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Abstract. Resolving the dichotomy between the human-like yet constrained reasoning processes of Cognitive Architectures
(CAs) and the broad but often noisy inference behavior of Large Language Models (LLMs) remains a challenging yet exciting
pursuit, aimed at enabling reliable machine reasoning capabilities in LLMs. Previous approaches that employ off-the-shelf LLMs
in manufacturing decision-making face challenges in complex reasoning tasks, often exhibiting human-level yet unhuman-like
behaviors due to insufficient grounding. This present paper start to address this gap by asking whether LLMs can replicate
cognition from CAs to make human-like decisions. We introduce Cognitive LLMs, which are hybrid decision-making archi-
tectures comprised of a CA and an LLM through a knowledge transfer mechanism LLM-ACTR. Cognitive LLMs extract and
embed knowledge of CA’s internal decision-making process as latent neural representations, inject this information into trainable
LLM adapter layers, and fine-tune the LLMs for downstream prediction tasks. We find that, after knowledge transfer through
LLM-ACTR, the Cognitive LLMs offers better representations of human decision-making behaviors on a novel Design for
Manufacturing problem, compared to an LLM-only model that employs chain-of-thought. Taken together, the results open up
new research directions for equipping LLMs with the necessary knowledge to computationally model and replicate the internal
mechanisms of human cognitive decision-making. We release the code and data samples at https://github.com/SiyuWu528/LLM-
ACTR.

Keywords: Cognitive architectures, Large language models

Introduction

Large Language Models (LLMs) have gained consid-
erable popularity for a wide range of prediction and
decision-making tasks, spanning applications, such as

*Work done during an internship at Bosch R&T center.

robotics and control, neural question-answering, scene
understanding, code generation, mathematical reason-
ing. LLMs are trained on massive datasets, can be
used both as discriminative scoring functions as well
as generative models, and their capacity allows them
to accumulate and retain vast amounts of knowledge
[7, 15, 20, 24, 34, 77]. Typical LLMs’ use resembles
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Fig. 1. Cognitive LLMs architecture, where CAs instruct LLMs for cognitive decision-making using LLM-ACTR knowledge transfer frame-
work.

system-1 reasoning process [30, 70], offering quick,
intuitive responses for everyday tasks. And advance-
ments in multi-agent LLM frameworks and emergent
capabilities such as in-context learning [19, 20, 82]
have pushed LLMs toward system-2 reasoning process
[80], e.g., ‘chain-of-thought’ reasoning (CoT) [10],
enabling more deliberate cognition for complex de-
cisions [15, 85]. However, issues such as discrepan-
cies in human-like reasoning [51], problems with in-
sufficient grounding [92], and hallucination [16] per-
sist. Specifically, when using off-the-shelf LLMs to
augment decision-making in manufacturing, where the
Value Stream Map (VSM) [65] with intertwined vari-
ables is vital for smart scheduling [69], plant man-
agers often struggle with using LLMs’ unhuman-like
and noisy predictions [52] (also see Appendix: LLM
Conversation Examples).

This paper is part of a larger project aimed at augment-
ing LLMs with human cognition to improve manufac-
turing efficiency, structured in two phases. Phase one,
focuses on modeling human cognition using symbolic
knowledge representation through cognitive architec-
tures. Specifically, it employs a cognitive architecture
to build models representing decisions and their pro-

cesses, with the primary goals of boosting productivity
and ensuring consistent quality. This model leverages
data derived from the VSM and decision-makers at
Bosch plants. We developed a cognitive model, VSM-
ACTR [88, 89], which functions as a standalone tutor
for decision-makers in manufacturing, guiding them
through decision-making processes by reflecting learn-
ers’ learning progression.

Phase two, which is the center of this paper, we ask
whether LLMs can replicate cognition from Cogni-
tive Architectures (CAs) to make human-like deci-
sions. We propose Cognitive LLMs as an solu-
tion, which are hybrid decision-making architectures
comprised of a CA and an LLM through a develop-
ing knowledge transfer framework LLM-ACTR. CAs
are codable computational frameworks designed to
capture the invariant mechanisms of human cogni-
tion. These mechanisms include functions related to
attention, control, learning, memory, adaptivity, per-
ception, and action [47, 76]. Through CAs we can
construct cognitive decision-making models that can
store, retrieve, and process knowledge, e.g., [38, 54].
Cognitive LLMs extract and embed knowledge of
cognitive model’s internal decision-making process as
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latent neural representations, inject this information
into trainable LLM adapter layers, and fine-tune the
LLMs for downstream prediction tasks.

Cognitive LLMs (Fig. 1) begins with (1) defin-
ing decision-making problems such as from manu-
facturing management documentation, considering do-
main knowledge such as the VSM and human fac-
tors like feedback from plant managers; (2) We then
use the representative cognitive architecture ACT-R
[47, 66], widely used for understanding human cog-
nition [5] and modeling human behaviors [6, 78], to
build a cognitive model. The model simulates human-
like decision-making to address the defined problem.
Techniques such as ontology-based formalization and
psychometrics are employed to model the symbolic
components of the task, i.e., declarative and procedu-
ral knowledge, and to set the subsymbolic parameters,
e.g., learning rate, similarity matching. (3) The cog-
nitive model is then run at scale stochastically to col-
lect cognitive decision-making reasoning stamps. Col-
lected data are processed into vector embeddings us-
ing techniques such as tokenization and dimension-
ality reduction. (4) Lastly, Cognitive LLMs learn
the embedded vectors of cognitive decision-making
through the developing knowledge transfer framework
LLM-ACTR. It leverages the strengths of both LLMs
and CAs by using the natural language processing and
generative capabilities of LLMs, complemented by the
human-like learning and reasoning offered by CAs.

We present a case study of Cognitive LLMs in
manufacturing decision-making. The task is associ-
ated with a key aspect of Design For Manufacturing
(DFM): enhancing product development and optimiz-
ing production system performance by improving time
efficiency and reducing headcount costs [81].

The present paper poses three research questions:

RQ1. What are the properties of a neural network rep-
resentation of the decision-making process in CAs?
Answering this question sets the ground for develop-
ing a context-aware domain knowledge base for aug-
menting decision-making in LLMs.

RQ2. What level of complexity in behavior representa-
tion can LLMs capture? Previous research used LLMs’
conceptual embeddings to predict human-reinforced
decisions [12], indicating that embeddings from LLMs
could be trained to predict human-like behaviors. By
incorporating more training sets using CAs, the study
addresses the limitation of high data collection costs

with human subjects and aims to broaden the investi-
gation into the extent to which innate LLMs can learn
human cognition.

RQ3. Can we inform the LLMs with knowledge about
the reasoning process of the CAs? Answering this
question offers insights into knowledge transfer from
domain-specific bases to LLMs, and opens up new re-
search directions for equipping LLMs with the neces-
sary knowledge to computationally model and repli-
cate the internal mechanisms of human cognitive
decision-making.

The following sections are sequentially arranged as
follows: related work; an explanation of Cognitive
LLMs, which comprises two components: the CA
and its constructed cognitive model; the LLM-ACTR
framework, which facilitates knowledge transfer using
a developed domain knowledge base; and the experi-
ments conducted to address the research questions, fol-
lowed by the results, discussion, and implications.

Related Work

This section starts by integrating cognitive psychology
principles into LLMs, along with decision intelligence
in manufacturing and cognitive decision-making. It
then highlights the domain limitations of these ap-
proaches. It concludes by discussing the current in-
tegrating of CAs and LLMs, and points out how our
approach differs from others.

Relating Cognitive Psychology to Human-Like
Artificial Intelligence

Human-like artificial intelligence (HLAI) has been a
goal since the emergence of machines [56]. In recent
years, the development of transformer-based LLMs
has revolutionized HLAI, demonstrating impressive
human-level capabilities. However, LLMs sometimes
fail to display human-like behavioral traits. Analyz-
ing the areas where LLMs currently fall short in repli-
cating human cognition and behavior highlights the
problems in exhibiting human-level capabilities that
are unhuman-like [21], including behavior discrepan-
cies between LLM inference and human reasoning
[11, 51], insufficient grounding [92], and hallucination
[16].

