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Abstract. With the widespread adoption of Deep Learning techniques, the need for explainability and trustworthiness is in-
creasingly critical, especially in safety-sensitive applications and for improved debugging, given the black-box nature of these
models. The Explainable AI (XAI) literature offers various helpful techniques; however, many approaches use a secondary deep
learning-based model to explain the primary model’s decisions or require domain expertise to interpret the explanations. A rel-
atively new approach involves explaining models using high-level, human-understandable concepts. While these methods have
proven effective, an intriguing area of exploration lies in using a white-box technique to explain the probing model.

We present a novel, model-agnostic, post-hoc Explainable AI method that provides meaningful interpretations for hidden neu-
ron activations. Our approach leverages a Wikipedia-derived concept hierarchy, encompassing approximately 2 million classes
as background knowledge, and uses deductive reasoning-based Concept Induction to generate explanations. Our method demon-
strates competitive performance across various evaluation metrics, including statistical evaluation, concept activation analysis,
and benchmarking against contemporary methods. Additionally, a specialized study with Large Language Models (LLMs) high-
lights how LLMs can serve as explainers in a manner similar to our method, showing comparable performance with some
trade-offs. Furthermore, we have developed a tool called ConceptLens, enabling users to test custom images and obtain expla-
nations for model decisions. Finally, we introduce an entirely reproducible, end-to-end system that simplifies the process of
replicating our system and results.

Keywords: Explainable AI, Neurosymbolic AI, Concept Induction, Background Knowledge

1. Introduction

Deep Learning solutions have been proven to be useful in a plethora of tasks in fields such as Computer Vision,
Natural Language Processing, Signal Processing, etc. By tuning numerous neural network connection weights,
decisions are driven towards their intended outcome repeatedly during the training process which in turn maximizes
the likelihood of expected outcome during the inference phase. Such inferences incorporate a substantial amount
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of vector/matrix computations which are often untraceable in that, the sheer number of computations renders it
impossible to be used as justifications of inference outcomes.

There are numerous techniques available to quantitatively and qualitatively measure such black-box models’
performance. However, attaining justification by cleverly peeking into the models’ internal mechanisms is a separate
field, popularly termed as Explainable AI. The need for Explainable AI techniques designed for Deep Learning
applications is manifold such as:

– Bias Detection and Mitigation: Explanations can help unfold underlying potential biases in the data or model
which allows adjustments to ensure fairness

– Improving Model Performance: Explanations can serve as additional debugging information providing insight
into potential errors, underfitting, or overfitting. Thus, allowing targeted improvements and refinement of mod-
els. Additionally, explanation can also highlight what features are most influential in the model’s predictions.

– Ensuring Safety and Transparency: Explanations can serve AI Applications in Healthcare, Autonomous Ve-
hicles, Finance by explaining their decisions which permits safe adoption of Deep Learning methods in such
critical applications.

There are various families of XAI techniques – based on stages of explanation modeling: Ante-hoc, Post-hoc
methods; based on scope of explainability: Global, Local methods; based on output formats: numerical, rule-based,
textual, visual [1]. Some of the popular methods belonging to these families are: CAM [73], Grad-CAM [59],
LIME [53], SHAP [40]. A relatively recent effort aiming more user-understandable explanations has given to de-
velop Concept-based Explainable AI (C-XAI) methods [50]. Some of the recent C-XAI methods are: T-CAV [30],
CAR [13], CaCE [21], ACE [19], ICE [20]. An in-depth review of existing XAI methods is discussed in Section 2.

Many XAI techniques rely on intricate low-level data features projected into a higher-dimensional space in their
explanations, limiting their accessibility to users with domain expertise [41, 53, 59]. Some of these methods have
shown vulnerability to adversarial tampering; altering attributed features does not induce a change in the model’s
decision [5, 61, 63]. The C-XAI approaches employ manually selected concepts that are measured for their corre-
lation with model outcomes [13, 30]. However, a significant question remains unanswered: whether the limited set
of chosen concepts can offer a comprehensive understanding of the model’s decision-making process. The absence
of a systematic approach to consider a wide range of potential concepts that may influence the model appears to be
the bottleneck. In some techniques [46], a list of frequently occurring English words has been utilized to represent a
broad concept pool, which may suffice for general applications but lacks granularity for specialized fields like gene
studies or medical diagnoses, as the curation of the concept pool does not provide low-level control over defining
natural relationships among concepts. An interesting aspect of XAI technique exploration is to have an explainer
method that in itself does not utilize Deep Learning, but instead relies on symbolic, knowledge-based processing.
Such an XAI method can be considered as a white-box method which is innately explainable.

Herein, we present a Neurosymbolic XAI approach using symbolic reasoning in the form of Concept Induction.
The approach is motivated by several key principles. Firstly, explanations should be understandable to end-users
without requiring intimate familiarity with deep learning models. Secondly, there should be a systematic organi-
zation of human-understandable concepts with well-defined relationships among them. The extraction of relevant
concepts for explaining a deep learning model’s decision-making process from this defined concept pool should be
automatic, thus eliminating the bottleneck of manual curation prone to confirmation bias. Another significant goal
is that the explanation generation technique itself should be inherently interpretable, avoiding the use of black-box
methods. Our approach also incorporates a rigorous evaluation protocol encompassing various dimensions.

Concept Induction as core mechanism is based on formal logic reasoning (in the Web Ontology Language OWL
[27, 54]) and has originally been developed for Semantic Web [26] applications [37]. The benefits of our approach
are: (a) it can be used on unmodified and pre-trained deep learning architectures, (b) it assigns explanation cate-
gories (i.e., class labels expressed in OWL) to hidden neurons such that images related to these labels activate the
corresponding neuron with high probability, (c) it is inherently self-explanatory as it is based on symbolic deductive
reasoning, and (d) it can construct labels from a very large pool of interconnected categories.

We demonstrate that a background knowledge with the skeleton of an ontology coupled with the inherently
explainable deductive reasoning (Concept Induction) should be capable of generating meaningful explanations for
the deep learning model we wish to explain. To show that our approach can indeed provide meaningful explanations
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for hidden neuron activation, we instantiate it with a Convolutional Neural Network (CNN) architecture for image
scene classification (trained on the ADE20K dataset [76]) and a class hierarchy (i.e., a simple ontology) of approx.
2 · 106 classes derived from Wikipedia as the pool of explanation categories [57].

Our findings suggest that our method performs competitively, as assessed through Concept Activation analysis,
which measures the relevance of concepts within the hidden layer activation space, and through statistical evaluation.
When compared to other techniques such as CLIP-Dissect [46], a pre-trained multimodal Explainable AI model,
and GPT-4 [49], an off-the-shelf Large Language Model, our approach demonstrates both strong quantitative and
qualitative performance.

The existing literature emphasizes the importance of labeling neuron with concepts, the focus is mostly on iden-
tifying what concepts activate a neuron; corresponding to the notion of recall in information retrieval. We argue that
in C-XAI, attempting to explain a Neural Network through concepts is a two-step process. If a neuron is consis-
tently activated when the concept of Sky is present in an image (i.e. Recall with respect to neuron label Sky) and is
assigned with the concept label of Sky; it is equally important to asses the neuron’s activation when only concepts
other than Sky e.g. River, Skyscraper, etc are present in the images (i.e. Precision with respect to neuron label Sky). If
the neuron is activated for many concepts other than Sky, the usefulness of such a C-XAI method which attempts to
explain a neural network with concepts diminishes. The gap between high recall and low precision, in other words
– high false positive rate renders a C-XAI neuron labeling method unreliable. That this occurs is of course not at
all unexpected: it is entirely reasonable to assume that any information conveyed by hidden neuron activations be
distributed, i.e., neurons naturally react to various stimuli, while specific information is indicated by simultaneous
activation of neuron groups.

To that extent, we also present an analysis (based on [15]) which shows that our Neurosymbolic C-XAI method
(based on [16]) achieves high recall as well as precision when labeling neuron with concepts. We do this by assigning
error margins to neuron target labels. If a neuron is activated by a stimulus, then the error margin indicates the
likelihood that the stimulus indeed falls under the neuron’s target label, and this likelihood can be conveyed to the
user. The error margins are statistically validated by means of data obtained from a user experiment conducted on
Amazon Mechanical Turk.

We also include a special study to test the capability of LLMs as a concept discovery method to be used as a
substitute of Concept Induction [7]. Our method discussed in Section 3 uses a heuristic implementation called ECII
(Efficient Concept Induction from Individuals) [55] for explanation generation. We were interested to assess LLM’s
common-sense reasoning capability leveraging their vast domain knowledge for automated concept discovery in
the same setting of Scene Classification using a CNN model. We have used GPT-4 to label neurons with high-level
concepts through prompt engineering by essentially replacing ECII. Acknowledging the apparent trade-off of this
method being a black-box XAI method as opposed to ECII being a white-box XAI method, human assessment
conducted through Amazon Mechanical Turk to assess how meaningful the generated explanations are to humans,
we find that while human-generated explanations remain superior, concepts derived from GPT-4 are more compre-
hensible to humans compared to those generated by ECII.

Core contributions of the paper are as follows.

1. A novel zero-shot model-agnostic C-XAI method that explains existing pre-trained deep learning models
through high-level human understandable concepts, utilizing symbolic reasoning over an ontology (or Knowl-
edge Graph schema) as the source of explanation, which achieves state-of-the-art performance and is explain-
able by its nature.

2. A method to automatically extract relevant concepts through Concept Induction for any concept-based Ex-
plainable AI method, eliminating the need for manual selection of Label Hypothesis concepts.

3. An in-depth comparison of explanation sources using statistical analysis for the hidden neuron perspective
and Concept Activation analysis for the hidden layer perspective of our approach, a pre-trained multimodal
Explainable AI method (CLIP-Dissect [46]), and a Large Language Model (GPT-4 [49]).

4. Introduction of error margins to neuron target labels to provide a quantitative measure of confidence for con-
cept detection in Image Analysis tasks.

5. A fully automated end-to-end system to use Concept Induction to interpret neurons’ in terms of concepts in a
CNN [4], discussed in Section 5.
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6. ConceptLens: A demonstrator designed to represent the concepts that trigger neuron activations in a CNN
[14], discussed in Section 6.

Our work shows that combining symbolic reasoning with LLMs offers a powerful approach for producing ex-
plainable, human-understandable insights from deep learning models. This combination promises to improve both
the interpretability and the performance of XAI techniques, providing more trustworthy and reliable AI systems.

The structure of this paper is as follows: in Section 2, we discuss some of the important related research efforts.
In Section 3, we present the main method Concept Induction and core findings. Following that, in Section 4 we
discuss the use of LLMs as a substitute for Concept Induction, in Section 5 we present the end-to-end automated
tool, and in Section 6 we discuss the tool ConceptLens. In Section 7 we conclude.

This paper is an extended merger of several conference contributions: [16] is the central one for the overall
narrative; [15] is an extension with a finer-grained analysis; [7] goes in detail on using LLMs as an alternative to
concept induction; [4] reports on our automation of the analysis process (see Section 5); This paper extends these by
providing a joint perspective, additional literature review, more discussion, and a demonstrator system (see Section
6) previously only reported as a pre-print [14].

2. Related Work

The need for explainable AI (XAI) has gained significant momentum since the 1970s with the growing complexity
and opacity of deep learning models [36]. As AI is increasingly applied in diverse domains, explaining the rationale
behind AI decisions is critical for trust and transparency [3, 23, 43]. Various methods have been proposed to achieve
explainability, categorized primarily into approaches that focus on understanding features (e.g., feature summariz-
ing [53, 58]) and those that focus on the model’s internal units (e.g., node summarizing [8, 75]). Model-agnostic
methods such as LIME [53] and SHAP [40] aim to explain model predictions by assessing feature importance,
while other techniques rely on counterfactual questions for human interpretability [68]. However, feature attribution
methods like LIME and SHAP face challenges such as instability [5] and bias susceptibility [63]. Another such
work, Individual Conditional Expectation (ICE) [20] is a tool to visualize complex relationships between predictors
and responses, allowing for a more granular view than traditional partial dependence plots. Though generating ICE
plots can be computationally intensive, their model-agnostic nature allows them to interpret various "black box"
models, enhancing flexibility across algorithms. [73] presents a pixel attribution method that uses global average
pooling and Class Activation Mapping (CAM) to enable convolutional neural networks (CNNs) to perform object
localization, even when only trained on image-level labels. Another work Grad-CAM [59] generalizes CAM by us-
ing the gradients of target classes flowing into the last convolutional layer to produce localization maps, thus making
it compatible with a broader range of CNN models. Pixel attribution techniques, although useful for image-based
models, encounter limitations with activation functions like ReLU and are prone to adversarial attacks [33, 61].
[29] introduces a framework for interpreting image representation features by identifying human-understandable
concepts through contrasting high- and low-activation images. But the framework depends on a pre-trained vision-
language model (i.e., CLIP), which may lack sufficient representation when applied to models trained on niche or
uncommon datasets.

Recent works have introduced concept-based approaches, which provide human-understandable explanations by
linking model behavior to predefined concepts. For instance, methods like TCAV [30] use human-provided con-
cepts, while ACE [19] utilizes image segmentation and clustering to derive automated concepts. However, these
approaches may lose information during segmentation or fail to capture low-level details. In another work, the
limitations of TCAV approach are addressed for concept-based explanations in deep neural networks and concept
activation region (CAR) [13] is introduced. It allows for the nonlinear separability of concepts in the latent space, of-
fering better accuracy and alignment with human-understandable concepts. In [21] the authors introduce the Causal
Concept Effect (CaCE) to measure the causal impact of high-level, human-interpretable concepts on a classifier’s
predictions, aiming to reduce confounding errors common in correlation-based interpretability methods. Although
CaCE estimation relies on the accuracy of generative models, such as VAEs [34], which may not fully capture
the true causal relationships in complex, real-world datasets. Other methods such as Concept Bottleneck Models
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(CBM) [35] and Post-hoc CBM [72] attempt to map neural network models to human-interpretable concepts, but
they often rely on hand-picked concepts, requiring significant human input and manual curation. [69, 71] make
use of Concept Bottleneck techniques to achieve interpretability in Image Classification. [69] represents an image
solely by the presence/absence of concepts learned through training over the target task without explicit supervi-
sion over the concepts. [71] uses GPT-3 to produce factual sentences about categories to form candidate concepts.
[60, 64] study performing interventional interactions by updating concept values to rectify predictive outputs of the
model. [10] extends CBMs to interactive prediction settings by developing an interaction policy which, at prediction
time, chooses which concepts to request a label for. [31] introduces probabilistic concept-embeddings which models
uncertainty in concept prediction and provides explanations based on the concept and its corresponding uncertainty.

The application of background knowledge, including the use of large ontologies, has been explored to generate
more automated and systematic explanations. Semantic Web technologies [11, 17] and methods like Concept In-
duction [51, 56] have demonstrated the utility of formal logic and structured data to explain deep learning models,
though these approaches often focus on input-output relationships rather than internal model activations. While
methods such as Network Dissection (e.g., [75]) provide valuable insights by mapping hidden units with seman-
tic concepts by comparing neuron activations against a pre-defined set of labels (typically derived from human-
annotated datasets), they do not capture the full hierarchical and dynamic nature of learned concepts, nor do they
incorporate an explicit reasoning process. Notably, CLIP-Dissect [46] employs zero-shot learning to associate im-
ages with labels using a pre-trained CLIP model, but this method is limited by its accuracy in predicting labels from
hidden layers and its transferability across domains. Building upon this, Label-Free Concept Bottleneck Models [47]
leverage GPT-4 [49] for concept generation, but similar to CLIP-Dissect, they face limitations in explainability and
domain adaptability. [22] propose a novel knowledge-aware neuron interpretation framework to explain model pre-
dictions for image scene classification, using core concepts of a scene based on a knowledge graph, ConceptNet.
In [6], neural networks do not make task predictions directly, but they build syntactic rule structures using con-
cept embeddings. The Deep Concept Reasoner executes these rules on meaningful concept truth degrees to provide
semantically-consistent and differentiable predictions. [65] uses Segment Anything Model (SAM) in a lightweight
per-input equivalent scheme to enable efficient explanation with a surrogate model. [45] introduces quantization for
sparse decision layers in an iterative fine-tuning loop which leads to a quantized self-explaining neural network.

Recent trends highlight the potential of large language models (LLMs) to bridge the gap between model com-
plexity and human-understandable explanations. LLMs like GPT-3 and GPT-4 have been used in few-shot learning
contexts to generate concepts with minimal human intervention [47], providing a scalable solution to automated
concept discovery. However, these approaches still require post-processing to filter and refine generated concepts
for practical use [12, 70]. While LLMs show promise in automating concept generation, challenges remain in align-
ing explanations with human common sense and ensuring that they cater to diverse user needs, whether system
developers or end-users.

Our approach distinguishes itself by leveraging symbolic deductive reasoning over a comprehensive background
knowledge base derived from Wikipedia, comprising approximately 2 million interconnected classes to generate
explanations. Unlike methods that depend on manual selection or post-hoc filtering of candidate concepts, our
framework systematically extracts human-understandable labels directly from this knowledge base, reducing po-
tential biases and ensuring scalability. Moreover, by operating as a white-box system, Concept Induction provides
inherent transparency: each explanation can be traced back to logical reasoning steps, which contrasts with black-
box methods as discussed above that do not reveal the underlying rationale behind their output. In this way, our
approach not only offers improved interpretability but also facilitates a more scalable and systematic framework for
understanding and comparing neuron activations.

3. A Neurosymbolic Approach with Concept Induction

We explore and evaluate three concrete methods to generate high-level concepts for explaining hidden neuron
activations. Fig. 1 is a high-level depiction of our workflow. Fig. 1 and its components are further discussed below
and throughout the paper. In section 3.1 we present preparations regarding the scenario, the CNN training, and Con-
cept Induction. In section 3.2 we provide details on our three label hypothesis generation approaches. In section 3.3
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Fig. 1. An overview of the complete pipeline explored in this paper where Concept Extraction outlines the methods used to extract Target
Concepts and Concept Evaluation outlines the evaluation methods.

we describe our different evaluation protocols. In section 3.4 we provide evaluation results, followed by additional
discussion in section 3.5.

3.1. Preliminaries

In this section, we describe the experimental setup that underpins our evaluation of Concept Induction. We begin
by outlining the scenario used to demonstrate our approach, including the selection of image data, training of a
CNN, and the integration of background knowledge for concept extraction. These preparatory steps set the stage for
a detailed explanation of our methodology, which is further elaborated in the following sub-sections.

3.1.1. Scenario and CNN Training
We use a scene classification from images scenario to demonstrate our approach, drawing from the ADE20K

dataset [76] which contains more than 27,000 images over 365 scenes, extensively annotated with pixel-level objects
and object part labels. The annotations are not used for CNN training, but rather only for generating label hypotheses
that we will describe in Section 3.2.1.

