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Abstract. Neural Language Models such as BERT or GPT operate on the basis of sequences of words. Pre-training on a large
corpus endows them with implicit knowledge about the relationship between words. This study explores the extent to which
the explicit incorporation of knowledge about syntactic relations, represented as a graph of dependencies, can enhance Machine
Translation (MT) tasks. Specifically, it employs the Graph Attention Network (GAT), trained on a Universal Dependencies (UD)
corpus, to evaluate the impact of explicit syntactic knowledge, even when derived from a smaller corpus, in comparison to the
pre-training of implicit knowledge on a massive corpus. The investigation involves an experiment on integrating GAT-models
into the MT framework, demonstrating robust improvement in MT quality for three language pairs, thus opening up possibilities
for neurosymbolic approaches to Natural Language Processing.
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1. Introduction

The Transformer architecture [1] has proven to be an extremely effective method for pre-training language mod-
els, from BERT [2] to GPT [3]. These models leverage the self-attention mechanism for the masked language
modeling task, i.e., predicting the word masked in a context. However, this relatively simple procedure leads to
rich contextual representations, which can rival human performance. Nevertheless, despite their ability to learn im-
plicit syntactic patterns, these models often struggle with explicit syntactic structures and phenomena [4, 5]. This
limitation is particularly significant in tasks like Neural Machine Translation (NMT), where syntactic accuracy is
crucial for correctly interpreting and translating the structure and meaning of the source text. On the other hand, lin-
guistic research has long focused on the detailed description and annotation of syntactic relations across languages.
The Universal Dependencies (UD) [6] provides a standardized framework for annotating syntactic dependencies,
creating richly annotated corpora that can be leveraged to improve NMT systems. Integrating explicit syntactic
knowledge into NMT models has the potential to enhance translation quality by providing more structured and
interpretable representations of language.
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Neurosymbolic AI aims to bridge the gap between symbolic reasoning and neural computation, thereby en-
abling more transparent, interpretable, and robust AI systems. Symbolic reasoning involves using explicit rules and
structures to represent and manipulate knowledge, while neural networks excel at learning from large datasets and
capturing complex patterns [7, 8]. Traditional sequential models, such as Recurrent Neural Networks (RNNs) and
Transformers, although capable of processing and representing sentences, often fail to accurately capture complex
syntactic structures and phenomena [9–11]. The advent of Graph Attention Network (GAT) [12] introduces a more
explicit representation of syntactic structures and inter-word dependencies through their topology, promising better
readability and interpretability in Natural Language Processing (NLP) [13, 14].

Inspired by these developments, this study introduces NMT engines improved with Syntactic knowledge via
Graph attention and BERT (SGB), where GAT provides a powerful mechanism for explicitly representing syntactic
structures and inter-word dependencies, complementing the implicit knowledge captured by BERT. This approach
aligns with the principles of neurosymbolic AI, which seeks to combine the strengths of symbolic reasoning (ex-
plicit syntactic graphs) with the robustness and scalability of neural networks (BERT and Transformer models).
By integrating syntactic data from source sentences with GATs and BERT, we aim to improve Transformer-based
NMT by incorporating syntax (every sentence yields a syntactic tree structure through the parser) and leveraging the
capabilities of the pre-trained BERT model. Utilizing multi-head attention mechanisms within the graph structure
allows for the explicit exploitation of source-side syntactic dependencies, enhancing both the BERT embeddings
on the source side and the effectiveness of the target-side decoder. The study conducts experiments on translation
tasks from Chinese, German, and Russian to English to demonstrate the effectiveness of the proposed methodology,
across three typologically different languages. We also examines the interpretability of the proposed NMT engines
in improving translation quality, such as better identification of certain syntactic structures in the source language,
and whether GAT can effectively learn syntactic knowledge. This research fills the current gap in understanding how
syntactic strategies impact Machine Translation (MT) quality. The main contributions of this study are summarized
as follows:

– SGB engines can demonstrate the potential and effectiveness of fusing BERT with syntactic knowledge from
graph attention in MT tasks. The proposed MT engines can be fine-tuned to complete the training of the MT
engine without the need for pre-training from scratch.

– This study evaluates translation quality, focusing on improvements in Quality Estimation (QE) scores. The
proposed MT engines demonstrate enhanced QE scores across three MT directions. A paired t-test confirms
a statistically significant difference in translation quality. Additionally, the study identifies specific syntactic
structures in source sentences that the SGB engines learn optimally from, leading to better translations.

– This study reveals that while GAT possesses the capability to learn syntactic knowledge, their sensitivity in the
learning process is influenced by the multi-head attention mechanism and the number of model layers. Exces-
sive model layers can even significantly impair the GAT’s ability to learn dependency relations. Furthermore,
there is a correlation between the GAT’s mastery of syntactic dependencies and translation quality. Better-
learned syntactic structures by the GAT enable the MT engine to more accurately recognize source language
sentences with those structures, resulting in smoother and more accurate translations.

– This study investigates the interpretability of translation quality improvement through the lens of syntactic
knowledge. The experiments demonstrate that a syntactic structure based on GAT enables more nuanced mod-
eling of source language sentences by the lower and middle layers within BERT, thereby enhancing translation
quality. While SGB engines enhanced with graph-based syntactic knowledge exhibit improved QE score dis-
tributions, the integration of BERT plays a crucial role in forming representations of source sentences. This
research underscores the importance of accurate syntactic graphs for maintaining high-quality translations and
highlights the limitations of current models in interpreting jumbled sentences.