The challenges mentioned have catalyzed an inte-
gration of cognitive psychology with LLMs, toward
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human-like trustworthy LLMs. Recent studies have
used cognitive psychology experiments to investigate
and comprehend behaviors in these models, focus-
ing more on behavioral insights than on conventional
performance metrics [11, 18]. In addition, the use
of LLMs’ neural representations has been applied in
behavioral psychological science research, which in-
volves and not limited to prompt engineering, feature
extraction, and fine-tuning:

Feature Extraction. The process begins with passing
text that mirrors a psychological experiment through
the open-source LLM to capture contextualized em-
beddings from the final layer [36]. These embeddings
can be employed in various psychological experiments
applications, such as predicting similarities between
personality constructs [2], choices in reinforcement
learning [12], or perceptions related to risk or health
[90]. For tasks that require sequence prediction, de-
coder models are preferred due to their larger size and
more extensive training data [36].

Zero-shot and Few-shot Learning. Zero-shot learn-
ing enables the creation of categorical or numerical
predictions, such as evaluating sentiments on social
media [22], without requiring training specific to the
task. Few-shot learning extends this concept by adding
minimal supervision, such as a small number of exam-
ple pairs, to improve the accuracy of the model.

Fine-tuning. Fine-tuning smaller LLMs for human-
like behaviors can achieve performance that matches
or exceeds that of larger models under zero- or few-
shot learning conditions [36]. This involves adjust-
ing model weights to improve task-specific outcomes.
For example, one study fine tuned BERT in zero-shot
learning to predict reinforcement learning behaviors
of human subjects [36]. However, the generalization
of this approach is impeded by the high cost of col-
lecting large cognitive psychological datasets involv-
ing human subjects.

Common Model of Cognition, Cognitive
Architectures, and Cognitive Models

To work toward integrating human-like behavioral
traits into LLMs, we use a suite of tools rooted in
the Common Model of Cognition (CMC) to provide
a wider range of tasks into the training dataset. CMC
embodies unified Theory of Cognition [47, 58], a the-
oretical framework that presents a model of human
cognition codified as a computational architecture. The

CMC is a brain-inspired framework validated by large-
scale neuroscience data. The CMC identifies core com-
ponents and processes fundamental to human cog-
nition, including memory, perception, motor actions,
and decision-making. The model assumes a cyclical
process where these components interact to produce
human behavior. The CMC includes a feature-based
declarative long-term memory, a buffer-based working
memory, a system for pattern-directed action invoca-
tion stored in procedural memory, and specialized sys-
tems for perception and action [71].

The CMC integrates essential features from various
CAs [5, 43, 44, 46], which propose a set of fixed mech-
anisms to model human behavior, functioning akin to
agents and aiming for a unified representation of the
mind. By using task-specific knowledge, these archi-
tectures not only simulate but also explain behavior
through direct examination and real-time reasoning
tracing.

Two representative cognitive architectures related to
the CMC are ACT-R and Soar [48]. Other CA could
also be chosen from a recent extensive review [43, 44],
as long as a trace is available. ACT-R is a theory of
simulating and understanding human cognition [6, 66],
through which we can construct models that can store,
retrieve, and process knowledge, as well as explain and
predict performance [14].

The two most commonly used representations in ACT-
R are declarative knowledge and procedural knowl-
edge. Declarative knowledge consists of chunks of
memory (e.g., the production line comprises five sec-
tions), while procedural knowledge performs basic op-
erations, moves data among buffers, and identifies the
next instructions to be executed (e.g., lower defect rate
will lead to higher efficiency rate).

Soar, on the other hand, is a general cognitive architec-
ture that provides a computational infrastructure that
resembles the cognitive capabilities exhibited by a hu-
man [46]. It implements knowledge-intensive reason-
ing that enables execution of rules based on the con-
text, and the capability to integrate learning into the in-
telligent agent using chunking or reinforcement learn-
ing. Soar’s general computing concept is based on ob-
jectives, problem spaces, states and operators. Soar en-
compasses multiple memory constructs (e.g., seman-
tic, episodic, etc.) and learning mechanisms (e.g., re-
inforcement, chunking etc.)



S. Wu et al. / Cognitive LLMs 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

One primary difference between these two architec-
tures is that ACT-R was designed to model human be-
havior and has a track record of predicting human per-
formance and timing to the millisecond level. In con-
trast, Soar places less emphasis on replicating human
behavior and more on developing general agents with
cognitive capabilities [48].

Decision Intelligence in Manufacturing

Industry 4.0 aims to create ’intelligent factories,’
where advanced manufacturing technologies facilitate
smart decision-making through real-time communica-
tion and cooperation among humans, machines, and
sensors [32]. One example of this is smart scheduling,
which employs advanced models and algorithms using
sensor data [69].

Decision intelligence [49] is a crucial component of
smart scheduling and comprises three stages. Deci-
sion support. Machines provide basic tools to aid hu-
man decision-making, such as alerts, analytics, and
data exploration. Here, the decisions are made entirely
by humans. Decision augmentation. Machines take
on a more proactive role in the decision-making pro-
cess. They analyze data and generate recommenda-
tions and predictions for decision-makers to review
and validate. Humans can base their decisions on these
suggestions, or they can collaborate with the machine
to refine the recommendations. Decision Automation.
Machines handle both the decision-making and exe-
cution steps autonomously. Humans maintain a high-
level overview, monitoring risks and unusual activities,
and regularly review outcomes to enhance the system.

A value stream map (VSM) is a critical tool in man-
ufacturing decision intelligence, functioning as an
flowchart that visualizes and controls the production
line [53]. VSM meticulously tracks metrics such as in-
puts, outputs, processes, overall equipment effective-
ness (OEE), and cycle times (CT). However, plant
managers encounter significant challenges when tran-
sitioning VSM in production management from de-
cision support to decision augmentation. These chal-
lenges stem from the difficulty of applying VSM con-
cepts to complex, real-world scenarios characterized
by numerous intertwined variables [52].

Cognitive Decision Making

Representative CAs, e.g., Soar, ACT-R, have been used
to build models that automate decision-making tasks,

e.g., [38, 54]. Among them, the ACT-R cognitive ar-
chitecture is applied to build models across psychol-
ogy and computer science that are closely aligned with
human behaviors. It has a track record of accurately
predicting human performance and timing across a va-
riety of tasks (see [63]), which meets our needs for de-
veloping synthetic agents that can provide human-like
cognitive reasoning in learning and training environ-
ments.

The ACT-R modeling approaches include: (a) strategy
or rule-based, where different problem-solving strate-
gies are implemented through various production rules
and successful strategies are rewarded [9, 87]; (b) ex-
emplar or instance-based, which relies on past experi-
ences stored in declarative memory to solve problems
[28]; and (c) hybrid approaches that combine strategies
and exemplars [64].

A few features distinguish the use of ACT-R in cre-
ating decision-making models that involve learning:
Modular design that mirrors the symbolic aspects
of human cognition: ACT-R’s modules emulate hu-
man cognitive functions: perceptual modules update
the system’s view of the environment, a goal module
tracks progress towards objectives, a declarative mod-
ule uses past experiences for contextual understand-
ing, and a central buffer system enables communica-
tion between modules. Additionally, the central pro-
duction system recognizes patterns to initiate coordi-
nated actions. Subsymbolic processes for decision-
making: ACT-R can retrieve relevant memories and
activate appropriate rules, ensuring both efficient and
adaptive performance in decision-making tasks. It does
so at a simulated pace that mirrors human performance
at the millisecond level.

