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Abstract. In the field of neurosymbolic computing, there is a lack of standardized benchmark datasets specifically designed for
evaluating neurosymbolic ontology reasoning systems. Currently, no benchmarks or evaluation frameworks have been explicitly
developed to assess the robustness of these systems to noise. Thus, this work aims to develop a mechanism for introducing noise
into a ontology, particularly focusing on the ABox, and evaluate the performance of existing neurosymbolic reasoners on the
commonly used ontologies under varying levels of noise. We developed NSORN (Neurosymbolic Ontology Reasoning with
Noise), a framework that consists of three techniques to introduce noise into ontologies: logical, statistical, and random noise.
Logical noise uses logical violations of disjoint axioms and domain/range constraints. While random noise corrupts existing
triples by replacing either subject or object of a triple with random entity, statistical noise is introduced using Graph Neural
Networks to add noisy facts with low-probability scores. We evaluated the performance of existing neurosymbolic reasoners by
introducing noise to OWL2Bench and Family ontologies under these noise types with various levels. The resulting benchmarks
were tested on two state-of-the-art neurosymbolic reasoners, Box2EL and OWL2Vec*. We focus on reasoning tasks such as for
instance membership and object property assertions to test how these reasoners handle noise. Our main finding is that logical
noise creates a more challenging learning case, resulting in a significant decrease in the performance of both Box2EL and
OWL2Vec*.

Keywords: Neurosymbolic Artificial Intelligence, Benchmark, Noise Injection, Ontology Reasoning

1. Introduction

Neurosymbolic computing has emerged as a prominent area of Artificial Intelligence in recent years, combining
the robust learning capabilities of neural networks with the reasoning capabilities and interpretability of symbolic
systems [21, 78]. Symbolic reasoners rely on formal logic, rules, and knowledge bases, such as ontologies to make
inferences. They are often reliable and interpretable, offering traceable mechanisms for their inferences. However,
they are sensitive to noise and struggle to handle incomplete or ambiguous data. Symbolic reasoners could fail
to perform when faced with missing knowledge or errors in their knowledge base. Moreover, their reliance on a
large number of predefined rules and axioms limits their scalability [44, 60]. In contrast, neural reasoners lever-
age deep learning models, which can generalize from large volumes of data, are robust to noise. However, their
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primary limitation lies in their lack of interpretability [19] and handling tasks that require explicit logic or when
dealing with rare or unseen examples. Neurosymbolic reasoners can address these shortcomings inherent in each
paradigm [78]. By integrating symbolic reasoning with neural systems, these reasoners achieve a trade-off between
interpretable logical reasoning and the scalable, data-driven capabilities of neural networks [44, 56]. Despite these
advantages, neurosymbolic systems face unique challenges, particularly in the incorporation of domain ontologies
while ensuring resilience against the noise and uncertainty that characterize real-world data.

Noise in ontologies encompasses various forms of disturbance that can affect their integrity, coherence, and inter-
pretability. [1] et. al., presented a Semantic Web noise taxonomy, which distinguishes between two main categories
of noise: TBox noise and ABox noise (i.e., propagable and non-propagable). TBox noise is the type of noise that
resides within the ontology, such as in the class hierarchy, or domain and range properties. This type of noise will
affect the inference over the entire dataset. While ABox noise is about corrupting an existing triple in an ontology
by changing one of the triples’ resources. This either changes the inference graph (i.e., propagable noise) or does
not have any impact on the inference graph (i.e., non-propagable noise).

This work aims to develop NSORN (Neurosymbolic Ontology Reasoning with Noise), a framework designed to
introduce noise into ontologies and create challenging benchmark datasets to test the effectiveness of neurosymbolic
reasoners in handling noise. While numerous benchmark datasets exist for various AI tasks, such as image classifica-
tion (i.e., MNIST [12], CIFAR-10 and CIFAR-1001), natural language processing (i.e., GLUE [75]), and reinforce-
ment learning (i.e., OpenAI Gym [7]), there is a notable absence of standardized benchmark datasets specifically
tailored for neurosymbolic reasoning, particularly evaluating their noise tolerance. Such a benchmark is essential to
advance this field [54]. To the best of our knowledge, no benchmarks or evaluation frameworks have been explicitly
designed to assess and compare the noise tolerance of neurosymbolic reasoning systems. Existing neurosymbolic
benchmark datasets are predominantly designed to assess the performance of symbolic reasoners [62]. Furthermore,
most reasoning systems are evaluated using various publicly available ontologies [5, 66, 68], which do not address
the unique challenges of neurosymbolic integration. We developed three techniques to introduce noise into ontolo-
gies: logical, statistical, and random noise. Logical noise involves violations of disjoint axioms and domain/range
constraints, statistical noise uses Graph Neural Networks (GNNs) to add low-probability links, and random noise
corrupts existing triples by replacing either the subject or object of a triple with a random entity.

