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Abstract. Knowledge Graph Embedding Models (KGEMs) project entities and relations from Knowledge Graphs (KGs) into
dense vector spaces, enabling tasks such as link prediction and recommendation systems. However, these embeddings typically
suffer from a lack of interpretability and struggle to represent entity similarities in a way that is meaningful to humans. To address
these challenges, we introduce InterpretE, a neuro-symbolic approach that generates interpretable vector spaces aligned with
human-understandable entity aspects. By explicitly linking entity representations to their desired semantic aspects, InterpretE
not only improves interpretability but also enhances the clustering of similar entities based on these aspects. Our experiments
demonstrate that InterpretE effectively produces embeddings that are interpretable and improve the evaluation of semantic simi-
larities, making it a valuable tool in explainable AI research by supporting transparent decision-making. By offering insights into
how embeddings represent entities, InterpretE enables KGEMs to be used for semantic tasks in a more trustworthy and reliable
manner.

Keywords: knowledge graph embeddings, semantic similarity, interpretable vectors, explainable AI.

1. Introduction

Knowledge Graphs (KGs) are structured representations of real-world entities and their relationships, organized
in the form of nodes and edges, where nodes represent entities while edges illustrate the relationships between
them. KGs have gained significant attention for their applications in tasks like question-answering, information
retrieval, and recommender systems [3, 17, 27, 70]. Despite the availability of large amounts of source data and
the inclusion of millions of facts, knowledge graphs (KGs) remain incomplete, with missing entities or facts about
entities. Knowledge Graph Embedding Models (KGEMs) have been proposed to address this limitation. Since the
early 2010s, significant advancements have been made in developing KGEMs, which aim to project entities and
relations in KGs into a low-dimensional latent vector space. This representation enables machine readability and
manipulation of KG data while preserving the relationships between entities. In doing so, KGEMs offer a sub-
symbolic way of representing both entities and their connections within the original graph [5]. Several types of
KGEMs exist, such as translation-based models (e.g., TransE [4], TransH [65]) and semantic matching models (e.g.,
RESCAL [45], ComplEx [63]). These models have proven useful in various tasks, including link prediction [50],
entity alignment [59], recommendation systems [49] and so on (see [20, 64] for an overview).

Although KGEMs were primarily designed and trained for the task of link prediction or triple completion in
knowledge graphs, there is a widespread belief that these models can also effectively capture similarities between
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Fig. 1. Overview of the proposed InterpretE method

entities, suggesting that similar entities will naturally cluster together in the vector space. As a result, KGEMs have
been widely adopted for semantic tasks, including entity or relation similarity and conceptual clustering [18, 38, 60].
The assumption that KGEMs possess strong semantic capabilities was first called into question by Jain et al. [32]. In
their study, the authors conducted simple yet systematic experiments, revealing that entities belonging to the same
type or ontological class do not consistently cluster together in the vector space, except for the most basic entity
types such as person and organization. Subsequently, other recent studies have delved into this further, arriving at
similar conclusions [1, 29]. These findings cast doubt on the generalizability and utility of KGEMs for tasks that
rely on capturing semantic relationships effectively.

A fundamental challenge for KGEMs in capturing semantic properties arises from the complexity of the underly-
ing data. Entities in a knowledge graph possess diverse ‘aspects’ in terms of their attributes as well their relationships
with other entities, all of which significantly impact their vector representations. This complexity makes it exceed-
ingly difficult to identify the specific factors that shape the distribution of vectors within the embedding space. Given
that entities have different types and numbers of connections in the KG, and the learned vectors span hundreds of di-
mensions, there is no clear correspondence between entity aspects and the dimensions of the resulting vectors. This
absence of a direct mapping leads to a lack of semantic interpretability, making it difficult to understand why certain
vectors in the embedding space are similar or to determine which entity aspects influence their representations.

Although a formal definition of interpretability has been elusive in machine learning [44], in this work, we
align with a model-based interpretability presented by Murdoch et al. [44] as ‘models that readily provide insight
into the relationships they have learned’ drawing on a more traditional definition that puts emphasis on human-
understandability of the functionality of a model [48].

While the ability to represent complex data in low-dimensional spaces allows for large-scale vector manipulations,
and is certainly a desirable trait in KGEMs for enabling generalization and their effective application in tasks such
as link prediction, this same factor contributes to the poor semantic interpretability of these models. Nevertheless,
KGEMs are still widely used in different semantic tasks, making the ability to capture and interpret the semantic
features of underlying entities highly desirable. This work aims to bridge this gap by mapping the semantics of the
entities with the dimensions in the vector representations of these entities, enhancing the interpretability of these
embeddings and improving their utility for semantic tasks.

In this paper, we propose a novel neuro-symbolic approach InterpretE that explicitly connects the embedding
vectors to the desired task-driven or user selected aspects of the KG entities. Taking inspiration from previous works
on conceptual spaces [22], we accomplish this by deriving new vector spaces (from the vector of a given KGEM)
having interpretable dimensions that can be understood in terms of the human-understandable aspects of the entities.
This understandability can help in enabling informed decisions in downstream semantic tasks (e.g. recommendation
systems and entity clustering), debugging and comparing the models as well as understanding hidden biases [56].
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An overview of the proposed approach is shown in Figure 1. While several previous works have proposed KG
embedding models that attempt to capture the semantics of entities in terms of ontological information [25, 57],
these approaches are limited to encapsulating only the ontological classes or types of entities (e.g., whether an entity
is a person or an organization). They are not designed to account for other relevant or application-specific aspects
of the entities, for instance, the location where a person was born or the awards received by a scientist. In contrast,
our approach allows for the incorporation of a broader range of existing and interesting aspects from KG data,
especially for entities. Through various experiments, we demonstrate that the vector spaces generated by InterpretE
can effectively encapsulate any desired semantic aspects from the KG. Moreover, our method is highly flexible,
accommodating a diverse array of entity aspects in terms of both quantity and type.

It is to be noted here that InterpretE serves as a way to derive alternative embeddings from existing methods, to
specifically improve their interpretability for the applications where such a feature is a desirable and necessary. As
such, InterpretE embeddings do not intend to compete with or outperform existing KGEMs on tasks such as link
prediction, rather they serve as complementary embeddings for semantic tasks. The proposed InterpretE method
serves as an effective and highly customizable way to obtain these alternative embeddings that can be tailored to fit
any downstream semantic tasks. In view of this, the evaluation of the approach is presented in terms of the quality
of the resulting clusters in the derived vector space, as well in terms of the semantic similarity of the corresponding
entities. We also make the code publicly available1 to promote further research in this important direction.

Our work is situated within the broader context of explainable AI (XAI) research, where, with the popularity
of large language models (LLMs) and their increasing integration across various applications, the importance of
transparency and interpretability in these models has garnered significant attention. As large models become more
widespread in fields such as healthcare, finance, and autonomous systems, understanding how these models make
decisions has become crucial. The importance of XAI stems from concerns related to trust, fairness, and account-
ability, especially given that deep learning models and KGEMs are often regarded as ‘black boxes’. To the best of
our knowledge, the InterpretE framework introduced in this work represents the first effort to address this issue
for KGEMs in terms of restoring semantic interpretability to entity vectors by explicitly mapping these vectors to
underlying, human-understandable aspects of the entities.

The salient contributions of our work can be summarized as follows.

– Presentation of a novel neuro-symbolic approach called InterpretE that can derive interpretable embeddings
(from any KG embedding model) for the KG entities.

– Description of the data-driven process of identifying and selecting desired user-selected or task-oriented entity
aspects from KG datasets.

– Demonstration of the proposed method in that the embeddings generated by InterpretE encapsulate the desired
semantic aspects of the underlying entities and that InterpretE is highly flexible in terms of the number and
types of aspects that it can work with, making it scalable for different datasets and requirements of downstream
applications.

– The evaluation of the approach and the resulting embeddings in terms of the properties in the vector space as
well as with the measurement of semantic similarity of the entities illustrates that InterpretE indeed leads to
improved interpretability for KG embeddings.

The rest of the paper is organized as follows: Section 2 introduces key concepts and background that is essential
for understanding the proposed method in detail. Section 3 provides a comprehensive review and comparison with
related work, highlighting the ongoing challenges addressed by our approach. In Section 4, we describe the selection
process for entity aspects or features from the KG datasets, followed by a formal description of the InterpretE
method in Section 5. Section 6 presents the method’s evaluation through various experiments, demonstrating its
effectiveness and assessing the interpretability of the derived vectors, supported by illustrative plots and a discussion
of results. Finally, Section 7 concludes the paper and suggests directions for future work.

1https://github.com/toniodo/InterpretE

https://github.com/toniodo/InterpretE
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2. Preliminaries

2.1. Knowledge Graphs

A knowledge graph (KG) is a directed graph that represents knowledge in a structured format. It consists of nodes
that correspond to real-world entities, such as people or cities, and edges that represent the relationships between
these entities. The edges are labeled to indicate the nature of these relationships. More formally, a knowledge graph
can be represented as G = (E,R,T ), where E is the set of all entities, R is the set of relations and T is the set of
triples (h, r, t) such that h ∈ E, t ∈ E, and r ∈ R. Each triplet (h, r, t) indicates a relationship r between the head
h and the tail t. KGs play a crucial role in modeling networks of interconnected objects, such as citations, rela-
tionships among individuals, and more. Their structured representation facilitates semantic understanding, enabling
both machines and humans to interpret complex relationships and contexts within the data. This capability has led
to their increasing adoption in diverse fields, such as Computer Vision, where they have been shown to enhance
performance through techniques like Graph Convolutional Networks [39]. KGs are particularly useful in various
applications in Natural Language Processing. They significantly enhance question-answering systems by allowing
the pruning of irrelevant information, which reduces the search space and accelerates the retrieval of accurate an-
swers. For example, the QA-GNN framework [70] showcases how KGs can improve the efficiency and effectiveness
of question-answering tasks.