However, ACT-R does not have LLM-like dialogic in-
teraction with other ACT-R models, which limits their
usability for decision-making. Intuitively, a solution
could take the best of both CAs and LLMs, where
ACT-R models serve as synthetic agents to instruct
LLMs. They do this by providing knowledge of cogni-
tive decision-making through LLMs’ training, which
includes aspects such as learning. The trained LLMs
can then be generalized to unseen problems.

Integration of Cognitive Architectures and LLMs

Efforts have been made toward leveraging the strengths
of both CAs and LLMs to create a more robust unified
theory of computational cognitive models. Some ap-
proaches include using the implicit world knowledge
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of LLMs to replace traditional declarative knowledge
mechanisms [86], employing Chain-of-Thought rea-
soning to enhance the symbolic mechanisms for proce-
dural knowledge [41], and leveraging language models
as external knowledge sources for cognitive systems,
while exploring ways to improve the effectiveness of
knowledge extraction [39].

Moreover, Sumers et al. [72] examines how principles
from cognitive architectures can guide the design of
LLM-based agent frameworks, demonstrating a com-
prehensive integration effort that spans from knowl-
edge representation to interaction with the environ-
ment. Additionally, Sun [74] proposes a direction for
creating computational cognitive architectures using
dual-process models and hybrid neuro-symbolic meth-
ods. Using the Clarion CA [73] as an example, Sun il-
lustrates the theoretical opportunities for incorporating
LLMs into Clarion’s modules of perception, memory,
motor control, and communication, leveraging LLMs’
natural language processing and generalization abili-
ties. This present study builds upon previous research;
however, we have adopted a different perspective by
leveraging CAs to ground the decisions of LLMs in
a data-driven manner. We aim to examine the proper-
ties of a neural network representation of the decision-
making process in CAs and investigate whether knowl-
edge from CAs can be preserved in an embedding
space and infused into LLMs through the transfer of
learning.

Problem Definition: Design for Manufacturing

This paper presents a case study of training a cogni-
tively inspired LLM for decision-making in the design
for manufacturing (DFM) domain. We define the ter-
minology that constitutes our decision-making prob-
lem. The DFM problem setting is a prototypical man-
ufacturing production-line workflow, from supplier to
customer, for which there exists a VSM (Fig. 2), which
allows for tracking the efficiency at different sectors of
the process and abstracts the overall problem for math-
ematical modeling and optimization. Decision candi-
dates come from sectors such as Body Production, Pre-
Assembly, Assembly. Early sectors pose potential effi-
ciency problems in the workflow and may warrant op-
timization (triangles), while later stages are governed
by First-In-First-Out (FIFO) processes. The metrics at
each stage include Cycle Time (CT), Overall Equip-
ment Effectiveness (OEE), and/or Mean Absolute Er-
ror (MAE).

Focused on maintaining stable output for manufac-
turing plants, we consider plant managers’ feedback
alongside the VSM structure to define the decision-
making problem that aim to reduce total production
time while minimizing total defect rate increase (see
Fig.1(1) Define Decision-Making Problems). When
facing unseen DFM problems, which are yet con-
strained to fixed decision candidates and unknown de-
cision metrics. Cognitive LLMs takes a natural
language question prompt (see Fig.1(a) for Prompt
Template), and outputs a binary decision (0 or 1) on
which of two sectors, pre-assembly or assembly, re-
quires a time reduction.

Fig. 2. A Value Stream Map of our manufacturing task process.

Cognitive LLMs: Hybrid Architectures for
Human-Aligned Decision Making

Cognitive LLMs are comprised of a CA and an
LLM through a developing knowledge transfer mecha-
nism LLM-ACTR. Thus, we start by introducing the se-
lected cognitive architecure ACT-R, then details about
LLM-ACTR.

VSM-ACTR, A Human-Like Decision Making
Cognitive Model

The ACT-R cognitive architecture was chosen to de-
velop the cognitive model for our task because it
has a track record of accurately predicting human
performance and timing across a variety of tasks,
which meets our need to develop synthetic agents
with individual differences in learning and training,
e.g., [54, 63]. We created the VSM-ACTR cogni-
tive model, which is a rule-based ACT-R cognitive
decision-making model for the DFM problem that im-
plements multiple problem-solving strategies through
a combination of production rules.
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VSM-ACTR has incorporated the meta-cognitive pro-
cesses that reflect on and evaluate the progress of cho-
sen strategies—with an emphasis on headcount (man-
ufactoring) cost evaluation, through a reward struc-
ture that enables a process akin to reinforcement learn-
ing. This system enables the model to dynamically
assess the impact of decisions on headcount costs,
computing a reward or penalty for each decision cy-
cle. These rewards or penalties then dynamically ad-
just the utility of the productions associated with each
decision-making cycle. This helps the model to ex-
hibit a human-like learning progression, that is inher-
ited from its knowledge and ACT-R’s mechanisms. Be-
low we briefly introduce the model and the model de-
tails can be found in [88, 89]

Declarative Memory
VSM-ACTR integrates the prototypical decision pro-
cess with insights into how cognitive models represent
different levels of expertise, e.g., [55, 61], categorizing
users into three levels of expertise: novices, intermedi-
ates, and experts. Novices engage in decision-making
using deliberative chunks. Intermediates can manage
key metrics such as CT and OEE but struggle with the
systematic analysis of intertwined variables. Experts,
on the other hand, make judgments systematically. The
cognitive model employs three types of knowledge
chunks: decisions, decision merits, and goals. The ‘de-
cision chunk’ encodes eight slots including reduction
time (goal), decision-making state (novice, intermedi-
ate, expert), and related variables. The ‘decision mer-
its chunk’ holds information on sector weights, defect
increases by sector, and comparative defect rate in-
creases. The ‘goal chunk’ captures the initial produc-
tion conditions and the ultimate goal of achieving the
optimal decision.

Production Rule Sets
Three sets of production rules represent the decision-
making behaviors of novice, intermediate, and expert
decision-makers. These sets comprise a total of 18
rules, each driven by goal-focused objectives across
20 states, covering actions such as choosing strategies,
actions, working memory management, decisions, and
evaluations.

We use the expert production rule set as an example
(Fig. 3), once the decision-choice center decides to ac-
tivate a set of expert decision productions, the process
begins by perceiving the problem and retrieving re-
lated decision-making metrics from chunks. The imag-
inal buffer then acts as a working memory platform,

Fig. 3. Production rules control structure for expert decision making
and their use of the ACT-R Goal and Imaginal buffers

holding and manipulating relevant information during
the decision-making process. It allows the model to
construct new mental representations or modify exist-
ing ones based on incoming data or problem-solving
needs. This involves using the imaginal buffer to as-
sess the relationships between the decision target and
decision metrics, particularly considering the impact
of each sector’s weight on the defect rate change, and
determining the final defect rate increase for each sec-
tor. These results are stored in the imaginal buffer and
later retrieved for comparison. This enables the model
to select the sector with the lowest defect increase.
After one decision-making cycle, the model evaluates
the headcount cost, rewarding or penalizing the entire
process based on the evaluation results and decision
strategy used before looping back to the next decision-
making round.

Level of Expertise Mechanism
The model can learn while performing tasks through
a mechanism leading to varying levels of expertise, as
shown in Figure 4. The model mimics human decision-
making behavior through differentiating knowledge
representations. Declarative Memories: These mem-
ories store knowledge that aligns with human intu-
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ition and expertise gained from the VSM. For exam-
ple, the green triangles in the figure represent a portion
of the intuition used by novice decision-makers, while
the red circles contains VSM domain knowledge used
by intermediate decision-makers. Production Rules:
These rules capture the rational decision-making pro-
cesses observed in human subjects. The green lines il-
lustrate how the imaginal buffer retrieves relevant por-
tions of the novice declarative memory and feeds them
to the novice production rule set. Intermediate and ex-
pert decision-making levels follow the same principle.
Red and blue shapes represent their respective declar-
ative memory chunks, and the corresponding colored
arrows show the flow of information through their pro-
duction rule sets. Finally, the goal buffer uses the ’goal
focus’ command to manipulate the different phases of
the task.