With this work, we have addressed the following research questions: how to characterize noise in ontologies, how
to introduce noise into these structures, and how to evaluate the impact of noise on neurosymbolic reasoners. By
exploring these questions, we aim to develop a framework for generating noisy benchmark datasets. This framework
will facilitate the assessment of reasoners’ robustness and effectiveness in handling noisy data, ultimately advancing
the field of neurosymbolic AI [63, 67].

We run conventional reasoners on datasets with varying noise levels to illustrate their limitations in handling
different noise, including logical inconsistencies. Subsequently, we evaluated the performance of neurosymbolic
reasoners under these conditions. It should also be noted that most previous work has focused on tasks of ontology
completion rather than ontology reasoning. The goal of ontology/link completion is to discover plausible relations
that complement the original ontology, as was the task performed in the work of [10]. In contrast, our goal is to
infer knowledge that logically follows from the given ontology. To achieve this, we adopt a method similar to that
of Makni and Hendler [42].

The remainder of the paper is organized as follows: the existing literature on neurosymbolic ontology reasoners
and benchmark data sets is reported in Section 2. Section 3 describes the process of designing the benchmark dataset,
including noise injection techniques. Section 4 presents the experimental setup. Section 5 shows the results of the
experiments, including performance metrics and analysis. Finally, Section 6 discusses the strengths and limitations
of the designed benchmark datasets and explores potential extensions or improvements for future research, followed
by Section 7 to conclude our work. The source code of the benchmark is available at https://github.com/jloe2911/
NoisyBench under MIT License.

1https://www.cs.toronto.edu/~kriz/cifar.html
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2. Related Work

Neurosymbolic approaches integrate diverse reasoning techniques, resulting in multiple variations in their eval-
uation. In Section 2.1, we provide a brief overview of neurosymbolic reasoning methods that are used for our
experiments, followed by a discussion of most commonly used benchmark datasets in Section 2.2.

2.1. Reasoning Techniques

Henry Kautz, in his AAAI 2020 Robert S. Engelmore Memorial Award Lecture, discussed six categories of
neurosymbolic AI systems as the "Future of AI" [34]. To showcase the variety in existing approaches, we categorize
the neurosymbolic reasoning methods used in our experiments into one of those categories.

In [10], the authors introduced OWL2Vec*, which involves converting the symbolic input (i.e., ontologies and
RDF graphs) to vectors, giving rise to Symbolic Neuro Symbolic. The method leverages random walk and word
embedding techniques to encode the semantics of OWL ontologies. Unlike traditional KG embedding methods,
OWL2Vec* considers not only the graph structure but also lexical information and logical constructors inherent in
OWL ontologies. This comprehensive approach enables OWL2Vec* to capture nuanced relationships between con-
cepts, making it suitable for tasks requiring fine-grained reasoning, such as ontology completion and prediction.
The empirical evaluation conducted with three real-world datasets, i.e., HeLis [15], FoodOn [14] and Gene On-
tology (GO) [2], demonstrates that OWL2Vec* outperforms the state-of-the-art methods in class membership and
class subsumption prediction tasks. This suggests that OWL2Vec* benefits from incorporating different aspects of
ontology semantics, including graph structure, lexical information, and logical constructors.

In [33], the authors proposed a novel ontology embedding method called Box2EL for DL EL++. The approach
embeds symbolic reasoning inside neural engines, representing symbolic information in geometric or vector spaces
and employing neural methods for reasoning tasks, resulting in the Neuro[Symbolic] category. Specifically, they ad-
dressed the challenge of ontology completion in Description Logic (DL)-based OWL ontologies, which are widely
used for knowledge representation. While classical deductive reasoning algorithms offer precise formal semantics
for predicting missing facts in an ontology, recent years have seen a rise in interest in inductive reasoning techniques
capable of deriving probable facts from an ontology. Inductive reasoning techniques, akin to those used in KG com-
pletion, involve learning ontology embeddings in a latent vector space while ensuring adherence to the semantics
of the underlying DL. However, existing ontology embedding methods face shortcomings, particularly in faithfully
modeling complex relations and role inclusion axioms, such as one-to-many, many-to-one, and many-to-many re-
lations. This approach represents both concepts and roles as boxes (i.e., axis-aligned hyper-rectangles) and models
inter-concept relationships using a bumping mechanism. The authors conduct an extensive experimental evalua-
tion, achieving state-of-the-art results across a variety of datasets, i.e., GALEN [55], Gene Ontology (GO) [2] and
Anatomy (a.k.a. Uberon) [50], on the tasks of subsumption prediction, role assertion prediction and approximating
deductive reasoning.

2.2. Benchmark Datasets

There is a pressing need for standardized benchmark datasets for neurosymbolic reasoners to facilitate fair and
consistent comparisons. Precisely, [67] et al., presented an overview of variations in neurosymbolic reasoning and
evaluation approaches. Their overview reveals that similar works may differ significantly by employing distinct
metrics and datasets to evaluate their contributions. For instance, the works of Makni et al. [42] and Ebrahimi et
al. [17] focus on RDFS entailment reasoning, aiming to replicate deductive reasoning processes. However, they
adopt different metrics and datasets to assess the effectiveness and performance of their approaches. Such variations
in evaluation criteria can lead to diverse insights and perspectives on the contributions within the field.

