
Neurosymbolic Artificial Intelligence 0 (2024) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Artificial Intelligence and Internet of Things:
A Neuro-Symbolic Approach for Automated
Platform Configuration
Danial M. Amlashi a, Alexander Voelz a,* and Dimtris Karagiannis b

a Doctoral School Computer Science, Faculty of Computer Science, University of Vienna, Austria
E-mails: danial.mohammadi.amlashi@univie.ac.at, alexander.voelz@univie.ac.at
b Department of Knowledge Engineering, Faculty of Computer Science, University of Vienna, Austria
E-mail: dk@univie.ac.at

Abstract.
Complex IoT environments present significant challenges in device discovery and platform configuration, especially as the

number of interconnected devices continues to grow. This research addresses these challenges by leveraging the complementary
strengths of symbolic and connectionist AI within a neuro-symbolic system. We propose a comprehensive approach to IoT plat-
form configuration that integrates neuro-symbolic reasoning and conceptual modeling techniques, enhancing both efficiency and
explainability. Following the process model of design science research, our work introduces two key artifacts: the Instantiator
Pipeline and the IoT2Model method. The Instantiator Pipeline automates the discovery and integration of IoT devices, minimiz-
ing manual intervention and ensuring seamless interoperability. During the initial iteration of the applied research methodology,
it was recognized that effective IoT platform configuration must extend beyond device registration to include the creation of
scenario-specific rules. To address this, the IoT2Model method was developed, enabling users to define models that represent
these rules, thereby tailoring the behavior of their IoT deployments to meet specific requirements. By utilizing existing open
technologies, our solution ensures flexibility and adaptability, overcoming the limitations of related works. The proposed neuro-
symbolic AI system not only streamlines the configuration process but also provides a robust, scalable, and explainable solution
for managing complex IoT environments, paving the way for future advancements of intelligent information systems.

Keywords: Neuro-symbolic AI, IoT platform configuration, conceptual modeling, domain-specific modeling methods

1. Introduction

Over the past decade, developments regarding Big Data, Industry 4.0, and the ubiquitous connectivity going along
with them have shaped emerging technologies as well as innovations. In this context, the Internet of Things (IoT)
has been established as a fundamental paradigm that enables communication between physical objects and their
digital counterparts within complex environments. Such environments still pose significant challenges, particularly
in terms of device discovery and IoT platform configurations. This becomes especially relevant when considering
the constantly growing number of interconnected devices and the diversity of communication protocols.

Recent advancements in Artificial Intelligence (AI) offer promising solutions to these challenges. More precisely,
the intersection of symbolic and connectionist AI, known as neuro-symbolic AI, has emerged as a powerful approach

*Corresponding author. E-mail: alexander.voelz@univie.ac.at.

2949-8732/$35.00 © 2024 – IOS Press. All rights reserved.

mailto:danial.mohammadi.amlashi@univie.ac.at
mailto:alexander.voelz@univie.ac.at
mailto:dk@univie.ac.at
mailto:alexander.voelz@univie.ac.at


2 D. M. Amlashi et al. / Artificial Intelligence and Internet of Things

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

with the potential to address complex problems by harnessing the strengths of both paradigms. Building on this
notion, the motivation for this research is rooted in the growing need for intelligent systems that seamlessly integrate
symbolic reasoning and connectionist capabilities, particularly in the domain of IoT platform configuration.

The primary contribution of this work is the development of a neuro-symbolic system for automated IoT platform
configuration. By leveraging the complementary strengths of symbolic and connectionist AI, we propose a system
that streamlines the configuration process of IoT platforms by following a design science research approach. The
proposed artifact not only improves the efficiency of platform configuration but also provides an explainable AI
solution. After the initial design science iteration, it became evident that the configuration of IoT platforms extends
beyond the discovery and registration of devices, requiring the creation of scenario-specific rules. Consequently,
IoT2Model was incorporated as an independent artifact within the research approach. The resulting artifacts, com-
prising the Instantiator Pipeline and the IoT2Model method, demonstrate the benefits of combining neuro-symbolic
AI and conceptual modeling techniques to streamline the complete configuration process of IoT platforms.

The remainder of this paper is structured as follows: Section 2 provides a comprehensive theoretical background,
covering the fundamentals of IoT, neuro-symbolic AI, and the development of domain-specific modeling methods.
In Section 3, we detail the methodology used in our research, outlining the steps taken to design and implement our
neuro-symbolic approach. Section 4 presents the configuration of IoT platforms using the approach, with a focus
on the Instantiator Pipeline and a corresponding evaluation case. In addition, the IoT2Model method is introduced
as an extension to the Instantiator Pipeline. In Section 5, we discuss the preliminary results and potential future
directions of our research. Finally, Section 6 concludes the contributions by summarizing key findings and insights.

2. Theoretical Foundations

2.1. Internet of Things and Internet of Things Platforms

First proposed by Kevin Ashton in 1999 [4], the Internet of Things (IoT) is a rapidly evolving paradigm. It involves
various objects, like sensors and actuators, which are uniquely identifiable and capable of interacting with each
other [5]. Such interactions require the sending and receiving of messages of both physical and virtual objects, thus
forming a network of integrated things [29]. Essentially, IoT combines network communication and computation,
allowing interconnected devices to gather, exchange, process, and consume data in a given environment [30].

IoT devices, often referred to as ’things,’ are the end nodes in IoT networks situated in the real world to gather data
and manipulate the environment. These devices can be categorized in a simplified manner as sensors, which measure
and transform physical parameters like temperature into electrical signals, and actuators, which perform actions such
as controlling motors based on the signals [15, 43]. Additionally, complex devices like single-board computers (e.g.,
Raspberry Pi, Arduino) can also be considered IoT devices in a more holistic view [46]. Communication among
IoT devices is facilitated by various technologies, including Wi-Fi for high-speed local connections, Bluetooth
for short-range communication, LTE for long-distance wireless communication, and ZigBee for low-data-rate and
high-reliability applications. Other technologies include RFID for peer-to-peer connections, NFC for short-range
communication, and MQTT for lightweight, topic-based publish/subscribe communication [17, 45].

In the complex IoT landscape, managing diverse devices and data streams requires a centralized infrastructure,
often referred to as IoT Platform. An IoT platform, or IoT middleware, acts as an integration layer [38], creating a
digital model1 of physical devices to mimic and control them in real-time [44]. This central management enables
efficient device handling, monitoring, and analysis of IoT deployments through HTTP-based REST APIs [12].
Integrating a device with an IoT platform involves establishing its representation to enable real-time data exchange
between the physical device and its virtual counterpart (often referred to as item). This integration follows various
data exchange models, such as the publish model for real-time sensor data reception, the publisher-subscribe model
for storing and accessing data via a message broker, and the polling model for interval-based data requests [10]. The
main advantage of IoT platforms lies in automating the given environment by defining rules that trigger associated
actions, thereby enabling users to tailor the behavior of IoT deployments to suit specific requirements [10, 12].

1The term Digital Twin is used in the referenced work. However, we chose not to engage in a detailed discussion of the terminology within
the scope of this contribution, focusing instead on the core aspects of IoT platform configuration and scenario-based modeling.



D. M. Amlashi et al. / Artificial Intelligence and Internet of Things 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2.2. Symbolic, Connectionist, and Neuro-symbolic Artificial Intelligence

Artificial Intelligence (AI) can be categorized into two main streams: symbolic AI and connectionist AI. Sym-
bolic AI focuses on the manipulation of symbols and the use of rule-based systems to emulate human reasoning.
It relies on the formal representation of knowledge through symbols and logical rules, enabling the system to per-
form tasks like problem-solving and planning through heuristic searches. This approach, rooted in the early work of
Newell and Simon [33], emphasizes the role of symbolic representation in achieving intelligent behavior. Knowl-
edge Graphs, commonly referred to as ontologies, form such representations that are used in symbolic AI to model
declarative knowledge in the form of static information about facts [14]. Beyond representing knowledge, the true
potential of Knowledge Graphs lies in reasoning and inference to reveal hidden insights that are not immediately
apparent. Consequently, it has been argued that Knowledge Graphs must not only cover the structural knowledge
representation (i.e., an ontology) but also a corresponding reasoning engine to facilitate inference [11]. Symbolic
AI systems are, therefore, particularly effective in environments where the knowledge can be explicitly encoded,
making them valuable for applications based on Knowledge Engineering approaches (e.g., expert systems) [13].