Fig. 4. Level of expertise mechanism in VSM-ACT-R

The model also simulates the learning progress through
the Decision-Choice Control, which manages errors,
learning, and memory via utility learning and rein-
forced rewards. Novice decision-making productions
start with a utility base and include a noise parameter.
Each round of decisions receives rewards or penalties,
and the utility of associated production rules updates
with the adjustment of memory retention, which de-
pends on the time passed since the rule last fired.

Foster Metacognition to Support Learning
With the aim of making the model assess the effec-
tiveness of decisions while learning — akin to human
metacognition, self-assessing and self-correcting in re-
sponse to self-assessment [57] — we consequently de-
veloped a dynamic reward function that rewards ac-
tions after self-evaluating the chosen strategy.

VSM-ACTR uses the Temporal Difference (TD) algo-
rithm from reinforcement learning [75] as expressed in
Eqn. 1. Each production rule in the ACT-R model has a
utility—a value or strength—associated with it, which
is updated using the TD algorithm:

Eqn. 1 : Ui(n) = Ui(n − 1) + α [Ri(n)− Ui(n − 1)]

where Ui(n) represents the value or utility of some
item i (i.e., a production) after its n-th occurrence, and
Ri(n) represents the reward received on the n-th oc-
currence. The parameter α (0 < α < 1) controls the
learning rate. If multiple productions compete with ex-
pected utility values U j, the probability of selecting
production i is given by Eqn.2:

Eqn. 2 : Probability(i) =
eUi/

√
2s∑

j eU j/
√
2s
,

where the summation over j is over all the productions
that currently have their conditions satisfied; and s is a
noise parameter.

The utilities of production are learned as the model
runs, based on the rewards or penalty that are received.
We designed the reward function as R(s, f (x)) that cal-
culates the reward at the end of each decision-making
round. This function takes two parameters: S , repre-
senting the strategy used, and f (x), which results from
headcount cost analysis, leading to either a weighted
reward or a penalty. For example, in one decision
round, a penalty of -2 is computed due to the use of
a novice strategy coupled with inefficient headcount
cost analysis. Factoring in the memory retention effect
after a 0.05 seconds step, the calculation using the TD
algorithm modifies the impact of the decision on the
utility of the next production as:

Ui(n + 1) = Ui(n) + α [−2− 0.05− Ui(n)] .

This will then sequentially update the utility of the
chain of productions for the chosen strategy. We find
that when the model encounters certain types of prob-
lems both novice and expert strategies result in simi-
lar efficiencies in cost assessment. In these cases, the
model is prone to staying with the novice strategy
and exhibits a more gradual learning curve, similar to
the tendency for people facing bounded rationality in
decision-making [25, 31], where they are likely to se-
lect the less effortful option when faced with multiple
choices that produce very similar outcomes.
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0.000 GOAL SET-BUFFER-CHUNK GOAL GOER NIL
0.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-STRATEGY
0.100 PROCEDURAL PRODUCTION-FIRED DECIDE-BRUTE
0.150 PROCEDURAL PRODUCTION-FIRED BRUTE-DECISION

Dimensionality 
Reduction

VSM-ACTR full traces

… Sentence 
Transformer

(a)

(b)
Prompt: “ There are two options: reduce 

pre-assembly time (0) or reduce 
assembly time (1).\nQ: Which section 

do you choose to optimize? A: ”

LLM

VSM-ACT-R 
persona

Decision

Output

ℒ
Masked

Embedding

Clf.
🔥

Fig. 5. (a) Obtaining decision representations from VSM-ACT-R. (b) LLM feature extraction for behavior prediction.

VSM-ACTR model evaluation
To answer the question of whether VSM-ACTR de-
cisions demonstrate learning progression, and capture
individual differences, this study first uses descriptive
statistics and linear regression to show the average pro-
gression of decision types across trials. It then use a
mixed linear model to assess and illustrate the effects
of trials on decision types across ACT-R model per-
sonas, with repeated measures of trials, and random
effects to account for individual differences. Last but
not least, it uses ordered logistic regression to analyze
and understand the relationship between the number
of trials and an ordinal dependent variable of learning
progress from novice to expert.

We ran the VSM-ACTR model 2,012 times to under-
stood its behavior [67]. Each time, we asked it to run
15-16 trials until the model achieved stable expert be-
havior. We collected data with decision types encoded
as 0, 1, and 2 for novice, intermediate, and expert
strategies.

Fig. 6 shows a significant positive impact of trial ex-
posure on decision-making progression, evidenced by
a linear coefficient of 0.086 (P < 0.05). further-
more, the standard deviation starts relatively low but
quickly increases, peaking around the third trial. This
could reflect a diverging approach to decision-making
as VSM-ACTR personas experiment with different
strategies. the standard deviation gradually decreases
thereafter, stabilizing between 0.5 and 0.75, which
points to a convergence in decision-making strategies
among personas.

A mixed linear model regression confirms the effect
of trials on decision-making and further reveals a vari-
ance of 0.007 in the random group effects, suggesting
that the trials themselves predominantly explain the

variability in decision type, while the individual dif-
ferences exists. Threshold analysis using ordered lo-
gistic regression reveals significant transition thresh-
olds. The transition from novice to intermediate has
a significant threshold of 0.88 (P < 0.05), indicating
a challenging progression to higher decision-making
skills. In contrast, the transition from intermediate to
expert shows a significantly lower threshold of 0.1 (P =
0.021), suggesting it is easier to progress from interme-
diate to expert than from novice to intermediate. These
findings validate that the repeated reinforcement deci-
sions from VSM-ACTR demonstrate human like learn-
ing progression and capture individual differences.

Fig. 6. Trend of decision types over trials, blue line is average deci-
sion types, red line is variance, decision type 0 is novice, 1 is inter-
mediate, and 2 is expert

The Knowledge Transfer Framework: LLM-ACTR

With the validated model in hand, we then explain the
LLM-ACTR framework, beginning with its cognitive
knowledge input, followed by its knowledge transfer
mechanism.
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Cognitive Decision-Making Knowledge
This study curated VSM-ACTR decision-making knowl-
edge through VSM-ACTR’s traces, which capture the
reasoning steps in real time using a concurrent proto-
col. These traces log the cognitive operations executed
by the modules at each decision point. The traces ex-
hibit metacognition, which involves awareness and un-
derstanding of one’s own decision-making processes.
This is represented through model traces that demon-
strate the use of the imaginal buffer for accessing
working memory, procedural memory matching and
firing, and the self assessment of strategy effectiveness.
Traces also exhibit executive function [27], which in-
volves the evolution of decision-making results across
trials and shows how decisions adapt through learning
and experience.

Table 1: VSM-ACTR decision-making trace that high-
lights goal initiation, strategy selection, decision eval-
uation, utility update, and learning.