2.2. Knowledge Graph Embeddings

Knowledge graph embedding models aim to represent entities and relations from knowledge graphs as contin-
uous vectors or matrices, known as embeddings (see [64] for an overview). The main purpose of learning these
embeddings is to simplify downstream tasks, while preserving the underlying structure of the knowledge graph. A
scoring function is used to evaluate how likely a predicted entity is to accurately complete a triple, ensuring that the
embeddings maintain the integrity of the original graph’s relationships.

Notable types of KGE models are as follows:

Translation Distance Models. These models operate under the assumption that adding the vectors of the head
and relation will result in a vector close to that of the tail. One of the earliest examples of this type of KGEMs is
TransE [4]. Formally, if h, r and t denote the vectors of the head, relation, and tail respectively, then it holds that:
h + r ≈ t. To ensure the accuracy of the triple, the following scoring function must be minimized:

f (h, r, t) = ||X⃗h + X⃗r − X⃗t||L1,2
(1)

where X⃗h, X⃗r and X⃗t are the vectors of the head, relation, and tail, respectively, all residing in the same shared
embedding space.

However, TransE struggles to capture complex relationships such as one-to-many, many-to-one, and many-to-
many. TransH [65] addresses this limitation by introducing a relation-specific hyperplane for each relationship,
allowing entities connected through that relationship to be distinguished based on their unique semantics within that
context. TransR [42] builds on a similar concept but defines relation-specific spaces instead of hyperplanes. TransR
is further refined by TransD [36], which uses two embedding vectors for each entity and relation and introduces a
mapping matrix that generates two distinct mapping matrices for the head and tail entities.

Semantic Matching Models. These models employ a scoring mechanism based on vector similarity, where en-
tities are represented as vectors and relations as matrices. The core assumption is that the transformation of the
head embedding will closely approximate the tail embedding, which is formalized as: X⃗hY⃗r ≈ X⃗t, where X⃗h and X⃗t

are the vectors of the head and tail, respectively, and Y⃗r is the matrix representing the relation used for mapping.
RESCAL [45] utilizes a bilinear scoring function, where each relation is represented as a matrix, and the mapping
between the head and tail vectors is computed using this matrix. DistMult [68] simplifies RESCAL by constrain-
ing the relation matrix to be diagonal, which reduces the number of trainable parameters. ComplEx [63] extends
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this approach by introducing complex-valued embeddings, enabling the model to capture asymmetrical relations
effectively.

Among other types of models, ConvE [16] was the first to predict missing links in knowledge graphs using Con-
volutional Neural Networks (CNNs). Unlike fully connected dense layers, CNNs can train with fewer parameters,
allowing them to capture complex non-linear relationships. ConvE establishes local interactions across multiple
dimensions between different entities, enabling it to model intricate patterns more effectively.

2.3. Conceptual Spaces and Interpretable Dimensions

According to Gärdenfors [22], a conceptual space is a multidimensional framework where each dimension repre-
sents a different quality or property of a concept. These dimensions serve to describe various aspects of a concept in
a structured and meaningful way. For example, when considering animals, dimensions such as height, weight, and
color could represent specific quality dimensions that collectively define the concept of ‘animal’. These dimensions
are fundamental in understanding how concepts are represented and compared within the space. Each dimension
in a conceptual space is assumed to have its own inherent structure. For instance, some dimensions, like time or
weight, are one-dimensional, represented by real, non-negative values. For more complex attributes, such as color,
Gärdenfors explains that the mental model can be represented by three dimensions: hue (circular), saturation, and
brightness (linear), creating a cognitive conceptual space where different points correspond to specific colors.

In this context, interpretable dimensions [15] refer to the axes or directions in the conceptual space that corre-
spond to human-understandable properties of entities. For example, in a conceptual space representing animals, the
interpretable dimensions could be height, weight, and speed. Each of these dimensions has a clear and intuitive
meaning, making it easier to relate the points in the space to real-world attributes. Interpretable dimensions are
critical because they allow us to map abstract vectors or mathematical representations back to meaningful, seman-
tic concepts. To understand the semantics of conceptual spaces, consider that a language L can be interpreted as a
projection onto a conceptual space. In this projection, distinct elements of the language are represented as vectors,
and predicates within the language correspond to regions or areas in the conceptual space. These regions can be
primary, representing fundamental concepts, or secondary, derived from other regions. In a conceptual space, every
point represents a possible individual, with each point consistently displaying well-defined properties based on its
position along the interpretable dimensions. This structure allows for clear comparisons and distinctions between
concepts, helping to identify similarities and differences based on their positions within the space (see [15] for
further details).

3. Related work

3.1. Explainability in Large Models

Recently, the majority of embedding spaces have emerged from the training of large language models (LLMs).
However, Simhi et al. [56] highlight a significant limitation of such representations: they often exceed human com-
prehension. To address this issue, they propose a new method for generating a conceptual space with dynamic
granularity based on demand. Their work also introduces a novel assessment technique that demonstrates that the
conceptualized vectors indeed reflect the semantics of the original latent representations, validated through either
human raters or LLM-based raters. In relation with large models, Cunningham et al. [28] discuss the concept of
polysemanticity, which poses a challenge to the interpretation of neural networks. They attempt to reconstruct the
internal activations of the language model to tackle this issue arising from neural networks having fewer neurons
compared to the features they represent. This line of research is important within the framework of explainable
AI [2], our work focuses on Knowledge Graph Embedding Models (KGEMs). While [28] essentially proposes a
way to reverse-engineer the monosemantic features from a given network, our intention with InterpretE is instead
to derive new embedding vectors for the KG entities while aligning them to a set of customizable, pre-defined and
desirable aspects of these entities that may be user-defined or task-driven. By striving to make representations
more understandable and interpretable, we aim to address the challenges faced in downstream applications where
semantics are critical, such as entity similarity and recommendation systems.
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3.2. Semantics in KG Embeddings

KG embedding models provide sub-symbolic representations of entities and relations in a KG, and enable the
vector manipulations of the data for tasks such as KG completion and triple classification. In recent literature,
several critical works have questioned the widely-held assumption that KGEMs produce semantically meaningful
representations of underlying entities [29, 32]. In a popular previous work, Jain et al. [32] investigated the degree
to which similar entities correspond to similar vectors and concluded that this does not hold true universally. They
demonstrated that entity embeddings derived from KGEMs often struggle to effectively discern entity types within
a Knowledge Graph (KG), with simpler statistical methods offering comparable performance. Additionally, Ilievski
et al. [30] observed consistent under-performance of KGEMs compared to simpler heuristics in tasks reliant on
similarity, particularly within word embeddings. The authors argue that many properties that heavily relied upon
by KGEMs are not conducive to determining similarity, thereby introducing noise that ultimately undermines per-
formance. In [29], Hubert et al. challenge the widely held belief that entity similarity within a graph is adequately
represented in the embedding space. Their comprehensive tests assess the capacity of KGEMs to effectively group
related entities and investigate the underlying characteristics of this phenomenon. However, these previous studies
primarily focus on questioning the validity of the aforementioned assumption without offering concrete solutions to
address the identified shortcomings, which is the focus of our work.

3.3. KG Embeddings and Ontologies

There has been considerable work on embedding ontologies in the literature [11, 21, 23, 25, 57, 58]. Recent
techniques have aimed to develop robust and efficient methods for embedding OWL (Web Ontology Language)
and OWL2 ontologies that effectively express their semantics. Holter et al. [25] computed embeddings for OWL2
ontologies by projecting ontology axioms into a graph and creating a corpus of phrases through random walks
over this graph. A neural language model generates concept embeddings from this corpus. This work addresses
limitations in earlier approaches [57, 58] that treated each axiom as a sentence, leading to issues such as insufficient
corpus size for small to medium ontologies, noise introduced by OWL constructs, and Word2Vec’s inability to
differentiate between logically similar sentences. To overcome these challenges, the authors developed a system that
(i) creates a graph from the ontology, (ii) navigates the ontology graph using various techniques, (iii) constructs a
corpus of phrases based on these walks, and (iv) derives concept embeddings from this corpus.

Following this, Chen et al. [11] introduced OWL2Vec∗, an ontology embedding technique based on random walks
and word embedding that captures the semantics of an OWL ontology by considering its semantic information,
logical constructors, and graph structure. They expanded OWL2Vec to create OWL2Vec∗, a more robust embedding
system. OWL2Vec∗ navigates the graph forms of an OWL (or OWL2) ontology to generate a corpus of three
documents that encapsulate various aspects of the ontology’s semantics, including (i) graph topology and logical
constructors, (ii) syntactic information, and (iii) a combination of (i) and (ii). Ultimately, OWL2Vec∗ employs
a word embedding model to produce word and entity embeddings from the generated corpus. While these works
primarily focus on embedding the semantics represented in ontologies, their goals differ significantly from ours.
They do not aim to establish clear connections between the embedding space and the underlying concepts in the
ontology. Another line of work concerns with creating embeddings specifically for Ontologies with the goal to
enable ontology specific tasks such as ontology learning, reasoning and ontology-mediated question answering [31,
67, 69]. Ontology embedding methods also have been used for vision tasks such as few shot learning and image
classification [34, 35].