Connectionist AI, also known as sub-symbolic AI, has the goal of establishing correlations between input data
and output variables by optimizing the parameters of a transformation function. This optimization process is labeled
as learning within connectionist AI, as exemplified by the subdomains Machine Learning and Deep Learning. One
major advantage of this way of learning is the capability to process large-scale data that is used for improving the
performance of the learning system over time [19]. The common learning approaches are supervised, unsupervised,
and semi-supervised, while new developments often rely on reinforcement learning [3]. Among many established
learning algorithms, [37], deep learning algorithms have become increasingly popular due to their application for
Artificial Neural Networks (ANNs) [40] and, most recently, for the transformer model architecture that provides the
basis of Large Language Models (LLMs) [47]. The resulting applications with millions up to billions of parameters
highlight the capabilities of connectionist AI paradigms to process vast amounts of diverse data.

Neuro-symbolic AI seeks to combine the strengths of both symbolic and connectionist approaches to overcome
their individual limitations. This fusion involves integrating the representational power of symbolic systems with the
learning capabilities of neural networks. There are two primary strategies for this integration: unified and hybrid ap-
proaches [16]. The unified approach seamlessly blends neural and symbolic processing within a single architecture,
enabling synergistic interactions and direct embedding of symbolic knowledge into neural structures. In contrast,
the hybrid approach maintains modular independence, with neural and symbolic components interacting through
defined interfaces, allowing each to focus on their strengths—pattern recognition for neural networks and logical
reasoning for symbolic systems [16]. This combination aims to achieve robust, explainable, and flexible AI systems
capable of handling complex tasks requiring both learning from data and reasoning with explicit knowledge.

2.3. Conceptual Modeling and Domain-Specific Modeling Methods

In the context of this research, conceptual modeling, and specifically the development of Domain-Specific Mod-
eling Methods (DSMMs), becomes increasingly relevant as we address the requirement R6 later in this contribution
(cf. Section 3.2). Conceptual modeling offers powerful means of simplifying complex systems by abstracting them
into understandable representations [32]. To achieve such simplifications through the development of a DSMM,
two foundational frameworks from the conceptual modeling domain are considered: the Generic Modeling Method
Framework (GMMF) and Agile Modeling Method Engineering (AMME).

DSMMs are tailored to capture the unique characteristics of specific application domains [24, 28]. The GMMF
provides a structured approach for designing modeling methods, according to which each method consists of a
modeling language, a modeling procedure, and mechanisms and algorithms [22]. The modeling language covers the
syntax, notation, and semantics of the respective modeling method, which are specified as a machine-processable
metamodel. The modeling procedure contains the intended process of applying the method. Finally, mechanisms and
algorithms can be implemented to provide modeling functionalities that go beyond mere representation purposes,
such as model transformation or code generation capabilities [25]. The development process of a DSMM requires a



4 D. M. Amlashi et al. / Artificial Intelligence and Internet of Things

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

metamodeling platform, such as ADOxx2. The open ADOxx platform allows users to realize DSMMs through the
built-in support for GMMF components. In addition, ADOxx provides a low-code-based approach by serving as a
compiler for the domain-specific language for modeling method realization (MM-DSL) called ADOSCRIPT, which
can be used to implement method-specific functionalities or to extend the platform’s capabilities [21, 51]. Reusable
components from over 50 developed modeling tools are available as well, ultimately enabling rapid prototyping
and efficient adaptation to evolving requirements. Lastly, the five phases of the AMME lifecycle offer a systematic
process model for the development and iterative refinement of DSMMs [20].

To conclude, the GMMF provides a structured approach for designing modeling methods, while AMME provides
a comprehensive lifecycle for their development and iterative refinement. By leveraging the design principles of the
GMMF and AMME, an integrated approach to the agile development of DSMM is established.

3. Methodology

This contribution follows the Design Science Research Methodology (DSRM) proposed by Peffers et al. [35]. The
corresponding process model is commonly applied in the context of information systems research, as it provides
a structured approach for creating and evaluating design artifacts that address previously identified problems [52].
Consequently, the problem statement and design requirements of this contribution are presented below.

3.1. Problem Statement

The initial phase of the DSRM process model is concerned with the identification of a specific problem for
which a solution has to be motivated [35]. In the context of IoT platform configuration and deployment, we base
our problem statement on related literature (cf. Section 3.2) from which several challenges regarding the effective
management of IoT environments can be derived:

– Support for Device Discovery: Automated IoT device identification is an important issue for monitoring devices
connected to a certain network [1]. A variety of approaches to device discovery exist for both established and
newly developed IoT platforms (cf. [18]). Nevertheless, identifying and integrating diverse devices into the
ecosystem of an IoT platform is a complex task that has to be considered independent of existing solutions.

– Complex Platform Configuration and Deployment: Building upon the previous challenge, the integration of
identified IoT devices is a labor-intensive process if no automated solution is provided. As a result, even
platform-independent solutions for dynamic configurations of smart environments have been proposed [31].
Still, the manual configuration and deployment of IoT platforms remain complex and labor-intensive.

– Scalability and Adaptability in Heterogeneous Environments: The number of IoT devices is anticipated to
increase significantly in the near future [53]. This growth poses a scalability challenge for current IoT platforms
and established device discovery methods [18, 41]. Ensuring that novel approaches can handle diverse device
types, communication protocols, and environments is a critical challenge for future IoT deployments.

– Open-Source Principle: It has been noted that differences exist between the pricing of consumer-oriented and
enterprise IoT platform solutions [6]. In fact, the majority of available options have a specific pricing model
and do not follow the open-source principle [6, 18]. Adherence to the free and open-source principles can thus
pose considerable challenges for systems promoting adaptability, interoperability, and widespread adoption.

– Lack of Support for Conceptual Scenario Modeling: While existing approaches to IoT platform configuration
focus on device discovery and integration, they often lack support for defining and managing conceptual sce-
narios that govern how devices interact within their environment. This limits the ability of users to tailor IoT
deployments to specific requirements or contextual conditions, particularly in dynamic environments.

By addressing the highlighted challenges, our research aims to develop a comprehensive approach for automated
IoT platform configuration that integrates conceptual scenario modeling capabilities while also enhancing the dis-
covery, integration, and management of IoT devices in a scalable manner. Under these considerations, specific
requirements for the design science artifact to be created are derived in the following section.

2https://adoxx.org

https://adoxx.org


D. M. Amlashi et al. / Artificial Intelligence and Internet of Things 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Overview of requirements to be addressed by the design artifact for automating IoT platform configuration

ID Requirement Description

R1 Device Discovery
The system must provide mechanisms for seamless identification of IoT devices. It should be able

to recognize a wide range of device types automatically, reducing the need for manual configuration.

R2 Platform Configuration
The system must automate the platform configuration and deployment process, which includes set-

ting up communication channels, integrating discovered devices, and ensuring device interoperability.

R3 Platform Independence
The system should support modular components that allow to exchange the current IoT platform

with minimal effort. This has the purpose of adapting to evolving needs and technologies.

R4 Scalability
The system must be scalable to accommodate an increasing number of devices without performance

issues. It should efficiently manage resources and maintain high performance as the network grows.

R5 Openness
The system must follow the open-source principle to be freely available and extensible. This includes

supporting open standards and utilizing free APIs for developers to extend the system functionality.

R6
Model-based Scenario
Specification

The system must support conceptual scenario modeling that governs device interactions. Ultimately,
a modeling-based extension should enable user-friendly adaptions of IoT deployments.

3.2. Related Works and Requirements Specification

Before deriving design requirements of a solution to the formulated problem statement as part of the second
DSRM stage [35], related works addressing similar issues are contrasted for further consideration.

The literature offers a variety of approaches and solutions regarding IoT device discovery and platform configura-
tion, each tackling specific aspects of the problem. However, to the best knowledge of the authors, a holistic pipeline
that integrates device discovery, platform configuration, and scalability has not been proposed yet. Subsequently,
we summarize relevant works in this domain, highlighting their contributions and limitations.