001 0.000 GOAL SET−BUFFER−CHUNK GOAL GOER NIL
002 0.050 PROCEDURAL PRODUCTION−FIRED CHOOSE−STRATEGY
003 0.100 PROCEDURAL PRODUCTION−FIRED DECIDE−BRUTE
004 0.150 PROCEDURAL PRODUCTION−FIRED BRUTE−DECISION
005 assembly is always a good place to reduce time!
006 0.200 PROCEDURAL PRODUCTION−FIRED HEADCOUNT
007 −0.01999998
008 0.250 PROCEDURAL PRODUCTION−FIRED STOP
009 this is the end of one decision making
010 Utility updates with Reward = −2.0 alpha = 0.2
011 Updating utility of production CHOOSE−STRATEGY
012 U(n−1) = 0.0 R(n) = −2.25 [−2.0 − 0.25 seconds since selection]
013 U(n) = −0.45000002
014 Updating utility of production DECIDE−BRUTE
015 U(n−1) = 3.0 R(n) = −2.2 [−2.0 − 0.2 seconds since selection]
016 U(n) = 1.96
...
026 0.300 PROCEDURAL PRODUCTION−FIRED CHOOSE−STRATEGY
027 0.350 PROCEDURAL PRODUCTION−FIRED DECIDE−

INTERMEDIATE
...
056 0.800 PROCEDURAL PRODUCTION−FIRED CHOOSE−STRATEGY
057 0.850 PROCEDURAL PRODUCTION−FIRED EXPERT−STRATEGY
...
084 Updating utility of production CHOOSE−STRATEGY
085 U(n−1) = −0.46 R(n) = 4.65 [6.0 − 1.35 seconds since selection]
086 U(n) = 0.56200004
087 Updating utility of production EXPERT−STRATEGY
088 U(n−1) = 0.0 R(n) = 4.7 [6.0 − 1.3 seconds since selection]
089 U(n) = 0.94

As shown in Table 1, the model begins by establish-
ing the goal (line 1) and then proceeds with a novice
strategy (line 3, BRUTE/Novice). For the production
rules associated with each strategy, the utility of each
production rule is updated based on the received re-
ward and the time since the last selection. For in-
stance, the reward computation based on cost analysis
(line 6) for the BRUTE choice results in a reward of

-2 (line 10). Consequently, the utility of the NAIVE-
CHOICE rule, impacted by a penalty of -2.25 for the
time passed since the last selection, decreases from 3
to 1.96 (lines 14-16). As the utility of naive strategies
declines, the probability of triggering the Intermediate
Strategy (lines 26-27) and the EXPERT Strategy (lines
87-89) increases.

Learning an Embedding Space of Decision Traces
The next step is to convert the traces into vectors that
LLMs can process. To retain executive function pro-
cesses, we log decision results and strategy traces,
which are then numerically encoded. For instance, 0’
represents a decision for reduced time in the preassem-
bly section, and 1’ for assembly. Encoded data are sub-
sequently fed into the neural network as single vectors.

To retain both executive function and metacognition
processes, this study employs a semantic extraction
and dimensionality reduction approach. This approach
aims to transform a vast number of cognitive reason-
ing stamps into a vector format that balances infor-
mation retention with computational efficiency. Traces
for each task are processed through a sentence trans-
former to obtain semantic embeddings for each times-
tamp. A Sum of Ranked Explanatory Effects (SREE)
analysis is then applied to determine the number (N)
of principal components that account for at least 70%
of the variance. These embeddings are then reduced
to N dimensions using Principal Component Analy-
sis (PCA) [1] (see Figure 5a). The learned embed-
dings can then be concatenated into a one-dimensional
vector that serves as a content vector. This content
vector could then be used to elicit meaningful cogni-
tive decision-making behavior perturbations in LLMs.
For example, the preliminary experiment explores the
transfer of both metacognitive and executive function
processes into LLMs by adding the cognitive content
vector to the forward pass of LLM next token predic-
tion to elicit meaningful behavioral perturbations.

Transfer of Learning
LLM-ACTR (see Fig. 1(4) LLM-ACTR framework)
begins by (a) parsing consistent template prompts
that reflect the decision making task into an open-
source LLM, mapping the task for the cognitive model;
(b) using the LLM as the base model to access the last
hidden layer and obtain masked embeddings; (c) con-
structing a classification layer with softmax activation
on top of the base model; (d) using targets contain-
ing the salient decision representations of the cogni-
tive model and features from the masked embeddings
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of the base LLM, and fine-tuning the LLM for classi-
fication using the LORA method.

Fine-tuning, which involves optimizing model weights
for a specific task, has been widely applied in the trans-
fer of learning [29]. Aiming at transferring human-
like decisions with learning, the targets are the en-
coded vectors that represent executive function pro-
cesses of each VSM-ACTR persona. The transfer of
learning has been reformulated into a classification
fine-tuning task, where the final layer of contextu-
alized embeddings—capturing the in-context mean-
ing of tokens by recombining them with other to-
kens’ embeddings—is used as features. These selected
contextualized embeddings provide the richest seman-
tic information while balancing minimal information
loss and reduced computational costs for fine-tuning.
Additionally, Low-Rank Adaptation (LoRa) was em-
ployed for its computational efficiency [33]. The cur-
rent LLM-ACTR framework can also be extended to
transfer other cognitive processes such as metacogni-
tion, as demonstrated in the following preliminary ex-
periments section.

Experiments

Use Semantic Mapping to Evaluate Cognitive
Decision Making Traces Vector

To answer RQ1 regarding the properties of a neural
network representation of the decision-making process
in CAs, we conducted a semantic mapping analysis of
the first two principal components of the learned em-
beddings of each trace. The goal is to explore how
the neural network has the potential to learn guided
perception, memory, goal-setting, and actions — key
components of cognitive decision-making — in an em-
bedding space. We then used MANOVA analysis to ex-
amine how the learned embeddings correspond to the
semantic of ACT-R’s components, including procedu-
ral memory, imaginal memory, goal knowledge, utility
updating, and decision-making actions.

Feature Extraction for Behavior Prediction

To answer RQ2: What level of complexity in behav-
ior representation can LLMs effectively capture? This
study adopted the similar method of LLMs’ feature
extraction for behavior prediction [36]. We created

datasets consisting of LLMs’ last contextual embed-
dings as features and the corresponding different lev-
els of VSM-ACTR decisions as targets. We obtained
embeddings by passing prompts that included all the
information that VSM-ACTR had access to on a given
trial and then extracting the hidden activations of the
final layer, as shown in Figure 5b.

The first dataset used targets as VSM-ACTR deci-
sions, where ’0’ indicates preassembly and ’1’ indi-
cates assembly. The second dataset’s prompt template
added an explanation of the strategy adopted by VSM-
ACTR (see Appendix: LLM System Prompt Tem-
plates) and used compound targets comprising both the
decisions and the strategies reflecting the learning tra-
jectory (novice, intermediate, and expert). The targets
were encoded as follows: 0, 1, and 2 for preassembly
choices using novice, intermediate, and expert strate-
gies, respectively, and 3, 4, and 5 for assembly choices
following the same pattern. With these two datasets,
we fitted a regularized logistic regression model using
10-fold cross-validation for the first dataset and multi-
nomial regression using 10-fold cross-validation with
L2 regularization for the second. Model performance
was assessed by measuring the goodness of fit through
negative log-likelihood (NLL) and the predictive accu-
racy of hold-out data.

Knowledge Transfer

To answer RQ3: whether LLMs can be informed with
knowledge about the reasoning processes of cogni-
tive architectures, we use a case study to examine
whether Cognitive LLMs offer better representa-
tions of human decision-making behaviors on a novel
Design for Manufacturing problem, compared to an
LLM-only model that employs chain-of-thought rea-
soning strategies.

Base Model and Data
The case study uses the LlaMa-2 13B [79] model as
the base model because it demonstrated effectiveness
and efficiency in NLP tasks [35]. As a state-of-the-
art LLM, LlaMa has been trained on trillions of to-
kens from publicly available datasets. Unlike other
transformer-based models such as the GPT family,
which can only be accessed at the user’s end, LlaMa’s
architecture, including its pre-trained weights, is fully
accessible. Furthermore, evidence that its internal rep-
resentations can be trained to become more aligned
with human neural activity has been presented [12].
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To determine the target size that can effectively per-
form the fine-tuning task while balancing efficacy and
resource limitations, we referred to [45], who showed
evidence that LlaMa-2 13B would maintain competi-
tive performance in resource-limited text classification
with datasets of nearly 1,000 rows per class. Based
on this, we created a dataset that contains the 2,012
decision-making trials, obtained by running the devel-
oped VSM-ACTR model across 32 problem sets; each
ACT-R persona was run for 15-16 trials until stable ex-
pert behavior was achieved.