The existing traditional benchmarks such as LUBM (Lehigh University Benchmark) [26], UOBM (University
Ontology Benchmark) [41] and OWL2Bench [64] lack suitability for evaluating neurosymbolic reasoners due to
their narrow focus on conventional reasoning tasks. Traditional evaluations of reasoning systems often rely on met-
rics such as reasoning time, which may not align with the evaluation requirements of neurosymbolic reasoners.
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Although the ontologies of these benchmarks, along with those from the OWL Reasoner Evaluation (ORE) Com-
petition [53], can serve as initial datasets for neurosymbolic benchmarks, these datasets fall short of addressing the
distinct challenges posed by neurosymbolic reasoning.

To our knowledge, no benchmarks or evaluation frameworks have been designed to evaluate and compare neu-
rosymbolic reasoning systems. Most reasoner evaluations are performed on different publicly available ontologies,
including but not restricted to SNOMED CT2, Gene Ontology (GO) [2] and GALEN [55], as well as other ontologies
available in public repositories such as DBpedia [40], YAGO [72], Wikidata [74], Claros3, NCBO Bioportal4 and
AgroPortal5. However, these offer a limited set of ontologies for evaluation, which does not cover the full spectrum
of possible scenarios.

3. Methodology

This section outlines the mechanisms used in NSORN (Neurosymbolic Ontology Reasoning with Noise) to intro-
duce noise into ontologies, specifically targeting the ABox, which contains instance-level information. We devised
three distinct techniques to introduce noise into an ontology: logical (see Section 3.1), statistical (see Section 3.2)
and random noise (see Section 3.3). Each method was designed to simulate a unique form of inconsistency or error,
enabling us to assess the performance and robustness of ontology reasoning under various noisy conditions.

1. Logical Noise: Logical noise is introduced by violating the formal constraints of the ontology. We imple-
mented two approaches, as they can be easily used to create logical contradictions without altering the TBox
of the ontology.

(a) Disjoint Axioms: We introduce noise by asserting relationships or memberships that contradict declared
disjoint axioms. This could be done by assigning an individual to two disjoint classes or linking two entities
using disjoint object properties.

(b) Domain and Range Violations: We generate noise by asserting relationships where the subject or object
falls outside the defined domain or range of an object property. For example, linking an individual from an
incompatible class as the subject or object of a property.

2. Statistical Noise: This approach leverages Graph Neural Networks to predict relationships within the ontol-
ogy. Noise is introduced by adding links (triples) with the lowest probability scores, representing the most
unlikely relationships. This method simulates errors arising from statistically improbable but plausible asser-
tions.

3. Random Noise: Random inconsistencies are introduced by arbitrarily adding or modifying ABox assertions.
This approach represents unpredictable errors that could occur in real-world data.

These techniques were specifically chosen to challenge the neurosymbolic reasoner’s reasoning capabilities and
to evaluate its resilience against varying levels and types of noise. By analyzing reasoning performance under such
conditions, we can better understand the robustness and limitations of ontology-based systems.

3.1. Logical Noise

3.1.1. Contradictions based on Disjoint Axioms
This noise injection technique aims to test the robustness of reasoning engines by deliberately introducing con-

tradictions into the ontology, thereby evaluating the system’s ability to handle inconsistencies. To introduce ABox
noise, particularly within disjoint axioms (i.e., disjoint classes and disjoint object properties), we developed the
following approach.

2https://bioportal.bioontology.org/ontologies/SNOMEDCT
3https://www.clarosnet.org
4https://bioportal.bioontology.org/
5http://agroportal.lirmm.fr/

https://bioportal.bioontology.org/ontologies/SNOMEDCT
https://www.clarosnet.org
https://bioportal.bioontology.org/
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Loesch et al. / NSORN: Designing a Benchmark Dataset for Neurosymbolic Ontology Reasoning with Noise 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1. Extracting Disjoint Class Axioms: We first identified all disjoint class axioms from the ontology. A disjoint
class axiom, denoted as Dis jointClasses(CE1...CEn), specifies that all class expressions CEi (1 ⩽ i ⩽ n)
are pairwise disjoint6. This indicates that each axiom involves pairs of mutually exclusive classes. Extracted
axioms are used to generate noise, which directly challenges the ontology’s consistency.

2. Introducing Noise: To generate noise, we added k individuals to the ontology, assigning each to two disjoint
classes CEi and CE j where i ̸= j. For example, if Male and Female are disjoint classes, we would add
John rdf:type Male and John rdf:type Female. This contradiction simulates real-world sce-
narios where data inconsistencies or conflicts occur, allowing us to measure the reasoner’s performance under
such conditions. The parameter k allows to control over the noise intensity.

Similarly, we extracted all disjoint object properties from the ontology. An object property axiom, denoted as
Dis jointOb jectProperties(OPE1...OPEn), asserts that all object property expressions OPEi (1 ⩽ i ⩽ n) are pair-
wise disjoint7.