We train a classifier for the following scene categories: “bathroom,” “bedroom,” “building facade,” “conference
room,” “dining room,” “highway,” “kitchen,” “living room,” “skyscraper,” and “street.” We selected scene categories
with the highest number of images, and we deliberately include some scene categories that should have overlapping
annotated objects – we believe this makes the hidden node activation analysis more interesting. We did not previ-
ously conduct any experiments on any other scene selections, i.e., we did not change our scene selections based on
any preliminary analyses.

We trained a number of CNN architectures in order to use the one with highest accuracy, namely Vgg16 [62],
InceptionV3 [66] and different versions of Resnet – Resnet50, Resnet50V2, Resnet101, Resnet152V2 [24, 25]. Each
neural network was fine-tuned with a dataset of 6,187 images (training and validation set) of size 224× 224 for 30
epochs with early stopping1 to avoid overfitting. We used Adam as our optimization algorithm, with a categorical
cross-entropy loss function and a learning rate of 0.001.

We select Resnet50V2 because it achieves the highest accuracy (see Table 1). Note that for our investigations,
which focus on explainability of hidden neuron activations, achieving a very high accuracy for the scene classifi-
cation task is not essential, but a reasonably high accuracy is necessary when considering models which would be
useful in practice.

1monitor validation loss; patience 3; restore weights
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Table 1
Performance (accuracy) of different architectures on the ADE20K dataset. The system we used, based on performance, is in bold.

Architectures Training acc Validation acc
Vgg16 80.05% 46.22%
InceptionV3 89.02% 51.43%
Resnet50 35.01% 26.56%
Resnet50V2 87.60% 86.46%
Resnet101 53.97% 53.57%
Resnet152V2 94.53% 51.04%

3.1.2. Concept Induction
Concept Induction [37] is based on deductive reasoning over description logics, i.e., over logics relevant to on-

tologies, knowledge graphs, and generally the Semantic Web field [26, 27] including the W3C OWL standard [54].
Concept Induction has been demonstrated in other scenarios to produce meaningful labels for human interpreta-
tion [70]. A Concept Induction system accepts three inputs,

– a set of positive examples P,
– a set of negative examples N, and
– a knowledge base (or ontology) K,

all expressed as description logic theories, and all examples x ∈ P ∪ N occur as individuals (constants) in K. It
returns description logic class expressions E such that K |= E(p) for all p ∈ P and K ̸|= E(q) for all q ∈ N. If no
such class expressions exist, then it returns approximations for E together with a number of accuracy measures.

For scalability reasons [57], we use the heuristic Concept Induction system ECII [55] together with a background
knowledge base that consists only of a hierarchy of approximately 2 million classes, curated from the Wikipedia
concept hierarchy and presented in [57]. We use coverage as accuracy measure, defined as

coverage(E) =
|{p ∈ P | K |= E(p)}|+ |{n ∈ N | K ̸|= E(n)}|

|P ∪ N|
, (1)

with P, N, K as above.
For our setting, positive and negative example sets contain images from ADE20K, i.e., we include the images in

the background knowledge by linking them to the class hierarchy. For this, we use the object annotations available
for the ADE20K images, but only part of the annotations for simplicity and scalability. More precisely, we only use
the information that certain objects (such as Windows) occur in certain images, and we do not make use of any of the
richer annotations such as those related to segmentation.2 All objects from all images are then mapped to classes in
the class hierarchy using the Levenshtein string similarity metric [38] with edit distance 0. This metric computes the
minimum number of single-character edits (insertions, deletions, or substitutions) required to transform one string
into another, and we normalize the result to assess the degree of similarity between the strings. Mapping is in fact
automated using the “combine ontologies” function of ECII.

3.2. Generating Label Hypotheses

In the following, we detail the components shown in Fig. 1. We explain our use of Concept Induction for gener-
ating explanatory concepts, followed by our utilization of CLIP-Dissect and GPT-4 for the same. We describe our
three evaluation approaches in Section 3.3.

2In principle, complex annotations in the form of sets of OWL axioms could of course be used, if a Concept Induction system is used that can
deal with them, such as DL-Learner [37]. However DL-Learner does not quite scale to our size of background knowledge and task [56].
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3.2.1. Generating Label Hypotheses using Concept Induction
The general idea for generating label hypotheses using Concept Induction is as follows: given a hidden neuron,

P is a set of inputs (i.e., in this case, images) to the deep learning system that activate the neuron, and N is a set of
inputs that do not activate the neuron (where P and N are the sets of positive and negative examples, respectively).
As mentioned above, inputs are annotated with classes from the background knowledge for Concept Induction,
but these annotations and the background knowledge are not part of the input to the deep learning system. ECII
generates a label hypothesis3 for the given neuron on inputs P, N, and the background knowledge.

We first feed 1,370 ADE20K images to our trained Resnet50V2 and retrieve the activations of the dense layer. We
chose to look at the dense layer because previous studies indicate [48] that earlier layers of a CNN respond to low
level features such as lines, stripes, textures, colors, while layers near the final layer respond to higher-level features
such as face, box, road, etc. The higher-level features align better with the nature of our background knowledge.
The dense layer consists of 64 neurons, and we analyze each separately. Activation patterns involving more than
one neuron are likely also informative in the sense that information may be distributed among several neurons, but
this will be part of future investigations.

For each neuron, we calculate the maximum activation value across all images. We then take the positive example
set P to consist of all images that activate the neuron with at least 80% of the maximum activation value, and
the negative example set N to consist of all images that activate the neuron with at most 20% of the maximum
activation value (or do not activate it at all). We selected these thresholds as our best guess (further refinement may
be possible in future) based on experimental observations to ensure that the positive set is predominantly comprised
of images in which the target concept is clearly expressed, while the negative set is limited to images with minimal
or no activation, thereby reducing overlap and enhancing the reliability of the subsequent concept extraction. The
highest scoring response of running ECII on these sets, together with the background knowledge described above,
is shown in Table 2 for each neuron, together with the coverage of the ECII response. For each neuron, we call its
corresponding label the target label, e.g., neuron 0 has target label “building.” Note that some target labels consist
of two concepts, e.g., “footboard, chain” for neuron 49 – this occurs if the corresponding ECII response carries two
class expressions joined by a logical conjunction, i.e., in this example “footboard ⊓ chain” (as description logic
expression) or footboard(x) ∧ chain(x) expressed in first-order predicate logic.

We give an example, depicted in Figure 2, for neuron 1. The green and red boxed images show positive and
negative examples for neuron 1. Concept Induction yields "cross_walk" as target label. The example is continued
below.

3.2.2. CLIP-Dissect
CLIP-Dissect [46] is a zero-shot Explainable AI method that associates high-level concepts with individual neu-

rons in a designated layer. It utilizes the pre-trained multimodal model CLIP [52] to project a set of concepts and a
set of images into shared embedding space. Using Weighted Pointwise Mutual Information, it assesses the similari-
ties between concepts and images in the hidden layer activation space to assign a concept to a neuron.

First, CLIP-Dissect uses a set of the most common 20,000 English vocabulary words as concepts. Then, we
collect activations from our ResNet50v2 trained model for the ADE20K test images. This results in a matrix of
dimensions (Number of Images × 64), where each row in the matrix represents an image through its 64 hidden
neuron activation values. With these two sets of input, CLIP-Dissect assigns a label to each neuron such that the
neuron is most activated when the corresponding concept is present in the image. This yields 22 unique concepts
for the 64 neurons, with duplicate concepts for several neurons.

3.2.3. GPT-4
We employ a Large Language Model (LLM) for concept selection. Specifically, we use GPT-4, which repre-

sents the latest advancement in generative models and offers improved reliability, outperforming existing LLMs
across various tasks [49]. These models appear capable of generating concepts essential for distinguishing between
different image classes when prompted effectively [47].

For this approach, we use the same positive (P) and negative (N) example sets from Section 3.1.2, with some
minor adjustments: For Concept Induction, the negative example set (N) comprises all images that activate the

3In fact, it generates several, ranked, but we use only the highest ranked one for now.
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Table 2
Concept Induction – The omitted neurons were not activated by any image, i.e., their maximum activation value was 0. Images: Number of
images used per label. Target %: Percentage of target images activating the neuron above 80% of its maximum activation. Non-Target %: The
same, but for all other images. Bold denotes the 20 neurons whose labels are considered confirmed.

Neuron Obtained Label(s) Images Coverage Target % Non-Target %

0 building 164 0.997 89.024 72.328
1 cross_walk 186 0.994 88.710 28.923
3 night_table 157 0.987 90.446 56.714
6 dishcloth, toaster 106 0.999 16.038 39.078
7 toothbrush, pipage 112 0.991 75.893 59.436

8 shower_stall, cistern 136 0.995 100.000 53.186
11 river_water 157 0.995 31.847 22.309
12 baseboard, dish_rag 108 0.993 75.926 48.248
14 rocking_horse, rocker 86 0.985 54.651 47.816
16 mountain, bushes 108 0.995 87.037 24.969
17 stem 133 0.993 30.827 31.800
18 slope 139 0.983 92.086 69.919
19 wardrobe, air_conditioning 110 0.999 89.091 65.034
20 fire_hydrant 158 0.990 5.696 13.233
22 skyscraper 156 0.992 99.359 54.893
23 fire_escape 162 0.996 61.111 18.311
25 spatula, nuts 126 0.999 2.381 0.883
26 skyscraper, river 112 0.995 77.679 35.489
27 manhole, left_arm 85 0.996 35.294 26.640
28 flooring, fluorescent_tube 115 1.000 38.261 33.198

29 lid, soap_dispenser 131 0.998 99.237 78.571
30 teapot, saucepan 108 0.998 81.481 47.984
31 fire_escape 162 0.961 77.160 63.147
33 tanklid, slipper 81 0.987 41.975 30.214
34 left_foot, mouth 110 0.994 20.909 49.216

35 utensils_canister, body 111 0.999 7.207 11.223
36 tap, crapper 92 0.997 89.130 70.606
37 cistern, doorcase 101 0.999 21.782 24.147
38 letter_box, go_cart 125 0.999 28.000 31.314
39 side_rail 148 0.980 35.811 34.687

40 sculpture, side_rail 119 0.995 25.210 21.224
41 open_fireplace, coffee_table 122 0.992 88.525 16.381
42 pillar, stretcher 117 0.998 52.137 42.169
43 central_reservation 157 0.986 95.541 84.973
44 saucepan, dishrack 120 0.997 69.167 36.157

46 Casserole 157 0.999 45.223 36.394
48 road 167 0.984 100.000 73.932
49 footboard, chain 126 0.982 88.889 66.702
50 night_table 157 0.972 65.605 62.735
51 road, car 84 0.999 98.810 48.571
53 pylon, posters 104 0.985 11.538 17.332
54 skyscraper 156 0.987 98.718 70.432
56 flusher, soap_dish 212 0.997 90.094 63.552
57 shower_stall, screen_door 133 0.999 98.496 31.747
58 plank, casserole 80 0.998 3.750 3.925

59 manhole, left_arm 85 0.994 35.294 21.589
60 paper_towels, jar 87 0.999 0.000 1.246
61 ornament, saucepan 102 0.995 43.137 17.274
62 sideboard 100 0.991 21.000 29.734
63 edifice, skyscraper 178 0.999 92.135 48.761
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Fig. 2. Example of images that were used for generating and confirming the label hypothesis for neuron 1.

neuron with at most 20% of the maximum activation value. Due to constraints on having a large number of negative
image tags as input to GPT-4, we select only one image per class of images for each neuron to create the negative
example set (N). The positive image set (P) remain unchanged, given its smaller size. All these images are sourced
from the ADE20K dataset as before and are labeled with object tags present in the image.

Object tags from these images are passed into GPT-4 via the OpenAI API using prompts to generate explanations
aimed at discerning the distinguishing features present in the positive set (P) that were absent in the negative set (N).
These explanations were treated as concepts, and we generated a top-three list of concepts for each neuron using
zero-shot prompting. For each neuron, we ran the prompt with the following parameters:

– Positive example set: object tags of all positive images (P)
– Negative example set: object tags of all negative images (N)
– Prompt question: Generate the top three classes of objects or general scenario that better represent what images

in the positive set (P) have but the images in the negative set (N) do not.

We employ the most recent version of the GPT-4 model for this task, with the model’s temperature set to 0
and top_p to 1. These parameters significantly influence the output diversity of GPT-4: higher temperatures (e.g.,
0.7) lead to more varied and imaginative text, whereas lower temperatures (e.g., 0.2) produce more focused and
deterministic responses. Setting the temperature to 0 theoretically selects the most probable token at each step,
with minor variations possible due to GPU computation nuances even under deterministic settings. In contrast to
temperature sampling, which modulates randomness in token selection, top_p sampling restricts token selection to
a subset (the nucleus) based on a cumulative probability mass threshold (top_p). OpenAI’s documentation advises
adjusting either temperature or top_p but not both simultaneously to control model behavior effectively. For our
study, setting the temperature to 0 ensured consistency and reproducibility across outputs. More detailed information
regarding the experimental setup and complete prompt can be found in section 4 below.

Although three concepts were generated for each neuron, we selected only one concept per neuron for analysis,
resulting in 64 unique concepts, with several neurons having duplicate concepts.
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3.3. Concept Evaluation Protocols

We describe the two evaluations, Statistical and Concept Activation Analysis, that we have performed for each
of the concept selection methods, as depicted in Fig.1. We also describe an additional Error Margin Analysis, in
section 3.3.3, that goes deeper on the Concept Induction scenario.

3.3.1. Statistical Evaluation
Confirming Label Hypotheses The three approaches described above produce label hypotheses for all investigated
neurons – hypotheses that we will confirm or reject by testing the labels with new images. We use each of the target
labels to search Google Images with the labels as keywords (requiring responses to be returned for both keywords
if the label is a conjunction of classes, for Concept Induction). We call each such image a target image for the
corresponding label or neuron. We use Imageye4 to automatically retrieve the images, collecting up to 200 images
that appear first in the Google Images search results, filtering for images in JPEG format and with a minimum size
of 224x224 pixels (conforming to the size and format of ADE20K images).

For each retrieval label, we use 80% of the obtained images, reserving the remaining 20% for the statistical
evaluation described later in the section. The number of images used in the hypothesis confirmation step, for each
label, is given in the tables. These images are fed to the network to check (a) whether the target neuron (with
the retrieval label as target label) activates, and (b) whether any other neurons activate. The Target % column of
Tables 2, 3, and 4 show the percentage of the target images that activate each neuron.

Returning to our example neuron 1 in the Concept Induction case (Fig. 2), 88.710% of the images retrieved with
the label “cross_walk” activate it. However, this neuron activates only for 28.923% (indicated in the Non-Target %
column) of images retrieved using all other labels excluding “cross_walk.”

We define a target label for a neuron to be confirmed if it activates for ⩾ 80% of its target images regardless of
how much or how often it activates for non-target images. The cut-offs for neuron activation and label hypothesis
confirmation are chosen to ensure strong association and responsiveness to images retrieved under the target label,
but 80% is somewhat arbitrary and could be chosen differently.

For our example neuron 1, we retrieve 233 new images with the keyword “cross_walk,” 186 of which (80%) are
used in this step. 165 of these images, i.e., 88.710% activate neuron 1. Since 88.710 ⩾ 80, we consider the label
“cross_walk” confirmed for neuron 1.

After this step, we arrive at a list of 19 (distinct) confirmed labels from Concept-Induction, 5 (distinct) confirmed
labels from CLIP-Dissect, and 14 (distinct) confirmed labels from GPT-4, as listed in Table 5.

Label Validation After generating the confirmed labels (as above), we evaluate the node labeling using the remain-
ing images from those retrieved from Google Images as described earlier. Results are shown in Table 5, omitting
neurons that were not activated by any image, i.e., their maximum activation value was 0.

We consider each neuron-label pair (rows in Table 5) to be a hypothesis, e.g., for neuron 1 in Table 5, the hypoth-
esis is that it activates more strongly for images retrieved using the keyword “cross_walk” than for images retrieved
using other keywords. The corresponding null hypothesis is that activation values are not different. Table 5 shows
the 20 hypotheses from Concept Induction to test, corresponding to the 20 neurons with confirmed labels from
method Concept Induction (recall that a double label such as neuron 16’s “mountain, bushes” is treated as one label
consisting of the conjunction of the two keywords.)

Similarly, Table 5 also lists the 8 hypotheses to test, corresponding to the 8 neurons with confirmed labels from
method CLIP-Dissect, and the 27 hypotheses to test, corresponding to the 27 neurons with confirmed labels from
method GPT-4.

There is no reason to assume that activation values would follow a normal distribution, or that the preconditions
of the central limit theorem would be satisfied. We therefore base our statistical assessment on the Mann-Whitney
U test [42] which is a non-parametric test that does not require a normal distribution. Essentially, by comparing
the ranks of the observations in the two groups, the test allows us to determine if there is a statistically significant
difference in the activation percentages between the target and non-target labels.

4https://chrome.google.com/webstore/detail/image-downloader-imageye/agionbommeaifngbhincahgmoflcikhm
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Table 3
CLIP-Dissect – The omitted neurons were not activated by any image, i.e., their maximum activation value was 0. Images: Number of images
used per label. Target %: Percentage of target images activating the neuron above 80% of its maximum activation. Non-Target %: The same, but
for all other images. Bold denotes the 8 neurons whose labels are considered confirmed.

Neuron Obtained Label(s) Images Target % Non-target%

0 restaurants 140 55.000 59.295
1 restaurants 140 32.143 33.851
3 dresser 171 95.322 66.199
6 dining 153 7.190 50.195
7 bathroom 153 93.333 44.113
8 restaurants 140 24.286 37.957
11 highway 153 14.063 25.153
12 street 140 5.797 50.253
14 file 160 54.375 69.867
16 bathroom 171 2.000 31.722

17 furnished 169 62.130 36.390
18 dining 153 93.464 74.448
19 bathroom 149 77.333 56.471
20 buildings 107 13.725 19.610
22 road 258 51.550 46.487
23 bedroom 123 0.637 18.823

25 restaurants 140 12.857 5.044
26 restaurants 140 2.143 44.552
27 bedroom 150 2.548 27.763
28 dining 153 9.150 40.747
29 street 150 78.261 66.277

30 bed 150 29.375 36.154
31 mississauga 146 30.137 57.175
33 bathroom 150 80.667 32.955
34 microwave 102 3.922 50.240
35 roundtable 72 16.667 14.932

36 municipal 154 51.299 67.002
37 bed 160 8.125 17.670
38 bathroom 150 90.667 32.566
39 restaurants 140 26.429 39.961
40 dining 153 5.882 32.143

41 bedroom 157 64.968 34.428
42 room 156 35.897 45.206
43 highways 128 100.000 61.900
44 buildings 153 9.150 38.377
46 restaurants 140 23.571 33.269

48 bedroom 157 8.917 60.241
49 bedroom 157 95.541 55.917
50 bedroom 157 100.000 62.744
51 bedroom 157 4.459 51.951
53 kitchens 155 50.968 24.886

54 dining 153 13.725 62.857
56 bedroom 157 1.911 45.676
58 buildings 153 0.654 10.455
59 buildings 153 35.294 24.156
61 street 69 1.449 14.697
62 street 69 24.638 44.722
63 bathroom 150 16.667 47.584
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Table 4
GPT-4 – The omitted neurons were not activated by any image, i.e., their maximum activation value was 0. Images: Number of images used per
label. Target %: Percentage of target images activating the neuron above 80% of its maximum activation. Non-Target %: The same, but for all
other images. Bold denotes the 27 neurons whose labels are considered confirmed.