– This study assesses the versatility of the proposed approach by integrating XLM-Roberta in place of BERT. De-
spite this substitution, the approach consistently improve translation quality across all evaluated MT directions,
underscoring its broad applicability.
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2. Related Studies

2.1. Pre-trained Language Models

Pre-trained models have significantly advanced NLP, particularly with the advent of Transformer architectures,
marking a paradigm shift in the field’s approach to understanding language [15, 16]. Among these innovations,
BERT stands out by leveraging self-supervised learning on extensive corpora through the Masked Language Model
(MLM) and Next Sentence Prediction (NSP) tasks. These techniques enable BERT to capture the essence of lin-
guistic knowledge, enriching its understanding of language context and structure [4]. The empirical analysis and
applications of BERT have also helped humans understand pre-trained language models, supporting future im-
provements. Also, BERT has made significant contributions to MT tasks, where its contextual word embeddings
and generic linguistic knowledge learned from pre-training enhance the generalization ability of MT engines, espe-
cially in cases with limited bilingual data. Most studies show that incorporating BERT improves the performance of
MT engines, as demonstrated by metrics such as the BLEU score [17–19].

2.2. Syntactic Knowledge in Translation

In the realm of MT, the importance of syntactic dependency cannot be overstated. Syntactic dependency is crucial
for the grammatical dissection of sentences, presenting them in easily interpretable tree diagrams. The incorporation
of syntactic data into Neural Machine Translation (NMT) systems provides substantial benefits, notably in clarifying
sentence structure, facilitating more accurate context interpretation, and minimizing ambiguity. In recent years, the
Transformer model has garnered significant attention, and the strategy for incorporating explicit syntactic knowledge
has shifted progressively from Recurrent Neural Network (RNN)-based methods to Transformer-based ones [20–
22]. Within the Transformer framework, a prevalent approach involves leveraging the self-attention mechanism to
capture and represent syntactic information, enabling focused analysis on particular tokens. However, the efficacy of
using the Transformer’s attention mechanism as an explanatory tool remains a topic of debate [23, 24]. Efforts have
been made to enhance the effectiveness of downstream tasks by fusing explicit syntactic knowledge with BERT
[13, 25]. However, the applications of such integration in MT have not been thoroughly explored.

2.3. Deep Learning for Graphs

In NLP tasks, representing sentences and words as linear sequences might compress or obscure crucial topologi-
cal information, including tree-like syntactic structures. This loss of structure can present significant challenges for
downstream tasks that depend on accurately capturing the nuanced features of source language sentences, such as
speech recognition and MT. While there are many approaches for encoding graphs, see [26], Graph Neural Net-
works (GNNs) offer a solution through a topological graph-based approach, enabling the construction of diverse
linguistic graphs. These graphs transform various textual features into a network of nodes, edges, and overall graph
structures. This method allows for a more nuanced analysis and inference of linguistic patterns within input sen-
tences, significantly benefiting downstream tasks [27, 28]. The GAT emerges as a novel solution within this space,
adept at processing data in non-Euclidean domains. It utilizes attention mechanisms to dynamically assign impor-
tance to nodes, enhancing the model’s capacity to learn from graph-based representations. This capability, when
combined with BERT, forms a robust framework for encapsulating linguistic knowledge in downstream NLP tasks
[13, 29, 30].

3. Methodology

3.1. Construction of the Proposed Engines

This section provides detailed descriptions of the individual layers within the engine. Figure 1 illustrates the
comprehensive architecture of the proposed engines.



4 Y. Dai et al. / Graph-ic Improvements: Adding Explicit Syntactic Graphs to Neural Machine Translation

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 1. The architecture of the SGB engines. The encoder with BERT and GAT on the left and the decoder on the right. Dash lines indicate the
alternative connections. Hl

e and hl
g represent the final layer output of BERT and GAT.

3.1.1. Encoding
Given source sentence S = [w1,w2,w3, . . .wi], where i is the number of word tokens in a sentence, S is then cut

into subword tokens and fed into BERT, which become: S̃ = [[CLS ],w1
1,w

1#1
1 ,w2,w3

3,w
3#3
3 , . . .wn, [S EP]], Where

wn#n represents the subwords of wn, [CLS] and [SEP] are special tokens of BERT.
The experiments include translations from three source languages into English: Chinese to English (Zh→En),

Russian to English (Ru→En), and German to English (De→En). We use three BERT variants as an encoder for each
MT engine, where Chinese is chinese-bert-wwm-ext1, Russian is rubert-base2, and German is bert-base-german3.
Although their model structures are the same, the approaches differ in pre-training. Chinese BERT uses Whole Word
Masking, Russian BERT takes the multilingual version of BERT-base as its initialization for further pre-training,
and the approach of German BERT remains the same as vanilla BERT. We aim to propose approaches that can be
generalized to the BERT model structure, even their pre-training approaches are different.

By capturing the representation of each subword token through BERT, the final embedded sequence is accessible
via the last layer of BERT, hB = BERT (S̃ ). To obtain the syntactic dependency information of the source sentence
S , we use a Universal Dependencies-based parser4 [31] to perform tokenizing and syntactic dependency parsing on
source sentences, as shown in Table 1. After obtaining the parsing results, we aim to represent the syntactic connec-
tions between words in the sentence using a graph. We construct the node adjacency matrix for graph representation,
where each token corresponds to a node in the graph as shown in Figure 2. Since word representations from BERT
contain rich semantic information, nodes on the graph are encoded by BERT embeddings. Considering the subword
segmentation, we average subword token representations to obtain the node embeddings on the graph.