To further make ontology inconsistency, we added k individuals to the ontology, each possessing two disjoint
object properties OPEi and OPE j where i ̸= j. For example, if like and dislike are two disjoint properties,
we would add Emma likes mathematics and Emma dislikes mathematics. This noise not only tests
the reasoner’s ability to handle conflicting object properties but also evaluates the scalability and stability of the
ontology. By varying k, we can observe how different levels of noise affect the reasoning performance, providing
insights into the system’s resilience and accuracy.

3.1.2. Contradictions based on Range/Domain
Object properties in ontologies can have explicitly defined domains and ranges, which establish the types of

individuals that are allowed to participate in a relationship. The domain specifies the class of individuals that can
serve as the subject of the object property, while the range specifies the class of individuals that can serve as the
object. Violations of these constraints lead to inconsistencies in the ontology, as they contradict the semantic rules
established by the domain and range definitions.

For example, consider an object property ownsPet with a domain of Person and a range of Animal. This
means:

1. The subject of the ownsPet relationship must be a Person.
2. The object of the ownsPet relationship must be an Animal.

If an assertion like House ownsPet Dog is made, it would violate the domain constraint because House is
not an instance of the class Person. Similarly, if the property were used as John ownsPet Chair, this would
violate the range constraint because Chair is not an instance of the class Animal.

Such violations undermine the logical consistency of the ontology, making reasoning unreliable. Clearly defining
and enforcing domain and range constraints ensures that the relationships in the ontology align with its intended
semantics, enabling accurate reasoning and error detection.

3.2. Statistical Contradictions

We utilized Relational Graph Convolutional Networks (R-GCN) [58] in our approach to model the complex rela-
tionships present in ontologies. R-GCN is particularly advantageous in handling multi-relational data as it extends
the standard Graph Convolutional Network (GCN) [35] by incorporating relation-specific transformations for edges.
This allows the model to capture the semantics of different types of relationships in the graph.

We trained the R-GCN on a link prediction task, where the model predicts missing links based on existing data.
After training, we identified the top k triples with lowest prediction scores, which were then added as noise to
the ontology. Specifically, we modified existing triples by replacing either the subject or the object with the entity
that the R-GCN predicted to have the lowest probability score. This method assesses the impact of noise generated
through a statistical model and provides insights into the reasoner’s handling of statistically improbable but plausible
assertions.

6https://www.w3.org/TR/owl2-syntax/#Disjoint_Classes
7https://www.w3.org/TR/owl2-syntax/#Disjoint_Object_Properties

https://www.w3.org/TR/owl2-syntax/#Disjoint_Classes
https://www.w3.org/TR/owl2-syntax/#Disjoint_Object_Properties
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3.3. Random Contradictions

We introduced k random triples to the ontology by corrupting either the object or the subject of existing triples.
This method simulates random noise and evaluates the reasoner’s resilience to arbitrary disruptions in the data.
Unlike previous noise injection techniques, this random approach contrasts the effects of systematic versus random
noise on ontology reasoning. By corrupting existing triples, this method helps to understand how well the reasoner
manages unexpected and non-systematic errors, crucial for assessing its robustness in real-world scenarios with
unpredictable data inconsistencies.

4. Experimental Setup

4.1. Datasets

We used OWL2Bench [64] and a modified Family ontology [71]. OWL2Bench includes a diverse set of axioms,
such as Class Expression Axioms, Object Property Axioms, Data Property Axioms, and Assertions. OWL2Bench
serves as a benchmark for assessing the coverage, scalability, and query performance of ontology reasoners across
four OWL 2 profiles: EL, QL, RL and DL. OWL2Bench was extended from the well-known University Ontol-
ogy Benchmark (UOBM) to create four TBoxes, one for each OWL 2 profile. Additionally, OWL2Bench in-
cludes an ABox generator and a set of 22 SPARQL queries involving reasoning tasks. For this paper, we modified
OWL2Bench1-DL, where 1 is the number of universities and DL is the OWL 2 profile. OWL2Bench-1 contains
60,573 axioms.

Furthermore, this work incorporates the Family ontology, a well-known ontology designed to represent family
relationships and genealogical information. The Family ontology provides a foundational framework for reasoning
about kinship terms, familial roles, and relationships such as parent-child, sibling, and spouse connections. Family
contains 2,527 axioms. Table 1 lists the frequency of each axiom for each dataset.

Let G denote the original ontology and I the ontology inferred using Pellet reasoner [69]. For each resource r,
we construct a subgraph g that includes all triples where either the subject or the object is r. We divide the original
ontology into these smaller graphs g to improve Pellet’s scalability. To ensure effective inference, each graph g is
extended to two hops8, denoted g′, capturing all statements within two hops of r, and the TBox is added to each
graph g. We then apply Pellet to the extended graphs g′1, g′

2, ..., g′
R, where R represents the set of resources in the

original ontology, resulting in the inference graphs i1, i2, ..., iR. To extract only relevant inferred triples, we focus on
membership and property assertion triples, removing any triples where the object is a Literal or owl:Thing,
yielding refined graphs i∗1, i∗2, ..., i∗R. Since our approach is unsupervised, the graphs g1, g2, ..., gR are ultimately
added to Gtrain, while i∗1, i∗2, ..., i∗R are assigned to Gtest and Gval using a stratified splitting technique. The TBox is
further added to Gtrain, Gtest and Gval, ensuring that the reasoning tasks are based on a shared conceptual framework.
Figure 1 illustrates this approach in detail9.