Experiment Metrics
The fine-tuning process employs cross-entropy as the
loss function and uses Adam optimization. Training in-
volves a train-test split of 0.2 and a batch size of 5
for both training and validation phases. The learning
rate was set to 1e-5, with training spanning across 10
epochs. To ensure regularization and prevent overfit-
ting, weight decay of 0.01, a dropout rate of 0.5 were
applied, and gradient accumulation was set to 2. Last
but not least, gradient clipping was employed to main-
tain a maximum gradient norm of 1.0 for gradient ex-
plosion control.

Baseline Models
To assess the model’s ability to make human-like de-
cisions, we first split the data into train and validation
sets to reserve a set of unseen problems. We then com-
pared the predictive negative log-likelihood (NLL),
a measure of goodness-of-fit, of Cognitive LLMs
in predicting VSM-ACTR’s decisions on the unseen
problems, against a pre-trained LlaMa and a random
guess model.

A random choice model serves as the basic form of
control condition to distinguish the effects of treatment
from chance [26]. This approach allows assessing the
extent to which decisions are influenced by knowledge
versus being purely stochastic. On the other hand, us-
ing LlaMa without fine-tuning as a baseline provides
a reference point to measure the impact of knowledge
transfer on the model’s performance.

Results

Finding Useful Cognitive Decision Making
Embeddings

The approach of distilling executive function pro-
cesses captures the evolution of decision-making re-
sults across trials and illustrates how decisions adapt

through learning and experience, all represented as a
sequential single vector. This approach is easy to use
for downstream tasks but retains only partial knowl-
edge of cognitive decision-making

In addition, Figure 7 displays the reduced embeddings
of both metacognitive and executive function pro-
cesses corresponding to the semantic mapping of ACT-
R’s components. The MANOVA analysis was con-
ducted to assess the overall effect of the independent
variables, including label categories or ACT-R compo-
nents, on the combined dependent variables—components
of reduced embeddings. This analysis reveals a signif-
icant relationship with the semantic mapping of ACT-
R’s components. For instance, the Wilks’ lambda value
(0.0004) suggests that the label or ACT-R component
categories explain nearly all the variance in the depen-
dent variables, indicative of a strong group effect. The
statistical tests applied—Wilks’ lambda, Pillai’s trace,
Hotelling-Lawley trace, and Roy’s greatest root—all
demonstrate strong significance, as evidenced by p-
values less than 0.05 across all tests. It shows that the
semantics of symbolic and subsymbolic representa-
tions of cognitive models can be learned using a neural
network, and the principal components retained suc-
cessfully capture the essential variance related to these
cognitive processes, providing a way to preserve cog-
nitive decision-making knowledge in a compact em-
bedding space.

Fig. 7. Reduced embedding map to full traces from VSM-ACTR one
trail

Assessing Behavior Complexity Captured by the
Innate LLM

Table 2 shows that LLM-ACTR captures a single
facet of decision-making, achieving an average accu-
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racy of 0.64 across 10 validation folds in the holdout
task. When decision-making targets involve multiple
facets—encompassing both choices and strategies that
shape the learning trajectory—the accuracy decreases
to 0.42. In addition, the NLL reveals greater predic-
tive uncertainty for multifaceted decision-making pro-
cesses, as evidenced by a significantly higher NLL
of 1.18 compared to 0.65 in single-facet scenarios.
The results show that prompt embeddings generated
through feature extraction capture the overall structure
of learning. However, they struggle to capture complex
decision-making rationales.

Table 2: Evaluation for Single and Multi Facets Targets

Target Type NLL Accuracy

Single Facet Target 0.63 0.64
Multi Facets Target 1.18 0.42

Table 3: Comparison of VSM-ACTR with Baselines

Model NLL Accuracy

Chance-level 0.6931 0.4826
LlaMa 1.1330 0.3564
LLM-ACTR (ours) 0.6534 0.6576

Learning Cognitive Decision-Making through
LLM-ACTR

We first report training and validation losses, across
10 epochs, to reveal the fine-tuned model’s learning
and generalization behavior. Initially, the training loss
begins at approximately 0.73, with a slight fluctuation
observed in subsequent epochs, peaking around epoch
2 and showing a notable dip at epoch 7. In contrast,
the validation loss starts at around 0.64 and remains
remarkably stable throughout the epochs. This con-
sistency in validation loss, coupled with a generally
downward trend in training loss after its initial vari-
ations, suggests that the model is learning effectively.

We report next in table 3 the comparison of the
Cognitive LLMs with the baseline models on
goodness of fit using negative log likelihood (NLL)
and accuracy score for hold-out data. The Cognitive
LLMs demonstrates significantly better performance
across all metrics compared to the LlaMa-only model,
highlighting its effectiveness in decision-making tasks

involving reinforced learning. Additionally, the LlaMa-
only model performs worse than the chance-level
model. We believe this underscores the necessity of
fine-tuning pre-trained language models like LlaMa to
adapt them to human-like decision-making patterns.

Preliminary Experimental Results on Extending
LLM-ACTR

Following results for RQ1 that the semantics of sym-
bolic and subsymbolic representations of cognitive
models can be learned using a neural network, we con-
ducted a preliminary experiment to extend LLM-ACTR
to transfer holistic cognitive processes.

After retaining a randomly-chosen 240 full cognitive
reasoning traces from the VSM-ACTR model, we pro-
cessed both executive function and metacognition pro-
cesses using a semantic extraction and dimension re-
duction approach (see Figure 5a). The resulting em-
beddings were concatenated into 240 one-dimensional
tensors. We then addressed the issue of ragged tensors
due to the individual difference by padding, then cal-
culated the standardized mean values of these tensors
to serve as a content vector.

The preliminary experiment extends LLM-ACTR with
the content vector into training. The content vector is
injected into one of the hidden layers during a for-
ward pass to introduce differentiated activations. Using
the modified LLM as the base model, it accesses the
last contextualized embedding and obtains the masked
embedding. A classification layer with softmax activa-
tion is constructed on top to form the decision-making
layer. Using targets of ACT-R model decisions, the
Cognitive LLM is fine-tuned for the classification
task in decision-making using LoRA (see Fig. 8). We
switched to a smaller size of LlaMa 7b for the ex-
periment to strike a balance between the computa-
tional costs of back propagation when modifying the
model’s hidden layers and the overall efficacy of the
base model.

The LlaMa model with the modified hidden layer is
fine-tuned with 2,012 data points for the binary clas-
sification task. The content vectors are set to be train-
able. To assess the model’s ability to make human-like
decisions, we first split the data into train and valida-
tion sets to reserve a set of unseen problems. We then
compared the predictive NLL of Cognitive LLM
in predicting VSM-ACTR’s decisions on the unseen
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problems, against LlaMa fine-tuned without content
vectors.

The results (Fig. 9) show that the addition of the vector
representation of VSM-ACTR’s holistic traces during
fine-tuning resulted in a slightly decreased mean and
reduced variance of NLL across 10 epochs, demon-
strating better model fitting and stability compared to
fine-tuning only. It indicates that allowing the model
to integrate and learn from the cognitive vector during
training potentially leads to more nuanced and human-
like decision-making capabilities, as captured by the
cognitive features encoded in the vector. However,
the influence of the cognitive content vector is lim-
ited and warrants further investigation, partly because
the stochastic simulation of the VSM-ACTR produces
decision-making vectors of various lengths. This study
addresses ragged tensors by padding, but this approach
potentially dilutes or changes the semantics of each
vector. To improve the impact of the cognitive vector,
additional techniques such as vector optimization will
be needed.