3.1.2. Graph Attention
Words and adjacency relations in a sentence can be represented as a graph structure, where the words (known as

tokens in the model) on the graph are as nodes, and the relationships called syntactic dependencies between words
are regarded as edges connecting nodes. We use GAT [12] as our critical component to fuse the graph-structured
information and node features. The node features given to a GAT layer are G̃ = [x1, x2, . . . xi, . . . xn], xi ∈ RF , where
n is the total number of nodes, F is the feature size of each node, the same with BERT embedding. The Equation
(1) and (2) summarise the working mechanism of the GAT.

1https://huggingface.co/hfl/chinese-bert-wwm-ext
2https://huggingface.co/DeepPavlov/rubert-base-cased
3https://huggingface.co/bert-base-german-cased
4https://github.com/hankcs/HanLP

https://huggingface.co/hfl/chinese-bert-wwm-ext
https://huggingface.co/DeepPavlov/rubert-base-cased
https://huggingface.co/bert-base-german-cased
https://github.com/hankcs/HanLP
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Table 1
To illustrate the working principle, consider the input sentence: "The new spending is fueled by Clinton’s large bank account.". This sentence
is subsequently parsed to provide detailed linguistic information, such as part-of-speech (POS) tags, head node IDs, and syntactic dependency
labels (DepRel). Source language sentences in Chinese, Russian, and German also follow the same parsing steps.

index Word POS Head DepRel

1 The DET 3 det
2 new ADJ 3 amod
3 spending NOUN 5 nsubj:pass
4 is AUX 5 aux:pass
5 fueled VERB 0 root
6 by ADP 11 case
7 Clinton PROPN 11 nmod:poss
8 ’s PART 7 case
9 large ADJ 11 amod
10 bank NOUN 11 compound
11 account NOUN 5 obl:agent
12 . PUNCT 5 punct

Fig. 2. The input sentence is parsed, and it is then expected to be converted into a graph structure based on the connections between parent nodes
in the syntactic dependencies.

hout
i =

K
∥

k=1

σ

∑
j∈Ni

αk
i jW

k x j

 (1)

αk
i j =

exp(LeakyReLU(aT [Wxi ∥ Wx j]))∑
v∈Ni

exp(LeakyReLU(aT [Wxi ∥ Wxv]))
(2)

1-hop neighbors j ∈ Ni are attended by the node i,
K
∥

k=1

represents K multi-head attention output concatenation.

hout
i is the representation of node i at the given layer. αk

i j means attention between node i and j. Wk is linear trans-
formation, a is the weight vector for attention computation, LeakyReLU is activation function. Simplistically, the
feature calculation of one-layer GAT can be concluded as hG = GAT (X, A; Θl). The input is X ∈ Rn×F , and the
final output is hG ∈ Rn×F′

where n is the number of nodes, F is the feature size for each node, F′ is the hidden state
for GAT, A ∈ Rn×n is the graph adjacency matrix indicating node connection, Θl is the parameters during training.
During training, the GAT faithfully represents the syntactic information provided by the parser in the adjacency
matrix. It then obtains the representations of the vertices and passes them to subsequent model modules. However,
we cannot guarantee that all information from the parser is correct. Therefore, we treat incorrect information as
noise, allowing the model to learn and enhance its robustness against such noise.
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3.1.3. Fusion and Output
Two methodologies for integrating syntactic knowledge into machine translation (MT) engines are introduced.

The initial approach, termed Syntactic Knowledge via Graph Attention with BERT Concatenation (SGBC), involves
merging syntactic information from graphs with BERT for the encoder’s operation, as detailed in Equations (3) and
(4).

Hl
e = concat(hB, hG) (3)

h̃l
d = attnD(hl

d,H
l
e,H

l
e) (4)

where attnD stands for encoder-decoder attention in MT engines. l is the output of the l-th layer, d is the repre-
sentation of the tokens in decoder-side. Hl

e contains the features of BERT (hB) and GAT (hG) fed into the encoder-
decoder attention module in the decoder. The feed-forward network subsequently processes the attention features
alone with residual connection, as in the case of the vanilla Transformer model.

The second one, called Syntactic knowledge via Graph attention with BERT and Decoder (SGBD), is that the
syntactic knowledge on the graph is not only applied to the encoder but also guides the decoder through the syntax-
decoder attention, as shown in Equations (5), (6) and (7).

h̃l
d = attnD(hl

d,H
l
e,H

l
e) (5)

h̃l
s = attnS (hl

d, h
l
g, h

l
g) (6)

h̃l
t = concat(h̃l

d, h̃
l
s) (7)

where attnD and attnS represent encoder-decoder attention and syntax-decoder attention respectively. hl
g is the

output of GAT containing syntactic dependency features of sentences via another feed-forward network. h̃l
t is the

final attention features obtained by concatenating attnD and attnS . As with the vanilla Transformer, the predicted
word is generated by a feed-forward network with residual connection and softmax function.

3.2. Metrics for Machine Translation Evaluation

In the domain of MT, there is an active search for accurate and reliable evaluation metrics. Among these metrics,
BLEU [32] has become a fundamental tool for evaluating the quality of text translated from one language to another.
BLEU functions by comparing machine-generated translations to one or more reference translations, primarily
focusing on the precision of n-grams. Despite its widespread use, BLEU’s sole emphasis on precise matching the
reference translations, without considering fluency or content adequacy, has led researchers to seek supplementary
evaluation strategies.

QE offers an innovative approach to translation assessment that does not require reference texts, by building
models that directly predict whether the suggested translation is an accurate and fluent translation of the source text.
This method is not only innovative but also practical, especially in contexts where reference translations are un-
available. QE engines can be trained to evaluate various aspects including fluency, adequacy, and even the predicted
post-editing effort, providing a comprehensive view of translation quality.