Several solutions for effective IoT device discovery have been proposed. One of these approaches presents a
method for device identification using device fingerprinting techniques based on deep learning in the form of ANNs
to improve the accuracy of device identification [2]. Similarly, systems have been developed for automated classifi-
cation of IoT devices based on their network traffic. Utilizing different machine learning techniques, these systems
achieve high accuracy in identifying device types from single network traffic packets [1, 41]. Moreover, solutions
that automate the integration process of new IoT devices by classifying them based on their communication proper-
ties have been proposed [36]. Following the same objective of flexible device handling, a home automation system
focused on the diversity of IoT devices and communication protocols was developed using a specific IoT platform,
namely OpenHAB [34]. These methods and systems reduce the need for manual configuration and frequent appli-
cation updates. While these works advance the automation of processes related to the identification, classification,
and integration of IoT devices, they do not address subsequent steps, such as holistic platform configuration.

Addressing this open issue, a dynamic configuration approach of smart environments has been presented in [31],
leveraging a service composition system that combines semantic metadata and visual modeling tools. The resulting
system can adapt to dynamic environments independent of a specific IoT platform. A similar approach towards
platform-independent IoT deployments is realized by X-IoT, a model-driven solution for IoT application portability
across platforms [9]. However, these solutions do not include device discovery or scenario-specific rule definition.

More holistically, the work by Javed et al. [18] addresses the need for open and scalable IoT solutions. The au-
thors propose a layered IoT platform designed to enhance interoperability, discovery, and scalability within smart
environments. By adopting edge computing principles, the platform aims to manage the vast amount of data gen-
erated by connected devices efficiently. However, this solution introduces its own platform, focusing primarily on
scalability and heterogeneity, but does not fully integrate existing technologies in an open framework.

Considering the problem statement and related works, our approach requires a pipeline that addresses device
discovery, scalability, platform configuration, platform independence, openness, and model-based scenario specifi-
cation. The corresponding requirements detailed in Table 1 ensure that our solution not only discovers and integrates
IoT devices efficiently but also maintains flexibility and adaptability by supporting existing and open technologies.
The requirement R6 specifically captures the need for defining scenario-specific rules in a user-friendly manner,
which is addressed through the integration of the system-independent extension IoT2Model (cf. Section 4.3).



6 D. M. Amlashi et al. / Artificial Intelligence and Internet of Things

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

In summary, the goal of this contribution is captured through the formulation of the complete design problem by
following the DSRM template [52]:

Improve the efficiency of IoT platform configuration (problem context)
... by developing a neuro-symbolic AI-based pipeline (artifact)
... that enables device discovery, platform configuration, platform independence,
scalability, openness, and model-based scenario specification (requirements)
... to provide a holistic system for IoT environment configuration. (goal)

4. Neuro-Symbolic Architecture of the IoT Platform Configuration Approach

The goal of this contribution is the development of a design science artifact that enables the automated config-
uration of IoT environments. For this purpose, the above-described problem statement and derived requirements
serve as foundational building blocks for the development. The conceptual architecture of the resulting artifact is
displayed in Fig. 1 and further detailed in the following.

The first step of our approach is the identification of IoT devices using fingerprinting techniques (cf. Section 3.2).
This process is represented on the left side of Fig. 1, in which the fingerprint of a physical IoT device is extracted to
ensure accurate discovery and classification within the system. By implementing such identification mechanisms,
we satisfy the Device Discovery requirement (R1), thus enabling seamless integration of diverse IoT devices.

Once a device is identified, it needs to be configured with the corresponding IoT platform. This configuration
requires additional semantic information that is specific to each platform. As depicted on the right side of Fig. 1, the
IoT device identity is enriched with semantic data, guiding the configuration process. This satisfies the requirement
for automated Platform Configuration (R2), streamlining the setup and reducing the need for manual intervention.

The platform-specific information necessary for the respective configuration process is contained within the IoT
platform Knowledge Graph. This component is designed to be exchangeable, thus enabling a modular approach
in which the Knowledge Graph can be replaced or updated as needed. This aspect of the architecture satisfies the
requirement for Platform Independence (R3), ensuring flexibility and adaptability to evolving environments.

The two requirements of Scalability and Openness (R4, R5) apply to the complete system displayed in Fig. 1.
Each component of the architecture, including the IoT device fingerprinting, IoT platform Knowledge Graph, and
configuration processes, must adhere to these principles. By ensuring that every part of the system follows open
standards and is scalable, the overall architecture can guarantee to meet these requirements.

These explanations align the conceptual architecture with the formulated requirements, demonstrating how each
part of the design contributes to the overall goal of automated IoT platform configuration. In the upcoming subsec-
tions, we first present the specification of the design artifact, namely the Instantiator Pipeline, which operational-
izes the conceptual framework outlined above, before a concrete configuration case based on this implementation is
showcased. Lastly, the implications of the Model-based Scenario Specification requirement (R6) are discussed.

Fig. 1. Conceptual architecture of the IoT device discovery and IoT platform configuration approach.



D. M. Amlashi et al. / Artificial Intelligence and Internet of Things 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 2. Neuro-symbolic implementation for IoT device discovery and IoT platform configuration: The Instantiator Pipeline.

4.1. Automated Device Discovery and Configuration: The Instantiator Pipeline

The Instantiator Pipeline3 implements an instance of the presented conceptual architecture for automating IoT
platform configuration (cf. Fig. 1). To enable such an instance, the implementation contains three distinct modules,
each dedicated to one of the three foundational requirements (R1-R3) identified previously (cf. Table 1). Fig. 2
displays the complete overview of the Instantiator Pipeline implementation that contains these three modules:

– Network Sniffer: responsible for device discovery through gathering and processing of network traffic
– NeSy-Transformer: enhances gathered device information with platform-specific semantics
– IoT Platform Controller: provides the configuration interface to the respective IoT platform

The Network Sniffer captures and analyzes network traffic within the given IoT environment. Using the Pyshark
library4, a Python wrapper for TShark, the sniffer intercepts network packets. TShark itself is a terminal-oriented
version of Wireshark, a powerful network packet analyzer tool [39]. The interception process of the Network Sniffer
involves a continuous loop that filters network traffic to identify and log packets from IoT devices using the MQTT
protocol. Such packets include the source, destination, topic, and content of MQTT messages, which helps to iden-
tify MQTT brokers and individual IoT devices transmitting data. A flowchart model representing the process of
the Network Sniffer loop is displayed in Fig. 3. The developed system maintains a map of devices and their recent
activities, ensuring active monitoring and status updates of each device. This module provides the digital fingerprint
of IoT devices (i.e. Device Discovery requirement) crucial for subsequent processing steps.

The NeSy-Transformer semantically enriches the digital fingerprints produced by the Network Sniffer in a
platform-specific way using a neuro-symbolic approach. Based on recent advances regarding LLMs, a sentence
transformer model is employed to align device fingerprints with concepts in a predefined Knowledge Graph. This
alignment is achieved by matching the fingerprint information to corresponding nodes in the graph, which defines
the concept of devices and various device types, along with their corresponding counterparts of the respective IoT
platform. For the involved matching process, the paraphrase-MiniLM-L6-v2 sentence transformer model5 is em-
ployed. By aligning the digital fingerprint with a concept in the Knowledge Graph, the system applies reasoning
techniques to derive actionable insights for device configuration and management. Semantic alignment techniques
have been proven suitable for such problems, as shown in our previous work [48]. The enriched data structure
that results from the processing by the NeSy-Transformer is essential for accurately configuring and managing IoT
devices within the environment. Moreover, the IoT platform Knowledge Graph that provides the basis for the se-
mantic alignment process can be replaced or updated according to the respective platform of choice, thus satisfying
the Platform Independence requirement. Having said that, a critical aspect of this approach is the strong dependency
of the matching process on the content and structure of the Knowledge Graph, as the transformer always attempts

3Full implementation can be found on the OMiLAB GitLab instance: https://code.omilab.org/danialm98/instantiator-pipeline
4https://github.com/KimiNewt/pyshark
5https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2

https://code.omilab.org/danialm98/instantiator-pipeline
https://github.com/KimiNewt/pyshark
https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2


8 D. M. Amlashi et al. / Artificial Intelligence and Internet of Things

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 3. Process of the Network Sniffer loop visualized as flowchart model

to find the best matching concept. Consequently, if the Knowledge Graph does not contain the correct concept to
align with, the resulting match will be inaccurate, potentially leading to inadequate device configurations.