Neuron Obtained Label(s) Images Target % Non-target%

0 Urban Landscape 176 54.545 59.078
1 Street Scene 164 92.073 29.884
3 Bedroom 165 97.576 62.967
6 Kitchen 171 86.550 51.733
7 Indoor Home Decor 177 66.102 44.793

8 Bathroom 164 98.780 47.897
11 Kitchen Scene 167 41.916 26.281
12 Indoor Home Setting 164 62.805 47.205
14 Living Room 164 82.317 65.053
16 Urban Landscape 176 73.864 28.290

17 Dining Room 159 93.711 46.339
18 Outdoor Scenery 164 92.073 73.852
19 Indoor Home Decor 177 29.379 45.571
20 Street Scene 164 68.902 14.305
22 Street Scene 164 90.244 51.273
23 Street Scene 164 81.098 19.507
25 Kitchen 171 21.637 5.628
26 Cityscape 156 73.718 28.023
27 Urban Transportation 163 66.871 30.152
28 Classroom 162 60.494 60.494

29 Bathroom 164 91.463 68.926
30 Kitchen 171 90.643 41.724
31 Urban Street Scene 163 80.864 67.201
33 Bathroom 164 74.390 37.272
34 Eyeglasses 168 65.476 45.208

35 Kitchen 171 66.667 13.224
36 Bathroom 164 95.122 61.704
37 Bathroom 164 43.902 10.487
38 Living Room 164 94.512 56.087
39 Bicycle 156 82.692 46.328
40 Living Room 164 70.122 24.156
41 Living Room 164 95.122 41.616
42 Living Room 164 48.780 46.431
43 Outdoor Urban Scene 163 91.411 57.925
44 Kitchen Scene 167 86.826 45.721
46 Kitchen Scene 167 43.114 31.155
48 Urban Street Scene 163 99.383 55.061
49 Bedroom 165 95.758 36.120
50 Living Room 164 93.902 62.756
51 Street Scene 164 98.171 43.830
53 Street Scene 164 57.317 23.575
54 Home Interior 165 26.061 63.216
56 Toilet Brush 165 94.545 35.095
57 Bathroom Interior 165 95.092 41.549
58 Kitchen Scenario 165 29.268 11.096

59 Urban Street Scene 163 87.037 26.217
60 Kitchen 171 0.585 1.691
61 Kitchen 171 60.819 11.810
62 Dining Room 159 94.969 44.128
63 Cityscape 156 95.513 47.791
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Table 5
Evaluation details for all three approaches as discussed in Section 3.3.1. Images: Number of images used for evaluation. # Activations: (targ(et)):
Percentage of target images activating the neuron;(non-t):Same for all other images used in the evaluation. Mean/Median (targ(et)/non-t(arget)):
Mean/median activation value for target and non-target images, respectively.

Concept Induction

Neuron Label(s) Images # Activations (%) Mean Median z-score p-value
targ non-t targ non-t targ non-t

0 building 42 80.95 73.40 2.08 1.81 2.00 1.50 -1.28 0.0995
1 cross_walk 47 91.49 28.94 4.17 0.67 4.13 0.00 -8.92 <.00001
3 night_table 40 100.00 55.71 2.52 1.05 2.50 0.35 -6.84 <.00001
8 shower_stall, cistern 35 100.00 54.40 5.26 1.35 5.34 0.32 -8.30 <.00001

16 mountain, bushes 27 100.00 25.42 2.33 0.67 2.17 0.00 -6.72 <.00001
18 slope 35 91.43 68.85 1.59 1.37 1.44 1.00 -2.03 0.0209
19 wardrobe, air_conditioning 28 89.29 65.81 2.30 1.28 2.30 0.84 -4.00 <.00001
22 skyscraper 39 97.44 56.16 3.97 1.28 4.42 0.33 -7.74 <.00001
29 lid, soap_dispenser 33 100.00 80.47 4.38 2.14 4.15 1.74 -5.92 <.00001
30 teapot, saucepan 27 85.19 49.93 2.52 1.05 2.23 0.00 -4.28 <.00001
36 tap, crapper 23 91.30 70.78 3.24 1.75 2.82 1.29 -3.59 <.00001
41 open_fireplace, coffee_table 31 80.65 15.11 2.03 0.14 2.12 0.00 -7.15 <.00001
43 central_reservation 40 97.50 85.42 7.43 3.71 8.08 3.60 -5.94 <.00001
48 road 42 100.00 74.46 6.15 2.68 6.65 2.30 -7.78 <.00001
49 footboard, chain 32 84.38 66.41 2.63 1.67 2.30 1.17 -2.58 0.0049
51 road, car 21 100.00 47.65 5.32 1.52 5.62 0.00 -6.03 <.00001
54 skyscraper 39 100.00 71.78 4.14 1.61 4.08 1.12 -7.60 <.00001
56 flusher, soap_dish 53 92.45 64.29 3.47 1.48 3.08 0.86 -6.47 <.00001
57 shower_stall, screen_door 34 97.06 32.31 2.60 0.61 2.53 0.00 -7.55 <.00001
63 edifice, skyscraper 45 88.89 48.38 2.41 0.83 2.36 0.00 -6.73 <.00001

CLIP-Dissect

3 dresser 43 93.02 64.61 2.59 1.42 2.62 0.68 5.01 <0.0001
7 bathroom 46 89.47 41.56 2.02 1.01 2.15 0.00 5.45 <0.0001

18 dining 36 94.87 76.82 3.01 1.85 3.11 1.44 4.52 <0.0001
33 bathroom 38 71.05 34.02 1.28 0.47 0.95 0.00 4.91 <0.0001
38 bathroom 38 84.21 31.71 1.79 0.54 1.83 0.00 7.14 <0.0001
43 highways 32 100.00 63.87 7.00 3.14 6.39 2.64 6.17 <0.0001
49 bedroom 40 97.50 55.77 3.48 1.63 3.43 0.63 6.05 <0.0001
50 bedroom 40 97.50 63.21 4.56 1.30 4.60 0.66 8.70 <0.0001

GPT-4

1 Street Scene 42 90.50 30.40 3.80 0.70 4.20 0.00 -9.62 <0.0001
3 Bedroom 42 97.60 63.40 4.70 1.20 4.90 0.70 -9.05 <0.0001
6 Kitchen 43 83.70 52.00 2.40 1.00 2.00 0.10 -5.06 <0.0001
8 Bathroom 41 100.00 44.10 4.10 1.00 4.10 0.00 -9.57 <0.0001

14 Living Room 41 78.00 67.50 1.40 1.30 1.20 0.90 -0.77 0.4413
17 Dining Room 40 97.50 45.90 2.20 0.60 2.50 0.00 -8.29 <0.0001
18 Outdoor Scenery 41 100.00 76.10 2.30 1.50 2.20 1.20 -3.96 <0.0001
22 Street Scene 42 90.50 50.10 3.00 1.40 3.30 0.00 -5.95 <0.0001
23 Street Scene 42 85.70 20.70 2.40 0.30 2.10 0.00 -10.83 <0.0001
29 Bathroom 41 90.20 68.40 2.60 1.50 2.40 1.00 -4.05 <0.0001
30 Kitchen 43 86.00 38.60 2.60 0.80 2.70 0.00 -7.22 <0.0001
31 Urban Street Scene 41 80.50 65.70 1.80 1.30 1.70 0.90 -2.4 0.164
36 Bathroom 41 100.00 61.30 3.10 1.20 2.80 0.60 -7.48 <0.0001
38 Living Room 41 92.70 54.30 2.00 1.00 2.20 0.30 -5.53 <0.0001
39 Bicycle 39 84.60 47.40 2.10 0.90 2.40 0.00 -5.64 <0.0001
41 Living Room 41 97.60 42.00 2.60 0.60 2.30 0.00 -9.31 <0.0001
43 Outdoor Urban Scene 41 92.70 56.30 4.10 2.40 4.30 1.00 -4.42 <0.0001
44 Kitchen Scene 42 81.00 43.40 2.30 1.00 2.10 0.00 -5.43 <0.0001
48 Urban Street Scene 41 100.00 52.60 4.90 2.30 4.80 0.40 -6.03 <0.0001
49 Bedroom 42 95.20 35.00 3.80 0.70 4.00 0.00 -10.31 <0.0001
50 Living Room 41 97.60 63.90 3.00 1.20 2.60 0.60 -6.78 <0.0001
51 Street Scene 42 95.20 42.90 5.70 1.50 6.10 0.00 -9.05 <0.0001
56 Toilet Brush 42 97.60 34.60 3.60 0.70 3.60 0.00 -10.48 <0.0001
57 Bathroom Interior 41 92.70 40.50 3.00 0.80 2.90 0.00 -8.35 <0.0001
59 Urban Street Scene 41 82.90 26.30 2.70 0.50 2.50 0.00 -9.06 <0.0001
62 Dining Room 40 90.00 43.90 3.30 0.80 3.70 0.00 -8.64 <0.0001
63 Cityscape 39 97.40 48.50 2.80 0.70 2.40 0.00 -8.76 <0.0001
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Target images not activating neuron 1 Non-target images activating neuron 1 

Fig. 3. Examples of some Google images used: target images (“cross_walk”) that did not activate the neuron; non-target images from labels like
“central_reservation,” “road and car,” and “fire_hydrant” that activated the neuron.

The resulting z-scores and p-values are shown in Table 5 and are further discussed in Section 3.4. For our running
example (neuron 1), we analyze the remaining 47 target images (20% of the images retrieved during the label
hypothesis confirmation step). Of these, 43 (91.49%) activate the neuron with a mean and median activation of 4.17
and 4.13, respectively. Of the remaining (non-target) images in the evaluation (the sum of the image column in
Table 5 Concept Induction Section minus 47), only 28.94% activate neuron 1 for a mean of 0.67 and a median of
0.00. The Mann-Whitney U test yields a z-score of -8.92 and p < 0.00001. The negative z-score indicates that the
activation values for non-target images are indeed lower than for the target images, rejecting the null hypothesis.

It is instructive to have another look at our example neuron 1 for the Concept Induction case. The images depicted
on the left in Fig. 3 – target images not activating the neuron – are mostly computer-generated as opposed to
photographic images as in the ADE20K dataset. The lower right image does not actually show the ground at the
crosswalk, but mostly sky and only indirect evidence for a crosswalk by means of signage, which may be part of
the reason why the neuron does not activate. The right-hand images are non-target images that activate the neuron.
We may conjecture that other road elements, prevalent in these pictures, may have triggered the neuron. We also
note that several images show bushes or plants – particularly interesting because the ECII response with the third-
highest coverage score is “bushes, bush” with a coverage score of 0.993 and 48.052% of images retrieved using this
label actually activate the neuron (the second response for this neuron is also “cross_walk”). It appears that Concept
Induction results should be further improvable by taking additional Concept Induction returns into consideration.
While we will not entirely follow through on this idea in this paper, we look into it to some extent in Section 3.3.3.

3.3.2. Concept Activation Analysis
Concept Induction is a separate process from the neural network based processes. Leveraging the strength of the

background knowledge, it outputs a list of high-level concepts based on single neuron activation patterns. A question
we can ask is: can we find existence or absence of such concepts in the full hidden layer activation space?

To that extent, we employ Concept Activation [13, 30], which is a concept-based explainable AI technique which
works with a pre-defined set of concepts. It attempts at explaining a pre-trained model by measuring the presence of
concepts in hidden-layer activations of a given image for a particular layer. For the purpose of comparative analysis,
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we evaluate all candidate concepts (label hypotheses), obtained from all three methods, through Concept Activation
Analysis. Note that we do not restrict this analysis to only confirmed concepts, as the Concept Activation Analysis
approach has not been developed with such a confirmation step as part of it.

For each candidate concept, a set of images are collected using Imageye (exactly as described above) and a
concept classifier (i.e. a Support Vector Machine) is trained. The dataset given to the concept classifier requires
some pre-processing:

i. The dataset for one concept classifier consists of images that exhibit the presence of the concept under descrip-
tion and with images where the said concept is absent. As the concept classifier will output the existence or
absence of a concept, we assign the images to have labels 0 (when concept is absent) and 1 (when concept is
present).

ii. Since we are interested in finding the concepts in the hidden layer activation space, not in the image pixel
space, we need to transform the image pixel values to their activation values. To achieve that, the dataset is
passed across the ResNet50V2 pre-trained model as it is the network we wish to explain. The activation values
of each image in the dense layer is saved. If the dense layer consists of 64 neurons, then we end up with a
matrix of dimensions (no. of images × 64).

The transformed dataset is split into train (80%) and test (20%) datasets. Thereafter, a Support Vector Machine
(SVM) is trained using the train split. We have used both linear (Concept Activation Vector, CAV) and non-linear
(Concept Activation Region, CAR) kernel to see which decision boundary separates the presence/absence of a
concept best. Once the concept classifier is trained, a test dataset is used to see to what extent the concept classifier
can classify the presence/absence of concepts in the hidden layer activation space.

We use Concept Induction, CLIP-Dissect, and GPT-4 as Concept Extraction mechanisms. Thereafter we use
Concept Activation analysis to measure to what extent such concepts are identifiable in the hidden layer activation
space. We adopt two different kernels through CAV and CAR to train an SVM and then test the classifiers on unseen
image data. Tables 6, 7, and 8 represent the test accuracies for the concepts extracted by Concept Induction, CLIP-
Dissect, and GPT-4. Table 9 represents the results of the Mann-Whitney U test performed over the test accuracies
obtained from all 3 approaches. Table 14 shows the Mean, Median, and Standard Deviation of the test accuracies
for each of the 3 approaches.

3.3.3. Additional Error Margin Analysis for Concept Induction
In this section, we outline our technical approach for assessing neuron-label associations through error-margin

analysis (Non-target Label Activation Percentage, or Non-TLA). Non-TLA represents the percentage of images not
falling under the target label that activate a neuron that carries the target label as per the prior analysis. Similarly,
Target Label Activation Percentage, TLA, represents the percentage of images falling under the target label that
activate the neuron that carries the target label.

To obtain error margins, we calculate activation percentages for both target labels and non-target labels per neuron
based on Google Images retrieved from the labels as search terms, and we also take into account activation patterns
of neuron groups for semantically related labels, analyzing TLA and Non-TLA across different cutoff values. We
then use images from the ADE20K dataset [76], with annotations improved thorugh Amazon Mechanical Turk, to
statistically validate the error-margins obtained earlier.

Computation of Non-TLA Concept Induction generates a number of concept labels for each neuron unit, ranked
by some accuracy measure. Herein, we consider the Top-3 labels (ranked by coverage score) for each of the 64
neurons in the dense layer. Using the Target-Label image dataset (each image falls under the target label), the TLA
is calculated, and, using a Non-target Label image dataset (none of the images contain the target label), the Non-TLA
is calculated. To obtain a nuanced understanding of how activation levels affect the reliability of the neuron–concept
association, we calculate TLA and Non-TLA for each neuron at specified activation value thresholds, namely > 0,
> 20%, > 40%, and > 60% of the max activation value that was recorded for that neuron. These thresholds are our
best guess for balancing sensitivity and specificity, and we acknowledge they are heuristic and may be refined in
future work. For example, (see Table 10), neuron 43 activates at > 40% of its max activation value in about 19.7%
of images not showing a central reservation.
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Table 6
Concept Accuracy in Hidden Layer Activation Space of Concepts extracted using Concept Induction.

Concept Name CAR CAV
Train Acc. Test Acc. Train Acc. Test Acc.

Air Conditioner 0.8994 0.8415 0.811 0.8659
Baseboard 0.875 0.8717 0.8846 0.9102
Body 0.9035 0.8857 0.8642 0.9
Building 0.9085 0.9404 0.8262 0.8690
Bushes 0.9150 0.9487 0.9477 0.9743
Car 0.9464 0.9571 0.925 0.9429
Casserole 0.9458 0.9375 0.9808 0.975
Central Reservation 0.8694 0.9 0.8917 0.9
Chain 0.9556 0.9677 0.9637 0.9677
Cistern 0.8734 0.8375 0.8449 0.8875
Coffee Table 0.9047 0.9523 0.8988 0.9166
Crapper 0.8516 0.8043 0.8571 0.8695
Cross Walk 0.9166 0.9468 0.9247 0.9361
Dishcloth 0.9055 0.9375 0.9685 0.9531
Dish Rack 0.9375 0.9583 0.9843 0.9375
Dishrag 0.8603 0.9285 0.9144 0.9464
Doorcase 0.8936 0.8611 0.8581 0.8194
Edifice 0.9487 0.9642 0.9548 0.9523
Fire Hydrant 0.9171 0.9625 0.9171 0.925
Fire Escape 0.8950 0.9146 0.9104 0.8902
Flooring 0.8841 0.9166 0.8871 0.9047
Flusher 0.8722 0.8285 0.9014 0.9285
Fluorescent Tube 0.9006 0.9625 0.9358 0.9125
Footboard 0.9268 0.9519 0.9585 0.9423
Go Cart 0.9378 0.9512 0.9254 0.9390
Jar 0.9059 0.9333 0.9572 0.9666
Left Arm 0.8549 0.8536 0.8858 0.8658
Left Foot 0.8734 0.8658 0.8703 0.8536
Letter Box 0.8901 0.8636 0.875 0.9242
Lid 0.8622 0.9047 0.8712 0.8809
Manhole 0.9349 0.8953 0.9349 0.9302
Mountain 0.9426 0.95 0.9745 0.9625
Mouth 0.8963 0.9268 0.9481 0.9512
Night Table 0.8917 0.875 0.9235 0.8875
Nuts 0.9223 0.9134 0.9417 0.9230
Open Fireplace 0.9129 0.9222 0.9101 0.9333
Ornament 0.8910 0.9375 0.9198 0.9625
Paper Towels 0.9021 0.9166 0.9239 0.9166
Pillar 0.8372 0.8837 0.7732 0.8372
Pipage 0.84239 0.7826 0.7826 0.7391
Plank 0.8719 0.9523 0.9146 0.9047
Posters 0.8806 0.9230 0.8806 0.9230
Pylon 0.8397 0.8125 0.8205 0.8375
River 0.9430 0.925 0.9399 0.925
River Water 0.9554 0.9375 0.9617 0.9375
Road 0.9221 0.9642 0.9461 0.9404
Rocker 0.8953 0.9545 0.9457 0.8939
Rocking Horse 0.9173 0.9310 0.9347 0.9655
Saucepan 0.9561 0.9827 1 0.9827
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Concept Name CAR CAV
Train Acc. Test Acc. Train Acc. Test Acc.