Listing 1 contains an (simplified) extended graph about the resource richard_john_bright_1962, and
Listing 2 contains the refined inference graph generated using Pellet.

In many domains, obtaining perfectly clean data is impractical or costly, particularly for ontologies derived from
unstructured data. In addition, real-world datasets often contain errors, inconsistencies, or irrelevant information. By
modeling noise, we can develop systems that are more robust and better suited to real-world scenarios. In this work,
our aim is to introduce the noise generated by our approach into the training set to test the resilience of reasoners in
real-world environments.

8We utilized two hops because the graph is sufficiently rich for making inferences and compact enough to apply the reasoner effectively.
9In our implementation, the validation set was not used since the reasoners did not require it, and as a result, it was eventually incorporated

into the training set.
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Table 1
Number of axioms in OWL2Bench-1 and Family.

OWL2Bench-1 Family

Class Expression Axioms
Subclass Axioms 128 9

Equivalent Classes 21 5

Disjoint Classes 6,118 5

Object Property Axioms
Object Subproperties 67 20

Equivalent Object Properties 4 1

Disjoint Object Properties 1 14

Inverse Object Properties 29 15

Object Property Domain 62 11

Object Property Range 57 13

Functional Object Properties 2 3

Inverse-Functional Object Properties 1 0

Reflexive Object Properties 2 0

Irreflexive Object Properties 2 2

Symmetric Object Properties 3 2

Asymmetric Object Properties 1 0

Transitive Object Properties 6 2

Role Composition 4 4

Data Property Axioms
Data Subproperties 2 0

Equivalent Data Properties 1 0

Disjoint Data Properties 1 0

Data Property Domain 7 0

Data Property Range 1 0

Functional Data Properties 3 0

Assertions
Individual Equality 2 0

Individual Inequality 4 1

Class Assertions 3,885 3

Positive Object Property Assertions 27,794 1,337
Negative Object Property Assertions 2 0

Positive Data Property Assertions 18,446 0

Negative Data Property Assertions 0 0

4.2. Metrics, Tasks and Reasoners

We used Mean Reciprocal Rank (MRR) and Hits@N to compare the performance of different neurosymbolic
reasoners. MRR represents the average reciprocal rank, calculated by taking the reciprocal of the rank (1/rank)
of the first relevant item retrieved. Hits@N measures the percentage of positive examples that appear in the top-k
ranked predictions.

To assess how reasoners respond to noise, we focused on specific reasoning tasks: the first involves class assertions
(also known as realization or membership), which determine whether an individual belongs to a specific class based
on the logical definitions and constraints within the ontology, for example, Alice rdf:type Person. The
second task involves object property assertions, that infer new relationships between two individuals in the ontology,
such as Alice hasSibling Bob.
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Fig. 1. Creation of train, test and validation graphs.

Listing 1 Input graph g′
ns1 : r i c h a r d _ j o h n _ b r i g h t _ 1 9 6 2 a ns1 : Man ,

owl : NamedIn d iv idua l ;
ns1 : h a s F a t h e r ns1 : d a v i d _ b r i g h t _ 1 9 3 4 ;
ns1 : hasMother ns1 : m a r g a r e t _ g r a c e _ r e v e r _ 1 9 3 4 ;
ns1 : i s B r o t h e r O f ns1 : r o b e r t _ d a v i d _ b r i g h t _ 1 9 6 5 .

ns1 : p e t e r _ w i l l i a m _ b r i g h t _ 1 9 4 1 ns1 : i s B r o t h e r O f ns1 : d a v i d _ b r i g h t _ 1 9 3 4 .

Listing 2 Inference graph i∗
ns1 : p e t e r _ w i l l i a m _ b r i g h t _ 1 9 4 1 ns1 : i s U n c l e O f ns1 : r i c h a r d _ j o h n _ b r i g h t _ 1 9 6 2 .

This experimental framework analyzes the impact of noise on reasoning outcomes, as well as to evaluate the
performance and robustness of ontology reasoning under different levels and types of noise. For our exploration
into neurosymbolic reasoning, we have selected state-of-the-art neurosymbolic reasoners such as Box2EL [33] and
OWL2Vec* [10]. This work used the implementation of these methods provided by the mOWL library [80].