The IoT Platform Controller serves as an interface between the Instantiator Pipeline and the IoT platform. It
is responsible for creating and configuring IoT device representations through platform APIs, as well as removing
inactive devices. The item creation process involves generating virtual counterparts of recognized devices by using
the enriched fingerprints to establish necessary components such as data channels and control rules. This ensures
that the IoT platform configuration automatically mimics the physical environment, maintaining a real-time repre-
sentation of the IoT deployment. Such synchronization is crucial for ensuring that the platform accurately reflects
the current state of the physical environment, enabling reliable monitoring and control. The item deletion process is
responsible for deregistering inactive or disconnected devices from the IoT platform, thus maintaining synchroniza-
tion with the physical environment. This is relevant as it prevents the platform from accumulating outdated device
representations, which could lead to inefficiencies or errors in system operations. When a device is deleted, all as-
sociated data, including historical data, is removed from the platform. While the deletion of historical data may be a
limitation in some cases, it is necessary to maintain synchronization and avoid clutter in dynamic IoT environments.

4.2. A Smart House Configuration Case based on the Instantiator Pipeline

The following configuration case that applies the Instantiator Pipeline is based on a simplified Smart House
scenario that was described in [50] within an educational context. In short, the scenario revolving around pool
safety required the Smart House to monitor and process various aspects of the environment to eventually trigger user-
defined scenario rules (e.g., activating a servo motor based on RFID tag recognition). The setup of the corresponding
experiment environment is listed below before the case-specific utilization of the Instantiator Pipeline is presented.

4.2.1. Experiment Environment Setup
The physical experiment environment employed for the Smart House case incorporates an instance of the IoT

platform OpenHAB, a Mosquitto MQTT message broker (both running on a Raspberry Pi), and numerous sensors
and actuators, all interfaced with an Arduino microcontroller for data transmission and reception via the MQTT
protocol. This initial setup of the experiment environment is visualized in Fig. 4.

OpenHAB OpenHAB6 stands for Open Home Automation Bus, an open-source home automation platform that
serves as the central hub for managing and controlling IoT devices within the Smart House environment. With its
adaptable architecture and extensive plugin ecosystem, OpenHAB provides a flexible and customizable framework.
It was selected as an IoT platform because it adheres to the free and open-source principles [6, 18] while also
supporting heterogeneous IoT devices [34], thus satisfying the Openness and Scalability requirements.

Mosquitto MQTT Broker The crucial intermediary of the experiment environment is the Mosquitto7 MQTT mes-
sage broker. Mosquitto utilizes the MQTT protocol to ensure efficient and reliable communication between the var-
ious IoT devices and the OpenHAB IoT platform instance. Through the transmission of corresponding messages, it
enables data exchange and control functionalities within the Smart House environment.

6https://openhab.org/
7https://mosquitto.org/

https://openhab.org/
https://mosquitto.org/


D. M. Amlashi et al. / Artificial Intelligence and Internet of Things 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 4. Overview of the experiment environment architecture.

(a) IoT device pinout (b) RFID reader pinout

Fig. 5. Physical connections between the Arduino UNO WIFI and the IoT devices used in the Smart House scenario.

IoT Devices Devices that are deployed within the Smart House environment include a variety of sensors and ac-
tuators controlled by an Arduino UNO WIFI microcontroller. These devices include a red and green LED light, a
pressable button, a humidity and temperature sensor (one device for both), a photoresistor sensor, a servo motor, and
an RFID reader. The physical connections between the Arduino UNO WIFI and the IoT devices are displayed in
Fig. 5a, with the more complex pinout of the RFID reader being represented separately in Fig. 5b. The proposed ap-
proach relies on the assumption that each sensor publishes data to a dedicated topic, allowing subscribers to receive
real-time updates. This assumption aligns with common practices in IoT device communication, where publish-
subscribe mechanisms are widely adopted for efficient data dissemination. Similarly, actuators, which typically do
not generate data, are assumed to publish messages indicating their readiness and a list of available commands. Sub-
scribers can send corresponding control commands to the actuators via the specified topic for remote operations.
It is, therefore, important to emphasize that these assumptions are fundamental to the approach. Without dedicated
topic-based communication for sensors and actuators, the entire system would fail to function as intended.



10 D. M. Amlashi et al. / Artificial Intelligence and Internet of Things

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

{
192.168.0.101:52911 192.168.0.100:1883 MQTT 119

Publish Message [IoTDevice/Lamp/Green],
Publish Message [IoTDevice/Photoresistor]

}

Listing 1: Example packets received by the Network Sniffer

{
'IoTDevice/Photoresistor': {

'messages': ['1','1'],
'active': True,
'last_activity': [TIMESTAMP],
'broker': '192.168.0.100:1883'

},
'IoTDevice/Lamp/Green': {

'messages': ['init{1,0}','init{1,0}'],
'active': True,
'last_activity': [TIMESTAMP],
'broker': '192.168.0.100:1883'

}
}

Listing 2: Example output generated by the Network Sniffer based on two IoT devices

4.2.2. Case-specific Utilization of the Instantiator Pipeline
In the following, the utilization of the Instantiator Pipeline is showcased within the experiment environment setup

of the Smart House scenario. The focus lies on highlighting the complete process of identifying an IoT device and
enriching it with platform-specific semantics to automate the necessary device configuration steps.

Based on the experiment setup, it is assumed that the listed IoT devices send MQTT packets within an established
network. As mentioned above, the Network Sniffer loop (cf. Fig. 3) filters network traffic to discover the source,
destination, topic, and content of IoT device packets. An example of a gathered packet is displayed in Listing 1,
which the system can process to identify the address 192.168.0.100:1883 as an MQTT broker that receives publish
messages from two different IoT devices (the system ignores MQTT packets with a destination port commonly used
as dynamic or ephemeral ports, which range from 49152 to 65535). The Network Sniffer recognizes each device
and stores them in a map object, with the topic of the data serving as the key (i.e., ’IoTDevice/Lamp/Green’ and
’IoTDevice/Photoresistor’ respectively). The resulting data structure, as displayed in Listing 2, captures all relevant
information gathered by the system through packet sniffing and serves as IoT device fingerprints. The ’messages’
field stores the last 10 messages sent by each device. The ’last_activity’ field is utilized by a scheduler within the
system to monitor the activity of IoT devices. If the system fails to receive a message from a device within a certain
timeframe (default 10 seconds), the device is labeled as inactive and the ’active’ field is set to ’False’.

In the next step, the IoT device fingerprints are processed by the NeSy-Transformer that utilizes a neuro-symbolic
approach for the platform-specific semantic alignment procedure (cf. Fig. 2). This procedure requires a sentence
transformer model and an IoT platform Knowledge Graph. At the core of the Knowledge Graph lies the OpenHAB-
specific ontology which defines the device concept belonging to the type openhab:Item. An Item represents a device
and includes a datatype attribute. Within the device concept, there are two subclasses: sensor and actuator. The
sensor Item features a channel attribute, which links it to a data channel. The channel also possesses a datatype
attribute, which should align with the datatype of the device. Additionally, the Knowledge Graph encompasses
instances of devices (sensors and actuators), each defined by a name, label, description, item type, and, in the
case of sensors, a channel type. By identifying the device instance most similar to the processed device fingerprint
through the employed sentence transformer model, inference can be utilized to extract all device information that is



D. M. Amlashi et al. / Artificial Intelligence and Internet of Things 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

'IoTDevice/Photoresistor': {
'device_type': {'Sensor': 'http://omilab.org/IoT#Sensor'},
'device_datatype': {'Number': 'http://omilab.org/openhab#Number'},
'most_similar': 'Photoresistor','data': ['1', '1'],
'states': None,'communication': 'mqtt',
'broker': '192.168.0.100:1883',
'topic': 'IoTDevice/Photoresistor',
'channel_datatype': {'Number': 'http://omilab.org/openhab#Number_Channel'}

}

Listing 3: Example output generated by the NeSy-Transformer for the sensor IoT device ’Photoresistor’

Fig. 6. Item creation pipeline of the OpenHAB controller.

required for processing by the API of the OpenHAB platform controller. Additionally, the datatype of the received
messages is compared with the datatype defined for the counterpart in the Knowledge Graph to ensure accuracy. The
enriched fingerprint output generated by the NeSy-Transformer for the example of the ’IoTDevice / Photoresistor’ is
displayed in Listing 3 (for actuators, the output would slightly differ since they do not require a channel but possible
states and their changes). This output includes vital details such as device datatype, broker address, MQTT topic,
and channel type, all of which are fundamental for configuring an IoT device within OpenHAB.