Discussion and Conclusion

Main Insights/Takeaways This paper starts to show
how to enable LLMs to replicate cognitive decision-
making in CAs via a data-driven approach. We intro-
duce Cognitive-LLMs, a novel neuro-symbolic ar-
chitecture designed to enhance human-like decision-
making by integrating the CAs’ cognitive processes
with LLMs. We mark several contributions. (1) It in-
troduces VSM-ACTR, a human-like cognitive model
for manufacturing solutions, developed using the ACT-
R CA. The model exhibits reinforcement learning in
decision-making and can be used to model metacogni-
tive processes to reflect on and evaluate the effective-
ness of the actions. (2) It then examines latent repre-
sentations of CAs through neural networks. The find-
ings show that distilling the executive function pro-
cess preserves high-level symbolic knowledge but only
partially capturing decision-making involves learning.
A holistic semantic preservation approach, covering
both executive function and metacognitive processes,
retains symbolic and subsymbolic semantics in a low-
dimensional space. However, challenges with ragged
tensors derived from individual differences in down-
stream tasks require further optimization. (3) We then
collected domain knowledge as the executive function
process and used the knowledge as labeled targets in a

feature extraction for behavior prediction task to inves-
tigate the LLMs’ innate capabilities in capturing the
complexity of behavioral representations. The results
show that prompt embeddings generated through fea-
ture extraction capture the overall structure of learning.
However, they struggle to capture complex decision-
making rationales.

Further more, (4) This study presents a developing
framework LLM-ACTR for knowledge transfer from
cognitive models to LLMs, rooted in the mechanism of
LLMs’ next-token prediction and the knowledge rep-
resentation of cognitive models. This includes meth-
ods such as using the cognitive models’ decisions for
fine-tuning [29], and integrating a cognitive decision-
making vector into hidden layer to elicit meaningful
behavior perpetuation [62]. (5) It advances previous ef-
forts on human-like LLMs alignment using data from
large-scale cognitive psychology experiments involv-
ing human subjects [11, 19]. It reduces the cost of
data collection by using synthetic data from cogni-
tive models. The synthetic data present real-time cog-
nitive reasoning with tasks, including metacognition,
which is hard to quantify in human subjects [23]. (6)
The case study of Cognitive LLMs in manufactur-
ing decision-making demonstrates that Cognitive
LLMs achieves better fitting of human-like decisions
on unseen problems compared to a pre-trained model
in the DFM task. Thus, it is possible to transfer
decision-making knowledge from CAs to LLMs.

This development opens up new research directions
for equipping LLMs with the necessary knowledge
to computationally model and replicate the inter-
nal mechanisms of human cognitive decision-making
[59, 60]. It also complements ongoing work show-
ing that LLMs could possibly be transformed into
cognitive models through knowledge transfer, e.g.,
[12, 18, 19]. For example, [13] shows that through
fine-tuning, LLMs’ internal representations can be-
come more aligned with human behaviors.

Limitations and Future Work One limitation also
stems from the novelty of this study. How closely
can we claim that cognitive model personas replicate
human behaviors? Currently, our focus is on tuning
the model to align with general patterns of learning
and error-making; however, VSM-ACTR still requires
more granular human data for cognitive fine-tuning.
The closer the VSM-ACTR model aligns with human
behavior, the more accurately it can represent human



S. Wu et al. / Cognitive LLMs 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 8. Infusing holistic VSM-ACTR traces as content vectors through fine-tuning.

Fig. 9. Comparison of NLL across 10 epochs for fine-tuning only
and fine-tuning with cognitive content vectors

decision-making processes and explain human behav-
ior.

However, the more meaningful questions arise from
considering the landscape of enabling machine cog-
nitive reasoning. We must ask ourselves what we can
learn about cognitive decision-making when we in-
fuse knowledge from CAs into LLMs. For now, our
insights are limited to the observation that knowledge
from cognitive models can be preserved in an embed-
ding space and could be learned by LLMs, and that
embeddings from large language models can be trained
to predict human-like decisions. While this is interest-
ing in its own right, it certainly is not the end of the
story. Looking beyond the current work, transitioning
from transferring cognitive models’ human-like deci-
sions to LLMs, to guided perception, memory, goal-
setting, and actions, will provide the opportunity to ap-
ply a wide range of explainability techniques to LLMs’
cognitive decision-making.

One application of this further work can be used to ad-
dress a common limitation in machine learning inno-
vations — cross domain generalization, e.g., [4, 93].

Cognitive LLMs can currently only generalize to
unseen problems within an applicable domain, con-
strained by fixed decision candidates and unknown de-
cision metric values. In applying Cognitive LLMs
to evolving manufacturing problems that may incorpo-
rate an increasing number of decision candidates and
associated metrics, it becomes critical to solve out-of-
domain problems [83]. This will require LLM-ACTR
to advance in transferring guided perception, mem-
ory, and goal-setting to LLMs. As Zhu and Simmons
[94] found, training the LLM with the rules of guided
perception in cognitive models can help generalize
robotics problem-solving to out-of-distribution tasks.
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Appendix

LLM System Prompt Templates

Prompt template for fine-tuning and single-facet target behavior prediction:

Our manufacturing line has two sections with potential defect sources: pre-assembly (0) and as-
sembly (1). Pre-assembly takes CT1 seconds with an Overall Equipment Effectiveness (OEE) rate
of {OEE1}%, while assembly takes {CT2} seconds with an OEE rate of {OEE2}%. To reduce to-
tal assembly time by 4 seconds, we need to identify which section can be shortened with minimal
defect increase. It’s important to note that reducing cycle time will also lead to an increase in line
headcount costs. There are two options: reduce pre-assembly time (0) or reduce assembly time (1).

Question: Which section do you choose to optimize?

Answer:

Prompt template for multi-facet target behavior prediction:

Our manufacturing line features two sections prone to defects: pre-assembly and assembly. Pre-
assembly requires CT1 seconds to complete with an Overall Equipment Effectiveness (OEE) rate
of OEE1%. Assembly takes CT2 seconds and has an OEE rate of OEE2%. To cut total assembly
time by 4 seconds, we must decide which section’s duration can be reduced with the least increase
in defects. Reducing cycle times will also result in higher line headcount costs. We have three strat-
egy levels for decision-making:

Novice strategy (targets encoded as 0 for pre-assembly, 3 for assembly): Intuitive choice.

Intermediate strategy (targets encoded as 1 for pre-assembly, 4 for assembly): Make decision using
key metrics.

Expert strategy (targets encoded as 2 for pre-assembly, 5 for assembly): make well-informed judg-
ments based on a comprehensive understanding of all relevant metrics.

Question: Given the different strategy levels, which options would you choose?

Answer:
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LLM Conversation Examples

Both GPT-4 and Google Gemini deliver contradictory recommendations across prompts, despite the chain-of-

thought reasoning in each case being similar and seemingly plausible.

Shared System Prompt

Prompt used for generating LLM responses Our manufacturing line has two sections with potential
defect sources: pre-assembly and assembly. Pre-assembly takes 40 seconds with an Overall Equip-
ment Effective (OEE) rate of 88%, while assembly takes 44 seconds with an OEE rate of 80.1%.
To reduce total assembly time by 4 seconds, we need to identify which section can be shortened
with minimal defect increase. It’s important to note that reducing cycle time will also lead to an
increase in headcount costs. There are two options: reduce pre-assembly time or reduce assembly
time. Which section will you choose to reduce time?

Google Gemini Response 1

Reducing pre-assembly time is likely the better option in this scenario. Here’s why:

– Higher OEE: Pre-assembly has a higher Overall Equipment Effectiveness (OEE) rate of 88%
compared to assembly’s 80.1%. This indicates that pre-assembly has a smaller inherent defect
rate, and speeding it up is less likely to introduce additional defects.

– Smaller time reduction required: Reducing pre-assembly time by 4 seconds (40 seconds - 4 sec-
onds = 36 seconds) achieves the overall target compared to needing a 4.4 second reduction in
assembly time (44 seconds - 4 seconds = 39.6 seconds). A smaller time reduction generally
translates to less disruption and less likelihood of introducing defects.

Therefore, focusing on optimizing the pre-assembly process to achieve a 4-second reduction has a
better chance of success with minimal defect increase. Here are some additional factors to consider:

– Complexity of the processes: If pre-assembly is a more complex process with more steps, it might
be harder to optimize without impacting quality.