Screen Door 0.9076 0.9375 0.9235 0.925
Sculpture 0.8242 0.8333 0.8788 0.8571
Shower Stall 0.9409 0.9722 0.9652 0.9583
Sideboard 0.91 0.94 0.965 0.92
Side Rail 0.9054 0.9459 0.8986 0.9054
Skyscraper 0.9455 0.9743 0.9615 0.9743
Slipper 0.9262 0.9456 0.9617 0.9565
Slope 0.8705 0.8714 0.9208 0.8857
Soap Dish 0.8733 0.8589 0.8474 0.8589
Soap Dispenser 0.88 0.9375 0.916 0.9531
Spatula 0.9017 0.9431 0.9219 0.9204
Stem 0.8834 0.8676 0.8383 0.8382
Stretcher 0.89375 0.9375 0.9312 0.9375
Tank Lid 0.8947 0.8846 0.8848 0.8717
Tap 0.8198 0.8536 0.8354 0.8902
Teapot 0.9365 0.9411 0.9552 0.9779
Toaster 0.927 0.9714 0.9197 0.9736
Toothbrush 0.9198 0.9125 0.9198 0.9
Utensils Canister 0.9262 0.925 0.9487 0.9375
Wardrobe 0.9375 0.95 0.9188 0.9125

Neuron Ensembles for Concept Associations The distribution of input information across simultaneously activated
neurons necessitates the investigation of neuron ensemble activations at different cut-off activation values. However,
an exhaustive analysis of all neuron ensembles does not scale as even just 64 neurons give rise to 264 possible neuron
ensembles. We deal with this by considering only ensembles of neurons that activate for semantically related labels.
For example, the concept building activates both neurons 0 and 63 (see Table 10); we evaluate all images from
Non-target Label image dataset as well as Target Label image dataset separately, activating neurons 0 and 63 at the
specified cut-off activation values, to calculate TLA and Non-TLA.

In scenarios where a concept activates more than two neurons, our analysis encompasses all possible combinations
of pairs, triples, etc., of neurons (see skyscraper in Table 10). We then narrow our focus to a list of highly associated
concepts corresponding to the neurons (see the Concepts column in Table 10), that demonstrate TLA exceeding
80%, i.e., those neurons with high recall.

Annotations of ADE20K Dataset The analysis just described yields error-margins associated with each concept,
for each of the chosen activation thresholds listed in Table 10. For example, the concept buffet has an error-margin
of 12.374 for the Non-TLA of > 20%: Our analysis suggests the hypothesis that at most 12.374% of non-buffet
images activate the neuron unit 62 at 20% of its max activation value. In other words, the error-margin at Non-TLA
of > 20% for the concept buffet is 12.374%. If this hypothesis can be substantiated, then upon presentation of a new
input to the network, activation of neuron 62 of at least 20% of its max activation value means that a buffet has been
detected, and that this detection is wrong in at most about 12.374% of cases.

In order to substantiate our hypotheses, we analyse neuron activation values for new inputs, more precisely for
images taken from the ADE20K dataset. We take advantage of the fact that ADE20K images already carry rich
object annotations, however we have observed that they are still too incomplete for our purpuses. Therefore we
made use of Amazon Mechanical Turk via the Cloud Research platform, to add missing annotations from a list of
concepts derived from Table 10 to 1,050 randomly chosen ADE20K images.

For this set of 1,050 ADE20K images, we conducted a user study through Amazon Mechanical Turk using the
Cloud Research platform, to annotate images based on a list of concepts derived from Table10. The study protocol
was reviewed and approved by the Institutional Review Board (IRB) at Kansas State University and was deemed
exempt under the criteria outlined in the Federal Policy for the Protection of Human Subjects, 45 CFR §104(d),
category: Exempt Category 2 Subsection ii. The study was conducted in 35 batches (each batch containing 30
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Table 7
Concept Accuracy in Hidden Layer Activation Space of Concepts extracted using CLIP-Dissect.

Concept Name CAR CAV
Train Acc. Test Acc. Train Acc. Test Acc.

Bathroom 0.9700 0.9474 0.9400 0.9474
Bed 0.9587 0.9500 0.9437 0.9125
Bedroom 0.9167 0.9167 0.9137 0.9048
Buildings 0.9321 0.9230 0.8990 0.8974
Dallas 0.9447 0.9318 0.9750 0.9545
Dining 0.9294 0.9125 0.8907 0.9000
Dresser 0.9762 0.9625 0.9650 0.9500
File 0.9837 0.9750 0.9681 0.9500
Furnished 0.8843 0.8875 0.8762 0.8625
Highways 0.9396 0.9375 0.9679 0.9531
Interstate 0.9293 0.9268 0.8593 0.8536
Kitchen 9848 0.9743 0.9590 0.9487
Legislature 0.9149 0.9000 0.9156 0.9000
Microwave 0.9803 0.9807 0.9873 0.9807
Mississauga 0.9041 0.9054 0.9467 0.9324
Municipal 0.8679 0.8461 0.9298 0.9102
Restaurants 0.9850 0.9722 0.9692 0.9583
Road 0.9362 0.9250 0.9387 0.9250
Room 0.8653 0.8125 0.8273 0.8250
Roundtable 0.9405 0.9473 0.9136 0.8947
Valencia 0.8735 0.8625 0.8781 0.875
Street 0.9830 0.9722 0.9347 0.9167

Table 8
Concept Accuracy in Hidden Layer Activation Space of Concepts extracted using GPT-4.

Concept Name CAR CAV
Train Acc. Test Acc. Train Acc. Test Acc.

Bedroom 0.9851 0.9761 0.9660 0.9523
Bathroom 0.9176 0.9024 0.9068 0.8902
Bathroom Interior 0.9273 0.9146 0.9241 0.9268
Bicycle 0.9787 0.9615 0.9887 0.9871
Cityscape 0.9438 0.9358 0.9894 0.9743
Classroom 0.8981 0.8780 0.9012 0.8536
Dining Room 0.9256 0.9125 0.8942 0.8875
Eyeglasses 0.9813 0.9883 0.9883 0.9883
Home Interior 0.8515 0.8452 0.8363 0.8214
Indoor Home Decor 0.8428 0.8333 0.8418 0.8222
Indoor Home Setting 0.6713 0.6785 0.6890 0.6666
Kitchen 0.9122 0.9302 0.9122 0.9186
Kitchen Scene 0.8562 0.8571 0.8022 0.7976
Living Room 0.8963 0.8658 0.8658 0.8414
Outdoor Scenery 0.9135 0.9024 0.9054 0.9024
Outdoor Urban Scene 0.8343 0.8170 0.7650 0.7317
Street Scene 0.8819 0.8809 0.8568 0.8690
Toilet Brush 0.9815 0.9761 0.9727 0.9642
Urban Landscape 0.8665 0.8636 0.8922 0.8863
Urban Street Scene 0.9140 0.9024 0.8757 0.8658
Urban Transportation 0.8412 0.8414 0.8251 0.8414
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Table 9
Summary of Concept Activation Analysis results of Concept Induction, CLIP-Dissect, and GPT-4 using Mann-Whitney U test

Method CAV CAR

z-score p-value z-score p-value

Concept Induction x CLIP-Dissect 0.1252 0.9004 -0.8717 0.3834
CLIP-Dissect x GPT-4 1.7494 0.0801 1.9680 0.0488
Concept Induction x GPT-4 2.1560 0.0308 1.7792 0.0751

images), with 5 participants per study compensated with $5 for completing the task. The task was estimated to take
approximately 40 minutes, equivalent to $7.50 per hour.

For each image, users were presented with a list of concepts (a concise form of concepts from Table 10) to
choose from, including buffet, building, building and dome, central_reservation, clamp_lamp and clamp, closet and
air-conditioning, cross_walk, edifice and skyscraper, faucet and flusher, field, flusher and soap_dish, footboard and
chain, hedgerow and hedge, lid and soap_dispenser, mountain, mountain and bushes, night_table, open_fireplace and
coffee_table, pillow, potty and flusher, road, road and automobile, road and car, route, route and car, shower_stall
and cistern, Shower_stall and screen_door, skyscraper, slope, tap and crapper, tap and shower_screen, teapot and
saucepan, wardrobe and air-conditioning.

Users were allowed to select multiple concepts for each image, indicating all concepts that applied to the given
image. These selected concepts were considered annotations for the respective image.

Validating Neuron-Concept Associations To assess the validity of the error-margins retrieved from the Google
Image dataset for all concepts in Table 10, we look at activations yielded by ADE20K images, and hypothesize that
they are similar or lower (i.e., not higher), for non-target images. Non-TLA are computed across the predefined cut-
off activation thresholds. Selected values can be found in Table 11. For example, the central reservation neuron 43
mentioned above activates above its 40% max activation threshold for about 14.9% of ADE20K non-target images
(not showing central reservations), while it activates for about 19.7% of Google non-target images.

Both single-neuron and neuron ensemble activations are considered and shown in Table 11.

3.4. Results

For the given test dataset split of ADE20K, we looked at Concept Induction, CLIP-Dissect, and GPT-4 for ex-
tracting relevant candidate concepts. Subsequently, we conducted two analyses from different perspectives.

i. For each neuron of the dense layer, we identify the concepts that activate them the most (Statistical Evaluation).
ii. For each concept, we measure its degree of relevance across the entire dense layer activation space (Concept

Activation Analysis).

We will now bring together the results. We will also present results from the additional error margin analysis.

3.4.1. Comparison of Concept Extraction Approaches
The combination of the two evaluation perspectives – a detailed examination of how each neuron unit functions

and a broader view of how the dense layer operates as a whole – enables us to gain a comprehensive insight into the
inner workings of hidden layer computations.

Regarding statistical evaluation, we rigorously assess the significance of differences in activation percentages
between target and non-target labels for each confirmed label hypothesis. We compute the z-score and p-value using
the non-parametric Mann-Whitney U test. Additionally, we calculate the Mean and Median for both target and non-
target labels to further characterize the results. In the Concept Activation Analysis, we evaluate the effectiveness
of concepts across several dimensions. Initially, we assess each concept classifier considering both linear (CAV)
and non-linear (CAR) decision boundary based on the presence and absence of each concept. To validate that the
concept classifier’s test accuracy is not merely coincidental, we conduct K-fold cross-validation and calculate p-
values. Additionally, we compute the Mean, Median, and Standard Deviation, and perform the Mann-Whitney U
test to quantify the statistical significance of the test accuracies. This comprehensive approach ensures a robust
evaluation of the concepts’ performance in activating the hidden layer.
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Table 10
Non-target Label Activation Percentages (Non-TLA) for Google dataset: The table showcases a refined selection, inclusive of concepts and
neuron ensembles with targ(et) activation > 80%. Non-t: percentage of non-target images that activate the neuron(s) associated with the concept
being analyzed across various activation thresholds.

Concepts Neuron targ %>0 Non-target % for different threshold values

non-t >0 non-t > 20% non-t > 40% non-t > 60%

buffet 62 83.607 32.714 12.374 3.708 0.825
building 0 89.024 72.328 39.552 12.040 2.276
building 0, 63 80.164 43.375 12.314 2.276 0.182
building and dome 0 90.400 78.185 45.133 14.643 2.639
central_reservation 43 95.541 84.973 57.993 19.734 2.913

clamp_lamp and clamp 7 95.139 59.504 29.229 9.000 1.652
closet and air_conditioning 19 86.891 71.054 38.491 10.135 1.267
cross_walk 1 88.770 28.241 6.800 1.524 0.521
edifice and skyscraper 63 92.135 48.761 21.786 8.379 2.229
faucet and flusher 29 95.695 78.562 37.862 12.104 1.873

field 18 91.824 65.333 30.207 8.183 1.656
flusher and soap_dish 56 90.094 63.552 29.901 7.695 1.148
footboard and chain 49 88.889 66.702 40.399 17.064 4.399
hedgerow and hedge 54 91.165 68.527 30.421 7.685 1.352
lid and soap_dispenser 29 99.237 78.571 34.989 9.052 1.485

mountain and bushes 16 87.037 24.969 10.424 4.666 1.937
mountain and bush 16 87.037 24.969 10.424 4.666 1.937
mountain 43 99.367 88.516 64.169 23.112 4.326
night_table 3 90.446 56.714 27.691 7.691 1.137
open_fireplace and coffee_table 41 88.525 16.381 4.325 0.812 0.088

pillow 3 98.214 61.250 28.228 7.249 1.001
pillow 50 99.405 66.834 24.242 4.101 0.530
pillow 3, 50 97.605 46.492 9.634 0.988 0.049
potty and flusher 29 88.525 76.830 36.537 10.755 1.932
road and car 51 98.810 48.571 25.373 8.399 3.261

road and automobile 51 92.560 41.466 16.055 3.301 0.701
road 48 100.000 76.789 47.897 18.843 3.803
road 48, 51 97.099 44.592 17.727 3.471 0.702
route 48 100.000 80.834 51.873 21.034 4.979
route and car 51 92.628 47.408 18.871 4.081 1.416

route 48, 51 94.334 45.089 18.937 4.809 1.169
shower_stall and cistern 8 100.000 53.186 24.788 8.485 1.372
Shower_stall and screen_door 57 98.496 31.747 12.876 4.121 1.026
slope 18 92.143 64.503 29.976 6.894 1.200
tap and crapper 36 89.130 70.606 36.839 13.696 2.511

tap and shower_screen 36 86.250 72.584 32.574 7.836 0.860
teapot and saucepan 30 81.481 47.984 18.577 4.367 0.845
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Concepts Neuron targ %>0 Non-target % for different threshold values

non-t >0 non-t > 20% non-t > 40% non-t > 60%

wardrobe and air_conditioning 19 89.091 65.034 31.795 6.958 1.145
skyscraper 22 99.359 54.893 21.914 0.977 0.977
skyscraper 54 98.718 70.432 26.851 7.050 0.941

skyscraper 63 94.393 51.612 20.618 5.775 1.143
skyscraper 22, 26 82.116 22.274 3.423 0.292 0.004
skyscraper 26, 54 82.225 28.782 5.444 0.703 0.054
skyscraper 22, 54 97.165 47.422 7.910 0.465 0.000
skyscraper 22, 63 96.947 36.408 5.521 0.449 0.008

skyscraper 26, 63 81.788 21.421 3.335 0.534 0.088
skyscraper 54, 63 96.074 37.149 5.594 0.615 0.046
skyscraper 22, 26, 54 81.461 18.940 2.363 0.169 0.000
skyscraper 22, 26, 63 81.243 15.252 1.706 0.184 0.004
skyscraper 22, 54, 63 95.420 29.090 3.023 0.234 0.000
skyscraper 26, 54, 63 81.134 16.823 1.975 0.350 0.023
skyscraper 22, 26, 54, 63 80.589 13.093 0.872 0.015 0.000

Our findings suggest that Concept Induction consistently performs well in all evaluations conducted – Statis-
tical Evaluation, Concept Activation Analysis, and also Error Margin Analysis. From the statistical evaluation, it
is evident that Concept Induction achieves better performance than that of CLIP-Dissect and GPT-4. In the Con-
cept Activation Analysis, quantitative measures reveal that Concept Induction achieves comparable performance to
CLIP-Dissect, with GPT-4 exhibiting the lowest performance. Conversely, the Concept Induction approach demon-
strates several notable qualitative advantages over both CLIP-Dissect and GPT-4:

– CLIP-Dissect and GPT-4 are black-box models used as a concept extraction method to explain a probing
network, which in this case is a CNN model, i.e., this approach to explainability is itself not readily explainable.
In contrast, Concept Induction, serving as a concept extraction method, inherently offers explainability as it
operates on deductive reasoning principles.

– CLIP-Dissect relies on a common English vocabulary (about 20K words) as the pool of concepts, whereas
Concept Induction is supported by a meticulously constructed background knowledge (in this case with about
2M concepts), affording greater control over the definition of explanations through hierarchical relationships.

– While GPT-4/CLIP-Dissect emulate intuitive and rapid decision-making processes, Concept Induction follows
a systematic and logic-based decision-making approach – thereby rendering our approach to be explainable by
nature.

The results in Table 5 show that Concept Induction analysis with large-scale background knowledge yields mean-
ingful labels that stably explain neuron activation. Of the 20 null hypotheses from Concept Induction, 19 are rejected
at p < 0.05, but most (all except neurons 0, 18 and 49) are rejected at much lower p-values. Only neuron 0’s null
hypothesis could not be rejected. With CLIP-Dissect, all 8 null hypotheses are rejected at p < 0.05, and with GPT-4,
25 out of 27 null hypotheses are rejected at p < 0.05, with exceptions for neurons 14 and 31. Excluding repeat-
ing concepts, Concept Induction yields 19 statistically validated hypotheses, CLIP-Dissect yields 5, and GPT-4
yields 12.

The Non-Target % column of Table 2 provides some insight into the results for neurons 0, 18, 49 and neurons
14, 31 from Table 4: target and non-target values for these neurons are closer to each other. Likewise, differences
between target and non-target values for mean activation values and median activation values in Table 5 are smaller
for these neurons. This hints at ways to improve label hypothesis generation or confirmation, and we will discuss
this and other ideas for further improvement below under possible future work.

Mann-Whitney U results show that, for most neurons listed in Table 5 (with p < 0.00001), activation values of
target images are overwhelmingly higher than that of non-target images. The negative z-scores with high absolute
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Table 11
Non-target Label Activation Percentages (Non-TLA) for ADE20K and Google Image dataset: Non-t: percentage of non-target label images that
activate the neuron(s) associated with the concept being analyzed across various activation thresholds.