5. Results

Figures 2 and 3 demonstrate the impact of introducing noise into the ABox of OWL2Bench-1 and Family on-
tologies on the performance of two reasoners: OWL2Vec* and Box2EL. For each noise injection technique, we set
a parameter k to control the number of ’noisy’ triples added to the ontology. We represented this parameter as a
percentage of the total triples in the ontology, providing a relative measure of the amount of noise introduced. The
detailed results, reporting various evaluation metrics (including Mean Reciprocal Rank (MRR) and Hit@N) across
different noise generation techniques, can be found in the supporting material (see Tables 2–5)10. To ensure reliable
results, we ran each experiment 5 times, averaging out randomness to obtain a robust performance evaluation. The
variability of the MRR is detailed in the supporting material (see Figures 4–7).

In Figures 2 and 3, which show the performance of OWL2Vec* on OWL2Bench-1, the following trends can be
observed. The MRR for both class and object property assertions decreases as various types of noise (i.e., random,

10Except for OWL2Bench-OWL2Vec*, MRR and Hits@10 exhibit a significant correlation: OWL2Bench-OWL2Vec* (r = 0.1153, p =
0.5749), OWL2Bench-Box2EL (r = 0.9844, p = 0.000), Family-OWL2Vec* (r = 0.8349, p = 0.0000), and Family-Box2EL (r = 0.9963,
p = 0.0000).
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Fig. 2. Results on class assertions.

statistical, and logical) are introduced. Among these, logical noise has the greatest impact. Under the 100% logical
noise scenario, the MRR for class assertions drops from 0.070 (without noise) to 0.043, while the MRR for object
property assertions falls from 0.183 (without noise) to 0.149.

A similar trend can be observed in Box2EL. Logical noise has the most pronounced effect on class assertions, with
the MRR decreasing from 0.066 (without noise) to 0.034. Moreover, Box2EL consistently underperforms on object
property assertions, even in the absence of noise. Overall, the class assertion task in the OWL2Bench-1 ontology
proves to be particularly challenging. The average MRR scores range from 0.066 to 0.070 without noise, but can
drop to 0.034 when logical noise is introduced.

The results reveal that the performance of both OWL2Vec* and Box2EL (Figures 2 and 3) on the Family ontology
exhibits slightly different trends compared to those observed on the OWL2Bench-1 dataset. The object property task
proves particularly challenging, with the MRR score of 0.072 in the absence of noise dropping to its lowest value of
0.015 when 100% logical noise is introduced. In contrast, class assertions appear less challenging and more resilient
to all types of noise, achieving an MRR score of 0.513 without noise and dropping to its lowest value of 0.446 under
100% random noise.

Similarly, we observe that Box2EL consistently underperforms OWL2Vec* in both tasks, with random noise hav-
ing the most significant impact on class assertions. The MRR score decreases from 0.416 without noise to 0.322

under 100% random noise. For object property assertions, it is difficult to identify any clear trend, as the values are
already low, even without the introduction of noise.
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Fig. 3. Results on object property assertions.

6. Discussion

Our study investigates the application of noise injection methods to ontologies, examining their impact on various
reasoning tasks. The proposed noise injection techniques are designed to be applicable across a wide range of
ontologies. Based on our findings, we observed that class assertions are most affected by either logical or random
noise, depending on the ontology. Logical noise, in particular, leads to a significant decrease in object property
assertions, especially in the case of OWL2Bench-1. Another important finding is that certain tasks are particularly
challenging. For example, in the Family ontology, the object property assertion task is particularly difficult, with
neurosymbolic reasoners achieving the highest MRR score of 0.072 without noise. With noise, this score can drop to
0.004. Similarly, for the OWL2Bench ontology, the class assertion task presents considerable difficulty. The average
MRR scores range from 0.066 to 0.070 without noise but drop to 0.049 when noise is introduced.

However, the specific characteristics of each ontology significantly influence the effectiveness of noise injection,
highlighting the need for tailored approaches in certain scenarios. For example, the specific relations in the test set
may not effectively show the influence of noise introduced as these relations inherently resist noise. In OWL2Bench-
1, knows relation is defined as reflexive (i.e., every individual ’knows’ themselves), making it less sensitive to
object property assertion inferences. These inferences hold regardless of corrupted assertions unless the TBox is
modified. This raises questions about the validity of evaluating noise effects in scenarios where axiomatic properties
dominate reasoning outcomes. Future work should consider refining testing sets or introducing variations in TBox
definitions to better capture the influence of noise.

Furthermore, it should be noted that the results from previous works, such as the work of [79], are not comparable
to ours due to the fact that our proposed benchmark focuses on evaluating ontology reasoning rather than ontology
completion. Ontology reasoning refers to inferring logically consistent relationships from existing data and rules,
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which is inherently more complex. This complexity arises because reasoning requires the system to consider all
possible logical implications of the data, making it more sensitive to inconsistencies and noise in the dataset. Con-
sequently, the metrics may reflect this added difficulty, leading to poorer results compared to approaches that focus
solely on completing the ontology.