There are yet other works that are concerned with the integration of ontological knowledge directly into embed-
ding models (e.g., [11, 14, 19, 24, 40, 66, 73]), typically through modifications to the loss function during training.
Indeed, while these works have the same motivation of improving the semantics in KG embedding models by lever-
aging the information in the ontology concepts and roles, contrary to our work, these works do not focus on the
interpretability of the embedding spaces that they generate. While adding ontological information during the train-
ing of embeddings has been shown to enhance the semantic capabilities of the embeddings in some cases [33], this
does not automatically entail interpretability in terms of human-understandable aspects of the entities for the gen-
erated embedding space. Moreover, the InterpretE approach is not limited to the ontological classes of KG entities.
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It can derive interpretable dimensions corresponding to various relevant aspects, including entity attributes (e.g.,
gender for person entities, genre for movie entities) and relationships with other entities (e.g., bornIn [location]
for person entities, locatedIn [location] for organization entities), or any combination thereof (which may be user-
defined or task-driven). In fact, InterpretE can be applied to any of the aforementioned KG embedding techniques,
generating interpretable embedding spaces with dimensions reflecting desired semantic aspects.

3.4. Interpretable Dimensions

Various approaches have focused on constructing interpretable spaces using multiple data sources, primarily text
but also images [6, 7, 15, 56, 72]. As discussed in Section 2.3, conceptual spaces [22] represent concepts through
cognitively meaningful features known as quality dimensions. These dimensions are typically derived from human
judgments and serve as an intermediary representation layer between neural and symbolic representations. Bouraoui
et al. [15] discuss techniques that facilitate a looser integration between embeddings and symbolic knowledge, de-
riving similarity and other forms of conceptual relatedness from vector space embeddings to support adaptable
reasoning using ontologies. In another work, Bouraoui et al. [7] demonstrate that incorporating conceptual neigh-
bors leads to more accurate region-based representations through a straightforward technique for identifying them.
Derrac et al. [6] illustrate how a large corpus of text documents can be leveraged to learn essential semantic relations.
While these approaches show promise for advancing explainable AI, they have not been extended to more complex
datasets like knowledge graphs and their representations using KGEMs. In contrast, our proposed approach repre-
sents a first step toward identifying interpretable dimensions for such models, focusing on the underlying aspects of
knowledge graph entities and thereby deriving vector spaces that are more human-understandable.

4. Data Analysis and Selecting Entity Aspects

In Section 5, the InterpretE method will be explained as a generalized and scalable process for obtaining entity
aspects or entity features2 from a given KG dataset, as well as deriving interpretable entity vectors from it. In this
section, we focus on dataset acquisition, specifically providing a detailed explanation of the data-driven analysis
conducted for two KG benchmark datasets. This analysis aims to illustrate the nuances of entity feature extraction for
real-world entities. To derive and categorize aspects for different entities in the KG, their type (or ontological class)
information was essential. As such, we leveraged KG datasets with associated ontologies, focusing on subsets of
Yago (Yago3-10 [43]) and Freebase (FB15k-237) [61]. Additionally, we reused Wordnet-based entity type mappings
from Jain et al. [32] to obtain the ontological classes for the entities. As a first step, the entities in the KGs were
categorized by their ontological classes using WordNet types such as persons, organizations, and locations. Next,
for each entity type, the most representative relations were selected and their values were categorized based on their
distribution in KG triples.

4.1. YAGO

An overview of the dataset analysis in terms of the most representative entity types for the YAGO3-10 dataset
is shown in Figure 2. The YAGO3-10 dataset is dominated by entities of the class person. In Figure 2, it can be
seen that while person is the most frequent class, various subclasses of person (at different levels of hierarchy in the
ontology structure) are also frequent. For instance, player is a subclass of person, while football_player is a subclass
of player. This illustrates that the person type is extensively represented throughout the dataset, ensuring sufficient
data availability for this type in subsequent experiments, as the number of triples associated with it is substantial.

When analyzing a given entity class, emphasis was placed on identifying the most represented relations. High-
frequency relations are expected to be effectively captured by the embedding model, encapsulating relevant re-
lational information within the final entity embeddings. The most significant relations for the person entities are

2The terms aspects and features of the entities are used interchangeably throughout the paper.
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Fig. 2. Top 10 most represented entity classes in YAGO3-10 Fig. 3. Top 10 most represented relations for person entities in
YAGO3-10

hasWonPrize - 15.5 %
isAffiliatedTo - 14.1 %
hasGender - 13.7 %
hasChild - 11.4 %
playsFor - 9.7 %
wasBornIn - 8.9 %
graduatedFrom - 8.2 %
isPoliticianOf - 6.7 %
influences - 6.1 %
diedIn - 5.7 %

Fig. 4. Most represented relations for class politician in
YAGO3-10

hasWonPrize - 17.7 %
influences - 15.8 %
graduatedFrom - 14.2 %
worksAt - 13.2 %
hasGender - 11.1 %
wasBornIn - 8.0 %
isCitizenOf - 7.0 %
diedIn - 5.2 %
livesIn - 4.3 %
playsFor - 3.6 %

Fig. 5. Most represented relations for class scientist in
YAGO3-10

United States - 57.8 %
United Kingdom - 11.3 %
Canada - 10.2 %
Japan - 9.7 %
France - 6.4 %
Australia - 4.6 %

Fig. 6. Most represented values for class organization with rela-
tion isLocatedIn in YAGO3-10

club - 49.0 %
organization - 17.1 %
team - 15.0 %
football_team - 4.5 %
hockey_team - 3.3 %
basketball_team - 3.3 %
party - 3.0 %
university - 2.4 %
educational_institution - 2.3 %

Fig. 7. Most represented values for class person in with the rela-
tion isAffiliatedTo in YAGO3-10

shown in Figure 3. In this context, the relations isAffiliatedTo and playsFor emerge as the most represented for per-
son class. It is interesting to note that an analysis of these relations in the YAGO3-10 dataset revealed that 87.65%
of the triples associated with playsFor were identical to those linked with isAffiliatedTo. Due to this redundancy,
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award - 68.2 %
order - 12.2 %
symbol - 7.5 %
decoration - 5.8 %
event - 4.3 %
election - 1.1 %
scholarship - 0.8 %

Fig. 8. Most represented values for class scientist with the rela-
tion hasWonPrize in YAGO3-10

psychological_feature - 13.4 %
abstraction - 13.4 %
act - 12.4 %
event - 12.4 %
activity - 11.9 %
occupation - 11.9 %
person - 6.2 %
causal_agent - 6.2 %
whole - 6.2 %
physical_entity - 6.2 %

Fig. 9. Most represented values type for person in FB15K-237
with relation profession

Fig. 10. Top 10 most represented entity types in FB15K-237 Fig. 11. Top 10 most represented relations for film entities in
FB15K-237

only one of these relations was retained in the experiments to reduce overlap.
This process was repeated for other classes. To perform an in-depth analysis of various relations, the most rep-

resented values for a given relation (i.e. entities or values serving as the tail in the (h, r, t) triplets) were examined,
with the intention of finding out the values that were prominent for specific relations. For the experiments, we con-
sidered these values, coupled with the associated relation, to serve as the entity aspects (as described in Section 5).
As shown in Figure 6, for entities of type organization and the relation isLocatedIn, certain countries appeared
frequently; for example, the United States accounted for 57.8% of all triples that pertained to organization entities
with the relation isLocatedIn.

The different types of values associated with each entity-relation pair were also examined, as illustrated in Fig-
ures 7 and 8. This analysis was aimed at informing the design of potential processes for transforming these values.
It was found to be particularly valuable in instances where the distribution of values was nearly uniform, comprising
a wide range of distinct entries. By understanding the type of each value, appropriate transformation strategies could
be implemented. For instance, for the relation isAffiliated, it was found that the most frequently represented value
type was club. With this insight, methods to categorize the clubs based on various criteria, such as their geograph-
ical locations (e.g., country, continent. . . ) or the specific sports they are associated with, could be conceptualized.
Different experiments could be designed to capture such features as desired.
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object - 13.1 %
physical_entity - 13.1 %
location - 12.8 %
district - 12.7 %
region - 12.7 %
administrative_district - 12.7 %
country - 9.1 %
geographical_area - 4.6 %
tract - 4.6 %
site - 4.4 %

Fig. 12. Most represented values for film class with relation re-
lease_region in FB15K-237

abstraction - 17.2 %
psychological_feature - 16.2 %
event - 8.9 %
cognition - 8.5 %
whole - 8.3 %
object - 8.3 %
physical_entity - 8.3 %
idea - 8.1 %
content - 8.1 %
show - 7.9 %

Fig. 13. Most represented values for film class with relation genre
in FB15K-237

4.2. Freebase

Similar to Yago3-10, we conducted a statistical analysis to select features for the FB15K-237 benchmark dataset.
First, the most represented classes in the dataset were identified, as shown in Figure 10 (without any distinction as
per their hierarchical levels in the ontology). For each type considered, we identified the most represented relations,
this is detailed in Figure 11 for film entities as an example. Being the most represented relations, release_region
and genre were focused upon for the film class entities as shown in Figure 12 and Figure 13. In a different example,
Figure 9 shows the most frequent types of professions for person class entities in this dataset. As with Yago3-10, this
dataset study serves as a guideline for the experimental design, and similar figures were generated across various
classes, relations, and values to extract the most pertinent and representative information from the dataset.

It is interesting to note here that different levels of abstraction were considered for the features of the entities
while designing the experiments,. For example, for person entities, the relation wasBornIn (e.g., wasBornIn Paris)
was found to be significant. One experiment mapped locations from specific cities to their respective countries (e.g.,
France), while another grouped cities by continent (e.g., Europe), allowing for evaluations across varying abstrac-
tion levels. (These experiments are presented and discussed in Section 6). This adaptable process was primarily
driven by the availability of sufficient data points for the entity features within the KG. Once features were defined,
entities were labeled with binary values indicating the presence or absence of each feature. This labeled data was
subsequently used for SVM training in the next phase.

4.3. LLMs for automated extraction of entity aspects

An alternative method for deriving entity aspects from the KGs was explored using large language models due
to their promise of capturing complex relationships in data. In this subsection, we give an overview of how LLMs
were used for feature selection via a retrieval-augmented generation (RAG) pipeline [41].