In this study, the evaluation of MT primarily employs two methods: the widely recognized n-gram matching
model, BLEU, and advanced neural network-based QE models, specifically COMET QE [33] and TransQuest QE
[34]. However, both BLEU and COMET QE operate at the corpus level, failing to identify improvements in spe-
cific sentences and relying on reference translations, which can overlook legitimate translation variants. In contrast,
TransQuest QE employs MT quality assessment techniques to measure sentence-level improvements without relying
on reference translations. Additionally, TransQuest QE leverages state-of-the-art transformer models, introducing
a novel quality assessment method through sentence-level quality estimation. It predicts a quality score for each
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sentence pair (source and translated sentence), which correlates with human judgments on translation quality. This
approach represents significant advancements over traditional QE methods, providing more accurate and reliable as-
sessments. TransQuest is also the winner of the WMT 20 QE shared task. Therefore, in the subsequent experiments,
the QE scores are derived from the TransQuest QE methodology unless otherwise specified.

3.3. Datasets

The Parallel Universal Dependencies (PUD) corpus is a collection of multilingual datasets designed to facilitate
cross-linguistic analysis and the development of MT engines. Comprising texts translated into 20 languages, each
dataset within the PUD corpus contains 1,000 sentences that are syntactically annotated, ensuring a high level of
linguistic consistency and quality across different languages. These sentences are selected from a wide range of
sources, including news articles and Wikipedia, providing a diverse mix of genres and topics.

The experiments utilize three typologically different languages to be translated into English: PUD Chinese5, PUD
Russian6, and PUD German7. The choice of these languages is determined by the availability of the UD corpus for
a trained external syntactic parser and the PUD corpus for evaluating both the syntactic knowledge of BERT and
GAT and the performance of the MT engine.

4. What Happens to Translations

4.1. Translation Performance with BLEU and Quality Estimation

The effectiveness of the proposed approach is evaluated by BLEU score on the UNPC8 (Zh→En, Ru→En) and
Europarl9 (De→En) datasets. 1 million (M) sentence pairs are selected as the training set for each language, with
6,000 and 5,000 sentence pairs for the validation and test sets, respectively. The dataset is randomly divided to en-
sure that each subset is representative of the overall distribution, thereby reducing bias and ensuring a fair evaluation
of the model’s performance. The validation set is used to monitor the model’s performance during training and to
implement early stopping to prevent overfitting, while the test set is used for final evaluation to assess the model’s
generalization capabilities. The baseline involves an encoder based on fine-tuned BERT, compared fairly with the
proposed SGB engines using the same training setup. Decoders from the vanilla Transformer model are used, fea-
turing BERT variants for each source language with 6 layers and 8 attention heads, while maintaining consistency in
other parameters. The GAT within SGB engines includes 2 layers and 6 attention heads for Zh, and 4 attention heads
for Ru and De, optimizing model performance. Training utilizes the Adam optimizer with parameters β1 = 0.9 and
β2 = 0.98, a learning rate of 2e-5, word embedding of 768, and cross entropy as the loss function. All experiments
are performed on RTX 3080 and 3090 GPUs.

As shown in Table 2, the proposed two engines achieve higher BLEU scores than the baseline engines across all
three translation directions, regardless of the changes in the training set size. This demonstrates the effectiveness and
generalization capability of the proposed approach. SGBC consistently outperforms both the baseline and SGBD.
This can be attributed to the fact that the output of SGBC more closely aligns with the criteria used in the BLEU
score calculation. It is likely to generate translations that have a higher degree of n-gram overlap with the reference
translations, thus achieving higher BLEU scores. In contrast, the more complex SGBD produces translations that
are more varied or nuanced, which may not always align as closely with the reference translations in terms of n-
gram precision. Inspired by the study revealing BLEU reliability [35], BLEU scores may not be sufficient to capture
the nuanced quality of translations. Therefore, two QE models, COMET and TransQuest, are introduced to further
evaluate the translation quality of the proposed models. The key difference between these models is that COMET

5https://github.com/UniversalDependencies/UD_Chinese-PUD
6https://github.com/UniversalDependencies/UD_Russian-PUD
7https://github.com/UniversalDependencies/UD_German-PUD
8https://opus.nlpl.eu/UNPC.php
9https://opus.nlpl.eu/Europarl.php

https://github.com/UniversalDependencies/UD_Chinese-PUD
https://github.com/UniversalDependencies/UD_Russian-PUD
https://github.com/UniversalDependencies/UD_German-PUD
https://opus.nlpl.eu/UNPC.php
https://opus.nlpl.eu/Europarl.php
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Table 2
The performance of SGB engines compared to baseline engines in BLEU scores across three MT directions with varying training set sizes.
Despite the reduced dataset Size, SGB engines maintain competitive BLEU scores.

Language Training Size Baseline SGBC SGBD

Zh→En
0.1M 24.26 24.89 24.72
0.5M 38.48 38.71 38.53
1M 47.15 47.23 47.17

Ru→En
0.1M 21.12 21.45 21.33
0.5M 37.69 37.74 37.68
1M 47.22 47.36 47.27

De→En
0.1M 15.41 15.79 15.50
0.5M 26.89 27.13 26.92
1M 37.59 37.67 37.63

Table 3
Performance comparison of BLEU, COMET, and TransQuest scores for three translation directions (Zh→En, Ru→En, De→En) with a training
set size of 1 million. The table shows the scores for the Baseline, SGBC, and SGBD models, highlighting the best performance in each metric
with bold text.

