB1001(?i)

LB1002 Behavior SWRL Classification Rule:
Image(?i) A commandLine(?i, ?c) A swrlb:contains(?c, "ms14-064") — LB1002(?i)

LB1003 Behavior SWRL Classification Rule:
Image(?i) A commandLine(?i, 7¢)A

swrlb:contains(?c, "Invoke-WebRequest -Uri https://...") — LB1003(?i)

Fig. 14. Example output of SWRL rule generation based on IOB scenario - Generated by Llama 3.2

21 https://www.w3.org/submissions/SWRL/#8

22https://www.w3.org/TR/owl2-primer/

23The following notable settings were used: 28 discrete model layers, three CPU threads, the temperature was 0.5 and the context length was
8,192.
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SecurityLLM primarily used its default configuration®®, and performed the worst in this experiment. System
prompts were not possible, which limited the ability to narrow the scope for the experiment. The model is capable
of providing abstract definitions for IOB concepts and the process of developing a taxonomy of behaviours, but not
any of the other tasks, regardless of how prompts and tasks were tweaked.

To summarize, except SecurityLL.M, all models fulfilled all the requirements for developing an IOB taxonomy,
but there were difficulties in handling symbolic aspects for all cases. Without prompt instructions defining the
context and the ontology schema, each model would create its own taxonomy with variance between each of them.
This variance makes it difficult to integrate when the concepts, rules and relationships vary each time. Once this
context, constraints and rules were established, each model (except SecurityLLM) were capable of transforming the
taxonomy into an OWL2 schema. The GPT-models were capable of creating SWRL rules without an example rule
provided, wheras Llama had difficulties in understanding this context and tried to form its own ontology for rules.

This experiment bridges the gap between the lack of an IOB taxonomy [23, 24] and the symbolic approach
to threat hunting, thus demonstrating the value of NeSy. The symbolic approach to threat hunting has previously
shown that reasoning engines can infer complex adversarial behaviours [23, 24], but rely on user-defined rule-based
reasoning. We have shown that LLM-models can aid in the semi-automation of IOB development and automating
the transformation of IOB scenarios into symbolic representations amendable for such reasoning.

5.5. Experiment 5: Data-driven enrichment of semantic kill-chain models

We have previously [123] applied data-driven enrichment of symbolic knowledge to help incident responders
answer the questions:

— “What did most likely happen prior to this observation?”
— “What are the adversary’s most likely next steps given this observation?”

One of the major issues we faced in this research was the lack of sufficient data on computer security incidents.
MITRE Engenuity recently published the tool Technique Inference Engine (TIE)*, which uses a recommender
model to infer a list of related techniques given a list of observed techniques. The data set used to train the TIE model
is available on Github?%, and covers more than 6, 000 computer security incidents. This data set is significantly larger
than the data set used in [123]. In the following, we give a short description of the methodology and tools described
in [123], as well as the following new contributions:

— A comparison of TIE and the tools presented in [123]
— New experiments using the TIE data set, including a discussion of the new results and conclusions
— A new analysis of the TIE data set and the the data set used in [123]

The available data for our method and TIE is a set of known incidents. Each incident contains an unordered set of
MITRE ATT&CK techniques and sub-techniques. TIE uses this data to train a recommender model, which, when
given a set of observed techniques as input, will output a set of techniques that most likely were used in the same
incident. This gives incident responders guidance on what they should investigate, i.e., which techniques to look for.
It does not cover the temporal aspect, i.e. what happened just before and after a specific observation of a technique.
TIE’s approach does not include symbolic knowledge — it is purely data-driven. To answer our two questions above,
i.e. the most likely prior and next steps with the available data sets, a NeSy approach is needed.

Our first step is the symbolic part, i.e., to formally model our knowledge of techniques. Every technique requires a
set of abilities to be executed. Furthermore, every technique provides a set of abilities when executed. We developed
a vocabulary of these abilities and mapped them to all the techniques and sub-techniques in ATT&CK. We then
developed a tool?’, which when given a set of techniques and the mapped abilities as input, would output a set of

24The following notable settings were used: 32 discrete model layers, three CPU threads, the temperature was 0.5 and the context length was
8,192.