The process began by converting the knowledge graph into plain text, where each triple was treated as a document
chunk. These chunks were embedded into a vector space using the LlamaIndex framework (v0.10.28)3, enabling
the construction of a vectorized database. Relevant chunks were then retrieved to enrich the prompt provided to
the LLM (Mistral-7B [37]), with prompt design playing a crucial role in guiding the model. Figure 14 shows an
example of the prompt template used to steer the LLM toward extracting salient quality dimensions from the KG.

The outputs, as illustrated in Figure 15 include detailed lists of features and 2D vector projections capturing key
relationships within the data. However, the LLM-generated answers were neither consistent nor explainable, which
undermines the goal of obtaining human-interpretable features. This lack of consistency and clarity does not align
with our objective of deriving features that are both transparent and statistically grounded. Although our experiments

3https://www.llamaindex.ai/

https://www.llamaindex.ai/
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with LLMs and RAG were promising, they ultimately fell short of providing the reliable, understandable features
needed for our analysis. We plan to revisit and expand on this automated approach in future work.

Prompt.
Context: {retrieved context}

Question: You are a useful information retrieval agent, A conceptual space is a geometric structure that repre-
sents a number of quality dimensions, which denote basic features by which concepts and objects can be compared,
From the context, extract 20 quality dimensions, present the result as a list.

Fig. 14. Prompt example used for the RAG pipeline

Question. You are a useful information retrieval
agent, A conceptual space is a geometric struc-
ture that represents a number of quality dimen-
sions, which denote basic features by which con-
cepts and objects can be compared, From the con-
text, extract 20 quality dimensions, present the re-
sult as a list.

1. Affiliation to a football club or basketball team
2. Gender (male or female)
3. Is influenced by another person or concept
4. Influences another person or concept
5. Acts in a film or play
6. Marital status
7. Citizenship of a country or region
8. Plays for a football club or basketball team
9. Has won a prize or award
10. Is connected to an airport or location
11. Graduated from a specific university
12. Is affiliated to a specific organization, be it
sports-related or not
13. Has musical role (in this case, plays the guitar)
14. Plays for a national football team
15. Is located in a country or city
16. Died in a specific location
17. Belongs to a specific political party
18. Created an album or song
19. Has a specific role in a sports team (goal-
keeper, midfielder, forward)
20. Is affiliated to a football club from a different
country

Question You are a useful information retrieval
agent, answer the question: From the context, can
you make a list of 20 concepts that represent the
knowledge graph?

1. Country (mentioned multiple times)
2. Western Cape (a specific region)
3. South Africa (a country)
4. Algeria (a country)
5. African Union
6. United Nations
7. World Trade Organization
8. Arab League
9. Organisation of Islamic Cooperation
10. International Bank for Reconstruction and De-
velopment
11. International Development Association
12. International Finance Corporation
13. Multilateral Investment Guarantee Agency
14. International Centre for Settlement of Invest-
ment Disputes
15. African Development Bank
16. Arab Bank for Economic Development in
Africa
17. Asian Development Bank
18. Organisation internationale de la Francophonie
19. UNESCO
20. Universal Postal Union

Fig. 15. Example results using LlamaIndex with Mistral-7B for Yago3-10

5. InterpretE

In this section, we present the proposed InterpretE approach, which aligns vector representations with entity
features by manipulating vector spaces to enhance interpretability. Figure 16 illustrates the components of this ap-
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Fig. 16. Different components of InterpretE

proach. The method begins with feature selection, leveraging data from the KG and associated ontology to select
the desired entity features that are intended to be represented in the vector space. These features can be task-specific
and context-driven (e.g., distinguishing players from politicians or grouping similar professions). The main idea is
to guide the entity representation based on these features, ensuring that entities with shared features are positioned
close together in the final derived space. The selected entity features (suppose d), along with the original pre-trained
entity vectors from a KGEM (typically having n>=100 dimensions), form the dataset. To generate interpretable
embeddings, Support Vector Machine (SVM) classifiers are trained on this dataset, with the entity features as guid-
ing labels. This process transforms the n-dimensional vectors into d-dimensional InterpretE vectors, where each
dimension explicitly corresponds to one of the entity features (as illustrated in the figure with a 2-dimensional space
featuring Feature X and Feature Y). A formal representation of the approach, including the feature selection and
SVM training process, is detailed below.

5.1. Feature Selection

The InterpretE approach is centered around the representation of the desired aspects or features of the entities in
the vector space. The purpose of the feature selection step is to extract one or more entity feature or combinations
of multiple entity features present in the KG and transform the latent vectors for these entities (from a KGEM) to
a human-understandable and interpretable vector space representing these feature(s). We designed several experi-
ments with different features to test the approach, as detailed previously in Section 4. Feature selection was crucial
as it guided experiment design 4.

Intuitively, the feature selection process focuses on choosing the most relevant relations and their values for
each entity within a class. The most common relations per class are selected, with relations having statistically in-
significant occurrences being excluded. For each selected relation, the values it takes are identified, such as specific
locations for a "isLocatedIn" relation. Then, binary features are created for the entities in a class, indicating whether
a particular value for a given relation is present or not. These binary features are concatenated in different combi-
nations to form the feature vector, ensuring that it represents the key characteristics of the entities while remaining
compact and interpretable.

Formally, given a Knowledge Graph G = (E,R,T ), where E is the set of entities, R is the set of relations and T
is the set of triples (h, r, t) such that h ∈ E, t ∈ E, r ∈ R and head entity h has relation r with tail entity t.5 Also, let
Vr denote the set of values that are associated with a given relation r in the set of triples T.

4Note that the attributes of the KG entities could not be considered as features since most KGEMs are not trained on them, hence such features
cannot be derived from the original vectors.

5In some cases, there might be values instead of tail entities as t, e.g. male, female for relation hasGender
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Let Cset = {C1,C2, . . . ,Ck} be the set of ontological classes (e.g., persons, organizations, locations) defined by
the KG ontology (as previously shown in Figures 2 and 10 for Yago and Freebase resp.). For each class C ∈ Cset,
the entities of class C are denoted as:

EC = {e ∈ E | class(e) = C}

Next, among all the relations associated with the entities of each class, a subset of the associated relations is chosen
that is most representative of these entities (examples shown in Figures 3 and 11). To derive this, for each relation
r ∈ R, the number of occurrences, denoted as N(r | class(h) = C), is computed based on how frequently the relation
r appears in triples where the head entity h belongs to EC . A threshold τ is used to select significant relations for each
class C, meaning that only relations with a number (of occurrences) above the threshold are considered relevant.
The set of selected relations for class C is denoted as RC , and the condition for selecting a relation r is:

r ∈ RC if P(r | class(h) = C) ⩾ τ

It is important to note that the value of the threshold τ is highly dependent on the characteristics of the dataset and
may vary for different relations within the dataset. Generally, the threshold was established such that values falling
below this threshold were deemed irrelevant in comparison to the most frequent values. Thus, only those values
exceeding the threshold were included in the analysis.

For each selected relation r ∈ RC , the corresponding values are typically given by:

Vr = {t | (h, r, t) ∈ T, h ∈ EC}

These values are then categorized into features, e.g., for relation isLocatedIn the feature categories could be specific
locations such as ‘Paris’ or ‘New York’.6

For each entity e ∈ EC , a binary feature is defined to indicate whether the entity has a certain value for a given
relation. The feature vector is constructed by including all selected relations RC and their associated values Vr. This
is defined as:

fr,v(e) =

{
1, if entity e has value v ∈ Vr for relation r
0, otherwise

This binary feature fr,v(e) is defined for each selected relation r and its corresponding selected values Vr. Since
different relations may have different numbers of relevant values, the total number of features for an entity depends
on how many categories were obtained for each relation.

Some relations may contribute multiple binary features if multiple values are important (e.g., an isLocatedIn
relation might have multiple locations, ‘Paris’, ‘London’ and so on, as relevant value categories). Other relations
might contribute fewer binary features. This variability is reflected in the construction of the feature vector, ensuring
that it captures all meaningful aspects of the entity while remaining interpretable. In this way, for each class C, a set
of features FC is defined, and the feature vector for each entity e ∈ EC is given by:

fe =

[⊕
r∈RC

( fr,v1(e), fr,v2(e), . . . , fr,vk(e))

]

In this representation, the feature vector fe is the concatenation of the binary features fr,v(e), where each feature
corresponds to a relation r and its respective value v ∈ Vr.

6The number of selected categories of values was determined through a similar analysis to that of the threshold τ; values that were not
statistically significant were omitted.
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Algorithm 1 Feature Selection and Vector Derivation in InterpretE
1: Input: Knowledge Graph G = (E,R,T ), Ontological classes Cset, threshold τ, Pre-trained embeddings U
2: Output: Interpretable embeddings U′

3: Initialize W ← ∅
4: Initialize U′ ← ∅
5: for each class C ∈ Cset do
6: Extract entities EC = {e ∈ E | class(e) = C}
7: Select relations and values RC = {r ∈ R, v ∈ Vr | P(r, v | class(h) = C) ⩾ τ}
8: for each r, v ∈ RC do
9: Derive feature vectors fr(e) for entities e ∈ EC

10: Construct dataset DC = {(ue, fr,v(e)) | e ∈ EC , ue ∈ U}
11: end for
12: for each feature fr ∈ FC do
13: Train SVMr,v on DC to estimate hyperplane weight vector wr,v

14: W ← W
⊕
{wr,v}

15: u′e(r, v)← g(wr,v, ue)
16: end for
17: u′

e ←
⊕

r,v u′
e(r,v)

18: U′ ← U′ ⊕{u′
e}

19: end for
20: return U′

5.2. Dataset Curation

After selecting features, we pair the entities with their corresponding pre-trained KG embedding vectors ue (from
the KGEM). The labeled feature vector fe forms the training dataset:

DC = {(ue, fe) | e ∈ EC}

The dataset DC is then used in the subsequent phases for deriving interpretable vector spaces.