Training Size Language Zh→En Ru→En De→En
Metric Baseline SGBC SGBD Baseline SGBC SGBD Baseline SGBC SGBD

1M
BLEU 47.15 47.23 47.17 47.22 47.36 47.27 37.59 37.67 37.63
COMET 82.20 83.69 84.78 80.93 81.34 82.56 78.02 78.66 79.37
TransQuest 70.08 72.66 73.01 81.65 83.31 83.95 75.49 77.00 77.94

assesses the translation quality by examining the interplay between the source sentence, its translation, and reference
translations, whereas TransQuest only requires the source sentence and its translation. All performance metrics are
scored on a scale from 0 to 100, with higher scores indicating better translation quality.

Table 3 demonstrates that when the training set size reaches 1 million, both SGB series engines exhibit higher
scores on the BLEU and COMET QE performance metrics. However, SGBC and SGBD exhibit notable differences
in their performance across these metrics: SGBC achieves the highest BLEU scores in all three translation direc-
tions, while SGBD obtains the highest COMET and TransQuest QE scores. SGBD’s scores are generally at least 2
points higher than those of the baseline engines. These performance metrics reflect the engines’ proficiency in lever-
aging syntactic knowledge from graphs and fully utilizing BERT’s potential language capabilities, enabling them to
generate more accurate translations. It is important to note that BLEU is a paired metric, which can be unreliable,
and both BLEU and COMET QE depend on reference translations. In real-world translation scenarios, reference
translations may not always be available, and the semantic diversity of output sentences cannot be reliably verified.
Therefore, compared to BLEU and COMET QE scores, the TransQuest QE score offers a more nuanced advantage
in adapting to reasonable variations in translation. This is because it does not require reference translations, making
it a more robust and practical metric for evaluating translation quality in diverse and realistic settings.

4.2. Translation of In-domain and Out-of-domain Sentences

Based on the results of the above experiments, BLEU scores still fail to reflect linguistic subtleties and align
with human evaluative criteria [36, 37]. To address these shortcomings, we employ a gold-standard syntactically
annotated corpus, the PUD corpus, and the TransQuest QE model to further investigate changes in translation qual-
ity. The PUD corpus, with its diverse range of sources, including out-of-domain content, ensures a comprehensive
evaluation of the MT engines’ ability to handle various linguistic structures and contexts. Additionally, the syntactic
annotations in the PUD corpus provide a gold-standard reference, allowing for a detailed analysis of the engines’
performance in capturing and translating syntactic dependencies. We utilize the PUD corpus (PUD Chinese, PUD
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Table 4
The baseline and the SGB engines compare the translations of the PUD corpus, scored by the QE model and subjected to paired t-tests to
demonstrate the differences in translation quality scores.

Source Language Sample Size Models x̄d S d t P-value

Zh 1000 Baseline
SGBC 0.024 0.109 7.18 p < 0.001
SGBD 0.032 0.111 9.12 p < 0.001

Ru 1000 Baseline
SGBC 0.024 0.042 18.38 p < 0.001
SGBD 0.034 0.045 23.67 p < 0.001

De 1000 Baseline
SGBC 0.007 0.113 2.16 p = 0.030
SGBD 0.012 0.110 3.61 p < 0.001

Russian, and PUD German) to evaluate the translation quality of the Baseline and SGB engines across three trans-
lation directions. The PUD corpus includes sentences from various out-of-domain sources, not limited to news and
Wikipedia content, thus placing higher demands on the MT engines’ ability to effectively summarize and clarify the
structure of input sentences. The QE model is used to estimate the quality of the source language sentences and their
translations, rating the translations on a scale from 0 to 1, where higher scores indicate better translation quality.
Paired t-tests are used to analyze the changes and distribution of translation quality before and after implementing
the proposed strategies, with a significance level of 0.05.

From Table 4, when comparing the Zh Baseline and SGBC engines, average of differences (x̄d) of them is 0.024,
standard deviation of the difference (S d) is 0.109 and the test statistic (t) is 7.18, corresponding to a p-value < 0.001.
Similarly, the t and p-values for the SGBD engine also reveal the statistical significance of the QE scores before and
after the proposed approach. Both comparisons reject the null hypothesis H0 at the significance level of 0.05, where
H0 states that the proposed approaches do not significantly differ in QE scores compared to the baselines. Instead,
the alternative hypothesis H1 is accepted, which states that the differences between the baseline and SGB engines
in QE scores are large enough to be statistically significant. Specifically, H1 asserts that the QE scores of the SGB
engines are significantly higher than those of the baseline engines.

Comparable outcomes are evident for Ru and De, wherein the quality of translations, upon the implementation
of proposed methodologies, manifests a significant divergence from the prior state, as gauged by QE scores. The
incorporation of syntactic knowledge via graph representations alongside the employment of BERT substantially
enhances the translation efficacy of MT engines. It is noteworthy that the SGBD engines consistently achieve el-
evated QE scores, indicating a robust improvement in translation quality. Contrarily, while the SGBC engines are
favored by BLEU scores, achieving higher metrics under that evaluation, the QE scores highlight a different aspect
of translation quality, underscoring the nuanced and comprehensive analysis provided by QE metrics over BLEU.
This divergence underscores the complexity of translation quality evaluation, revealing how different evaluation
metrics may prioritize various aspects of translation performance.

4.3. Identifying Syntactic Relations in Source Language Sentences

Multiple dependency relations signify the structural attributes of a given sentence. To identify which dependency
relation in the source language sentence from the PUD corpus contributes most to the enhancement of translation
quality through translation engines, we retain and categorize sentences based on their dependency relations. Specif-
ically, both the baseline engine and the two proposed SGB engines translate their own source language sentences
from the PUD corpus. The translations are then ranked according to their TransQuest QE scores. The bottom 30%
of translations, based on TransQuest QE scores, are considered low-quality translations. Source language sentences
corresponding to these low-quality translations and containing the same dependency relation are grouped together.
For example, for a given dependency relation d, any source language sentence with a low-quality translation con-
taining such dependency d is grouped together. The average TransQuest QE score for each group, characterized by
specific dependency relations, is calculated both before and after the application of the proposed methodologies.
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This approach allows us to conduct a detailed examination of the impact of distinct syntactic structures on the ef-
ficacy of translation quality improvements facilitated by the engines. By analyzing these groups, we can determine
which dependency relations are most influential in improving translation quality, thereby providing insights into the
syntactic features that benefit most from the proposed improvements.