Concepts non-t >0 non-t >20% non-t >40% non-t >60%

google ADE20K google ADE20K google ADE20K google ADE20K

buffet 32.714 40.135 12.374 25.817 3.708 9.470 0.825 1.804
building 43.375 11.458 12.314 5.208 2.276 1.458 0.182 0.000
building and dome 78.185 26.170 45.133 5.893 14.643 0.867 2.639 0.000
central_reservation 84.973 44.893 57.993 34.343 19.734 14.927 2.913 3.816
clamp_lamp and clamp 59.504 27.273 29.229 19.170 9.000 8.300 1.652 1.976
closet and air_conditioning 71.054 30.168 38.491 15.620 10.135 5.513 1.267 1.378
cross_walk 28.241 21.474 6.800 16.391 1.524 9.784 0.521 2.922
edifice and skyscraper 48.761 24.187 21.786 8.453 8.379 1.300 2.229 0.260
faucet and flusher 78.562 56.967 37.862 30.580 12.104 11.097 1.873 1.850
field 65.333 66.161 30.207 30.043 8.183 10.412 1.656 2.386
flusher and soap_dish 63.552 19.481 29.901 10.035 7.695 3.896 1.148 0.236
footboard and chain 66.702 27.975 40.399 13.671 17.064 5.063 4.399 1.013
hedgerow and hedge 68.527 45.120 30.421 28.390 7.685 13.308 1.352 2.028
lid and soap_dispenser 78.571 57.512 34.989 18.427 9.052 2.817 1.485 0.352
mountain 88.516 45.144 64.169 33.725 23.112 16.115 4.326 3.842
mountain and bushes 24.969 28.331 10.424 16.573 4.666 6.607 1.937 1.904
night_table 56.714 30.534 27.691 15.267 7.691 5.954 1.137 1.679
open_fireplace and coffee_table 16.381 26.139 4.325 10.590 0.812 2.413 0.088 0.268
pillow 46.492 12.500 9.634 3.869 0.988 1.190 0.049 0.149
potty and flusher 76.830 58.410 36.537 24.194 10.755 4.608 1.932 1.152
road 44.592 8.501 17.727 6.955 3.471 4.328 0.702 0.927
road and automobile 41.466 17.604 16.055 14.497 3.301 8.728 0.701 2.811
road and car 48.571 14.815 25.373 11.704 8.399 6.074 3.261 1.333
route 45.089 12.349 18.937 10.241 4.809 5.723 1.169 1.807
route and car 47.408 17.073 18.871 14.204 4.081 7.461 1.416 2.152
shower_stall and cistern 53.186 25.982 24.788 9.700 8.485 4.965 1.372 1.039
Shower_stall and screen_door 31.747 24.910 12.876 14.320 4.121 5.897 1.026 1.203
skyscraper 13.093 3.009 0.872 0.463 0.015 0.231 0.000 0.116
slope 64.503 66.520 29.976 29.967 6.894 9.879 1.200 1.976
tap and crapper 70.606 62.225 36.839 12.861 13.696 4.890 2.511 0.611
tap and shower_screen 72.584 62.621 32.574 13.180 7.836 4.733 0.860 0.607
teapot and saucepan 47.984 23.632 18.577 11.176 4.367 6.519 0.845 1.281
wardrobe and air_conditioning 65.034 30.525 31.795 16.160 6.958 5.525 1.145 0.967

values informally indicate the same, as do the mean and median values. Neurons 16 and 49 of Table 5 Concept
Induction section, for which the hypotheses also hold but with p < 0.05 and p < 0.01, respectively, still exhibit
statistically significant higher activation values for target than for non-target images, but not overwhelmingly so.
This can also be informally seen from lower absolute values of the z-scores, and from smaller differences between
the means and the medians.

For the Concept Activation Analysis evaluation, Concept Induction yields 69 unique concepts with Mean Test
Accuracy of 0.9154 (CAV) and 0.9150 (CAR). CLIP-Dissect identifies 22 concepts with Mean Test Accuracy of
0.9160 (CAV) and 0.9259 (CAR). GPT-4 produces 21 concepts with Mean Test Accuracy of 0.8757 (CAV) and
0.8887 (CAR). Although, based solely on the numeric values of Mean Test Accuracy, CLIP-Dissect demonstrates
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a slightly superior performance compared to Concept Induction, and GPT-4 performs the least, we contend that
the substantially higher number of concepts generated by Concept Induction allows CLIP-Dissect to achieve a
marginally higher test accuracy. By considering the top 22 (equal to the number of concepts generated by CLIP-
Dissect) test accuracies of concepts extracted by Concept Induction, the Mean Test Accuracy increases to 0.9599
(CAV) and 0.9584 (CAR). For statistical confirmation, we conduct a p-value test for K-fold cross validation, wherein
all concepts in Concept Activation analysis achieve p < 0.05. Using a Mann-Whitney U test, we statistically ascer-
tain that CLIP-Dissect outperforms GPT-4 in terms of CAR, and Concept Induction surpasses GPT on CAV (see
Table 9).

This analysis leads us to the following conclusion: Among the three approaches we evaluate, Concept Induction
demonstrates superior performance both in the quantity of high-quality concepts generated and in the relevance of
these concepts within the hidden layer activation space. Furthermore, our approach possesses inherent explainabil-
ity as it does not depend on any pre-trained black-box model to identify candidate concepts. However, there are
undoubtedly trade-offs involved in selecting among the three approaches, which we elaborate on in Section 4.4.

Based on the results obtained from the Statistical Evaluation and Concept Activation analysis, our approach in-
troduces a novel zero-shot, model-agnostic Explainable AI technique. This technique offers insights into the hidden
layer activation space by utilizing high-level, human-understandable concepts. Leveraging deductive reasoning over
background knowledge, our approach inherently provides explainability while also achieving competitive perfor-
mance, thus confirming our initial hypothesis.

3.4.2. Error Margin Analysis
For a statistical evaluation of our error margin values, we treat each row, representing a concept-error pair at

each threshold level, from Table 11, as an individual hypothesis. For example, the error-margin (Non-TLA) for the
concept "central reservation" under the > 40 threshold constitutes one hypothesis. This way, we get 33 × 4 = 132
hypotheses to test.

We conduct Mann-Whitney U tests (MWU) [42] with the null hypothesis (H0) stating that there is no difference
in Non-TLA across both datasets, while the alternative hypothesis (H1) posits that Non-TLA in Google Images is
greater than in the ADE20K dataset. We choose the MWU test for its robustness with non-parametric data and its
aptitude for comparing distributions of independent samples. As our Non-TLA data may not adhere to normality
and we are comparing distinct datasets (Google Images and ADE20K), the MWU test provides a reliable means to
analyze differences in Non-TLA.

Table 12 presents a comparison of Non-TLA between the Google Images and ADE20K datasets for all concepts.
Each row represents a concept, with columns displaying the percentage of non-target label images activating as-
sociated neuron(s) in both datasets. The p-values from the MWU test indicate the significance of differences in
Non-TLA between the datasets. The analysis reveals a consistent trend of decreased Non-TLA in the ADE20K
dataset compared to Google Images across various threshold categories. Among the 33 hypotheses tested for the
category of Non-TLA > 0, 13 were rejected at a significance level of p < 0.05. Similarly, for Non-TLA > 20%,
15 hypotheses were rejected at the same significance level. In the case of Non-TLA > 40%, 21 hypotheses were
rejected, while for Non-TLA > 60%, 23 hypotheses were rejected, all at a p-value < 0.05. Concepts with p-value <
0.05 are deemed statistically significant and are identified as confirmed concepts, subject to further scrutiny for their
reliability and potential implications.

After confirming concepts using the MWU, we proceed to validate them further using Wilcoxon signed-rank
tests. To calculate the Wilcoxon test, we used an online website calculator called the Wilcoxon signed-rank test
calculator by Statistics Kingdom 2017.5 We employ the Wilcoxon test, with the hypothesis that the difference
between Non-TLA of ADE20K and Google Image dataset would be less than or equal to zero (H0), while the
alternative hypothesis (H1) suggested a decrease in Non-TLA in the ADE20K dataset compared to the Google image
dataset. Each threshold serves as an individual hypothesis for the Wilcoxon test, with Non-TLA of the confirmed
concepts for Google and ADE20K datasets grouped accordingly. For instance, all confirmed Non-TLA > 0 for
both datasets constitute one hypothesis, while those > 20% form another. The p-values, denoting the significance
of the test results, are displayed at the bottom of the table. Remarkably, the obtained p-values for each threshold

5http://www.statskingdom.com/170median_mann_whitney.html

http://www.statskingdom.com/170median_mann_whitney.html
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Table 12
Statistical Evaluation for confirmed concepts (concepts getting p-value <0.05 for MWU): Non-t: percentage of non-target label images activating
the associated neuron(s) analyzed across various activation thresholds.

Concepts Google ADE20K p-values

non-t >0
building 43.37468 11.45833 0.018471
building and dome 78.185 26.16984 6.06E-05
central_reservation 84.97336 44.89338 1.75E-66
closet and air_conditioning 71.05416 30.16845 0.009373
edifice and skyscraper 48.76092 24.18726 0.016058
faucet and flusher 78.562 56.96671 9.19E-07
footboard and chain 66.702 27.97468 0.000284
lid and soap_dispenser 78.57143 57.51174 0.00218
pillow 46.49232 12.5 4.21E-23
potty and flusher 76.82974 58.41014 1.39E-07
shower_stall and cistern 53.1865 25.98152 0.016657
tap and crapper 70.60579 62.22494 6.17E-08
tap and shower_screen 72.584 62.62136 0.007024

Wilcoxon signed rank test (non-t >0) 0.0001221

non-t >20 %
building 12.31365 5.208333 1.72E-17
building and dome 45.13343 5.892548 1.37E-23
clamp_lamp and clamp 29.2287 19.16996 1.57E-07
closet and air_conditioning 38.4913 15.62021 0.000287
edifice and skyscraper 21.78641 8.452536 5.80E-17
faucet and flusher 37.86209 30.57953 1.80E-15
lid and soap_dispenser 34.98939 18.42723 2.74E-15
mountain and bushes 10.42437 16.57335 3.25E-06
pillow 9.634389 3.869048 3.49E-49
potty and flusher 36.53659 24.19355 3.69E-18
Shower_stall and screen_door 12.87584 14.3201 0.035051
skyscraper 0.872071 0.462963 1.99E-05
tap and crapper 36.83933 12.86064 0.000114
tap and shower_screen 32.5745 13.17961 3.22E-14
wardrobe and air_conditioning 31.79496 16.16022 2.18E-11

Wilcoxon signed rank test (non-t > 20%) 0.0004272

non-t >40 %
building 2.27609 1.458333 3.16E-19
building and dome 14.64338 0.866551 6.28E-20
central_reservation 19.73357 14.92705 1.18E-05
clamp_lamp and clamp 9.000096 8.300395 2.79E-31
closet and air_conditioning 10.1354 5.513017 6.38E-09
cross_walk 1.52392 9.78399 0.000572
edifice and skyscraper 8.37939 1.30039 5.06E-17
faucet and flusher 12.10377 11.09741 2.90E-24
field 8.183384 10.41215 3.82E-05
flusher and soap_dish 7.695067 3.896104 4.26E-08
lid and soap_dispenser 9.052334 2.816901 2.04E-19
mountain and bushes 4.666314 6.606943 1.28E-12
pillow 0.988239 1.190476 1.37E-23
potty and flusher 10.75519 4.608295 1.97E-09
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road 3.471037 4.327666 0.033105
road and car 8.399088 6.074074 0.009958
Shower_stall and screen_door 4.120976 5.89651 1.13E-07
skyscraper 0.015367 0.231481 2.47E-30
slope 6.893903 9.879254 1.14E-07
tap and shower_screen 7.835857 4.73301 2.05E-12
wardrobe and air_conditioning 6.9579 5.524862 1.70E-19

Wilcoxon signed rank test (non-t > 40%) 0.0479

non-t > 60%
building 0.182087 0 1.08E-07
building and dome 2.639495 0 5.70E-10
central_reservation 2.912966 3.815937 1.50E-07
clamp_lamp and clamp 1.652099 1.976285 4.24E-19
closet and air_conditioning 1.266925 1.378254 2.50E-07
cross_walk 0.520833 2.92249 0.000171
edifice and skyscraper 2.228561 0.260078 4.80E-07
faucet and flusher 1.872623 1.849568 0.008524
field 1.655819 2.386117 1.43E-09
flusher and soap_dish 1.147982 0.236128 3.03E-13
lid and soap_dispenser 1.485149 0.352113 3.10E-07
mountain and bushes 1.936961 1.903695 9.96E-12
pillow 0.048848 0.14881 1.04E-09
potty and flusher 1.931664 1.152074 0.010232
road 0.701794 0.927357 0.000445
road and car 3.261441 1.333333 3.79E-05
route and car 1.415601 2.15208 0.000137
shower_stall and cistern 1.372089 1.039261 0.031085
Shower_stall and screen_door 1.025822 1.203369 9.36E-11
skyscraper 0 0.115741 6.15E-26
slope 1.200192 1.975851 2.39E-10
tap and shower_screen 0.859795 0.606796 3.67E-08
wardrobe and air_conditioning 1.144971 0.966851 1.52E-14

Wilcoxon signed rank test (non-t > 60%) 0.05803

suggest the rejection of the null hypothesis, indicating statistically significant differences in Non-TLA between
the datasets when considered separately. A p-value < 0.05 from this test would indicate a statistically significant
decrease in Non-TLA in the ADE20K dataset compared to the Google dataset, further strengthening our findings
and highlighting that the error estimates from the Google image data hold, or are even bettered by, the ADE20K
images.

We also examine all confirmed concepts from all thresholds together in the Wilcoxon test with the same alter-
native hypothesis ((H1) suggested a decrease in Non-TLA in the ADE20K dataset compared to the Google im-
age dataset), which provides a comprehensive overview of the differences in Non-TLA between the Google and
ADE20K datasets across various levels of activation thresholds. This approach aggregates the results from individ-
ual thresholds, offering a more consolidated perspective on the overall significance of the differences observed. In
our analysis, obtaining a p-value of 5.633e-7, which is less than 0.05, implies the rejection of the null hypothesis.
This indicates a statistically significant decrease in Non-TLA in the ADE20K dataset compared to the Google Image
dataset when considering all thresholds collectively.

3.5. Further Discussion

From the statistical evaluation, based on the percentage of target activation and from Concept Activation Analysis,
based on the concepts’ test accuracies, we can categorize all confirmed concepts into three regions: high (90-100%),
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Table 13
Count of statistically confirmed Concepts from each method (Table 13) such that their percentage of target activation is binned into 3 regions
based on their degree of relevance.

Method 90-100% 80-89% <80%
Concept Induction 14 6 0
GPT-4 10 4 0
CLIP-Dissect 4 1 0

Table 14
Mean, Median, and Standard Deviation (SD) of Concept Activation Analysis Test Accuracies, and Count of Concepts with their Concept Clas-
sifier Test Accuracies binned into 3 regions – High (90-100%), Medium (80-89%), and Low (<80%) relevance

Method CAV CAR Count of Concepts
Mean Median SD Mean Median SD 90-100% 80-89% <80%

Concept Induction 0.9154 0.9230 0.0449 0.9150 0.9310 0.0465 46 22 1
CLIP-Dissect 0.9160 0.9146 0.0389 0.9259 0.9293 0.0443 17 5 0
GPT-4 0.8757 0.8863 0.0817 0.8887 0.9024 0.0690 11 9 1

medium (80-89%), and low (< 80%) relevance concepts. Tables 13 and 14 show that Concept Induction produces a
notably larger number of high-relevance concepts compared to other methods. Table 5, shows 8 and 27 statistically
confirmed concepts from the CLIP-Dissect and GPT-4 method, respectively. However, upon closer examination, it
becomes evident that some concepts are duplicated across the tables.

Disregarding the duplicates, we have only 5 and 14 confirmed concepts from CLIP-Dissect or GPT-4, respectively,
as opposed to 18 from Concept Induction.

This difference is likely due to Concept Induction’s reliance on rich background knowledge, necessitating ad-
ditional preprocessing but offering additional value. While a candidate concept pool of 20K English vocabulary
words for off-the-shelf GPT-4 may not be universally effective, Concept Induction’s ability to generate extensive,
high-relevance concepts underscores the importance of well-engineered background knowledge.

If an application does not require comprehensive concept-based explanations, CLIP-Dissect/GPT-4 may serve as a
useful solution, especially when time is limited. However, for detailed concept-based analysis, preparing background
knowledge and leveraging Concept Induction is crucial. For CLIP-Dissect/GPT-4, it is unclear how to meticulously
craft the pool of candidate concepts since it is difficult to manually curate a static set that is broad enough to
capture all pertinent concepts while remaining specific enough to avoid noisy or ambiguous labels. By employing a
background knowledge base, it is possible to define a large pool of potential explanations, tailored to the application
scenario, with additional relationships among concepts. For example, in a medical diagnostic application, an ideal
candidate pool would include specialized clinical terminology (e.g., “cardiomegaly” or “pleural effusion”) that is
essential for accurate interpretation – an adjustment that is hard to achieve with a generic vocabulary. Concept
Induction facilitates deductive reasoning utilizing this background knowledge, inherently offering transparency and
flexibility in shaping the candidate concept pool.

While it is important to investigate methods that assess the relevance of concepts in hidden layer computations
within a given candidate pool, it is equally, if not more, vital to thoughtfully design this pool. Neglecting this
aspect could result in overlooking crucial concepts essential for gaining insights into hidden layer computations.
Our approach offers a way to integrate rich background knowledge and extract meaningful concepts from it.

Our focus on dense layer activations, while providing valuable insights, represents only a part of what the deep
representation encodes. The dense layer likely relates to clear-cut concepts that separate output classes, aligning
well with our goal of identifying high-level, interpretable concepts. However, these concepts are influenced by com-
binations of features from previous layers. This limitation underscores the complex nature of deep neural networks,
where concepts identified at the dense layer result from hierarchical feature compositions throughout the network.
While our method offers meaningful insights into these high-level concepts, it may not fully capture the nuanced
feature interactions in earlier layers. Nonetheless, focusing on the dense layer allows us to extract concepts more
directly relevant to the network’s final decision-making process, balancing interpretability with the complexity of
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internal representations. Future work could explore extending our method to analyze concept formation across mul-
tiple layers, potentially revealing a more comprehensive picture of the network’s decision-making process.

One drawback of utilizing Concept Induction (and GPT-4) is its dependency on object annotations, which serve
as data points in the background knowledge. In contrast, CLIP-Dissect operates without the need for labels and can
function with any provided set of images.

We view this as a trade-off that must be carefully considered based on the application scenario. If the application
is broad and does not demand a meticulous design of candidate concepts, then employing approaches like CLIP-
Dissect can be advantageous. Conversely, for applications that are focused or specialized, CLIP-Dissect may only
provide broadly relevant concepts.

Our focus has been primarily on assessing the comparative effectiveness of Concept Induction within the confines
of Convolutional Neural Network architecture using ADE20K Image data. Nevertheless, it is imperative to investi-
gate its suitability across different architectures and with diverse datasets. Given the model-agnostic nature of our
approach, our results suggest its potential applicability across a range of neural network architectures, datasets, and
modalities. While we utilized a Wikipedia Concept Hierarchy comprising 2 million concepts, it would be intrigu-
ing to observe the outcomes of our approach when powered by a domain-specific Knowledge Graph in specialized
domains such as Medical Diagnosis.

The error margins derived from our analysis significantly enhance the interpretability and reliability of neural
networks. These margins provide a quantitative measure of confidence for concept detection in image analysis tasks.
For instance, when a neuron associated with a specific concept (e.g., "buffet") activates above a certain threshold,
the error margin allows us to estimate the likelihood that the image actually contains that concept.

Our study demonstrates the robustness of error margin methodology across diverse datasets without assuming
identical neuron-concept associations between Google Images and ADE20K. Instead, our primary goal was to val-
idate the generalizability of error margins across these distinct datasets. In our experiments, we observed varying
neuron-concept associations across datasets. For instance, while neuron 62 prominently associated with ’buffet’ in
Google Images, its activation pattern in ADE20K showed similarities but also notable differences. These variations
stem from differences in dataset characteristics, training specificity, and concept granularity. Importantly, these dif-
ferences strengthen our findings. The methodology’s ability to produce statistically significant results despite these
variations underscores its robustness and broad applicability. This adaptability is crucial for real-world applications
requiring reliable concept detection and interpretability across diverse data contexts.