5.3. Derivation of Interpretable Vectors

After curating the dataset with the extracted features for different types of entities, the next step is to derive in-
terpretable vectors using Support Vector Machine (SVM) classifiers. For each feature identified during the feature
extraction phase, a separate SVM classifier is trained to map the pre-trained KG embedding vectors to a new inter-
pretable vector space. This approach builds on the methodology used by Derrac et al. [15], with the goal of learning
dimensions in the vector space that correspond to human-understandable features of the entities.

Although the ground truth feature vectors fe are available for each entity, directly converting these into binary
vectors would result in a significant loss of the detailed information encapsulated in the original KG embeddings
ue. Instead, we employ SVM classifiers, which allow us to leverage the continuous information from the original
embeddings while learning to separate entities based on the selected features.

For each feature fr,v ∈ FC (where FC is the set of features defined for entities in class C), we define a binary
classification problem. The binary label yr,v(e) for each entity e is derived from the feature function:

yr,v(e) = fr,v(e)

A separate SVM classifier SVMr,v is trained for each feature fr,v, using the KG embedding vectors ue as input.
The objective of the SVM is to find a hyperplane that best separates the entities possessing the feature fr,v from
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those that do not. Formally, the SVM optimization problem is defined as follows:

(wr,v, br,v) = argmin
w,b

1

2
∥w∥2 + C

N∑
i=1

max(0, 1− yr,v(ei)(w · uei + b))

Here, wr,v ∈ Rn is the weight vector corresponding to feature fr,v, br,v is the bias term, C is the regularization
parameter controlling the trade-off between margin maximization and classification error, and N is the number of
training examples.

The weight vector wr,v can be perceived as the direction in the embedding space that corresponds to feature fr,v.
These weights are used to define the hyperplane that separates entities having the feature from those that do not. The
decision function associated with each hyperplane provides the signed distance between the estimated hyperplane
and a given entity. This value represents the new coordinate for the corresponding feature. Specifically, the decision
function for feature fr,v is given by:

u′
e(r, v) = g(wr,v, br,v, ue) where g is the decision function and ue is a pretrained embedding

The sign of this decision function determines whether the entity is classified as having the feature (above the
hyperplane, class 1) or not (below the hyperplane, class 0). The scalar value itself is used as the new coordinate for
this feature in the derived vector space, thus encoding both the presence of the feature and its relative strength in the
embedding space.

The resulting weight vector wr,v characterizes the estimated hyperplane for feature fr,v, and the decision function
provides the corresponding coordinate for each entity.

InterpretE Vector Space. The collection of weight vectors wr,v associated with their biases for all features fr,v ∈ FC

defines the set of estimated hyperplanes which help to transform the embeddings in the new vector space (via the
decision function):

W = {(wr,v, br,v) | fr,v ∈ F}

For each estimated hyperplane (represented by the weight vector) the new coordinates (one for each hyperplane)
are computed for each entity. u′

e(r,v) represents the coordinate linked to the value v of the relation r for the entity e.
The concatenation of all coordinates forms the new vector u′e associated to entity e:

u′
e ←

⊕
r,v

u′e(r,v)

Each new coordinate u′e(r,v) refers to a human-understandable feature, such that entities sharing common fea-
tures are positioned close together in the transformed space. This makes the new vectors, referred to as InterpretE
embeddings u′e, more interpretable and transparent than the original KG embeddings.

The above process is described in Algorithm 1.

6. Experiments

In this section, we present experiments evaluating the efficacy of the proposed approach. We first specify the KG
embedding models used in our experiments, then the implementation details for the SVM classifiers, followed by
the assessment of the performance of the derived InterpretE embeddings in two distinct ways. We introduce metrics
that capture the accuracy of the method and the consistency of the generated embedding space, providing scores and
visualizations of the resulting embeddings to illustrate the results.
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Table 1
κ scores on the test set and simtop10 scores on the original and InterpretE vectors for different number of features (mean values) with Yago3-10
for the different KGEMs.

Number of features ConvE TransE DistMult Rescal Complex

1
κ score .93 .88 .92 .95 .91

original .182 .195 .199 .21 .206
InterpretE .233 .223 .233 .234 .232

2
κ score .87 .83 .86 .88 .84

original .177 .231 .230 .240 .229
InterpretE .270 .268 .270 .270 .270

3
κ score .62 .49 .61 .63 .6

original .577 .607 .640 .666 .648
InterpretE .928 .914 .918 .924 .893

4
κ score .89 .88 .90 .91 .90

original .665 .695 .691 .696 .707
InterpretE .814 .726 .787 .810 .824

6
κ score .75 .71 .75 .74 .75

original .635 .659 .679 .678 .648
InterpretE .938 .888 .945 .923 .936

9
κ score .87 .83 .86 .88 .84

original .343 .353 .337 .347 .345
InterpretE .624 .556 .624 .622 .621

6.1. KG Embedding Models

Following previous works [29, 32], several popular and benchmark KGEMs were considered for the experiments
to analyse the flexibility of the InterpretE approach across vector spaces generated with different methods, including
ConvE [16], TransE [4], DistMult [68], Rescal [45] and Complex [63]. Although more recent embedding models
have been introduced in the literature, as demonstrated by Ruffinelli et al. [52], classical embedding models remain
highly competitive when paired with effective parameter optimization. Therefore, we have chosen the most widely
used and popular embedding models as representative methods, obtaining the pretrained embeddings from previous
work7, where the best parameters were found using the LibKGE library [52]. It is important to note that our approach
is entirely independent of the specific KGEM used and can be applied in conjunction with any pretrained model, as
long as the embedding vectors can be extracted from it.

6.2. Classifier Training and Optimization

To streamline the training of the SVM classifiers, a grid search with cross-validation was performed using the
Scikit-learn [46] library, which is based on LibSVM [9]. This process allowed us to automatically select the optimal
hyperparameters (e.g., the regularization parameter and prevent overfitting, thereby ensuring a more generalized so-
lution). Class imbalance, which is common in large scale KGs as well as popular benchmark datasets, was addressed
by assigning weights to entities based on the distribution of positive and negative examples for each feature. This

7https://github.com/nitishajain/KGESemanticAnalysis

https://github.com/nitishajain/KGESemanticAnalysis
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Table 2
κ scores on the test set and simtop10 scores on the original and InterpretE vectors for representative experiments with Yago3-10 for the different
KGEMs.

Experiments and features ConvE TransE DistMult Rescal Complex

person: hasGender
κ score 1 1 1 1 .99

original .068 .059 .054 .061 .068
InterpretE .079 .079 .079 .079 .079

person : hasGender - wasBornIn
Europe

κ score .96 .93 .95 .96 .94
original .456 .496 .492 .507 .504

InterpretE .540 .529 .538 .543 .539

person : wasBornIn
(Europe - Asia - North America)

κ score .92 .84 .90 .94 .90
original .687 .8 .814 .871 .831

InterpretE .987 .959 .983 .987 .979

city : isLocatedIn (Europe - Asia -
(North - South) America)

κ score .94 .96 .96 .98 .98
original .899 .959 .949 .966 .972

InterpretE .989 .993 .991 .996 .996

scientist: hasWonPrize
6 top prizes

κ score .96 .84 .97 .85 .98
original .539 .510 .575 .538 .578

InterpretE .958 .934 .966 .926 .972

person: types, player - artist -
politician - scientist - officeholder - writer

κ score .77 .75 .78 .78 .74
original .745 .772 .805 .794 .662

InterpretE .953 .945 .958 .944 .938

person: hasGender, wasBornIn (Europe - Asia -
North America), types (player - artist -

politician - scientist - officeholder)

κ score .87 .83 .86 .88 .84
original .343 .353 .337 .347 .345

InterpretE .624 .556 .624 .622 .621

weighting scheme helped balance the influence of underrepresented classes in the training process. A held-out test
set comprising 20% of the entities (with no overlap with the training set) was used to evaluate the performance of
each SVM classifier.

6.3. Evaluation of InterpretE Vector Space

The derived InterpretE vector spaces are expected to yield entity vectors that are organized into clusters that align
with the selected features. To assess the effectiveness of these clusters and ensure a consistent representation across
different entity types, we calculated the Cohen’s kappa coefficient (κ score) for the test set (following [15]). This
metric evaluates the level of agreement between two sets of categorical labels, in this case, the predictions made by
the trained SVM and the ground truth labels for the test entities. The κ score ranges from -1 to 1, with values closer
to 1 indicating a stronger alignment between the model’s classifications and the expected feature-based grouping of
entities in the vector space.

The mean κ scores across various experiments on the Yago3-10 dataset are shown in Table 1, with results for
FB15k-237 provided in Table 3. As discussed in Section 4, entity features were selected in a range of combinations
to explore diverse configurations and capture a variety of aspects for the entities, leading to a large number of
experimental configurations. To streamline presentation, these results represent the aggregated mean values of the
metrics across experiments, organized by the number of selected features. For each feature count, a representative
example experiment and its corresponding scores are provided in Table 2 for Yago3-10 and Table 4 for FB15k-237.
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Table 3
κ scores on the test set and simtop10 scores on the original and InterpretE vectors for different number of features (mean values) with FB15K-237
for the different KGEMs.

Number of features ConvE TransE DistMult Rescal Complex

1
κ score .90 .80 .90 .90 .85

original .211 .210 .214 .215 .210
InterpretE .322 .298 .313 .322 .319

2
κ score .89 .8 .9 .9 .89

original .336 .329 .342 .343 .335
InterpretE .484 .480 .493 .514 .509

5
κ score .72 .68 .72 .65 .73

original .561 .538 .545 .523 .547
InterpretE .853 .844 .889 .882 .868

6
κ score .84 .73 .83 .88 .84

original .587 .524 .575 .563 .563
InterpretE .952 .918 .936 .956 .932

Table 4
κ scores on the test set and simtop10 scores on the original and InterpretE vectors for representative experiments (mean values) with FB15K-237
for the different KGEMs.