While our initial exploration centered on introducing noise through the addition of logical contradictions or
corruption of triples with low probability of occurrence, many other types of axioms and noise patterns merit inves-
tigation. Future research could involve examining various inconsistencies, contradictions, and errors that frequently
occur in real-world ontologies, thereby enhancing the diversity of noise generation techniques. In particular, intro-
ducing noise in the TBox (e.g., modifying class hierarchies, altering domain and range constraints, or introducing
invalid equivalence axioms) could offer valuable insights into how structural and logical inconsistencies impact
reasoning outcomes. Furthermore, future work could focus on establishing standardized metrics and evaluation
frameworks to consistently measure the performance of neurosymbolic reasoning systems.

7. Conclusion

This paper presents NSORN (Neurosymbolic Ontology Reasoning with Noise), a framework for generating noisy
benchmark datasets, with a specific focus on the generation of noisy ABox assertions for an ontology. We developed
three techniques for introducing noise into the ABox: logical noise, statistical noise, and random noise. Logical noise
is introduced by contradicting disjoint axioms or violating domain/range constraints of object properties. Statistical
noise, on the other hand, leverages Graph Neural Networks to add new links with low probability scores. Random
noise involves arbitrarily altering ABox assertions. These methods were designed to evaluate the robustness and
performance of ontology-based neurosymbolic reasoners under various noise conditions.

We evaluated the performance of existing neurosymbolic reasoners on OWL2Bench and Family under different
noise levels. The resulting benchmarks were tested on state-of-the-art neurosymbolic reasoners, Box2EL and
OWL2Vec*. The reasoning tasks considered include class assertions and object property assertions, with the
aim of evaluating how effectively these reasoners handle noise. Our findings suggest that class assertions are
primarily influenced by either logical or random noise, depending on the ontology. Logical noise causes a
considerable decline in object property assertions, with a more pronounced effect observed in OWL2Bench.
Furthermore, our study highlights that most previous work has mainly focused on ontology completion, whereas
our emphasis is on ontology reasoning, which is a more difficult task. The source code of NSORN is available at
https://github.com/jloe2911/NoisyBench under MIT License.

Gunjan Singh and Raghava Mutharaju would like to acknowledge the partial support of the Infosys Centre for
Artificial Intelligence (CAI), IIIT-Delhi, India, in this work.
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Appendix A. Supporting material

MRR Hits@1 Hits@5 Hits@10

No Noise
Class assertions 0.070 0.001 0.151 0.230
Object property assertions 0.183 0.166 0.190 0.212

25% Random Noise
Class assertions 0.052 0.000 0.111 0.200
Object property assertions 0.180 0.164 0.185 0.206

50% Random Noise
Class assertions 0.052 0.000 0.088 0.210
Object property assertions 0.179 0.163 0.184 0.206

75% Random Noise
Class assertions 0.053 0.000 0.097 0.224
Object property assertions 0.178 0.162 0.183 0.204

100% Random Noise
Class assertions 0.056 0.000 0.113 0.270
Object property assertions 0.159 0.138 0.169 0.193

25% Statistical Noise
Class assertions 0.073 0.000 0.157 0.250
Object property assertions 0.183 0.167 0.188 0.212

50% Statistical Noise
Class assertions 0.060 0.000 0.103 0.228
Object property assertions 0.182 0.166 0.186 0.208

75% Statistical Noise
Class assertions 0.060 0.000 0.101 0.221
Object property assertions 0.182 0.167 0.188 0.210

100% Statistical Noise
Class assertions 0.053 0.000 0.066 0.248
Object property assertions 0.182 0.167 0.187 0.210

25% Logical Noise
Class assertions 0.053 0.002 0.075 0.170
Object property assertions 0.183 0.166 0.189 0.210

50% Logical Noise
Class assertions 0.049 0.001 0.068 0.155
Object property assertions 0.182 0.167 0.188 0.208

75% Logical Noise
Class assertions 0.044 0.003 0.048 0.115
Object property assertions 0.181 0.167 0.187 0.206

100% Logical Noise
Class assertions 0.043 0.002 0.046 0.114
Object property assertions 0.149 0.137 0.155 0.171

Table 2
Results on OWL2Bench1 using OWL2Vec* [10]. The lowest MRR values are underlined.
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MRR Hits@1 Hits@5 Hits@10

No Noise
Class assertions 0.066 0.003 0.070 0.221
Object property assertions 0.004 0.001 0.003 0.006

25% Random Noise
Class assertions 0.056 0.002 0.055 0.189
Object property assertions 0.005 0.001 0.004 0.008

50% Random Noise
Class assertions 0.053 0.002 0.054 0.186
Object property assertions 0.004 0.001 0.003 0.006

75% Random Noise
Class assertions 0.050 0.002 0.049 0.168
Object property assertions 0.003 0.001 0.002 0.005

100% Random Noise
Class assertions 0.049 0.002 0.045 0.174
Object property assertions 0.004 0.001 0.003 0.006

25% Statistical Noise
Class assertions 0.052 0.004 0.045 0.156
Object property assertions 0.003 0.000 0.002 0.003

50% Statistical Noise
Class assertions 0.067 0.011 0.098 0.190
Object property assertions 0.007 0.001 0.008 0.014