Table 5 details how SGB engines outperform the baseline engines in accurately identifying syntactic relations
within source language sentences, thereby markedly improving translation quality. It particularly emphasizes the
top five syntactic relations that contribute to this improvement. Although both SGBC and SGBD engines incorpo-
rate graph-based syntactic knowledge, their approaches to learning dependency relations diverge. For instance, the
"flat" (flat structure) in Zh is markedly significant in the SGBC engine yet receives less emphasis in the SGBD en-
gine. Despite SGBD’s decoders being similarly guided by syntactic knowledge derived from graph representations,
it does not uniformly excel across all syntactic relations in achieving a higher QE score compared to the SGBC
engine. Specifically, in languages such as Zh, Ru, and De, the SGBC model outperforms SGBD in handling certain
syntactic relations, including "discourse:sp" (discourse marker: speech), "orphan" (orphan), and "csubj" (clausal
subject). This discrepancy may suggest that an overly focused reliance on syntactic knowledge could lead to knowl-
edge redundancy, detrimentally affecting translation quality in the SGBD engine. Conversely, the importance of
some syntactic relations remains consistent across both SGBC and SGBD engines, underscoring that the integration
of syntactic knowledge via graph attention alongside BERT enables the MT engine to more precisely address spe-
cific common relations. This consistency, irrespective of the methodological differences between the two engines,
indicates that leveraging graph-based syntactic knowledge in conjunction with BERT enhances the MT engine’s
ability to explicitly navigate certain syntactic structures, thus contributing to the refinement of translation quality.

5. What Happens to Graphs

5.1. Syntactic Knowledge in GAT

Graph Attention Networks (GATs) have the capability to represent syntactic structures in sentences using graph-
based models. However, whether this capability signifies their ability to effectively learn syntactic knowledge re-
mains an open question. To address this, we design a syntactic dependency prediction experiment where GATs are
tasked with predicting the relevant syntactic labels in the syntactic structure. For this experiment, we utilize the PUD
corpus, which provides gold-standard syntactic annotations, as our foundational dataset. The experimental process
involves converting the syntactic annotations and sentence words into syntactic trees, which are subsequently trans-
formed into graph structures for GAT analysis. In these graph structures, each word is represented as a node, and
the edges represent the syntactic dependency connections as defined by the PUD corpus. The primary objective of
the GAT is to infer the dependency relations for each word by integrating information from both nodes and edges.
Unlike traditional syntactic dependency models, which often follow a unidirectional flow from parent to child nodes,
this approach treats dependencies as bidirectional graphs. This bidirectional model acknowledges the mutual influ-
ence between parent and child nodes, which is crucial for GATs to understand the varying implications of node
connections. By considering these bidirectional relationships, GATs can enhance their ability to accurately identify
dependency relations among nodes, thereby improving their syntactic learning capabilities.

Similar to the Transformer model, GAT utilizes multi-head attention and layers stacked upon each other. The
study initially explores how the number of multi-head attention heads and layers influences GATs’ acquisition of
syntactic knowledge, examining the advantages these configurations offer for learning syntactic dependencies. In
the experiments, the attention head counts (Heads) tested for GATs are 2, 4, 6, and 8, while the layer counts (L)
explored are 2, 3, 4, 5, and 6. For each language, datasets are divided into training, validation, and test sets with
800, 100, and 100 sentences, respectively, to tune hyperparameters, monitor model performance during training to
prevent overfitting, and evaluate the model on unseen data. The model parameters are set with a learning rate of
2e-5, a dropout rate of 0.2, Adam as the optimizer, and a hidden size of 768. The F1-score is used as the evaluation
metric.

Table 6 emphasizes the critical importance of judiciously configuring the number of attention heads and layers in
GAT, as this configuration significantly influences the model’s sensitivity to accurately learn syntactic knowledge.
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Table 5
The top-5 dependency relations identified by the SGB engines are those that show the greatest improvement in QE scores. These relations
highlight which syntactic dependencies are most effectively detected and contribute most significantly to the enhancement of translation quality
in each translation direction. "Qual" denotes the percentage increase in QE scores for sentences containing such a syntactic structure.

Zh

Baseline SGBC Qual Baseline SGBD Qual

obl:agent 0.379 0.576 +51.978% obl:agent 0.379 0.597 +57.519%
discourse:sp 0.388 0.502 +29.381% iobj 0.387 0.511 +32.041%
flat 0.387 0.494 +27.648% nsubj:pass 0.423 0.545 +28.841%
flat:name 0.415 0.518 +24.819% appos 0.404 0.518 +28.217%
mark:prt 0.435 0.532 +22.298% discourse:sp 0.388 0.501 +29.123%

Ru

Baseline SGBC Qual Baseline SGBD Qual

orphan 0.608 0.768 +26.315% orphan 0.608 0.719 +18.256%
aux 0.700 0.764 +9.142% aux 0.700 0.777 +11.000%
ccomp 0.681 0.745 +9.397% ccomp 0.681 0.747 +9.691%
flat:name 0.703 0.761 +8.250% discourse 0.614 0.676 +10.097%
fixed 0.688 0.742 +7.848% fixed 0.688 0.750 +9.011%