Our statistical analysis, employing Mann-Whitney U and Wilcoxon signed-rank tests, reveals significant dif-
ferences in non-target label activations (Non-TLA) between the ADE20K dataset and the Google Images dataset.
Crucially, the lower Non-TLA values observed in the ADE20K dataset validate our error margins and underscore
their reliability. This validation is important for several reasons:

– Generalizability: The fact that error margins derived from the Google Images dataset generalize well to the
more structured and annotated ADE20K dataset indicates that our method is not confined to a specific dataset.
This enhances the broader applicability of our approach.

– Reliability: The reduced Non-TLA in the ADE20K dataset suggests that neuron activation patterns are more
precise and reliable when tested on a well-annotated dataset. This finding assures that the calculated error
margins are robust and can be trusted for practical AI applications.

– Foundation for Future Work: Validating our error margins across different datasets provides a strong foun-
dation for future research, encouraging further exploration of neuron activation patterns and their implications
for model explainability.

These error margins significantly enhance the interpretability of neural network decisions by quantifying the
reliability of neuron-concept associations. This offers a more nuanced understanding of how the network processes
information, going beyond simple neuron labeling to provide insights into the degree of certainty with which we
can interpret a neuron’s activation. Such information is crucial for building trust in AI systems, especially in critical
decision-making scenarios.

Furthermore, our error margin analysis can guide the refinement of neural architectures. By identifying neurons
or neuron ensembles with high precision for specific concepts, we can inform targeted improvements in network
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design. For example, architectures could be optimized to enhance the precision of key concept detections, potentially
leading to more efficient and accurate models.

In summary, our analysis demonstrates that the concept associations and error margins derived from our method
are both reliable and generalizable. These findings contribute significantly to the field of explainable AI by providing
a validated approach to understanding and improving the interpretability of neural networks, paving the way for
more advanced and trustworthy AI systems.

4. A Special Study: Concept Induction using LLM

We explore the potential of a Large Language Model (LLM), specifically GPT-4, by leveraging its domain knowl-
edge and common-sense capability, to generate high-level concepts that are meaningful as explanations for humans,
for our specific setting of image classification. We use minimal textual object information available in the data via
prompting to facilitate this process. To evaluate the output, we compare the concepts generated by the LLM with
two other methods: concepts generated by humans and the ECII heuristic concept induction system. Since there is
no established metric to determine the human understandability of concepts, we conducted a human study to assess
the effectiveness of the LLM-generated concepts. Our findings indicate that while human-generated explanations
remain superior, concepts derived from GPT-4 are more comprehensible to humans compared to those generated
by ECII. The prompting approach we detail and evaluate below was also used for the GPT-4 based label hypothesis
generation described in section 3.2.3.

Expanding upon the framework introduced in Section 3, our goal is to explore the feasibility of replacing the ECII
model with a Large Language Model (LLM) to produce explanations that remain meaningful and coherent. The
objective is to identify “good" concepts that make sense to humans and can later be validated by mapping them with
a Deep Neural Network (DNN) to accurately describe what neurons perceive. We utilized the GPT-4 [49] model to
generate meaningful explanations for a specific scene classification task, which was done using a logistic regression
algorithm that classified images into scene categories based on semantic tags of objects present in each image. The
explanations are generated using Prompt Engineering [18] via the OpenAI API. Unlike logical-deduction-based
systems such as ECII, which are limited by background knowledge, an LLM like GPT-4 can leverage its common-
sense reasoning capability and vast domain knowledge to produce more comprehensive concepts. In [70], the quality
of explanations generated by concept induction was assessed and found to be more meaningful than semi-random
explanations but less accurate than human-generated (gold standard) ones. Our objective is to evaluate the extent
to which explanations generated by LLMs align with human-generated explanations and potentially surpass the
concept induction system in terms of accuracy and comprehensibility.

As discussed before, concept induction is a symbolic reasoning task that can be done using provably correct [37]
or heuristic [55] deduction algorithms over description logic knowledge bases. In this section, we attempt to make
use of pre-trained LLMs to produce results that are comparable to or even better than those obtained from a concept
induction system. In other words, we are making use of an LLM to do better than a symbolic-reasoning-based
algorithm, at least in a specific setting.

4.1. Approach

Our approach and evaluation setting is essentially the same as in [70], however instead of their comparison of ex-
planations generated by (1) humans, (2) concept induction, and (3) a semi-random process, we compare (1) human,
(2) concept induction, and (3) GPT-4 prompting. We went into the study with the hypothesis that explanations pro-
duced by GPT-4 would outperform those produced by concept induction in terms of "meaningfulness to humans,"
but that they would still not be as good as the human-generated gold standard.

4.1.1. Input Dataset
As in [70], we used the object tags associated with images from the ADE20K dataset [74, 76] as input, in this

case for the GPT-4 model via the OpenAI API. As discussed previously, this dataset contains approximately 20,000
human-curated images annotated with scene categories and object tags present in the images. We used a selection
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Fig. 4. Prompting Method: The GPT-4 model was prompted using the exact prompt mentioned in the image. Here, the positive and negative text
indicates the object tags present in the images. The resulting set of seven concepts is mentioned in the GPT-4 response.

of 45 image set pairs. Each image set pair consists of two groups of natural images representing distinct scene
categories (A and B), with a total of 90 scene categories across all sets. Each set within a pair consisted of eight
images selected at random from a particular category.

These image set pairs were curated in the previous study [70], and we adopted the same set of pairs to maintain
consistency. Although the object tags in the dataset indicate not only the presence of an object but also details
such as the number of objects and occlusions, we focused solely on the object labels for our analysis, disregarding
additional annotations.

To generate explanations from the GPT-4 model, we fed the object tags of the images into the model using
prompts. Our objective was to describe what distinguished Category A from Category B in each image set pair,
where each image set belongs to a specific scene category. These descriptions were defined as "concepts," and for
each image set, we produced a list of seven concepts. We tried to come up with concepts that encompass tangible
objects depicted in the images (e.g., tree or bench) or general categories that align with the theme of the images
(e.g., park or garden).

To prompt the GPT-4 model effectively, we experimented with different prompting techniques to obtain the most
reasonable concepts. Our approach involved using a straightforward technique that leveraged only the object labels
from each image set category. We instructed the GPT-4 model to differentiate between the two categories based on
their object tags. Object tags, as the name suggests, could be anything physically present in the images. For example,
the object tags coming from category A in Figure 4 include object labels such as stands, food, wall, tomatoes, bag,
register, weighing machine, shopping carts, person, etc.

Similarly, the ECII system also used the same object tags to generate concepts. For the ECII model, all object tags
from the images are automatically mapped to classes in the Wikipedia class hierarchy using the Levenshtein string
similarity metric [39] with an edit distance of 0. The algorithm then assessed the images based on their object tags
and returned a rating of how well concepts matched images in Category A but not Category B. ECII explanations
were then created by taking the seven highest-rated unique concepts. This alignment allowed us to compare the
concepts generated by our approach with those produced by the ECII system.

The process and the prompt used for interacting with the GPT-4 model are illustrated in Figure 4.

4.1.2. Prompting the model
We used the latest version of the GPT-4 model for our prompt. We utilized zero-shot prompting with specific

parameters, setting the temperature to 0.5 and top_p to 1. The temperature parameter in GPT-4 controls the level
of creativity or randomness in the generated text. When predicting the next token from a vocabulary of size N,
the model uses a softmax distribution of the form softmax(xi/T ) for i = 1, . . . ,N, where T is the temperature.
This distribution assigns probabilities to each token (xi) in the vocabulary, influencing the likelihood of selecting
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each word. Lowering the temperature favors words with higher probabilities, leading to more predictable and less
creative responses when the model randomly samples the next word. Top_p sampling is an alternative to temperature
sampling. It limits the consideration from all possible tokens to a subset of tokens (the nucleus) whose cumulative
probability mass reaches a specified threshold (top_p). OpenAI recommends adjusting one of these parameters but
not both simultaneously for optimal control over text generation. In our prompts, we set the model’s temperature
to a lower value (0.5) to ensure more consistent and reproducible answers across different sets. Here, we didn’t
set the temperature to 0 as we wanted to see some creative responses from the GPT-4 model in tasks where the
image set categories (e.g., Category A and B) contain similar objects, to test if the model can distinguish them using
human-like intuitive behavior. In figure 4, we can see that all the object tags coming from sets A and B are given
in the prompt, and it was asked to distinguish between them. Here as it becomes a long prompt with all the object
tags for both categories, we mention them twice in our prompt, once at the beginning and once at the end, which
seems to be helpful for the GPT model to produce better results and remember the object tags. In our prompts, we
aimed to generate generic concepts or object classes that mimic the ontology classes positioned somewhere in the
middle of the hierarchy used by ECII. These intermediate classes are designed to capture a broader range of specific
child classes, providing a bridge between more general concepts and highly specific subclasses within the ontology
structure. It is asked to provide the top seven concepts based on the instruction. We generate a list of seven concepts
for each set following this method.

4.2. Evaluation

To evaluate the concepts generated from GPT-4 we ran a study through Amazon Mechanical Turk using the Cloud
Research platform. Our goal was to assess the quality of LLM explanations (i.e., GPT-4 explanations) compared to
both human-generated ("gold standard") explanations and ECII explanations.

We recruited 300 participants through Mechanical Turk, compensating each participant with $5 for completing
the task, which was estimated to take approximately 40 minutes (equivalent to $7.50 per hour based on the minimum
legal wage in the USA). Based on the previous study [70], we aimed for a sample size of at least 89 unique participant
judgments per trial to estimate the parameters (medium effect size of f2 = 0.15 and 95% power) of the Bradley-Terry
model [9], which is used to evaluate the survey results. This required collecting data from 300 participants, resulting
in a total of 100 observations per trial after accounting for potential exclusions.

Across all questions, each participant encountered three types of explanations, although only two explanation
types were compared in any given question. Each participant was asked to choose the more accurate explanation
using a two-alternative forced choice design. For each pair of image sets, participants answered three questions
comparing (1) Human versus ECII explanation; (2) Human versus LLM (GPT-4) explanation; and (3) LLM versus
ECII explanation. For each pair of image sets (A and B), a given participant completed all three comparisons.

The 45 pairs of image sets in this study resulted in a total of 135 unique target questions. Participants were
randomly assigned to 15 image sets (45 questions in total), ensuring that image sets were counterbalanced across
participants to receive an equal number of responses.

For all image sets, ECII explanations and Human "gold standard" explanations were created in a previous study
[70]. In this work, we generated LLM (GPT-4) explanations following the method described in Section 4.1. To form
the ECII explanations, the object tags of the images were provided to the ECII algorithm, then the seven highest-
rated unique concepts were selected based on the ranking of the F1 score. Human "gold standard" explanations were
crafted by presenting image sets (without object or scene category tags) to three human raters, selecting concepts
unanimously mentioned by all three, then by two raters, and finally filling in randomly selected concepts until seven
unique concepts were reached.

In addition to the 45 image sets, five "catch trial" image sets were used to verify participant attention. These catch-
trial image sets included two types of explanations: human explanations generated similarly to other human gold
standard explanations, and explanations consisting of completely random concepts generated from a word generator
to serve as obviously inaccurate explanations.

After providing consent, participants received brief training on the task, including instructions on how concepts
and explanations were defined in the study. They then began answering questions, with the 50 questions (45 assigned
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Fig. 5. Survey interface, with human explanation presented on the left and LLM explanation on the right.

targets and 5 catch trials) presented in random order. Figure 5 illustrates the stimuli presentation and response
options shown to participants.

4.3. Results

Prior to analysis, participant responses to catch trials were evaluated, and participants who failed more than one
catch trial were excluded from further analysis. Among the 300 participants, 253 did not fail any catch trials, while
22 participants failed exactly one trial, and 35 participants failed more than one trial. The 35 participants who failed
multiple trials were excluded from all subsequent analyses, resulting in a total of 265 participants included in the
analyses.

Across all image sets, human explanations were overwhelmingly preferred over ECII explanations (chosen 3282
times versus 693 times; 83% preference) and over LLM (GPT-4) explanations (chosen 2762 times versus 1213
times; 69% preference). Additionally, LLM explanations were preferred over ECII explanations (chosen 2514 times
compared to 1461 times; 63% preference). See Figure 6.

Participants’ pairwise judgments were utilized in a Bradley-Terry analysis [67] to derive "ability scores" for each
type of explanation, reflecting the extent to which each explanation type was preferred by participants. The Bradley-
Terry model uses data where entities are compared pairwise, and the outcome (win/loss, preference ranking, etc.)
is observed. From these comparisons, the model estimates the abilities θi such that the observed outcomes are
statistically likely. The estimation process typically involves fitting the model to the pairwise comparison data to
find the best-fitting values of θi for each entity. These estimates reflect the latent abilities or strengths of the entities
relative to each other. Ability scores were calculated for each of the 45 image set pairs based on the pairwise
comparison data (win/loss) for each type of explanation. The analysis of these ability scores demonstrated that
human explanations had the highest scores (M = 1.77, SD = 0.978), followed by LLM explanations (M = 0.724, SD
= 1.16), with a significant overall difference (F(2) = 46.28, p < 0.001, η2 = 0.41). Here, ECII explanations served
as the reference point and were set to 0, with the ability scores for human and LLM explanations indicating their
preference over ECII explanations.

A post hoc analysis using Tukey’s Honestly Significant Difference (HSD) test [2] was conducted to determine
which specific group means are significantly different from each other. When comparing multiple group means,
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Fig. 6. Number of times participants chose different explanation types.

Table 15
p-values of the ability scores among different explanation types from Tukey’s HSD Test

Comparison pairs p-value
Human_explanation vs ECII_explanation <0.0001
LLM_explanation vs ECII_explanation =0.0004
Human_explanation vs LLM_explanation <0.0001

the Tukey post hoc test is preferred over multiple t-tests [32] because it adjusts for multiple comparisons, control-
ling the overall Type I error rate [44]. Conducting multiple t-tests increases the risk of false positives, while the
Tukey test maintains the integrity of statistical conclusions by adjusting the significance levels appropriately. This
test confirmed significant differences in ability scores between human vs. ECII explanations and human vs. LLM
explanations (both p < 0.0001), as well as between LLM vs. ECII explanations (p = 0.0004) (Table 15). These low
p-values indicate that the observed differences in ability scores are highly significant and unlikely to have occurred
by random chance alone.

The individual ability scores for human and LLM explanations for each image set pair are detailed in Table 16.
The source code, input data, and raw result files related to the evaluation tasks (i.e., survey questionnaires, and

collected responses) are available online.6

4.4. Discussion

The analysis of the results presented in Table 16 provides evidence supporting our hypothesis that LLM (GPT-4)
explanations are more meaningful for humans compared to ECII-generated ones. Human-generated explanations
were consistently preferred as the most accurate in describing differences between image categories, followed by
LLM explanations, with ECII explanations found as the least accurate. The preference for human-generated explana-
tions over LLM explanations is expected given the messy nature of generalized Large Language Models. These mod-
els, trained on vast and diverse datasets, can produce responses that lack precision and clarity because of their broad
generalization. This can lead to explanations that are sometimes inaccurate or unclear, making human-generated
explanations generally more reliable and preferred. Also, there is potential for further refinement in prompting
techniques using varied hyper-parameters (e.g., temperature and top-p). However, LLM explanations demonstrated
notable explanatory power, suggesting their usability in concept generation.

6https://github.com/AdritaBarua/Concept-Induction-using-LLMs-a-user-experiment-for-assessment

https://github.com/AdritaBarua/Concept-Induction-using-LLMs-a-user-experiment-for-assessment
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Table 16
Ability Scores and Number of Wins for Human (H), ECII (E), and LLM (L) explanations. ECII explanations were set as the reference point in
the Bradley-Terry analysis and so their ability scores were always equal to 0, and thus are not displayed here.

Image Set H.Ability LLM.Ability HvE Wins HvL Wins LvE Wins
Set 1: Bedroom v Park 1.47 -1.05 72-12 74-10 18-66
Set 2: Living Room v Parking Lot 2.64 2.76 84-3 38-49 79-8
Set 3: Office v Playground 1.12 0.34 74-15 54-35 45-44
Set 4: Airport v Amusement Park 1.93 0.77 77-13 70-20 63-27
Set 5: Bathroom v Art Studio 1.05 1.47 67-20 32-55 68-19
Set 6: Beauty Salon v Forest Path 0.72 -0.86 63-25 69-19 22-66
Set 7: Bookstore v Child Room 1.72 1.79 76-15 45-46 79-12
Set 8: Hotel Room v Cockpit 0.65 -1.68 62-28 79-11 11-79
Set 9: Shoe Store v Alcove 0.79 1.52 63-24 25-62 68-19
Set 10: Alley v Wet Bar 2.74 1.85 85-6 65-26 79-12
Set 11: Closet v Construction Site 1.98 1.14 77-8 57-28 62-23
Set 12: Gazebo v Bowling Alley 2.64 -1.03 85-2 81-6 19-68
Set 13: Garage v Hallway 0.42 -0.09 49-39 59-29 46-42
Set 14: Laundromat v Pantry 1.86 1.18 75-14 61-28 70-19
Set 15: Conference Room v Waterfall 2.42 -0.45 85-3 79-9 30-58
Set 16: Home Office v Bow 1.83 1.58 77-13 51-39 75-15
Set 17: Dining Room v Kitchen 0.24 0.33 45-41 44-42 53-33
Set 18: Fast Food v Office Building 2.58 0.24 84-4 78-10 47-41
Set 19: Jacuzzi v Greenhouse 3.08 2.13 88-5 68-25 84-9
Set 20: Gymnasium v Corridor 2.76 1.63 83-6 68-21 75-14
Set 21: Bus v Broadleaf Forest 2.24 -0.59 77-8 80-5 30-55
Set 22: Casino v Arrival Gate 1.77 1.11 73-13 57-29 65-21
Set 23: Library v Gas Station 0.92 -1.02 61-31 85-7 29-63
Set 24: Valley v Yard 2.66 1.17 85-7 76-16 71-21
Set 25: Mountain v Coast 0.45 -0.64 50-36 67-19 32-54
Set 26: Dinette Vehicle v Farm Field 0.88 -0.62 69-23 71-21 28-64
Set 27: Poolroom v Driveway -0.72 -0.12 30-58 30-58 40-48
Set 28: Bridge v Auditorium 1.95 1.9 80-10 45-45 77-13
Set 29: Museum v Youth Hostel 1.24 -1.04 68-20 80-8 23-65
Set 30: Supermarket v Restaurant 2.12 2.97 75-8 24-59 78-5
Set 31: Classroom v Archive 1.18 0.06 65-18 61-22 41-42
Set 32: Dentist Office v Ballroom 2.94 1.29 85-5 76-14 71-19
Set 33: Lighthouse v River 1.68 1.81 73-14 41-46 75-12
Set 34: Creek v Basement 4.46 2.85 86-4 78-12 88-2
Set 35: Building Facade v Ocean 1.69 0.77 77-16 68-25 65-28
Set 36: Courthouse v Parking Garage 2.95 1.15 82-7 79-10 70-19
Set 37: Balcony v Skyscraper 3.18 0.8 84-4 81-7 61-27
Set 38: Game Room v Waiting Room 0.68 0.09 63-29 57-35 46-46
Set 39: Landing Deck v Window Seat 2.72 2.15 86-4 56-34 79-11
Set 40: Bar v Warehouse 1.35 0.47 73-15 59-29 51-37
Set 41: Bakery v Apartment Building 0.99 1.98 63-21 21-63 72-12
Set 42: Needleleaf Forest v Playroom 2.41 1.14 81-8 70-19 68-21
Set 43: Outdoor Window v Roundabout 2.14 0.53 84-8 75-17 56-36
Set 44: Reception v Golf Course 2.16 0.99 76-9 65-20 62-23
Set 45: Staircase v Plaza 1.09 0.04 65-21 63-23 43-43



A. Dalal et al. / Neurosymbolic Understanding of Hidden Neuron Activations 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

It is important to note the variability in LLM performance across different image sets. In some cases, LLM
explanations were chosen relatively more frequently than in others, with some instances showing LLM explana-
tions being preferred more often than human explanations. Conversely, in other image sets, LLM explanations were
chosen less often than ECII explanations. For instance, in Set 41 (see Figure 7), explanations generated by LLM
are more comprehensive in identifying images of a bakery, while human-generated explanations also perform ad-
equately. However, the concept "Women" included in the human-generated list is not as relevant for capturing the
overall scene depicted in these images.