Experiments and features ConvE TransE DistMult Rescal Complex

person : gender - place_of_birth
United States

κ score .91 .78 .92 .92 .90
original .676 .689 .689 .693 .675

InterpretE .909 .909 .932 .99 .977

organizations: locations
(USA - UK - Japan - Canada - Germany

κ score .78 .70 .75 .58 .79
original .766 .738 .758 .731 .768

InterpretE .951 .947 .958 .959 .96

film: film_release_region
(USA - Sweden - France - Spain - Finland)

κ score .71 .69 .71 .66 .71
original .705 .66 .661 .621 .661

InterpretE .876 .866 .903 .907 .892

film: film genre
(drama - comedy - romance - thriller - action)

κ score .68 .65 .71 .72 .70
original .212 .217 .215 .217 .213

InterpretE .732 .719 .805 .78 .753

The κ values, which are close to 1 in most cases, underscore the approach’s strong potential in effectively clustering
entities by the selected features.

Furthermore, to clearly illustrate the advantages of the proposed approach in generating interpretable dimensions
within the vector space and to compare these with the dimensions in the original KGEM vector spaces, we visu-
alize both in a 2D space by applying Principal Component Analysis (PCA) [26]. As depicted in Figure 17, the
reduced dimensions in the original KGEM space (in this case, ComplEx) fail to convey any meaningful or human-
understandable representations for the entity vectors. Moreover, the person entities are not clustered according to
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Fig. 17. 2D projection of ComplEx vectors for class person and features has-
Gender and wasBornIn “Europe" in Yago3-10
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Fig. 18. 2D projection of InterpretE vectors for class person and features has-
Gender and wasBornIn “Europe" in Yago3-10

the hasGender and was-BornIn "Europe" features. Essentially, these vectors do not yield significant dimensions
and do not facilitate the identification or clustering of entities based on specific features. In contrast, the InterpretE
vectors derived from the ComplEx KGEM vectors as shown in Figure 18 reveal distinct clusters, with the enti-
ties within each cluster sharing common features as represented by the dimensions, i.e. they reveal distinct and
meaningful clusters, dictated by human-understandable entity aspects as dimensions. We also present several other
visualizations for different experiments in Figure 19 and Figure 20 that convey similar characteristics.

6.4. Evaluation of Semantic Similarity

InterpretE vectors are dictated by the selected features for the entities that they represent, as such we evaluated
the semantic similarity of the derived vectors (in terms of the features) to measure this desirable characteristic.
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Fig. 19. 2D projection of InterpretE vectors for class player and feature has-
Genderin Yago3-10
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Fig. 20. 2D projection of InterpretE vectors for class person and features gender
and place_of_birth “United States" in FB15k-237

We propose a simple metric simtopk to measure the similarity of entities’ neighbors. For each entity, we analyze
its neighborhood to estimate the similarity based on the corresponding feature used in the SVM experiment. The
parameter k represents the number of neighbors considered. The score assigned to the original entity is calculated as
the mean value of the similarities computed with these neighboring entities. This process is repeated for all entities,
and the mean value of these scores is computed to serve as the final metric. The proposed simtopk metric can be
formulated as:

simtopk =
1

n

n∑
i=1

1

k

∑
j∈Ni(k)

f (ni, n j)

 (2)
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Prompt. Question: You are a good knowledge
base. Tell if these two entities are similar in terms
of gender and continent of birth: Albert Einstein
and Winston Churchill?

Answer: Yes, these two entities are similar
because they both are male and were born in
Europe.

Question: You are a good knowledge base.
Tell if these two entities are similar of gender and
continent of birth: Marie Curie and Louis Pasteur?

Answer: No, these two entities are not simi-
lar because they don’t have the same gender, even
though they were born in the same continent.

Question: You are a good knowledge base.
Tell if these two entities are similar of gender
and continent of birth: Pierre Curie and John F.
Kennedy?

Answer:

No, these two entities are not similar because they
were born in different continents, even though they
have the same gender.

Prompt. Question: You are a good knowledge
base. Tell if these two entities are similar in terms
of countries of country of location between US,
UK, Canada, Japan, France, Australia and others:
ENSTA Paris and Agence France-Presse?

Answer: Yes, these two entities are similar
because they both are location in the same
country.

Question: You are a good knowledge base.
Tell if these two entities are similar in terms of
countries of country of location between US,
UK, Canada, Japan, France, Australia and others:
International Civil Aviation Organization and
United Nations?

Answer: No, these two entities are not simi-
lar because they are not located in the same
country.

Question: You are a good knowledge base.
Tell if these two entities are similar in terms
of countries of country of location between
US, UK, Canada, Japan, France, Australia and
others: King’s College London and University of
Cambridge?

Answer:

Yes, these two entities are similar because they
both are located in the same country, which is the
UK.

Fig. 21. Partial example of few-shot prompts with Llama 3 70B using HuggingChat

where:
n : the number of total entities; k : the number of considered neighbours; Ni(k) : the k closest neighbours of the

i-th entity, determined using a euclidean distance; f (·, ·) : returns 1 if the two entities are similar in terms of features,
0 otherwise.

The values of this metric for k=10 for the original and the derived InterpretE embeddings for the different ex-
periments and the various embedding models are shown in Tables 1 and 2, for Yago3-10. The scores are better for
InterpretE vectors as compared to the original pre-trained vectors (obtained from various KGEMs) across the board,
indicating that similar entities are being represented by vectors that are closer in the new vector space, as desired.
The results for FB15k-237 are presented in Tables 3 and 4. Similar to our findings with Yago3-10, we observed
enhanced semantic similarity with FB15K-237. This improvement is evidenced by the higher simtopk value in the
final space compared to the original space.

We also explored an alternative method to evaluate the simtopk metric by leveraging LLMs. In a limited ex-
periment, we applied few-shot prompting with Llama3-70B [62] and a RAG pipeline with Mistral7B [37] using
LlamaIndex. Our prompt included one positive and one negative example to assess the similarity between an entity
and its neighborhood, as illustrated in Figure 21. Although promising, the results were inconsistent and sometimes
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contradictory, suggesting that further investigation is needed to develop a reliable global evaluation metric, which
we plan to address in future work.

6.5. Discussion

The results from the designed experiments for each dataset demonstrate the potential of the proposed approach.
However, there are several considerations for the experiment design that depend heavily on the data distributions and
characteristics of the underlying KG data. For example, there is often class imbalance in entities concerning selected
features (e.g., hasGender having more male representatives than female). These factors can impact the performance
of the SVM classifier. Class-based weights have been applied to the data points to address this issue, but it remains
a design challenge.

In some experiments, our method achieves a simtopk value very close to 1. This indicates that in the resulting
space, similar entities are clustered together nearly perfectly. However, this level of clustering is not consistently
observed across all experiments. The variability can be explained by the fact that other underlying features, not
covered in the current experiment, could contribute to more accurately clustering similar entities. An analogy can be
drawn with the well-known kernel trick used in SVMs, where additional dimensions (in our case, the consideration
of new features) are introduced to better distinguish different labeled data (in this context, non-similar entities).
Another challenge is the abstraction of features, especially if the underlying data is noisy and non-canonicalized
(e.g., different labels for the same value such as ‘UK’ and ‘United Kingdom’). Resolving these issues is crucial
for creating useful feature categories. A potential limitation of this approach could be scalability. As the size of
the knowledge graph (KG) increases, the time complexity of training the SVM also increases. The time complexity
of SVM training is O(n2d), where n is the number of entities and d is the number of dimensions. Despite these
challenges, InterpretE represents a significant step towards deriving interpretable vector spaces from KGEM vectors.
It is flexible and applicable to any KGEM. We aim to further develop this approach to streamline the design and
engineering process as well as improving its scalability across various datasets.

7. Conclusion and Future Work

This work attempts to address the oft overlooked issue of lack of semantic interpretability in latent spaces gener-
ated by popular KG embedding techniques. The proposed InterpretE approach is shown to be capable of deriving
interpretable spaces from existing KGEM vectors with human-understable dimensions that are based on the features
in the underlying KG. Through the design and evaluation of different experiments, we have showcased the promise
of the approach for encapsulating entity features in the vectors for different feature abstraction levels, customizable
as per the dataset. By aiming to bridge the gap between entity representations and human-understandable features,
InterpretE paves the way for enhanced understanding and utilization of KGEMs in various applications. Future re-
search can further explore the implications of this approach and extend its applicability to broader contexts within
the field of knowledge representation and reasoning.

By providing interpretable insights into how entities are represented and clustered in knowledge graphs, Inter-
pretE approach aims to contribute to the broader goal of AI transparency. This can allow practitioners to trace back
decisions to underlying features, identify potential biases, and ensure that AI-driven systems operate in a manner
that is both reliable and ethical. This focus on explainability ensures that AI models are not only accurate but also
comprehensible, making them more suitable for deployment in critical decision-making contexts.

In this study, we conducted preliminary experiments employing large language models through a retrieval-
augmented generation pipeline and few-shot prompting techniques to extract features as well as to assess entity
similarity. While these methodologies demonstrated potential, the outcomes were marked by inconsistency and a
lack of transparency, falling short of our objective to derive human-interpretable and statistically robust features.
Consequently, we have prioritized deterministic, statistical approaches in our current analysis. Nonetheless, we rec-
ognize the evolving capabilities of LLMs and intend to explore their application further as the research advances.
Furthermore, it would be interesting explore whether sparse autoencoders, as used by Cunningham et al. [28] to
identify monosemantic features in LLMs, can be applied to KGEMs to derive more interpretable entity representa-
tions.