Finally, the API of the OpenHAB controller is utilized to process the semantically enriched fingerprints of IoT
devices to either create new items or delete such that are inactive. Deletion of inactive items is important to ensure
that the OpenHAB instance remains synchronized with the physical IoT devices. Each of the resulting processes
that utilize the item-specific information of enriched device fingerprints is represented as flowcharts in Fig. 6 and
Fig. 7 respectively. In both processes, the sequence of events varies depending on whether it involves a sensor or
actuator. This distinction ensures that the creation and deletion processes are tailored to the specific characteristics
and requirements of each device type that are captured within the IoT platform Knowledge Graph. These steps
conclude the automated IoT platform configuration process of the Instantiator Pipeline implementation.



12 D. M. Amlashi et al. / Artificial Intelligence and Internet of Things

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 7. Item deletion pipeline of the OpenHAB controller.

4.3. Scenario-based Configuration of IoT Platforms through Conceptual Modeling: The IoT2Model Method

The automated IoT platform configuration process, enabled by the Instantiator Pipeline, satisfies five of the six
identified requirements (cf. Table 1). The last requirement, R6 (Model-based Scenario Specification), is based on the
aim of this research to support users in defining scenario-specific rules for a given IoT environment. This require-
ment is motivated by the notion that the primary advantage of IoT platforms demands scenario-based automation
through the definition of specific rules [10, 12]. To serve this purpose of configuring scenarios within IoT envi-
ronments, the ADOxx-based, open-source modeling method IoT2Model8 was created based on the GMMF and
AMME (cf. Section 2.3), which allows users to design scenarios by modeling abstract rules. Moreover, it enables
the bridging between the concepts required for a certain rule and the physical environment represented through
the IoT platform of choice. Considering these capabilities, IoT2Model covers three different model types, each re-
sponsible for modeling IoT scenarios on a different abstraction level. The resulting metamodel, as implemented in
ADOxx, is visualized in Fig. 8 using the CoChaCo tool [26]. The following subsections detail the process of creating
scenario-specific rules using the IoT2Model tool in the context of the Smat House case, as displayed in Fig. 9.

4.3.1. IoT Infrastructure Model Type
The IoT Infrastructure model allows users to design a model of the IoT devices integrated with a given IoT

platform. This is achieved by linking the model with a corresponding platform, which is OpenHab in this case. To
start the process of creating scenario-specific rules, all items created and configured by the Instantiator Pipeline
are automatically imported through dedicated mechanisms and algorithms. These devices, represented as ’CPS
Element’ concept, can be semantically enriched with information such as corresponding computational units, which
are relevant for creating accurate models of physical environments. Items represented in the IoT Infrastructure model
are referenced in the Environment model, which is used to bridge the scenario rules and the physical environment.

4.3.2. Environment Model Type
The Environment model has the purpose of capturing the environment by modeling the physical components and

IoT devices available in it. Devices are represented as ’IoT Device’ concept within this model type, which embodies
physical objects with IoT capabilities from the environment. On the other hand, the ’Physical Element’ concept
represents non-IoT objects. Additionally, several of the modeled IoT devices can be combined into semantically rich
modules, which is often the case in physical IoT environments (e.g., air conditioning units can contain temperature
and humidity sensors, as well as cooling fans within the same device). This is achieved by creating references to the
’CPS Element’ concepts available in corresponding IoT Infrastructure models.

8Full implementation can be found on the OMiLAB Website: https://www.omilab.org/activities/projects/details/?id=373

https://www.omilab.org/activities/projects/details/?id=373


D. M. Amlashi et al. / Artificial Intelligence and Internet of Things 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 8. IoT2Model Metamodel (created using CoChaCo tool)

4.3.3. Scenario Model Type
Lastly, the Scenario model type offers concepts for modeling a given scenario based on rules, usually consisting

of triggers, conditions, and actions. Triggers are states of the environment that specify the application scope of
rules. If multiple triggers exist, each of the corresponding states that are met will start the rule execution process.
The conditions of a rule comprise logical statements that have to be met before a rule can be executed. Actions
correspond to operations that change the state of environment elements as a result of executing a defined rule. The
resulting operations vary from simple state changes (turning an LED on or off) to more complex behaviors defined
as executable scripts. Combining the different components accordingly, a rule like the following can be created:

Every two seconds [Trigger], if no child is detected [Condition], turn (or keep) the green LED on [Action].

By using the specializations of the ’Rule Component’ concept from the Scenario model type, users can define
their desired scenario rules through natural language. The specified rule components are then bridged to the fit-
ting ’IoT Device’ in the Environment model and the corresponding ’CPS Element’ within the IoT Infrastructure
model. For this bridging process, the ’Context Bridge’ concept is utilized, which is automatically added through
an event-based functionality for each created ’Rule Component’. Afterward, the respective references to the related
modeling concepts can be specified within the ’Context Bridge’ concept. In addition, the Scenario model provides
functionalities that enable users to directly deploy as well as undeploy defined rules, assuming a link to the API of
the IoT platform of choice has been created beforehand.

4.3.4. Pool Safety Configuration using IoT2Model
The process that is visualized in Fig. 9a assumes that an instance of the OpenHAB IoT platform has already been

configured using the previously presented environment setup (cf. Section 4.2.1) and the Instantiator Pipeline. Con-
sequently, the process starts off by automatically importing the IoT devices that are active within the Smart House
environment as ’CPS Element’ objects into the IoT Infrastructure model. To accurately represent the environment
setup, all devices are linked to the Arduino UNO WIFI as central ’Processing Unit’.

In the next step, the Smart House-based Environment model is created, in which the different ’IoT Device’ objects
are modeled and linked to the respective CPS elements available within the IoT Infrastructure model. In Fig 9b, a
detailed view of the modeled IoT devices and their references is displayed. In this simplified environment, three
IoT devices are present: a ’Proximity Detector’ referencing the RFID sensor, a ’Pool Cover’ referencing the servo
motor, and a ’Smart House display’ referencing both the green and red LED lights.



14 D. M. Amlashi et al. / Artificial Intelligence and Internet of Things

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(a) Process of creating scenario-specific rules using the IoT2Model tool

(b) Environment Model (detailed view) (c) Scenario Model (detailed view)

Fig. 9. Process view and detailed model view of utilizing the IoT2Model tool for the pool safety scenario

After modeling the environment, scenario-specific rules are defined within the Scenario model. This step requires
the specification of relevant triggers, conditions, and actions, as displayed within Fig. 9c. First, a rule named ’Child
Safety’ is modeled, which specifies the needed rule components in an OpenHAB-specific manner with the help of
a setup assistant (i.e. functionality ’Build Wizard’ in Fig. 8). The trigger of the ’Child Safety’ rule is defined by
providing a label and description before utilizing the setup assistant to select the respective type and definition. In
this example, the rule execution process is started when the state of the concept ’Proximity Detector’ is equal to
’child_ID’. Subsequently, an event-based functionality of IoT2Model automatically adds a corresponding ’Context
Bridge’ concept within the Scenario model, which is named based on the state-changing concept. Following the
same approach, conditions, and actions can be defined. Within Fig. 9c, two actions are specified, which change
the state of the concepts ’Display redLED’ and ’Pool Cover’ to ’ON’ while creating the required ’Context Bridge’
objects automatically. To complete the specification of scenario-specific rules, references to the associated IoT In-
frastructure and Environment models have to be established. For example, the context bridge ’Proximity Detector’
references the IoT device with the same name from the Environment model, which itself references the CPS element
’Sensor_outside_RFID’ from the IoT Infrastructure model. If several CPS elements are available for a given IoT
device, the user has to select the suitable one manually. Finally, the details of each rule are used for their platform-
specific deployment. IoT2Model provides functionalities to deploy and delete either individual or all modeled rules.