ZShttps://mitre-engenuity.org/cybersecurity/center-for- threat- informed- defense/our- work/technique- inference-engine/

26https://github.com/center-for-threat-informed- defense/technique-inference-engine/blob/main/data/combined_dataset_full_frequency.json

2Thttps://github.com/mnemonic-no/provreq
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stages with the techniques that are possible to execute at each stage. The stages represent a temporal ordering of the
technique: A technique in stage n + 1 depends on one or more techniques in stage 7.

"tool_available": {
"T1587.001": 83,
"T1588.002": 181,
"T1588.004": 16,
"T1588.003": 27,
"T1587.002": 9,
"T1588.001": 37,
"T1587.003": 18,
"T1588": 45,
"T1587": 48,
"T1587.004": 7,
"T1588.006": 7,
"T1588.005": 8

Fig. 15. The number of times that techniques have provided the ability tool_available. In total (including the TIE data set), we observed
486 instances of a technique providing the ability tool_available to another technique observed in the same incident. In our original
data set, this ability had 100 observed instances. The most frequently observed technique is Obtain Capabilities: Tool (T1588.002) with 181
occurrences, which corresponds to a Markov chain transition probability of p = 181/486 ~ 0.3724.

Our second step was to apply the symbolic model to add temporal information to the data set. For each incident
in the data set, we record each instance of an ability being provided by one technique in that incident to another
technique that requires that ability in the same incident. We transform the data set to a set of abilities, where each
ability contains a set of techniques and a count of how many times we have observed each technique provide that
ability to another technique in the same incident. Figure 15 shows an example of the technique counts for the ability
“tool_available”.

Finally, we implemented a tool?® that uses the technique counts from the previous step to determine the transition
probabilities of a Markov chain, as explained in [123]. We then used Markov chain Monte Carlo simulations to
determine the most likely technique prior to the observed technique. Our conclusions in [123] were that this ap-
proach is able to determine the prior technique with high probability, but if we try to determine a long attack chain,
e.g. from observed exfiltration all the way back to initial access, then the most likely attack chain still has a very
low probability. The example given for Exfiltration over C2 Channel (T1041) had a probability p = 0.0202, which
is too low to be useful to an incident responder. In [123], we speculated that a larger data set might improve the
performance for long attack chains.

After running the same experiments on the TIE data set, our results are similar. In one of the examples from [123],
we see a clear improvement in the probability when we try to predict the prior technique: the most probable attack
chain for the technique User Execution (T1204) had the probability p = 0.6977 in [123], while with the TIE data
set this increased to p = 0.8086. In general, however, we see lower probabilities with the TIE data set compared
to the data set in [123], e.g. with the Exfiltration over C2 Channel (T1041) example above. On closer examination,
the reason for this result is that the TIE data set is more varied than our original data set as it covers a much larger
number of techniques, and the technique observations are more evenly distributed.

To illustrate the difference between the data sets, we extracted the maximum Markov chain transition probability
for each of the abilities in the transformed data set and created a box plot, shown in figure 16. The plot shows that the
TIE data set has a lower median than the original data set, which means that in general a long attack chain generated
from the TIE data set will have a lower probability than one created from the original data set (used in [123]).

28 https://github.com/mnemonic-no/provreq-meme
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Fig. 16. Box plot with whisker boundary 1.5 interquartile range, showing the original data set to the left and the TIE data set to the right. The data
used to create the box plot is the highest Markov chain transition probability for each ability. The outliers close to 1.00 are abilities where either
a single technique was observed or where a single technique had an overwhelming number of observation compared to the other techniques. The
outlier techniques for the original data set were Process Discovery (T1057), Container and Resource Discovery (T1613), and Gather Victim Org
Information: Business Relationships (T1591.002), while the outlier techniques for the TIE data set were Process Discovery (T1057), Network
Share Discovery (T1135), Modify Authentication Process: Network Device Authentication (T1556.004), and Gather Victim Org Information:
Business Relationships (T1591.002).