Fig. 7. Example of different explanation types for Set 41: Bakery v Apartment Building

On the other hand, ECII concepts only identify the object names present in the images and fail to capture the
broader category of the scenes (i.e., bakery). In most cases where LLM explanations fall short, they tend to introduce
concepts that are unrelated to the images. For example, in Set 6 (see Figure 8), LLM produced a concept like
"Public Transport," which is contextually incorrect. One potential reason for this is the presence of object names
(such as streetcar, tram, tramcar, swivel chair, trolley car, armchair) in the input images, which could be erroneously
associated with public transport. Based on these examples, it is speculated that when GPT-4 was prompted to
generate generic scenarios based on object tags, it attempted to produce seven distinct concepts. Limiting the number
of concepts might lead to clearer explanations that are more pertinent. Additionally, running prompts to ask for
simple object names rather than generic scenarios akin to ECII-generated explanations could yield different outputs
that may prove useful. This suggests there is certainly still room for improvement in LLM explanations, but that on
average there is promising evidence that LLMs can produce explanations that successfully describe the differences
between two groups of data. Moreover, variability could be introduced by human participants. In our study, human
explanations were preferred over ECII 83% of the time, whereas in the previous study [70] with the same settings,
the preference ratio was 87%.
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Fig. 8. Example of different explanation types for Set 6: Beauty Salon v Forest Path

5. Tool: End-to-End Automated Neuron Interpretation using Concept Induction

In this section, we report on an implementation that end-to-end automates the concept induction and statistical
evaluation workflow. Our system uses automation in four stages (see Figure 9) to streamline processes and to
enhance efficiency.

Stage 1: Model Training and Data Configuration Initially, our automation pipeline trains and configures a CNN
model using the ADE20K dataset [76]. This process is executed on Beocat [28], a high-performance computing en-
vironment optimized for managing extensive datasets. A Bash script automates job scheduling, resource allocation
via SLURM, initializes the Python environment, securely clones the stage 1 repository from GitHub, and installs
the necessary dependencies to establish the training environment. We employ a ResNet50V2 architecture imple-
mented in TensorFlow, fine-tuned to enhance model performance using techniques such as data augmentation, early
stopping, and batch normalization.

Stage 2: Parallelized Concept Induction and Label Hypothesis Generation We used the concept induction process
to generate label hypotheses for each of the 64 neuron activations in the CNN’s dense layer using the heuristic
Concept Induction system ECII [55]. We automated the simultaneous execution of tasks for all 64 neurons by em-
ploying parallel processing with a SLURM-configured Bash script in Beocat. The script initializes the environment,
installs necessary Java and Maven dependencies, and clones the latest stage 2 repository from GitHub. Each neuron-
specific configuration file from Stage 1 was used to generate semantic concepts, producing output concept files
with hypothesized labels and coverage scores using the background knowledge base from the Wikipedia concept
hierarchy.

Stage 3: Parallelized Image Retrieval and Classification Image retrieval and classification were automated for all
neurons to validate the label hypotheses generated in Stage 2. A Bash script manages parallel task execution using
SLURM, generating indices for neurons with configuration files. It clones the Stage 3 project repository, sets up the
environment, installs dependencies. The script runs a Python program that utilizes the pygoogle_image library to
extract labels from the top 3 solutions for each neuron, retrieves 100 images per label from Google, and classifies
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Fig. 9. Automated four-stage pipeline for analyzing neuron activations, inducing concepts, and evaluating neuron significance using a
ResNet50V2 model and ECII tool, created with BioRender.com.

them using the trained CNN model. Retrieved images are divided into evaluation and verification sets for statistical
analysis.

Stage 4: Statistical Analysis and Verification of Neuron Activations Label hypotheses are validated through sta-
tistical analysis of neuron activations. A Bash script sets up the environment, clones the stage 4 repository, and
installs dependencies. The script runs a Python program that combines activation data from evaluation and verifi-
cation sets, generates summary statistics, and conducts a Mann-Whitney U test [42] to compare activation values
for target and non-target images. Evaluation sets, containing images that strongly activate neurons, provide initial
activation metrics. Verification sets undergo further statistical testing to confirm the accuracy and robustness of the
label hypotheses.

6. Tool: Demo

We provide a visualizing tool, ConceptLens, that quantifies the uncertainty and imprecision in neural concept
labels through error margins. ConceptLens makes use of, and displays, identified concepts (using the Concept In-
duction approach) as well as confidence values based on the above discussed error-margin analysis. This approach
allows users to see not only what stimuli activate specific neurons but also how confidently these neurons respond
to different inputs. The demonstrator is currently restricted to the system trained as described in section 3.1.

User Interface ConceptLens features a user-friendly interface that allows users to upload images and receive real-
time visualizations of neuron activations. The main components of the interface include:

BioRender.com
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Fig. 10. Example image and output, ConceptLens demonstrator.

1. Image Upload and Selection: Users can upload their images or choose from a curated gallery. The tool sup-
ports a wide range of images, although results may vary for images outside the 10 classes it was primar-
ily trained on: bathroom, bedroom, building facade, conference room, dining room, highway, kitchen, living
room, skyscraper, and street.

2. Concept Detection and Visualization: ConceptLens processes the uploaded image through trained CNN and
Concept Induction to detect relevant concepts. The detected concepts are then presented as bar chart visual-
ization and their corresponding error-margin percentages, providing users with a clear understanding of the
network’s predictions.

3. Error-Margin Display: The interface highlights the error-margin percentages for each detected concept, allow-
ing users to gauge the confidence of the network’s predictions. Lower percentages indicate higher confidence
in the concept detection.

Demonstration The ConceptLens demonstrator is available online,7 together with a video for a preview of its
features8 and the source code is available on GitHub.9 Fig. 10 shows a screenshot of a ConceptLens output example.
Note the (relatively) small error margins for the top mentioned detected concepts, most of which are clearly present
in the image.

7. Conclusion

In this study, we demonstrate and evaluate the use of Concept Induction as a post-hoc Explainable AI tool. Our
findings indicate that indeed Concept Induction over a background knowledge provides detailed insights into the
otherwise black-box nature of hidden layer computations. It is a neurosymbolic approach where the generation of
explanations is not a black-box process, which has practical advantage across many applications, e.g., where the
explanation generation process necessitates provable correctness. Of course such an advantage is only achieved
at a cost, in our case that is – requiring labeled data. We view this approach not as a replacement of existing non-
white-box Explainable AI methods, rather we introduce a novel neurosymbolic approach to complement the existing
techniques, especially for situations where provable correctness is of utmost importance regardless of the cost.

7https://conceptlens.streamlit.app/Explore_ConceptLens
8https://youtu.be/yLYig1IjB9Y
9https://github.com/abhilekha-dalal/ConceptLens

https://conceptlens.streamlit.app/Explore_ConceptLens
https://youtu.be/yLYig1IjB9Y
https://github.com/abhilekha-dalal/ConceptLens
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Additionally, we provide a systematic approach to evaluate neuron-labeling by means of high-level concepts
obtained through Concept Induction. In our evaluation protocol, we not only measure the explanation performance
by asking “What Concept(s) activate a neuron the most?", but also “Given Concept X activates a neuron, how likely
it is that the said neuron is activated by other concepts?", we argue that the latter is necessary for a trustworthy
Explainable AI technique.

The process of achieving explanations using Concept Induction involves many steps, as such we also provide an
automated end-to-end system; thereby reducing any manual efforts. We hope that such an automated system gets
rid of impediments towards replicating the results and would nurture future research opportunities.

In further work, we intend to extend our work to diverse datasets and various neural network architectures.
Additionally, we aim to enhance model interpretability by exploring additional concept induction results, using
different background knowledge, across various neuron layers.

Acknowledgement. The authors acknowledge partial funding under National Science Foundation grants 2119753
and 2333782.

References

[1] S. A. and S. R., A systematic review of Explainable Artificial Intelligence models and applications: Recent developments and future trends,
Decision Analytics Journal 7 (2023), 100230. doi:https://doi.org/10.1016/j.dajour.2023.100230. https://www.sciencedirect.com/science/
article/pii/S277266222300070X.

[2] H. Abdi and L.J. Williams, Tukey’s honestly significant difference (HSD) test, Encyclopedia of research design 3(1) (2010), 1–5.
[3] A. Adadi and M. Berrada, Peeking inside the black-box: A survey on explainable artificial intelligence (XAI), IEEE access 6 (2018),

52138–52160.
[4] S.E. Akkamahadevi, A. Dalal and P. Hitzler, Automating CNN Neuron Interpretation using Concept Induction, in: ISWC 2024 Demo

Proceedings, 2024.
[5] D. Alvarez-Melis and T.S. Jaakkola, On the Robustness of Interpretability Methods (2018), cite arxiv:1806.08049, presented at 2018 ICML

Workshop on Human Interpretability in Machine Learning (WHI 2018), Stockholm, Sweden. http://arxiv.org/abs/1806.08049.
[6] P. Barbiero, G. Ciravegna, F. Giannini, M.E. Zarlenga, L.C. Magister, A. Tonda, P. Lió, F. Precioso, M. Jamnik and G. Marra, Interpretable

neural-symbolic concept reasoning, in: Proceedings of the 40th International Conference on Machine Learning, ICML’23, JMLR.org,
2023.

[7] A. Barua, C.L. Widmer and P. Hitzler, Concept Induction Using LLMs: A User Experiment for Assessment, in: Neural-Symbolic Learning
and Reasoning – 18th International Conference, NeSy 2024, Barcelona, Spain, September 9-12, 2024, Proceedings, Part II, T.R. Besold,
A. d’Avila Garcez, E. Jiménez-Ruiz, R. Confalonieri, P. Madhyastha and B. Wagner, eds, Lecture Notes in Computer Science, Vol. 14980,
Springer, 2024, pp. 132–148. doi:10.1007/978-3-031-71170-1_13.

[8] D. Bau, J.-Y. Zhu, H. Strobelt, A. Lapedriza, B. Zhou and A. Torralba, Understanding the role of individual units in a deep neural network,
Proceedings of the National Academy of Sciences 117(48) (2020), 30071–30078.

[9] R.A. Bradley and M.E. Terry, Rank analysis of incomplete block designs: I. The method of paired comparisons, Biometrika 39(3/4) (1952),
324–345.

[10] K. Chauhan, R. Tiwari, J. Freyberg, P. Shenoy and K. Dvijotham, Interactive Concept Bottleneck Models, Proceedings of the AAAI Confer-
ence on Artificial Intelligence 37(5) (2023), 5948–5955. doi:10.1609/aaai.v37i5.25736. https://ojs.aaai.org/index.php/AAAI/article/view/
25736.

[11] R. Confalonieri, T. Weyde, T.R. Besold and F.M. del Prado Martín, TREPAN Reloaded: A Knowledge-Driven Approach to Explaining
Black-Box Models, in: ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago de Com-
postela, Spain, August 29 - September 8, 2020 - Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS
2020), G.D. Giacomo, A. Catalá, B. Dilkina, M. Milano, S. Barro, A. Bugarín and J. Lang, eds, Frontiers in Artificial Intelligence and
Applications, Vol. 325, IOS Press, 2020, pp. 2457–2464. doi:10.3233/FAIA200378.

[12] R. Confalonieri, T. Weyde, T.R. Besold and F.M. del Prado Martín, Using ontologies to enhance human understandability of global post-hoc
explanations of black-box models, Artificial Intelligence 296 (2021), 103471.

[13] J. Crabbé and M. van der Schaar, Concept Activation Regions: A Generalized Framework For Concept-Based Explanations, in: Advances
in Neural Information Processing Systems, Vol. 35, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho and A. Oh, eds, Curran
Associates, Inc., 2022, pp. 2590–2607.

[14] A. Dalal and P. Hitzler, ConceptLens: from Pixels to Understanding, 2024. https://arxiv.org/abs/2410.05311.
[15] A. Dalal, R. Rayan and P. Hitzler, Error-Margin Analysis for Hidden Neuron Activation Labels, in: Neural-Symbolic Learning and Rea-

soning - 18th International Conference, NeSy 2024, Barcelona, Spain, September 9-12, 2024, Proceedings, Part II, T.R. Besold, A. d’Avila
Garcez, E. Jiménez-Ruiz, R. Confalonieri, P. Madhyastha and B. Wagner, eds, Lecture Notes in Computer Science, Vol. 14980, Springer,
2024, pp. 149–164. doi:10.1007/978-3-031-71170-1_14.

https://www.sciencedirect.com/science/article/pii/S277266222300070X
https://www.sciencedirect.com/science/article/pii/S277266222300070X
http://arxiv.org/abs/1806.08049
https://ojs.aaai.org/index.php/AAAI/article/view/25736
https://ojs.aaai.org/index.php/AAAI/article/view/25736
https://arxiv.org/abs/2410.05311


40 A. Dalal et al. / Neurosymbolic Understanding of Hidden Neuron Activations

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[16] A. Dalal, R. Rayan, A. Barua, E.Y. Vasserman, M.K. Sarker and P. Hitzler, On the Value of Labeled Data and Symbolic Methods for
Hidden Neuron Activation Analysis, in: Neural-Symbolic Learning and Reasoning – 18th International Conference, NeSy 2024, Barcelona,
Spain, September 9-12, 2024, Proceedings, Part II, T.R. Besold, A. d’Avila Garcez, E. Jiménez-Ruiz, R. Confalonieri, P. Madhyastha and
B. Wagner, eds, Lecture Notes in Computer Science, Vol. 14980, Springer, 2024, pp. 109–131. doi:10.1007/978-3-031-71170-1_12.

[17] N. Díaz-Rodríguez, A. Lamas, J. Sanchez, G. Franchi, I. Donadello, S. Tabik, D. Filliat, P. Cruz, R. Montes and F. Herrera, EXplainable
Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: The MonuMAI
cultural heritage use case, Information Fusion 79 (2022), 58–83.

[18] S. Ekin, Prompt Engineering For ChatGPT: A Quick Guide To Techniques, Tips, And Best Practices, 2023.
doi:10.36227/techrxiv.22683919.

[19] A. Ghorbani, J. Wexler, J.Y. Zou and B. Kim, Towards Automatic Concept-based Explanations, in: Advances in Neural Information Pro-
cessing Systems, Vol. 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox and R. Garnett, eds, Curran Associates, Inc.,
2019.

[20] A. Goldstein, A. Kapelner, J. Bleich and E. Pitkin, Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual
Conditional Expectation, Journal of Computational and Graphical Statistics 24(1) (2015), 44–65. doi:10.1080/10618600.2014.907095.

[21] Y. Goyal, U. Shalit and B. Kim, Explaining Classifiers with Causal Concept Effect (CaCE), CoRR abs/1907.07165 (2019). http://arxiv.org/
abs/1907.07165.

[22] Y. Guan, F. Lécué, J. Chen, R. Li and J. Z. Pan, Knowledge-Aware Neuron Interpretation for Scene Classification, Proceedings of the AAAI
Conference on Artificial Intelligence 38(3) (2024), 1950–1958. doi:10.1609/aaai.v38i3.27965. https://ojs.aaai.org/index.php/AAAI/article/
view/27965.

[23] D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf and G.-Z. Yang, XAI – Explainable artificial intelligence, Science robotics 4(37)
(2019), eaay7120.

[24] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[25] K. He, X. Zhang, S. Ren and J. Sun, Identity mappings in deep residual networks, in: European conference on computer vision, Springer,
2016, pp. 630–645.

[26] P. Hitzler, A review of the semantic web field, Commun. ACM 64(2) (2021), 76–83. doi:10.1145/3397512.
[27] P. Hitzler, M. Krötzsch and S. Rudolph, Foundations of Semantic Web Technologies, Chapman and Hall/CRC Press, 2010. ISBN

9781420090505. http://www.semantic-web-book.org/.
[28] K. Hutson, D. Andresen, A. Tygart and D. Turner, Managing a heterogeneous cluster, in: Proceedings of the Practice and Experience in

Advanced Research Computing on Rise of the Machines (learning), 2019, pp. 1–6.
[29] N. Kalibhat, S. Bhardwaj, C.B. Bruss, H. Firooz, M. Sanjabi and S. Feizi, Identifying interpretable subspaces in image representations, in:

International Conference on Machine Learning, PMLR, 2023, pp. 15623–15638.
[30] B. Kim, M. Wattenberg, J. Gilmer, C.J. Cai, J. Wexler, F.B. Viégas and R. Sayres, Interpretability Beyond Feature Attribution: Quantitative

Testing with Concept Activation Vectors (TCAV), in: Proceedings of the International Conference on Machine Learning (ICML), J.G. Dy
and A. Krause, eds, Proceedings of Machine Learning Research, Vol. 80, PMLR, 2018, pp. 2673–2682. http://proceedings.mlr.press/v80/
kim18d.html.

[31] E. Kim, D. Jung, S. Park, S. Kim and S. Yoon, Probabilistic Concept Bottleneck Models, in: International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato and J. Scarlett, eds,
Proceedings of Machine Learning Research, Vol. 202, PMLR, 2023, pp. 16521–16540. https://proceedings.mlr.press/v202/kim23g.html.