D. M. Amlashi et al. / Artificial Intelligence and Internet of Things 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

To conclude, the IoT2Model tool provides the opportunity to model scenario-specific rules on different abstraction
levels in a user-friendly manner by reducing the complexity of the required steps, therefore satisfying the Model-
based Scenario Specification requirement (R6). It has also been emphasized that this extension to the Instantiator
Pipeline constitutes a significant part of holistic IoT platform configuration.

5. Discussion

The discussion highlights the contributions of our approach, particularly the integration of the Instantiator
Pipeline with IoT2Model, and explores future directions for its application. IoT2Model was developed as an ex-
tension of the Instantiator Pipeline to address the need for the intuitive design of scenario-specific rules in IoT
environments. While the Instantiator Pipeline effectively handles device discovery and basic configuration, it does
not inherently support the creation of rules that govern how devices interact within a given environment. This limita-
tion led to the introduction of the requirement R6 (Model-based Scenario Specification), which emerged as a critical
component for enabling user-defined, scenario-specific automation in IoT deployments.

The IoT2Model method bridges this gap by allowing users to create models that represent scenario-specific
rules, thereby enabling more granular control and customization of IoT deployments. This extension exemplifies
the broader integration of neuro-symbolic AI with conceptual modeling techniques, showcasing the objective of
semantic-driven systems engineering (cf. [8]). By combining the pattern recognition and learning strengths of neuro-
symbolic AI with the simplification of complex configuration processes through conceptual modeling, our approach
not only simplifies IoT platform configuration but also ensures that the resulting system effectively addresses the
identified requirements (cf. Table 1). Future works will aim to test the interoperability of the Instantiator Pipeline
and IoT2Model with other open-source IoT platforms like the one presented in [18].

However, it is important to acknowledge certain limitations of the proposed approach. A key limitation is the
dependency on pre-existing Knowledge Graphs for IoT platforms. The effectiveness of the NeSy-Transformer mod-
ule depends on the availability and quality of these graphs, which are not always available or well-defined. In case
no suitable concept is present in the respective Knowledge Graph, the transformer will still match the most similar
one, which can cause incorrect device configurations. Additionally, creating and maintaining Knowledge Graphs
requires domain expertise and continuous effort, which may be challenging for users with limited resources. The
approach may also face scalability issues in highly heterogeneous IoT environments, as correctly aligning diverse
device fingerprints with a unified Knowledge Graph could become complex and resource-intensive.

Moreover, the relevance of this work extends beyond the technical benefits, particularly in its application within
educational settings. For example, the IoT2Model method was applied during this year’s edition of the annual
NEMO Summer School series (cf. [50]). The motivation for this application context is the importance of developing
a comprehensive Digital Leader skill profile, which we have highlighted in previous works [49]. This skill profile
encompasses a set of competencies required to operate effectively in the interdisciplinary and technologically ad-
vanced environments that characterize modern digital ecosystems [23]. However, it is evident that this profile still
requires adoption within Higher Education Institutions (HEIs) to meet the evolving demands of the digital era [27],
especially regarding the issues of conceptual modeling education [7]. The IoT2Model method we have introduced
plays a crucial role in this educational context by enabling the setup of experimental prototypes for hands-on evalu-
ation and learning purposes. It not only reinforces the value of conceptual modeling but also facilitates the practical
application of these models in IoT environments, thereby enhancing the learning experience. Consequently, the
design artifacts presented in this contribution are intended for integration into HEI curricula through lecturers and
presenters. By incorporating the Instantiator Pipeline and the IoT2Model method into such curricula, students can
engage with a real-world example of how neuro-symbolic AI and conceptual modeling can be applied to enhance
the configuration and customization of IoT platforms. The ultimate goal of this contribution is that these tools will
empower students and educators to develop the critical skills necessary for leadership in digital transformation
initiatives, thereby ensuring that they are prepared to contribute to the ongoing evolution of digital ecosystems.



16 D. M. Amlashi et al. / Artificial Intelligence and Internet of Things

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

6. Conclusion

The rapid expansion and complexity of IoT environments present significant challenges in device discovery, plat-
form configuration, and management. As the number of interconnected devices grows, existing solutions often fall
short of addressing the seamless integration and dynamic customization required to realize the full potential of IoT
ecosystems. To tackle these challenges, the core goal of this contribution was to develop a comprehensive design
artifact that automates and enhances IoT platform configuration by integrating neuro-symbolic AI with conceptual
modeling techniques. Our aim was to create a flexible, scalable, and user-centric system capable of adapting to
the evolving needs of IoT environments. For this purpose, we introduced the Instantiator Pipeline, an innovative
solution that automates key processes such as IoT device discovery and corresponding platform configurations. The
extension of the system with the IoT2Model method further enables the creation of scenario-specific rules, allow-
ing for more granular control and customization of IoT deployments. Beyond the technical improvements of this
approach, we have discussed the educational opportunities it has to offer, particularly in fostering the development
of critical Digital Leader skills within interdisciplinary and complex environments. The NEMO Summer School
series was utilized as a testing ground for the application of the IoT2Model method in an educational setting, high-
lighting its potential for demonstrating the value of conceptual modeling in managing the complexity of intelligent
information systems. Future work will focus on expanding the capabilities of the IoT2Model method, exploring new
ways for enhancing the adaptability and intelligence of IoT systems, and further integrating these advancements
into educational contexts to foster the next generation of Digital Leaders.

References

[1] A. Aksoy and M.H. Gunes, Automated IoT Device Identification using Network Traffic, in: 2019 IEEE International Conference on
Communications (ICC), 2019, pp. 1–7. https://doi.org/10.1109/ICC.2019.8761559.

[2] S. Aneja, N. Aneja and M.S. Islam, IoT Device Fingerprint using Deep Learning, in: 2018 IEEE International Conference on Internet of
Things and Intelligence System (IOTAIS), IEEE, 2018, pp. 174–179. https://doi.org/10.1109/IOTAIS.2018.8600824.

[3] K. Arulkumaran, M.P. Deisenroth, M. Brundage and A.A. Bharath, Deep Reinforcement Learning: A Brief Survey, IEEE Signal Processing
Magazine 34(6) (2017), 26–38. https://doi.org/10.1109/MSP.2017.2743240.

[4] K. Ashton, That ‘internet of things’ thing, RFID journal 22(7) (2009), 97–114.
[5] L. Atzori, A. Iera and G. Morabito, The Internet of Things: A survey, Computer Networks 54(15) (2010), 2787–2805. https://doi.org/10.

1016/j.comnet.2010.05.010.
[6] L. Babun, K. Denney, Z.B. Celik, P. McDaniel and A.S. Uluagac, A survey on IoT platforms: Communication, security, and privacy

perspectives, Computer Networks 192 (2021), 108040. https://doi.org/10.1016/j.comnet.2021.108040.
[7] R.A. Buchmann, A.-M. Ghiran, V. Döller and D. Karagiannis, Conceptual modeling education as a “design problem”, Complex Systems

Informatics and Modeling Quarterly (2019), 21–33. https://doi.org/10.7250/csimq.2019-21.02.
[8] R. Buchmann, J. Eder, H.-G. Fill, U. Frank, D. Karagiannis, E. Laurenzi, J. Mylopoulos, D. Plexousakis and M.Y. Santos, Large language

models: Expectations for semantics-driven systems engineering, Data & Knowledge Engineering 152 (2024), 102324. https://doi.org/10.
1016/j.datak.2024.102324.

[9] F. Corradini, A. Fedeli, F. Fornari, A. Polini, B. Re and L. Ruschioni, X-IoT: a model-driven approach to support IoT application portability
across IoT platforms, Computing 105(9) (2023), 1981–2005. https://doi.org/10.1007/s00607-023-01155-z.