Our conclusions from [123] are unchanged after testing our tools on the TIE data set: we are able to answer the
questions in the introduction. However, our remarks that the low probability of long attack chains due to a lack
of training data are not valid. Attackers are different and they use a varied set of techniques. Furthermore, new
techniques are added to ATT&CK with each new revision. Based on the new experiments with the large TIE data
set, we conclude that our approach is unlikely to give useful results for very long attack chains, and that our tools
should rather be used iteratively during incident response: predict the most likely prior step, investigate, and then
repeat the process once the prior attack step is confirmed.

6. Conclusion

Our main goal with this paper has been to showcase and demonstrate through experiments the possibilities for
NeSy in cyber security, focussing on problems within SOCs. We hope this will help stimulate a concerted effort in
studying NeSy in this domain. The use of NeSy for defending against cyber attacks is in its infancy, with some work
having appeared over the last few years, including using NeSy for detection [14, 102], generating symbolic alerts
[55] and extracting semantic knowledge from reports [87]. In addition, there exists work using NeSy in the cyber
security domain that falls out of the scope of our paper, such as [90], where the focus is on adversarial attacks.

We have demonstrated that a considerable amount of symbolic and statistics-based Al is studied in SOC set-
tings, and using it in real-world settings presents several challenges. We believe NeSy can address many of these
challenges. Others have made some of the same points [59, 108], but not to the extent as we do here.

We have contributed by defining a set of NeSy use cases to address identified challenges, and mapping promising
NeSy approaches to the use cases that serve as a starting point for further research. Several of the approaches have
been demonstrated in our experiments, which are the main new contributions of this paper compared with [49]. An
overview of the challenges, use cases, and experiments in this paper is presented in table 3. This work is just a start,
and we both hope and expect that many new use cases and promising NeSy approaches that we have not covered
here will appear in the not-too-distant future.

A challenge with Al in the cyber security domain is available data sets. Due to issues such as privacy, confi-
dentiality, and lack of ground truth, researchers tend to use synthetic data, which have their limitations [8, 67].
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MAPE- K . Challenges .
Use case Description Experiments
Parts addressed
Use case 1 Use (symbolic) knowledge of threats and assets to guide or constrain | Challenge 1,3 | Experiment 1
Monitor ML-based detection engines.
Use case 2 Learn detection models from a limited number of (labelled) inci- | Challenge 2
dents.
Use case 3 LLM-driven threat hunting using symbolic knowledge and reason- | Challenge 4 Experiment 4
ing capabilities.
Use case 4 Incorporate learning of detection models with the ability to reason | Challenge 5,6 | Experiment 3
about their outcomes to understand and explain their nature and im-
Analyze pact.
Use case 5 Extracting alerts in a symbolic form. Challenge 5,6 | Experiment 3
Use case 6 Use statistical Al to enrich or extract symbolic knowledge. Challenge 6 Experiment 5
Use case 7 Reason about and quantify knowledge. Challenge 7 Experiment 3
Use case 8 Relate the different phases of cyber incidents. Challenge 6 Experiment 2, 3, 5
Plan & . . . " ]
Use case 9 Generating impact and risk aware explainable response actions ina | Challenge 8
e timely fashion using neurosymbolic reinforcement learning.
Shared . . ; .
Use case 10 | Generation of incident reports and CTI reports tailored for a given | Challenge 9
Knowledge

audience and/or formal requirements, using (symbolic) knowledge
and LLMs.

Table 3
Overview of use cases with related challenges and experiments

Furthermore, such data sets tend to focus only on detection (monitor phase), containing only events, and lack the
additional (symbolic) knowledge, which is important in SOCs and for our use cases. An important first step will be
to develop synthetic data sets that contain both events for detection and necessary knowledge in order to address the
use cases. This can either be achieved by extending existing “detection data sets" [72] with the necessary knowledge
or by developing new “NeSy data sets" from scratch.
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