N. J. Jain et al. / Towards Interpretable Embeddings: Aligning Representations with Semantic Aspects 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Acknowledgements.
This work was partly funded by the HE project MuseIT, which has been co-founded by the European Union under

the Grant Agreement No 101061441. Views and opinions expressed are, however, those of the authors and do not
necessarily reflect those of the European Union or European Research Executive Agency. We are also thankful for
access to King’s Computational Research, Engineering and Technology Environment (CREATE). King’s College
London. (2024). Retrieved October 28, 2024, from https://doi.org/10.18742/rnvf-m076.

References

[1] F. Alshargi, S. Shekarpour, T. Soru and A. Sheth, Concept2vec: Metrics for evaluating quality of embeddings for ontological concepts,
Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019) (2019). https://doi.org/10.48550/
arXiv.1803.04488.

[2] A.B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins et al.,
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI, Information fusion
58 (2020), 82–115.

[3] J. Baek, A.F. Aji, J. Lehmann and S.J. Hwang, Direct Fact Retrieval from Knowledge Graphs without Entity Linking, in: Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), A. Rogers, J. Boyd-Graber and
N. Okazaki, eds, Association for Computational Linguistics, Toronto, Canada, 2023, pp. 10038–10055. doi:10.18653/v1/2023.acl-long.558.
https://aclanthology.org/2023.acl-long.558/.

[4] A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston and O. Yakhnenko, Translating embeddings for modeling multi-relational data, in:
Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2, NIPS’13, Curran Associates Inc.,
Red Hook, NY, USA, 2013, pp. 2787–2795–.

[5] A. Boschin, N. Jain, G. Keretchashvili and F.M. Suchanek, Combining embeddings and rules for fact prediction, in: International Research
School in Artificial Intelligence in Bergen, 2022.

[6] Z. Bouraoui, V. Gutiérrez-Basulto and S. Schockaert, Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces, in:
International Research School in Artificial Intelligence in Bergen (AIB 2022), C. Bourgaux, A. Ozaki and R. Peñaloza, eds, Open Access
Series in Informatics (OASIcs), Vol. 99, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2022, pp. 3:1–3:30. ISSN
2190-6807. ISBN 978-3-95977-228-0. doi:10.4230/OASIcs.AIB.2022.3.

[7] Z. Bouraoui, J. Camacho-Collados, L. Espinosa-Anke and S. Schockaert, Modelling semantic categories using conceptual neighborhood,
in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 7448–7455.

[8] J. Cao, J. Fang, Z. Meng and S. Liang, Knowledge graph embedding: A survey from the perspective of representation spaces, ACM
Computing Surveys 56(6) (2024), 1–42.

[9] C.-C. Chang and C.-J. Lin, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol. 2(3) (2011).
doi:10.1145/1961189.1961199.

[10] U. Chatterjee, A. Gajbhiye and S. Schockaert, Cabbage Sweeter than Cake? Analysing the Potential of Large Language Models for Learning
Conceptual Spaces, in: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, 2023, pp. 11836–
11842.

[11] J. Chen, P. Hu, E. Jimenez-Ruiz, O.M. Holter, D. Antonyrajah and I. Horrocks, Owl2vec*: Embedding of owl ontologies, Machine Learning
110(7) (2021), 1813–1845.

[12] J. Cohen, A coefficient of agreement for nominal scales, Educational and psychological measurement 20(1) (1960), 37–46.
[13] Y. Dai, S. Wang, N.N. Xiong and W. Guo, A survey on knowledge graph embedding: Approaches, applications and benchmarks, Electronics

9(5) (2020), 750.
[14] C. d’Amato, N.F. Quatraro and N. Fanizzi, Injecting Background Knowledge into Embedding Models for Predictive Tasks on Knowledge

Graphs, in: ESWC, 2021.
[15] J. Derrac and S. Schockaert, Inducing semantic relations from conceptual spaces: a data-driven approach to plausible reasoning, Artificial

Intelligence 228 (2015), 66–94.
[16] T. Dettmers, P. Minervini, P. Stenetorp and S. Riedel, Convolutional 2D Knowledge Graph Embeddings, 2018.
[17] L. Dietz, A. Kotov and E. Meij, Utilizing Knowledge Graphs for Text-Centric Information Retrieval, in: The 41st International ACM SIGIR

Conference on Research & Development in Information Retrieval, SIGIR ’18, Association for Computing Machinery, New York, NY, USA,
2018, pp. 1387–1390–. ISBN 9781450356572. doi:10.1145/3209978.3210187.

[18] M.H. Gad-Elrab, D. Stepanova, T.-K. Tran, H. Adel and G. Weikum, Excut: Explainable embedding-based clustering over knowledge
graphs, in: International Semantic Web Conference, Springer, 2020, pp. 218–237.

[19] D. Garg, S. Ikbal, S.K. Srivastava, H. Vishwakarma, H.P. Karanam and L.V. Subramaniam, Quantum Embedding of Knowledge for Rea-
soning, in: Neurips, 2019, pp. 5595–5605.

[20] X. Ge, Y.C. Wang, B. Wang, C.-C.J. Kuo et al., Knowledge graph embedding: An overview, APSIPA Transactions on Signal and Information
Processing 13(1) (2024).

[21] N. Guan, D. Song and L. Liao, Knowledge graph embedding with concepts, Knowledge-Based Systems 164 (2019), 38–44.

https://doi.org/10.18742/rnvf-m076
https://doi.org/10.48550/arXiv.1803.04488
https://doi.org/10.48550/arXiv.1803.04488
https://aclanthology.org/2023.acl-long.558/


24 N. J. Jain et al. / Towards Interpretable Embeddings: Aligning Representations with Semantic Aspects

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[22] P. Gärdenfors, Conceptual Spaces: The Geometry of Thought, The MIT Press, 2000. ISBN 9780262273558.
doi:10.7551/mitpress/2076.001.0001.

[23] J. Hao, M. Chen, W. Yu, Y. Sun and W. Wang, Universal representation learning of knowledge bases by jointly embedding instances and
ontological concepts, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019,
pp. 1709–1719.

[24] J. Hao, M. Chen, W. Yu, Y. Sun and W. Wang, Universal Representation Learning of Knowledge Bases by Jointly Embedding Instances
and Ontological Concepts, in: KDD, 2019, pp. 1709–1719.

[25] O.M. Holter, E.B. Myklebust, J. Chen and E. Jimenez-Ruiz, Embedding OWL ontologies with OWL2Vec, CEUR Workshop Proceedings
2456 (2019), 33–36. http://ceur-ws.org/Vol-2456/.

[26] H. Hotelling, Analysis of a complex of statistical variables into principal components., Journal of educational psychology 24(6) (1933),
417.

[27] S. Hou and D. Wei, Research on Knowledge Graph-Based Recommender Systems, in: 2023 3rd International Symposium on Computer
Technology and Information Science (ISCTIS), 2023, pp. 737–742. doi:10.1109/ISCTIS58954.2023.10213083.

[28] R. Huben, H. Cunningham, L.R. Smith, A. Ewart and L. Sharkey, Sparse autoencoders find highly interpretable features in language
models, in: The Twelfth International Conference on Learning Representations, 2023.

[29] N. Hubert, H. Paulheim, A. Brun and D. Monticolo, Do similar entities have similar embeddings?, in: European Semantic Web Conference,
Springer, 2024, pp. 3–21.

[30] F. Ilievski, K. Shenoy, H. Chalupsky, N. Klein and P. Szekely, A study of concept similarity in Wikidata, Semantic Web (2024), 1–20.
doi:10.3233/SW-233520.

[31] M. Jackermeier, J. Chen and I. Horrocks, Dual box embeddings for the description logic EL++, in: Proceedings of the ACM on Web
Conference 2024, 2024, pp. 2250–2258.

[32] N. Jain, J.-C. Kalo, W.-T. Balke and R. Krestel, Do Embeddings Actually Capture Knowledge Graph Semantics?, in: The Semantic Web,
R. Verborgh, K. Hose, H. Paulheim, P.-A. Champin, M. Maleshkova, O. Corcho, P. Ristoski and M. Alam, eds, Springer International
Publishing, Cham, 2021, pp. 143–159. ISBN 978-3-030-77385-4.

[33] N. Jain, T.-K. Tran, M.H. Gad-Elrab and D. Stepanova, Improving knowledge graph embeddings with ontological reasoning, in: Interna-
tional Semantic Web Conference, Springer, 2021, pp. 410–426.

[34] M. Jayathilaka, T. Mu and U. Sattler, Ontology-based n-ball concept embeddings informing few-shot image classification, arXiv preprint
arXiv:2109.09063 (2021).

[35] M. Jayathilaka, T. Mu and U. Sattler, Towards knowledge-aware few-shot learning with ontology-based n-ball concept embeddings, in:
2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE, 2021, pp. 292–297.

[36] G. Ji, S. He, L. Xu, K. Liu and J. Zhao, Knowledge Graph Embedding via Dynamic Mapping Matrix, in: Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), C. Zong and M. Strube, eds, Association for Computational Linguistics, Beijing, China, 2015, pp. 687–696.
doi:10.3115/v1/P15-1067. https://aclanthology.org/P15-1067.

[37] A.Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D.S. Chaplot, D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier,
L.R. Lavaud, M.-A. Lachaux, P. Stock, T.L. Scao, T. Lavril, T. Wang, T. Lacroix and W.E. Sayed, Mistral 7B, 2023.

[38] J.-C. Kalo, P. Ehler and W.-T. Balke, Knowledge graph consolidation by unifying synonymous relationships, in: The Semantic Web–ISWC
2019: 18th International Semantic Web Conference, Auckland, New Zealand, October 26–30, 2019, Proceedings, Part I 18, Springer, 2019,
pp. 276–292.