[10] T. Domínguez-Bolaño, O. Campos, V. Barral, C.J. Escudero and J.A. García-Naya, An overview of IoT architectures, technologies, and
existing open-source projects, Internet of Things 20 (2022), 100626. https://doi.org/10.1016/j.iot.2022.100626.

[11] L. Ehrlinger and W. Wöß, Towards a Definition of Knowledge Graphs, in: Joint Proceedings of the Posters and Demos Track of the 12th
International Conference on Semantic Systems - SEMANTiCS2016 and the 1st International Workshop on Semantic Change & Evolving Se-
mantics (SuCCESS’16) co-located with the 12th International Conference on Semantic Systems (SEMANTiCS 2016), Vol. 1695, M. Martin,
M. Cuquet and E. Folmer, eds, CEUR-WS.org, 2016. https://ceur-ws.org/Vol-1695/paper4.pdf.

[12] M. Fahmideh and D. Zowghi, An exploration of IoT platform development, Information Systems 87 (2020), 101409. https://doi.org/10.
1016/j.is.2019.06.005.

[13] E.A. Feigenbaum, Knowledge Engineering: The Applied Side of Artificial Intelligence, Annals of the New York Academy of Sciences 426(1)
(1984), 91–107. https://doi.org/10.1111/j.1749-6632.1984.tb16513.x.

[14] M. Flasiński, Symbolic Artificial Intelligence, in: Introduction to Artificial Intelligence, Springer International Publishing, Cham, 2016,
pp. 15–22. https://doi.org/10.1007/978-3-319-40022-8_2.

[15] C. González García, D. Meana Llorián, C. Pelayo G-Bustelo and J.M. Cueva-Lovelle, A review about Smart Objects, Sensors, and Actua-
tors, International Journal of Interactive Multimedia and Artificial Intelligence 4(3) (2017), 7. https://doi.org/10.9781/ijimai.2017.431.

[16] M. Hilario, An Overview of Strategies for Neurosymbolic Integration, in: Connectionist-Symbolic Integration: From Unified to Hybrid
Approaches, Psychology Press, New York, 1997, pp. 13–35. https://doi.org/10.4324/9780203763667.

https://doi.org/10.1109/ICC.2019.8761559
https://doi.org/10.1109/IOTAIS.2018.8600824
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2021.108040
https://doi.org/10.7250/csimq.2019-21.02
https://doi.org/10.1016/j.datak.2024.102324
https://doi.org/10.1016/j.datak.2024.102324
https://doi.org/10.1007/s00607-023-01155-z
https://doi.org/10.1016/j.iot.2022.100626
https://ceur-ws.org/Vol-1695/paper4.pdf
https://doi.org/10.1016/j.is.2019.06.005
https://doi.org/10.1016/j.is.2019.06.005
https://doi.org/10.1111/j.1749-6632.1984.tb16513.x
https://doi.org/10.1007/978-3-319-40022-8_2
https://doi.org/10.9781/ijimai.2017.431
https://doi.org/10.4324/9780203763667


D. M. Amlashi et al. / Artificial Intelligence and Internet of Things 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[17] U. Hunkeler, H.L. Truong and A. Stanford-Clark, MQTT-S - A publish/subscribe protocol for Wireless Sensor Networks, in: 2008 3rd
International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE ’08), IEEE, Bangalore,
India, 2008, pp. 791–798. https://doi.org/10.1109/COMSWA.2008.4554519.

[18] A. Javed, A. Malhi, T. Kinnunen and K. Främling, Scalable IoT Platform for Heterogeneous Devices in Smart Environments, IEEE Access
8 (2020), 211973–211985. https://doi.org/10.1109/ACCESS.2020.3039368.

[19] M.I. Jordan and T.M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science 349(6245) (2015), 255–260. https://doi.org/
10.1126/science.aaa8415.

[20] D. Karagiannis, Agile Modeling Method Engineering, in: Proceedings of the 19th Panhellenic Conference on Informatics, N. Karanikolas,
D. Akoumianakis, M. Nikolaidou, D. Vergados and M. Xeno, eds, Association for Computing Machinery, New York, NY, USA, 2015,
pp. 5––10. https://doi.org/10.1145/2801948.2802040.

[21] D. Karagiannis, AdoScript: A DSL for developing conceptual modeling methods, in: Informing Possible Future Worlds. Essays in Honour
of Ulrich Frank, S. Strecker and J. Jung, eds, Logos, Berlin, 2024, pp. 287–308.

[22] D. Karagiannis and H. Kühn, Metamodelling Platforms, in: E-Commerce and Web Technologies, K. Bauknecht, A.M. Tjoa and G. Quirch-
mayr, eds, Springer, Berlin Heidelberg, 2002, p. 182. https://doi.org/10.1007/3-540-45705-4_19.

[23] D. Karagiannis, R.A. Buchmann and W. Utz, The OMiLAB Digital Innovation environment: Agile conceptual models to bridge business
value with Digital and Physical Twins for Product-Service Systems development, Computers in Industry 138 (2022), 103631. https://doi.
org/10.1016/j.compind.2022.103631.

[24] D. Karagiannis, H.C. Mayr and J. Mylopoulos (eds), Domain-Specific Conceptual Modeling: Concepts, Methods and Tools, 1st edn,
Springer International Publishing, Cham, 2016. https://doi.org/10.1007/978-3-319-39417-6.

[25] D. Karagiannis, R.A. Buchmann, P. Burzynski, U. Reimer and M. Walch, Fundamental Conceptual Modeling Languages in OMiLAB,
in: Domain-Specific Conceptual Modeling: Concepts, Methods and Tools, D. Karagiannis, H.C. Mayr and J. Mylopoulos, eds, Springer
International Publishing, Cham, 2016, pp. 3–30. https://doi.org/10.1007/978-3-319-39417-6_1.

[26] D. Karagiannis, P. Burzynski, W. Utz and R.A. Buchmann, A Metamodeling Approach to Support the Engineering of Modeling Method
Requirements, in: 2019 IEEE 27th International Requirements Engineering Conference (RE), 2019, pp. 199–210. https://doi.org/10.1109/
RE.2019.00030.

[27] D. Karagiannis, R.A. Buchmann, X. Boucher, S. Cavalieri, A. Florea, D. Kiritsis and M. Lee, OMiLAB: A Smart Innovation Environment
for Digital Engineers, in: Boosting Collaborative Networks 4.0, L.M. Camarinha-Matos, H. Afsarmanesh and A. Ortiz, eds, Springer
International Publishing, Cham, 2020, pp. 273–282. https://doi.org/10.1016/10.1007/978-3-030-62412-5_23.

[28] D. Karagiannis, M. Lee, K. Hinkelmann and W. Utz (eds), Domain-Specific Conceptual Modeling: Concepts, Methods and ADOxx Tools,
1st edn, Springer International Publishing, Cham, 2022. https://doi.org/10.1007/978-3-030-93547-4.

[29] D. Kiritsis, Closed-loop PLM for intelligent products in the era of the Internet of things, Computer-Aided Design 43(5) (2011), 479–501.
https://doi.org/10.1016/j.cad.2010.03.002.

[30] S. Li, L.D. Xu and S. Zhao, The internet of things: a survey, Information Systems Frontiers 17(2) (2015), 243–259. https://doi.org/10.1007/
s10796-014-9492-7.

[31] S. Mayer, R. Verborgh, M. Kovatsch and F. Mattern, Smart Configuration of Smart Environments, IEEE Transactions on Automation
Science and Engineering 13(3) (2016), 1247–1255. https://doi.org/10.1109/TASE.2016.2533321.

[32] H.C. Mayr and B. Thalheim, The triptych of conceptual modeling, Software and Systems Modeling 20 (2021), 7–24. https://doi.org/10.
1007/s10270-020-00836-z.

[33] A. Newell and H.A. Simon, Computer Science as Empirical Inquiry: Symbols and Search, in: ACM Turing Award Lectures, Association
for Computing Machinery, New York, NY, USA, 2007, pp. 113–126. https://doi.org/10.1145/1283920.1283930.