De

Baseline SGBC Qual Baseline SGBD Qual

csubj 0.449 0.566 +26.057% flat 0.442 0.625 +41.402%
flat 0.442 0.553 +25.113% csubj 0.449 0.554 +23.385%
expl 0.486 0.573 +17.901% expl 0.486 0.589 +21.193%
compound:prt 0.493 0.579 +17.444% compound:prt 0.493 0.595 +20.689%
compound 0.495 0.577 +16.565% cop 0.502 0.586 +16.733%

For example, the Russian language experiment reveals that a GAT setup with 2 layers and 4 attention heads outper-
forms a configuration with 8 attention heads in terms of overall prediction efficacy. As the model is expanded to 4
layers, a higher number of attention heads enhances performance, with the F1-score increasing from 0.44 to 0.57.
Conversely, increasing the number of layers tends to degrade the model’s ability to accurately predict dependency
relations. Specifically, a configuration with 2 layers outperforms one with 6 layers, regardless of the number of
attention heads. This decline suggests that an increase in GAT layers might lead to performance degradation, po-
tentially due to nodes losing their specific attributes or incorporating irrelevant information during the aggregation
process.

When examining the prediction scores for individual dependency relations across the three languages, the results
further validate this observation. As shown in Table 7, when the number of layers exceeds 3, the F1-scores for some
syntactic relations tend to decrease and even drop to 0 as the number of layers increases. Increasing the number
of attention heads does little to mitigate this degradation. However, certain syntactic tags remain unaffected by this
trend. Regardless of the number of layers, GAT consistently learns and maintains high F1-scores for tags such as
"advmod" (adverbial modifier), "case" (case marking), "cc" (coordinating conjunction), "mark" (marker), "nsubj"
(nominal subject) and "punct" (punctuation). This indicates that GAT exhibits a high sensitivity and reliable capture
of these specific syntactic features.

We continue to compare the F1 scores of GAT’s dependency relation predictions with the QE scores of the
SGB engines when processing prior low-quality translations containing these specific dependency relations (from
Sec 4.3), as shown in Table 8. It highlights the top-10 dependency relations with the highest prediction scores
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Table 6
GAT performance in syntactic dependency prediction for three languages with different numbers of attention heads and layers. The number of
attention heads increases incrementally from 2 to 6, and the number of model layers increases from 2 to 8.

Layers
Zh

2 Heads 4 Heads 6 Heads 8 Heads

2 0.63 0.62 0.64 0.64
3 0.64 0.61 0.62 0.63
4 0.56 0.58 0.64 0.49
5 0.49 0.50 0.51 0.50
6 0.37 0.40 0.33 0.33

Layers
Ru

2 Heads 4 Heads 6 Heads 8 Heads

2 0.58 0.61 0.47 0.56
3 0.45 0.55 0.54 0.53
4 0.44 0.47 0.56 0.57
5 0.42 0.52 0.46 0.49
6 0.41 0.36 0.31 0.33

Layers
De

2 Heads 4 Heads 6 Heads 8 Heads

2 0.64 0.67 0.64 0.56
3 0.60 0.56 0.56 0.57
4 0.56 0.50 0.53 0.53
5 0.58 0.61 0.50 0.47
6 0.48 0.49 0.48 0.42

by GAT across various source language sentences, along with the corresponding changes in translation quality
facilitated by different MT engines. The results demonstrate a clear positive correlation between GAT’s syntactic
dependency prediction scores and the improvement in translation quality, especially when using the SGBC and
SGBD engines. For Zh, dependency relations such as "mark" (marker), "cc" (coordinating conjunction), and "conj"
(conjunct) have very high prediction scores by GAT (0.986, 0.984, and 0.970, respectively). These high scores
correlate with significant improvements in translation quality, as evidenced by the higher QE scores of the SGBC
and SGBD models compared to the baseline. Similarly, for Ru, dependency relations like "det" (determiner), "root"
(root), and "amod" (adjectival modifier) have high prediction scores (0.990, 0.987, and 0.982, respectively), leading
to notable improvements in translation quality. For De, dependency relations such as "case" (case marking), "cc"
(coordinating conjunction), and "det" (determiner) also exhibit high prediction scores (0.992, 0.987, and 0.987,
respectively), resulting in improved translation quality. The positive correlation between GAT’s prediction scores
and translation quality is consistent across the three languages, suggesting that GAT’s ability to accurately predict
syntactic dependencies is a robust indicator of its potential to enhance translation quality. This underscores the
importance of integrating syntactic information into MT systems to achieve more accurate and reliable translations.
Also, The consistent improvement in translation quality across different languages and MT engines demonstrates
the robustness of GAT in learning and applying graph-based syntactic structures.
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Table 7
The prediction of syntactic dependencies for three languages is conducted using different numbers of attention heads and layers. As the number
of layers increases, the performance of the GAT in predicting dependency labels declines, and it gradually loses the ability to learn certain
dependency labels, resulting in the F1 scores dropping to zero. However, some dependency relations remain unaffected and continue to achieve
relatively high prediction scores.