[32] T.K. Kim, T test as a parametric statistic, Korean journal of anesthesiology 68(6) (2015), 540–546.
[33] P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K.T. Schütt, S. Dähne, D. Erhan and B. Kim, The (Un)Reliability of Saliency Methods,

in: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer-Verlag, Berlin, Heidelberg, 2022, pp. 267–280–.
ISBN 978-3-030-28953-9. https://doi.org/10.1007/978-3-030-28954-6_14.

[34] D.P. Kingma and M. Welling, Auto-Encoding Variational Bayes, in: 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, Y. Bengio and Y. LeCun, eds, 2014. http://arxiv.org/abs/1312.6114.

[35] P.W. Koh, T. Nguyen, Y.S. Tang, S. Mussmann, E. Pierson, B. Kim and P. Liang, Concept Bottleneck Models, in: Proceedings of the 37th
International Conference on Machine Learning, H.D. III and A. Singh, eds, Proceedings of Machine Learning Research, Vol. 119, PMLR,
2020, pp. 5338–5348. https://proceedings.mlr.press/v119/koh20a.html.

[36] Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature 521(7553) (2015), 436–444.
[37] J. Lehmann and P. Hitzler, Concept learning in description logics using refinement operators, Mach. Learn. 78(1–2) (2010), 203–250.

doi:10.1007/s10994-009-5146-2.
[38] V.I. Levenshtein, On the Minimal Redundancy of Binary Error-Correcting Codes, Inf. Control. 28(4) (1975), 268–291. doi:10.1016/S0019-

9958(75)90300-9.
[39] V.I. Levenshtein, On the minimal redundancy of binary error-correcting codes, Information and Control 28(4) (1975), 268–291.
[40] S.M. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions, in: Advances in Neural Information Processing Systems

(NeurIPS), Vol. 30, 2017.
[41] S.M. Lundberg and S.-I. Lee, A Unified Approach to Interpreting Model Predictions, in: Advances in Neural Information Processing

Systems 30, I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R. Garnett, eds, Curran Associates, Inc., 2017,
pp. 4765–4774. http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf.

[42] P.E. McKnight and J. Najab, Mann-Whitney U Test, in: The Corsini Encyclopedia of Psychology, Wiley, 2010.

http://arxiv.org/abs/1907.07165
http://arxiv.org/abs/1907.07165
https://ojs.aaai.org/index.php/AAAI/article/view/27965
https://ojs.aaai.org/index.php/AAAI/article/view/27965
http://www.semantic-web-book.org/
http://proceedings.mlr.press/v80/kim18d.html
http://proceedings.mlr.press/v80/kim18d.html
https://proceedings.mlr.press/v202/kim23g.html
https://doi.org/10.1007/978-3-030-28954-6_14
http://arxiv.org/abs/1312.6114
https://proceedings.mlr.press/v119/koh20a.html
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf


A. Dalal et al. / Neurosymbolic Understanding of Hidden Neuron Activations 41

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[43] D. Minh, H.X. Wang, Y.F. Li and T.N. Nguyen, Explainable artificial intelligence: A comprehensive review, Artificial Intelligence Review
(2022), 1–66.

[44] A. Nanda, B.B. Mohapatra, A.P.K. Mahapatra, A.P.K. Mahapatra and A.P.K. Mahapatra, Multiple comparison test by Tukey’s honestly
significant difference (HSD): Do the confident level control type I error, International Journal of Statistics and Applied Mathematics 6(1)
(2021), 59–65.

[45] T. Norrenbrock, M. Rudolph and B. Rosenhahn, Q-SENN: Quantized Self-Explaining Neural Networks, Proceedings of the AAAI Confer-
ence on Artificial Intelligence 38(19) (2024), 21482–21491. doi:10.1609/aaai.v38i19.30145. https://ojs.aaai.org/index.php/AAAI/article/
view/30145.

[46] T. Oikarinen and T.-W. Weng, CLIP-Dissect: Automatic Description of Neuron Representations in Deep Vision Networks, in: International
Conference on Learning Representations, ICLR, 2023. https://openreview.net/forum?id=iPWiwWHc1V.

[47] T. Oikarinen, S. Das, L.M. Nguyen and T.-W. Weng, Label-free Concept Bottleneck Models, in: The Eleventh International Conference on
Learning Representations, ICLR, 2023. https://openreview.net/forum?id=FlCg47MNvBA.

[48] C. Olah, A. Mordvintsev and L. Schubert, Feature Visualization, Distill (2017), https://distill.pub/2017/feature-visualization.
doi:10.23915/distill.00007.

[49] OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F.L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, R. Avila,
I. Babuschkin, S. Balaji, V. Balcom, P. Baltescu, H. Bao, M. Bavarian, J. Belgum, I. Bello, J. Berdine, G. Bernadett-Shapiro, C. Berner,
L. Bogdonoff, O. Boiko, M. Boyd, A.-L. Brakman, G. Brockman, T. Brooks, M. Brundage, K. Button, T. Cai, R. Campbell, A. Cann,
B. Carey, C. Carlson, R. Carmichael, B. Chan, C. Chang, F. Chantzis, D. Chen, S. Chen, R. Chen, J. Chen, M. Chen, B. Chess, C. Cho,
C. Chu, H.W. Chung, D. Cummings, J. Currier, Y. Dai, C. Decareaux, T. Degry, N. Deutsch, D. Deville, A. Dhar, D. Dohan, S. Dowling,
S. Dunning, A. Ecoffet, A. Eleti, T. Eloundou, D. Farhi, L. Fedus, N. Felix, S.P. Fishman, J. Forte, I. Fulford, L. Gao, E. Georges, C. Gibson,
V. Goel, T. Gogineni, G. Goh, R. Gontijo-Lopes, J. Gordon, M. Grafstein, S. Gray, R. Greene, J. Gross, S.S. Gu, Y. Guo, C. Hallacy, J. Han,
J. Harris, Y. He, M. Heaton, J. Heidecke, C. Hesse, A. Hickey, W. Hickey, P. Hoeschele, B. Houghton, K. Hsu, S. Hu, X. Hu, J. Huizinga,
S. Jain, S. Jain, J. Jang, A. Jiang, R. Jiang, H. Jin, D. Jin, S. Jomoto, B. Jonn, H. Jun, T. Kaftan, Łukasz Kaiser, A. Kamali, I. Kanitscheider,
N.S. Keskar, T. Khan, L. Kilpatrick, J.W. Kim, C. Kim, Y. Kim, J.H. Kirchner, J. Kiros, M. Knight, D. Kokotajlo, Łukasz Kondraciuk,
A. Kondrich, A. Konstantinidis, K. Kosic, G. Krueger, V. Kuo, M. Lampe, I. Lan, T. Lee, J. Leike, J. Leung, D. Levy, C.M. Li, R. Lim,
M. Lin, S. Lin, M. Litwin, T. Lopez, R. Lowe, P. Lue, A. Makanju, K. Malfacini, S. Manning, T. Markov, Y. Markovski, B. Martin, K. Mayer,
A. Mayne, B. McGrew, S.M. McKinney, C. McLeavey, P. McMillan, J. McNeil, D. Medina, A. Mehta, J. Menick, L. Metz, A. Mishchenko,
P. Mishkin, V. Monaco, E. Morikawa, D. Mossing, T. Mu, M. Murati, O. Murk, D. Mély, A. Nair, R. Nakano, R. Nayak, A. Neelakantan,
R. Ngo, H. Noh, L. Ouyang, C. O’Keefe, J. Pachocki, A. Paino, J. Palermo, A. Pantuliano, G. Parascandolo, J. Parish, E. Parparita,
A. Passos, M. Pavlov, A. Peng, A. Perelman, F. de Avila Belbute Peres, M. Petrov, H.P. de Oliveira Pinto, Michael, Pokorny, M. Pokrass,
V.H. Pong, T. Powell, A. Power, B. Power, E. Proehl, R. Puri, A. Radford, J. Rae, A. Ramesh, C. Raymond, F. Real, K. Rimbach, C. Ross,
B. Rotsted, H. Roussez, N. Ryder, M. Saltarelli, T. Sanders, S. Santurkar, G. Sastry, H. Schmidt, D. Schnurr, J. Schulman, D. Selsam,
K. Sheppard, T. Sherbakov, J. Shieh, S. Shoker, P. Shyam, S. Sidor, E. Sigler, M. Simens, J. Sitkin, K. Slama, I. Sohl, B. Sokolowsky,
Y. Song, N. Staudacher, F.P. Such, N. Summers, I. Sutskever, J. Tang, N. Tezak, M.B. Thompson, P. Tillet, A. Tootoonchian, E. Tseng,
P. Tuggle, N. Turley, J. Tworek, J.F.C. Uribe, A. Vallone, A. Vijayvergiya, C. Voss, C. Wainwright, J.J. Wang, A. Wang, B. Wang, J. Ward,
J. Wei, C. Weinmann, A. Welihinda, P. Welinder, J. Weng, L. Weng, M. Wiethoff, D. Willner, C. Winter, S. Wolrich, H. Wong, L. Workman,
S. Wu, J. Wu, M. Wu, K. Xiao, T. Xu, S. Yoo, K. Yu, Q. Yuan, W. Zaremba, R. Zellers, C. Zhang, M. Zhang, S. Zhao, T. Zheng, J. Zhuang,
W. Zhuk and B. Zoph, GPT-4 Technical Report, 2024. https://arxiv.org/abs/2303.08774.

[50] E. Poeta, G. Ciravegna, E. Pastor, T. Cerquitelli and E. Baralis, Concept-based Explainable Artificial Intelligence: A Survey, 2023. https:
//arxiv.org/abs/2312.12936.

[51] T. Procko, T. Elvira, O. Ochoa and N. Del Rio, An Exploration of Explainable Machine Learning Using Semantic Web Technology, in:
IEEE 16th International Conference on Semantic Computing (ICSC), IEEE, 2022, pp. 143–146.

[52] A. Radford, J.W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger and I. Sutskever,
Learning Transferable Visual Models From Natural Language Supervision, in: International Conference on Machine Learning, PMLR,
Vol. 139, 2021.

[53] M.T. Ribeiro, S. Singh and C. Guestrin, "Why Should I Trust You?": Explaining the Predictions of Any Classifier, in: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, Association for Computing
Machinery, New York, NY, USA, 2016, pp. 1135–1144–. ISBN 9781450342322. doi:10.1145/2939672.2939778.

[54] S. Rudolph, M. Krötzsch, P. Patel-Schneider, P. Hitzler and B. Parsia, OWL 2 Web Ontology Language Primer (Second Edition), W3C
Recommendation, W3C, 2012, https://www.w3.org/TR/2012/REC-owl2-primer-20121211/.

[55] M.K. Sarker and P. Hitzler, Efficient Concept Induction for Description Logics, in: The Thirty-Third AAAI Conference on Artificial In-
telligence (AAAI) The Thirty-First Innovative Applications of Artificial Intelligence Conference (IAAI), The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI), AAAI Press, 2019, pp. 3036–3043. doi:10.1609/aaai.v33i01.33013036.

[56] M.K. Sarker, N. Xie, D. Doran, M.L. Raymer and P. Hitzler, Explaining Trained Neural Networks with Semantic Web Technologies:
First Steps, in: Proceedings of the Twelfth International Workshop on Neural-Symbolic Learning and Reasoning (NeSy), T.R. Besold,
A.S. d’Avila Garcez and I. Noble, eds, CEUR Workshop Proceedings, Vol. 2003, CEUR-WS.org, 2017. https://ceur-ws.org/Vol-2003/
NeSy17_paper4.pdf.

[57] M.K. Sarker, J. Schwartz, P. Hitzler, L. Zhou, S. Nadella, B.S. Minnery, I. Juvina, M.L. Raymer and W.R. Aue, Wikipedia Knowledge
Graph for Explainable AI, in: Proceedings of the Knowledge Graphs and Semantic Web Second Iberoamerican Conference and First
Indo-American Conference (KGSWC), B. Villazón-Terrazas, F. Ortiz-Rodríguez, S.M. Tiwari and S.K. Shandilya, eds, Communications in
Computer and Information Science, Vol. 1232, Springer, 2020, pp. 72–87. doi:10.1007/978-3-030-65384-2_6.

https://ojs.aaai.org/index.php/AAAI/article/view/30145
https://ojs.aaai.org/index.php/AAAI/article/view/30145
https://openreview.net/forum?id=iPWiwWHc1V
https://openreview.net/forum?id=FlCg47MNvBA
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2312.12936
https://arxiv.org/abs/2312.12936
https://ceur-ws.org/Vol-2003/NeSy17_paper4.pdf
https://ceur-ws.org/Vol-2003/NeSy17_paper4.pdf


42 A. Dalal et al. / Neurosymbolic Understanding of Hidden Neuron Activations

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[58] R.R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh and D. Batra, Grad-CAM: Why did you say that?, Vol. abs/1611.07450,
2016. http://arxiv.org/abs/1611.07450.

[59] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Batra, Grad-CAM: Visual Explanations from Deep Net-
works via Gradient-Based Localization, in: 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 618–626.
doi:10.1109/ICCV.2017.74.

[60] S. Shin, Y. Jo, S. Ahn and N. Lee, A Closer Look at the Intervention Procedure of Concept Bottleneck Models, in: International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato
and J. Scarlett, eds, Proceedings of Machine Learning Research, Vol. 202, PMLR, 2023, pp. 31504–31520. https://proceedings.mlr.press/
v202/shin23a.html.

[61] A. Shrikumar, P. Greenside and A. Kundaje, Learning Important Features Through Propagating Activation Differences, in: Proceedings
of the 34th International Conference on Machine Learning, D. Precup and Y.W. Teh, eds, Proceedings of Machine Learning Research,
Vol. 70, PMLR, 2017, pp. 3145–3153. https://proceedings.mlr.press/v70/shrikumar17a.html.

[62] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: 3rd International Conference on
Learning Representations (ICLR 2015), Computational and Biological Learning Society, 2015.

[63] D. Slack, S. Hilgard, E. Jia, S. Singh and H. Lakkaraju, Fooling LIME and SHAP: Adversarial Attacks on Post Hoc Explanation Methods,
in: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, AIES ’20, Association for Computing Machinery, New York, NY,
USA, 2020, pp. 180–186–. ISBN 9781450371100. doi:10.1145/3375627.3375830.

[64] D. Steinmann, W. Stammer, F. Friedrich and K. Kersting, Learning to Intervene on Concept Bottlenecks, in: Proceedings of the 41st Inter-
national Conference on Machine Learning, R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett and F. Berkenkamp, eds,
Proceedings of Machine Learning Research, Vol. 235, PMLR, 2024, pp. 46556–46571. https://proceedings.mlr.press/v235/steinmann24a.
html.

[65] A. Sun, P. Ma, Y. Yuan and S. Wang, Explain Any Concept: Segment Anything Meets Concept-Based Explanation, in:
Advances in Neural Information Processing Systems, Vol. 36, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt
and S. Levine, eds, Curran Associates, Inc., 2023, pp. 21826–21840. https://proceedings.neurips.cc/paper_files/paper/2023/file/
44cdeb5ab7da31d9b5cd88fd44e3da84-Paper-Conference.pdf.

[66] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826.

[67] H. Turner and D. Firth, Bradley-Terry Models in R: The BradleyTerry2 Package, Journal of Statistical Software 48(9) (2012), 1–21–.
doi:10.18637/jss.v048.i09. https://www.jstatsoft.org/index.php/jss/article/view/v048i09.

[68] S. Wachter, B.D. Mittelstadt and C. Russell, Counterfactual Explanations without Opening the Black Box: Automated Decisions and the
GDPR, CoRR abs/1711.00399 (2017). http://arxiv.org/abs/1711.00399.

[69] B. Wang, L. Li, Y. Nakashima and H. Nagahara, Learning Bottleneck Concepts in Image Classification, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 10962–10971.

[70] C.L. Widmer, M.K. Sarker, S. Nadella, J. Fiechter, I. Juvina, B. Minnery, P. Hitzler, J. Schwartz and M. Raymer, Towards human-compatible
XAI: Explaining data differentials with concept induction over background knowledge, Journal of Web Semantics 79 (2023), 100807.
doi:https://doi.org/10.1016/j.websem.2023.100807. https://www.sciencedirect.com/science/article/pii/S1570826823000367.

[71] Y. Yang, A. Panagopoulou, S. Zhou, D. Jin, C. Callison-Burch and M. Yatskar, Language in a bottle: Language model guided concept bot-
tlenecks for interpretable image classification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 19187–19197.

[72] M. Yuksekgonul, M. Wang and J. Zou, Post-hoc Concept Bottleneck Models, in: The Eleventh International Conference on Learning
Representations, 2023. https://openreview.net/forum?id=nA5AZ8CEyow.

[73] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva and A. Torralba, Learning Deep Features for Discriminative Localization, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[74] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso and A. Torralba, Scene Parsing through ADE20K Dataset, in: 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, IEEE Computer Society, 2017, pp. 5122–
5130. https://doi.org/10.1109/CVPR.2017.544.

[75] B. Zhou, D. Bau, A. Oliva and A. Torralba, Interpreting deep visual representations via network dissection, IEEE transactions on pattern
analysis and machine intelligence 41(9) (2018), 2131–2145.

[76] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso and A. Torralba, Semantic understanding of scenes through the ADE20K dataset,
International Journal of Computer Vision 127(3) (2019), 302–321.

http://arxiv.org/abs/1611.07450
https://proceedings.mlr.press/v202/shin23a.html
https://proceedings.mlr.press/v202/shin23a.html
https://proceedings.mlr.press/v70/shrikumar17a.html
https://proceedings.mlr.press/v235/steinmann24a.html
https://proceedings.mlr.press/v235/steinmann24a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/44cdeb5ab7da31d9b5cd88fd44e3da84-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/44cdeb5ab7da31d9b5cd88fd44e3da84-Paper-Conference.pdf
https://www.jstatsoft.org/index.php/jss/article/view/v048i09
http://arxiv.org/abs/1711.00399
https://www.sciencedirect.com/science/article/pii/S1570826823000367
https://openreview.net/forum?id=nA5AZ8CEyow
https://doi.org/10.1109/CVPR.2017.544

	Introduction
	Related Work
	A Neurosymbolic Approach with Concept Induction
	Preliminaries
	Scenario and CNN Training
	Concept Induction

	Generating Label Hypotheses
	Generating Label Hypotheses using Concept Induction
	CLIP-Dissect
	GPT-4

	Concept Evaluation Protocols
	Statistical Evaluation
	Concept Activation Analysis
	Additional Error Margin Analysis for Concept Induction

	Results
	Comparison of Concept Extraction Approaches
	Error Margin Analysis

	Further Discussion

	A Special Study: Concept Induction using LLM
	Approach
	Input Dataset
	Prompting the model

	Evaluation
	Results
	Discussion

	Tool: End-to-End Automated Neuron Interpretation using Concept Induction
	Tool: Demo
	Conclusion
	References