[34] R.C. Parocha and E.Q.B. Macabebe, Implementation of Home Automation System Using OpenHAB Framework for Heterogeneous IoT
Devices, in: 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), 2019, pp. 67–73. https://doi.org/
10.1109/IoTaIS47347.2019.8980370.

[35] K. Peffers, T. Tuunanen, M.A. Rothenberger and S. Chatterjee, A Design Science Research Methodology for Information Systems Research,
Journal of Management Information Systems 24(3) (2007), 45–77. https://doi.org/10.2753/MIS0742-1222240302.

[36] P.R.J. Pêgo and L. Nunes, Automatic discovery and classifications of IoT devices, in: 2017 12th Iberian Conference on Information Systems
and Technologies (CISTI), 2017, pp. 1–10. https://doi.org/10.23919/CISTI.2017.7975691.

[37] S. Ray, A Quick Review of Machine Learning Algorithms, in: 2019 International Conference on Machine Learning, Big Data, Cloud and
Parallel Computing (COMITCon), IEEE, New York, 2019, pp. 35–39. https://doi.org/10.1109/COMITCon.2019.8862451.

[38] M.A. Razzaque, M. Milojevic-Jevric, A. Palade and S. Clarke, Middleware for Internet of Things: A Survey, IEEE Internet of Things
Journal 3(1) (2016), 70–95. https://doi.org/10.1109/JIOT.2015.2498900.

[39] C. Sanders, Practical Packet Analysis: Using Wireshark to Solve Real-World Network Proble, 2nd edn, No Starch Press, Burlingame, CA,
2011.

[40] J. Schmidhuber, Deep learning in neural networks: An overview, Neural networks 61 (2015), 85–117. https://doi.org/10.1016/j.neunet.
2014.09.003.

[41] M.R. Shahid, G. Blanc, Z. Zhang and H. Debar, IoT Devices Recognition Through Network Traffic Analysis, in: 2018 IEEE International
Conference on Big Data (Big Data), 2018, pp. 5187–5192. https://doi.org/10.1109/BigData.2018.8622243.

[42] M. Shanahan, Talking about Large Language Models, Communication of the ACM 67(2) (2024), 68––79. https://doi.org/10.1145/3624724.
[43] B. Siciliano, L. Sciavicco, L. Villani and G. Oriolo, Actuators and Sensors, in: Robotics: Modelling, Planning and Control, Springer

London, 2009, pp. 191–231. https://doi.org/10.1007/978-1-84628-642-1_5.

https://doi.org/10.1109/COMSWA.2008.4554519
https://doi.org/10.1109/ACCESS.2020.3039368
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1145/2801948.2802040
https://doi.org/10.1007/3-540-45705-4_19
https://doi.org/10.1016/j.compind.2022.103631
https://doi.org/10.1016/j.compind.2022.103631
https://doi.org/10.1007/978-3-319-39417-6
https://doi.org/10.1007/978-3-319-39417-6_1
https://doi.org/10.1109/RE.2019.00030
https://doi.org/10.1109/RE.2019.00030
https://doi.org/10.1016/10.1007/978-3-030-62412-5_23
https://doi.org/10.1007/978-3-030-93547-4
https://doi.org/10.1016/j.cad.2010.03.002
https://doi.org/10.1007/s10796-014-9492-7
https://doi.org/10.1007/s10796-014-9492-7
https://doi.org/10.1109/TASE.2016.2533321
https://doi.org/10.1007/s10270-020-00836-z
https://doi.org/10.1007/s10270-020-00836-z
https://doi.org/10.1145/1283920.1283930
https://doi.org/10.1109/IoTaIS47347.2019.8980370
https://doi.org/10.1109/IoTaIS47347.2019.8980370
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.23919/CISTI.2017.7975691
https://doi.org/10.1109/COMITCon.2019.8862451
https://doi.org/10.1109/JIOT.2015.2498900
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/BigData.2018.8622243
https://doi.org/10.1145/3624724
https://doi.org/10.1007/978-1-84628-642-1_5


18 D. M. Amlashi et al. / Artificial Intelligence and Internet of Things

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[44] M. Singh, E. Fuenmayor, E. Hinchy, Y. Qiao, N. Murray and D. Devine, Digital Twin: Origin to Future, Applied System Innovation 4(2)
(2021), 36. https://doi.org/10.3390/asi4020036.

[45] B. Stiller, E. Schiller, C. Schmitt, S. Ziegler and M. James, An overview of network communication technologies for IoT, Handbook of
Internet-of-Things 12 (2020), Publisher: Springer Int.

[46] S. Tang, D.R. Shelden, C.M. Eastman, P. Pishdad-Bozorgi and X. Gao, A review of building information modeling (BIM) and the internet
of things (IoT) devices integration: Present status and future trends, Automation in Construction 101 (2019), 127–139. https://doi.org/10.
1016/j.autcon.2019.01.020.

[47] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L.u. Kaiser and I. Polosukhin, Attention is All you Need, in:
Advances in Neural Information Processing Systems, Vol. 30, I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan
and R. Garnett, eds, Curran Associates, Inc., 2017, pp. 5998–6008.

[48] A. Voelz, D.M. Amlashi and M. Lee, Semantic Matching Through Knowledge Graphs: A Smart City Case, in: Advanced Information
Systems Engineering Workshops, M. Ruiz and P. Soffer, eds, Springer International Publishing, Cham, 2023, pp. 92–104. https://doi.org/
10.1007/978-3-031-34985-0_10.

[49] A. Voelz, C. Muck, D.M. Amlashi and D. Karagiannis, Bridging haptic Design Thinking and cyber-physical environments through Digital
Twins using conceptual modeling, in: Joint Proceedings of the BIR 2023 Workshops and Doctoral Consortium co-located with 22nd
International Conference on Perspectives in Business Informatics Research, 2023, pp. 195–208. https://ceur-ws.org/Vol-3514/paper93.pdf.

[50] A. Völz and I. Vaidian, Digital Transformation through Conceptual Modeling: The NEMO Summer School Use Case, in: Modellierung
2024, Gesellschaft für Informatik e.V., Bonn, 2024, pp. 139–156. https://doi.org/10.18420/modellierung2024_014.

[51] A. Völz, D.M. Amlashi, P. Burzynski and W. Utz, ADOxx: Eine Low-Code-Plattform für die Entwicklung von Modellierungswerkzeugen,
HMD Praxis der Wirtschaftsinformatik 61(5) (2024), 1295–1316. doi:10.1365/s40702-024-01096-x.

[52] R.J. Wieringa, Design science methodology for information systems and software engineering, Springer, 2014.
[53] Y.B. Zikria, R. Ali, M.K. Afzal and S.W. Kim, Next-Generation Internet of Things (IoT): Opportunities, Challenges, and Solutions, Sensors

21(4) (2021). https://doi.org/10.3390/s21041174.

https://doi.org/10.3390/asi4020036
https://doi.org/10.1016/j.autcon.2019.01.020
https://doi.org/10.1016/j.autcon.2019.01.020
https://doi.org/10.1007/978-3-031-34985-0_10
https://doi.org/10.1007/978-3-031-34985-0_10
https://ceur-ws.org/Vol-3514/paper93.pdf
https://doi.org/10.18420/modellierung2024_014
https://doi.org/10.3390/s21041174

	Introduction
	Theoretical Foundations
	Internet of Things and Internet of Things Platforms
	Symbolic, Connectionist, and Neuro-symbolic Artificial Intelligence
	Conceptual Modeling and Domain-Specific Modeling Methods

	Methodology
	Problem Statement
	Related Works and Requirements Specification

	Neuro-Symbolic Architecture of the IoT Platform Configuration Approach
	Automated Device Discovery and Configuration: The Instantiator Pipeline
	A Smart House Configuration Case based on the Instantiator Pipeline
	Experiment Environment Setup
	Case-specific Utilization of the Instantiator Pipeline

	Scenario-based Configuration of IoT Platforms through Conceptual Modeling: The IoT2Model Method
	IoT Infrastructure Model Type
	Environment Model Type
	Scenario Model Type
	Pool Safety Configuration using IoT2Model


	Discussion
	Conclusion
	References