75% Statistical Noise
Class assertions 0.045 0.003 0.042 0.125
Object property assertions 0.006 0.002 0.007 0.014

100% Statistical Noise
Class assertions 0.071 0.019 0.103 0.181
Object property assertions 0.007 0.001 0.008 0.015

25% Logical Noise
Class assertions 0.048 0.002 0.046 0.145
Object property assertions 0.006 0.002 0.006 0.012

50% Logical Noise
Class assertions 0.041 0.002 0.038 0.112
Object property assertions 0.005 0.000 0.006 0.010

75% Logical Noise
Class assertions 0.035 0.002 0.032 0.086
Object property assertions 0.004 0.001 0.004 0.009

100% Logical Noise
Class assertions 0.034 0.002 0.029 0.078
Object property assertions 0.004 0.000 0.004 0.009

Table 3
Results on OWL2Bench1 using Box2EL [33]. The lowest MRR values are underlined.
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MRR Hits@1 Hits@5 Hits@10

No Noise
Class assertions 0.513 0.297 1.000 1.000
Object property assertions 0.072 0.000 0.100 0.400

25% Random Noise
Class assertions 0.522 0.285 0.946 1.000
Object property assertions 0.066 0.000 0.100 0.360

50% Random Noise
Class assertions 0.474 0.230 0.908 0.995
Object property assertions 0.103 0.000 0.300 0.460

75% Random Noise
Class assertions 0.482 0.235 0.901 0.993
Object property assertions 0.164 0.000 0.400 0.500

100% Random Noise
Class assertions 0.446 0.190 0.848 0.972
Object property assertions 0.118 0.000 0.300 0.400

25% Statistical Noise
Class assertions 0.565 0.340 0.991 1.000
Object property assertions 0.115 0.000 0.200 0.500

50% Statistical Noise
Class assertions 0.559 0.332 0.958 1.000
Object property assertions 0.145 0.000 0.400 0.400

75% Statistical Noise
Class assertions 0.568 0.332 0.989 1.000
Object property assertions 0.083 0.000 0.120 0.500

100% Statistical Noise
Class assertions 0.553 0.335 0.981 1.000
Object property assertions 0.074 0.000 0.200 0.300

25% Logical Noise
Class assertions 0.529 0.335 0.860 1.000
Object property assertions 0.097 0.000 0.300 0.400

50% Logical Noise
Class assertions 0.512 0.329 0.844 1.000
Object property assertions 0.053 0.000 0.000 0.240

75% Logical Noise
Class assertions 0.515 0.326 0.843 1.000
Object property assertions 0.026 0.000 0.000 0.000

100% Logical Noise
Class assertions 0.516 0.327 0.843 1.000
Object property assertions 0.015 0.000 0.000 0.000

Table 4
Results on Family using OWL2Vec* [10]. The lowest MRR values are underlined.
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MRR Hits@1 Hits@5 Hits@10

No Noise
Class assertions 0.416 0.220 0.668 0.928
Object property assertions 0.004 0.000 0.000 0.000

25% Random Noise
Class assertions 0.335 0.182 0.519 0.654
Object property assertions 0.015 0.000 0.020 0.020

50% Random Noise
Class assertions 0.331 0.174 0.539 0.662
Object property assertions 0.005 0.000 0.000 0.000

75% Random Noise
Class assertions 0.329 0.165 0.546 0.679
Object property assertions 0.005 0.000 0.000 0.000

100% Random Noise
Class assertions 0.322 0.171 0.513 0.641
Object property assertions 0.003 0.000 0.000 0.000

25% Statistical Noise
Class assertions 0.382 0.199 0.597 0.866
Object property assertions 0.005 0.000 0.000 0.000

50% Statistical Noise
Class assertions 0.337 0.163 0.531 0.768
Object property assertions 0.003 0.000 0.000 0.000

75% Statistical Noise
Class assertions 0.344 0.173 0.516 0.775
Object property assertions 0.004 0.000 0.000 0.000

100% Statistical Noise
Class assertions 0.352 0.190 0.534 0.731
Object property assertions 0.004 0.000 0.000 0.000

25% Logical Noise
Class assertions 0.412 0.224 0.646 0.934
Object property assertions 0.004 0.000 0.000 0.000

50% Logical Noise
Class assertions 0.400 0.210 0.631 0.932
Object property assertions 0.003 0.000 0.000 0.000

75% Logical Noise
Class assertions 0.388 0.205 0.610 0.916
Object property assertions 0.004 0.000 0.000 0.000

100% Logical Noise
Class assertions 0.385 0.206 0.591 0.912
Object property assertions 0.004 0.000 0.000 0.000

Table 5
Results on Family using Box2EL [33]. The lowest MRR values are underlined.
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Fig. 4. Variability of MRR on OWL2Bench1 using OWL2Vec* [10].
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Fig. 5. Variability of MRR on OWL2Bench1 using Box2EL [33].
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Fig. 6. Variability of MRR on Family using OWL2Vec* [10].
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Fig. 7. Variability of MRR on Family using Box2EL [33].
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