– Automation potential: Analyze if either process can be automated further. Automation can im-
prove consistency and potentially reduce cycle time.

It’s always recommended to pilot any changes in a controlled environment before full-scale imple-
mentation. This allows you to measure the actual impact on cycle time, defect rates, and headcount
requirements.
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Google Gemini Response 2

Analyzing the available information, shortening assembly time would likely be the better option to
achieve a 4-second reduction in total assembly time while minimizing defect impact. Here’s the
reasoning:

– Higher OEE in Pre-Assembly:The OEE rate for pre-assembly (88%) is higher than assembly
(80.1%). OEE reflects how efficiently a process utilizes available production time, factoring in
quality and speed. A higher OEE suggests pre-assembly is already closer to optimal performance,
and squeezing out 4 seconds of improvement might be more difficult without impacting quality.

– Potential for Improvement in Assembly: The lower OEE in assembly indicates more room for
improvement without necessarily causing more defects. Optimizing this section might yield the
needed 4-second reduction more readily.

Here’s a breakdown of the thought process:

1. Available Time for Improvement: OEE helps calculate the available time for improvement within
a process. A higher OEE signifies less available time for improvement without sacrificing qual-
ity.

2. Prioritizing Efficiency with Quality: Since minimizing defect rates is crucial, focusing on the
section with a higher OEE (pre-assembly) for improvement might be riskier.

Additional Considerations:

– Analyze Defect Rates: While OEE is a good indicator, analyzing actual defect rates per section
would provide a clearer picture. Even with a lower OEE, if assembly’s defect rate is already low,
improvement might be achievable.

– Cost-Effectiveness: Consider the cost of implementing changes in each section. Optimizing as-
sembly might involve minor adjustments, while pre-assembly changes could require more effort.

It’s recommended to conduct a more detailed analysis of defect rates and potential improvement
methods for both sections before making a final decision. However, based on the OEE data pro-
vided, prioritizing assembly time reduction seems like a promising initial approach to achieve the
4-second target while minimizing defect risks.
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OpenAI GPT 4.0 Response 1

To decide which section to focus on for reducing time while considering minimal defect increase
and cost implications, let’s analyze the options:

1. Pre-assembly Section:

– Current cycle time: 40 seconds
– OEE rate: 88%

2. Assembly Section:

– Current cycle time: 44 seconds
– OEE rate: 80.1%

You want to reduce total assembly time by 4 seconds. Here are the implications of reducing time in
each section: Option 1: Reduce Pre-assembly Time

– Current Pre-assembly Time: 40 seconds
– Potential Reduced Time: Let’s assume you can reduce this by 2 seconds to 38 seconds.

Implications:

– Time Saved: 2 seconds per unit at pre-assembly.
– Total Assembly Time Saved: Since assembly time needs to be reduced by 4 seconds, reducing

pre-assembly by 2 seconds means you still need to reduce assembly time by another 2 seconds.

Option 2: Reduce Assembly Time

– Current Assembly Time: 44 seconds
– Required Reduction: 4 seconds to meet the goal.

Implications:

– Time Saved: 4 seconds per unit at assembly.

Considerations:

– Defect Rate Increase: Typically, when cycle times are reduced, there is a risk of increased
defects due to rushed processes or errors.

– Cost Implications: Reducing cycle time often requires additional investment, such as hiring more
workers to maintain output or investing in more efficient equipment.

Decision: Given the goal is to reduce total assembly time by 4 seconds with minimal defect increase
and considering cost implications:

– Reducing Assembly Time: This option directly meets the required reduction goal (4 seconds)
without needing additional reduction efforts in the pre-assembly section.

– Defect Risk: While both sections pose a risk of increased defects with faster cycle times, assem-
bly might be more critical as it directly affects the final product quality and functionality.

Conclusion: I would choose to focus on reducing the cycle time in the Assembly Section. This
choice aligns with the goal of reducing assembly time by 4 seconds and may be more straight-
forward in achieving the required reduction compared to trying to split the reduction between
pre-assembly and assembly. However, careful monitoring of defects and quality control measures
should accompany any cycle time reduction to mitigate risks effectively.



S. Wu et al. / Cognitive LLMs 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

OpenAI GPT 4.0 Response 2

To determine which section to reduce time in order to minimize defect increase, let’s analyze the
impact of reducing cycle time in each section based on the given OEE (Overall Equipment Effec-
tiveness) rates and defect considerations. Definitions and Given Data:

– Pre-assembly:

* Cycle Time: 40 seconds
* OEE: 88%

– Assembly:

* Cycle Time: 44 seconds
* OEE: 80.1%

OEE Formula: OEE is given by:

OEE = Availability × Performance × Quality

The quality rate can be interpreted as the proportion of good products out of total products produced.
Therefore, the defect rate (D) for each section is:

DPre-assembly = 1− OEEPre-assembly = 1− 0.88 = 0.12

DAssembly = 1− OEEAssembly = 1− 0.801 = 0.199

Impact of Time Reduction:

1. Reducing Pre-assembly Time:

– Original Pre-assembly Time: 40 seconds
– New Pre-assembly Time: 40 - x seconds (where x is the reduction amount)
– Defect Rate Impact: The defect rate due to time reduction in pre-assembly is minimal because

the OEE is relatively high. Also, reducing pre-assembly time might not significantly affect the
defect rate if the process is already running efficiently.

2. Reducing Assembly Time:

– Original Assembly Time: 44 seconds
– New Assembly Time: 44 - y seconds (where y is the reduction amount)
– Defect Rate Impact: Assembly has a lower OEE, which translates to a higher defect rate.

Reducing time in a section with a lower OEE often leads to an increase in defects because the
process might be less stable and more sensitive to changes.

Recommendation: Given that reducing time in the section with a higher defect rate (Assembly) will
likely lead to a more significant increase in defects compared to reducing time in the section with a
higher OEE (Pre-assembly), the preferable option is: Reduce Pre-assembly Time. Reasoning:

– Lower Defect Rate Increase: Pre-assembly has a higher OEE and thus a lower defect rate.
Reducing its time is less likely to significantly increase the defect rate compared to reducing time
in the Assembly section.

– Operational Impact: While reducing time in either section will increase headcount costs, re-
ducing Pre-assembly time is less likely to destabilize the process compared to Assembly, which
has a lower OEE and higher defect rate.

In summary, to reduce total assembly time by 4 seconds with minimal defect increase, it is more
advantageous to reduce Pre-assembly time rather than Assembly time.


	Introduction
	Related Work
	Relating Cognitive Psychology to Human-Like Artificial Intelligence
	Common Model of Cognition, Cognitive Architectures, and Cognitive Models
	Decision Intelligence in Manufacturing
	Cognitive Decision Making
	Integration of Cognitive Architectures and LLMs

	Problem Definition: Design for Manufacturing
	Cognitive LLMs: Hybrid Architectures for Human-Aligned Decision Making
	VSM-ACTR, A Human-Like Decision Making Cognitive Model
	Declarative Memory
	Production Rule Sets
	Level of Expertise Mechanism
	Foster Metacognition to Support Learning
	VSM-ACTR model evaluation

	The Knowledge Transfer Framework: LLM-ACTR
	Cognitive Decision-Making Knowledge
	Learning an Embedding Space of Decision Traces
	Transfer of Learning


	Experiments
	Use Semantic Mapping to Evaluate Cognitive Decision Making Traces Vector
	Feature Extraction for Behavior Prediction
	Knowledge Transfer
	Base Model and Data
	Experiment Metrics
	Baseline Models


	Results
	Finding Useful Cognitive Decision Making Embeddings
	Assessing Behavior Complexity Captured by the Innate LLM
	Learning Cognitive Decision-Making through LLM-ACTR

	Preliminary Experimental Results on Extending LLM-ACTR
	Discussion and Conclusion
	Credit Author Statement
	Acknowledgment
	References
	Appendix
	LLM System Prompt Templates
	LLM Conversation Examples