[39] T.N. Kipf and M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, in: 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

[40] D. Krompaß, S. Baier and V. Tresp, Type-Constrained Representation Learning in Knowledge Graphs, in: ISWC, 2015, pp. 640–655.
[41] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel and D. Kiela,

Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, in: Advances in Neural Information Processing Systems, Vol. 33,
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan and H. Lin, eds, Curran Associates, Inc., 2020, pp. 9459–9474.

[42] Y. Lin, Z. Liu, M. Sun, Y. Liu and X. Zhu, Learning entity and relation embeddings for knowledge graph completion, in: Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, AAAI Press, 2015, pp. 2181–2187–. ISBN 0262511290.

[43] F. Mahdisoltani, J. Biega and F.M. Suchanek, Yago3: A knowledge base from multilingual wikipedias, in: CIDR, 2013.
[44] W.J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl and B. Yu, Definitions, methods, and applications in interpretable machine learning,

Proceedings of the National Academy of Sciences 116(44) (2019), 22071–22080. doi:10.1073/pnas.1900654116.
[45] M. Nickel, V. Tresp and H.-P. Kriegel, A Three-Way Model for Collective Learning on Multi-Relational Data, in: Proceedings of the 28th

International Conference on Machine Learning (ICML-11), L. Getoor and T. Scheffer, eds, ICML ’11, ACM, New York, NY, USA, 2011,
pp. 809–816. ISBN 978-1-4503-0619-5.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, Scikit-learn: Machine Learning in Python, Journal of Machine
Learning Research 12 (2011), 2825–2830.

[47] X. Peng, Z. Tang, M. Kulmanov, K. Niu and R. Hoehndorf, Description logic EL++ embeddings with intersectional closure, arXiv preprint
arXiv:2202.14018 (2022).

[48] M. Porta, Interpretability, Oxford University Press, 2016. ISBN 9780199390069. doi:10.1093/acref/9780199976720.013.2221. https:
//www.oxfordreference.com/view/10.1093/acref/9780199976720.001.0001/acref-9780199976720-e-2221.

http://ceur-ws.org/Vol-2456/
https://aclanthology.org/P15-1067
https://www.oxfordreference.com/view/10.1093/acref/9780199976720.001.0001/acref-9780199976720-e-2221
https://www.oxfordreference.com/view/10.1093/acref/9780199976720.001.0001/acref-9780199976720-e-2221


N. J. Jain et al. / Towards Interpretable Embeddings: Aligning Representations with Semantic Aspects 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[49] P. Ristoski and H. Paulheim, Rdf2vec: Rdf graph embeddings for data mining, in: International semantic web conference, Springer, 2016,
pp. 498–514.

[50] A. Rossi, D. Barbosa, D. Firmani, A. Matinata and P. Merialdo, Knowledge graph embedding for link prediction: A comparative analysis,
ACM Transactions on Knowledge Discovery from Data (TKDD) 15(2) (2021), 1–49.

[51] A. Rossi, D. Barbosa, D. Firmani, A. Matinata and P. Merialdo, Knowledge Graph Embedding for Link Prediction: A Comparative Analysis,
ACM Trans. Knowl. Discov. Data 15(2) (2021). doi:10.1145/3424672.

[52] D. Ruffinelli, S. Broscheit and R. Gemulla, You CAN Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings, in:
International Conference on Learning Representations.

[53] T. Safavi and D. Koutra, CoDEx: A Comprehensive Knowledge Graph Completion Benchmark, in: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), B. Webber, T. Cohn, Y. He and Y. Liu, eds, Association for Computational
Linguistics, Online, 2020, pp. 8328–8350. doi:10.18653/v1/2020.emnlp-main.669. https://aclanthology.org/2020.emnlp-main.669.

[54] A. Saxena, A. Tripathi and P. Talukdar, Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embed-
dings, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, D. Jurafsky, J. Chai, N. Schluter
and J. Tetreault, eds, Association for Computational Linguistics, Online, 2020, pp. 4498–4507. doi:10.18653/v1/2020.acl-main.412.
https://aclanthology.org/2020.acl-main.412.

[55] S. Schramm, C. Wehner and U. Schmid, Comprehensible Artificial Intelligence on Knowledge Graphs: A survey, Journal of
Web Semantics 79 (2023), 100806. doi:https://doi.org/10.1016/j.websem.2023.100806. https://www.sciencedirect.com/science/article/pii/
S1570826823000355.

[56] A. Simhi and S. Markovitch, Interpreting Embedding Spaces by Conceptualization, 2023.
[57] F.Z. Smaili, X. Gao and R. Hoehndorf, Onto2vec: joint vector-based representation of biological entities and their ontology-based annota-

tions, Bioinformatics 34(13) (2018), i52–i60.
[58] F.Z. Smaili, X. Gao and R. Hoehndorf, OPA2Vec: combining formal and informal content of biomedical ontologies to improve similarity-

based prediction, Bioinformatics 35(12) (2019), 2133–2140.
[59] Z. Sun, Q. Zhang, W. Hu, C. Wang, M. Chen, F. Akrami and C. Li, A Benchmarking Study of Embedding-based Entity Alignment for

Knowledge Graphs, Proceedings of the VLDB Endowment 13(11) (2020).
[60] Z. Sun, Q. Zhang, W. Hu, C. Wang, M. Chen, F. Akrami and C. Li, A benchmarking study of embedding-based entity alignment for

knowledge graphs, arXiv preprint arXiv:2003.07743 (2020).
[61] K. Toutanova and D. Chen, Observed versus latent features for knowledge base and text inference, in: Workshop on Continuous Vector

Space Models and their Compositionality, 2015. https://api.semanticscholar.org/CorpusID:5378837.
[62] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., Llama: Open

and efficient foundation language models, arXiv preprint arXiv:2302.13971 (2023).
[63] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier and G. Bouchard, Complex Embeddings for Simple Link Prediction, in: Proceedings of The

33rd International Conference on Machine Learning, M.F. Balcan and K.Q. Weinberger, eds, Proceedings of Machine Learning Research,
Vol. 48, PMLR, New York, New York, USA, 2016, pp. 2071–2080. https://proceedings.mlr.press/v48/trouillon16.html.

[64] Q. Wang, Z. Mao, B. Wang and L. Guo, Knowledge graph embedding: A survey of approaches and applications, IEEE transactions on
knowledge and data engineering 29(12) (2017), 2724–2743.

[65] Z. Wang, J. Zhang, J. Feng and Z. Chen, Knowledge graph embedding by translating on hyperplanes, in: Proceedings of the AAAI conference
on artificial intelligence, Vol. 28, 2014.

[66] K. Wiharja, J.Z. Pan, M.J. Kollingbaum and Y. Deng, Schema aware iterative Knowledge Graph completion, J. Web Semant. 65 (2020),
100616.

[67] B. Xiong, N. Potyka, T.-K. Tran, M. Nayyeri and S. Staab, Faithful embeddings for EL++ knowledge bases, in: International Semantic Web
Conference, Springer, 2022, pp. 22–38.

[68] B. Yang, S.W.-t. Yih, X. He, J. Gao and L. Deng, Embedding Entities and Relations for Learning and Inference in Knowledge Bases, in:
Proceedings of the International Conference on Learning Representations (ICLR) 2015, 2015.

[69] H. Yang, J. Chen and U. Sattler, TransBox: EL++-closed Ontology Embedding, in: Proceedings of the ACM Web Conference 2025, Asso-
ciation for Computing Machinery, United States, 2025.

[70] M. Yasunaga, H. Ren, A. Bosselut, P. Liang and J. Leskovec, QA-GNN: Reasoning with Language Models and Knowledge Graphs for
Question Answering, in: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell,
T. Chakraborty and Y. Zhou, eds, Association for Computational Linguistics, Online, 2021, pp. 535–546. doi:10.18653/v1/2021.naacl-
main.45. https://aclanthology.org/2021.naacl-main.45/.

[71] H. Zhao, H. Chen, F. Yang, N. Liu, H. Deng, H. Cai, S. Wang, D. Yin and M. Du, Explainability for Large Language Models: A Survey,
ACM Trans. Intell. Syst. Technol. (2024). doi:10.1145/3639372.

[72] X. Zhu, C. Xu and D. Tao, Where and What? Examining Interpretable Disentangled Representations, in: 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021, pp. 5857–5866. doi:10.1109/CVPR46437.2021.00580.

[73] K. Ziegler, O. Caelen, M. Garchery, M. Granitzer, L. He-Guelton, J. Jurgovsky, P. Portier and S. Zwicklbauer, Injecting Semantic Back-
ground Knowledge into Neural Networks using Graph Embeddings, in: 26th IEEE, WETICE, 2017, pp. 200–205.

https://aclanthology.org/2020.emnlp-main.669
https://aclanthology.org/2020.acl-main.412
https://www.sciencedirect.com/science/article/pii/S1570826823000355
https://www.sciencedirect.com/science/article/pii/S1570826823000355
https://api.semanticscholar.org/CorpusID:5378837
https://proceedings.mlr.press/v48/trouillon16.html
https://aclanthology.org/2021.naacl-main.45/

	Introduction
	Preliminaries
	Knowledge Graphs
	Knowledge Graph Embeddings
	Conceptual Spaces and Interpretable Dimensions

	Related work
	Explainability in Large Models
	Semantics in KG Embeddings
	KG Embeddings and Ontologies
	Interpretable Dimensions

	Data Analysis and Selecting Entity Aspects
	YAGO
	Freebase
	LLMs for automated extraction of entity aspects

	InterpretE
	Feature Selection
	Dataset Curation
	Derivation of Interpretable Vectors

	Experiments
	KG Embedding Models
	Classifier Training and Optimization
	Evaluation of InterpretE Vector Space
	Evaluation of Semantic Similarity
	Discussion

	Conclusion and Future Work
	Acknowledgements.

	References