GAT Zh Ru De

Layers Heads advmod clf dep case flat mark acl:relcl cc nsubj

2

2 0.90 0.87 0.64 0.99 0.85 0.97 0.71 0.97 0.75
4 0.90 0.82 0.63 0.99 0.86 0.94 0.75 0.99 0.72
6 0.91 0.89 0.66 0.98 0.87 0.96 0.75 0.96 0.72
8 0.90 0.83 0.62 0.98 0.86 0.90 0.41 0.97 0.69

3

2 0.90 0.88 0.64 0.98 0.00 0.93 0.60 0.96 0.78
4 0.91 0.86 0.64 0.98 0.86 0.94 0.45 0.96 0.71
6 0.90 0.88 0.66 0.98 0.77 0.93 0.41 0.96 0.72
8 0.91 0.90 0.66 0.99 0.86 0.93 0.46 0.96 0.74

4

2 0.89 0.68 0.64 0.97 0.00 0.94 0.52 0.84 0.74
4 0.90 0.66 0.65 0.99 0.77 0.94 0.45 0.85 0.73
6 0.91 0.69 0.68 0.99 0.67 0.97 0.40 0.85 0.77
8 0.90 0.00 0.64 0.99 0.80 0.94 0.45 0.96 0.74

5

2 0.90 0.00 0.00 0.97 0.55 0.93 0.42 0.85 0.78
4 0.90 0.00 0.00 0.98 0.77 0.96 0.68 0.82 0.79
6 0.90 0.00 0.00 0.97 0.67 0.93 0.44 0.81 0.72
8 0.89 0.00 0.00 0.99 0.48 0.96 0.43 0.86 0.73

6

2 0.83 0.00 0.00 0.94 0.00 0.91 0.00 0.83 0.65
4 0.86 0.00 0.00 0.95 0.00 0.97 0.00 0.78 0.65
6 0.84 0.00 0.00 0.94 0.00 0.93 0.00 0.79 0.67
8 0.86 0.00 0.00 0.96 0.00 0.93 0.37 0.85 0.63

6. What Happens to Syntactic Features

6.1. Representational Similarity Analysis

Representational Similarity Analysis (RSA) is a technique used to analyze the similarity between different rep-
resentation spaces of neural networks. Inspired by the work of Merchant et al. [38], RSA uses n examples to build
two sets of comparable representations between neural networks. The representations are then transformed into a
similarity matrix, and the Pearson correlation between the upper triangles of the similarity matrix is used to obtain
the final similarity score between the representation spaces. We select the source sentences corresponding to the
prior 300 low-quality translations and use them as the input stimulus for our analysis. The stimulus consists of
groups of sentences, where each group is defined by a specific type of dependency relation. For example, if the
current dependency relation is x, all source sentences of low-quality translations containing x are grouped together
to form one stimulus group. To provide an example, consider the dependency relation "obl:agent" (oblique agent);
all source sentences from the 300 low-quality translations that contain the "obl:agent" (oblique agent) relation are
grouped together. Similarly, for the dependency relation "nsubj:pass" (nominal subject in a passive construction),
all source sentences containing this relation are grouped together. BERT representations are extracted from both the
baseline model and the SGB engines (e.g., baseline vs. SGBC) for each stimulus group, allowing us to compare
the representation spaces of the different models. Cosine similarity is used as the kernel to compute the similar-
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Table 8
Top-10 dependency relations with the highest GAT F1-score across various source language sentences, alongside corresponding changes in
translation quality as measured by QE scores from different MT engines.

Zh

Dependency Relation GAT F1-score Baseline QE score SGBC QE score SGBD QE score

mark 0.986 0.424 0.510 0.529
cc 0.984 0.436 0.513 0.512
conj 0.970 0.435 0.521 0.518
nummod 0.965 0.429 0.514 0.522
root 0.955 0.426 0.514 0.523
cop 0.945 0.426 0.520 0.511
det 0.935 0.438 0.530 0.528
case 0.934 0.428 0.511 0.526
nmod 0.933 0.429 0.509 0.523
amod 0.927 0.435 0.528 0.520

Ru

Dependency Relation GAT F1-score Baseline QE score SGBC QE score SGBD QE score

det 0.990 0.697 0.747 0.746
root 0.987 0.700 0.748 0.750
amod 0.982 0.707 0.753 0.752
case 0.978 0.702 0.748 0.760
aux:pass 0.974 0.718 0.749 0.760
cop 0.971 0.720 0.774 0.781
advmod 0.934 0.704 0.750 0.747
cc 0.930 0.698 0.751 0.748
flat:foreign 0.921 0.678 0.701 0.727
obl 0.900 0.701 0.749 0.749

De

Dependency Relation GAT F1-score Baseline QE score SGBC QE score SGBD QE score

case 0.992 0.504 0.568 0.574
cc 0.987 0.509 0.565 0.561
det 0.987 0.504 0.565 0.571
mark 0.981 0.511 0.561 0.570
advmod 0.932 0.506 0.573 0.582
root 0.931 0.503 0.570 0.574
aux:pass 0.927 0.498 0.576 0.556
amod 0.913 0.507 0.567 0.571
flat:name 0.876 0.505 0.551 0.565
aux 0.868 0.520 0.586 0.597
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ity between the BERT representations of the stimulus groups, helping us understand how the addition of syntactic
knowledge affects the representation space of BERT.

Table 9
Top-5 syntactic labels with the highest F1 scores for GAT predictions for each language, along with the BERT layers where the lowest RSA
scores are observed.

Zh

Relation GAT F1-Score RSA Score BERT Layer RSA Score* BERT Layer

mark (marker) 0.986 0.418 5 0.407 3
cc (coordinating conjunction) 0.984 0.274 4 0.354 5
conj (conjunct) 0.970 0.380 5 0.340 4
nummod (numeric modifier) 0.965 0.274 4 0.237 3
root (root) 0.955 0.216 4 0.390 4

Ru

Relation GAT F1-Score RSA Score BERT Layer RSA Score* BERT Layer

det (determiner) 0.990 0.426 4 0.408 3
root(root) 0.987 0.466 3 0.504 3
amod (adjectival modifier) 0.982 0.444 3 0.391 4
case (case marking) 0.978 0.462 4 0.413 4
aux:pass (passive auxiliary) 0.974 0.357 3 0.327 3

De

Relation GAT F1-Score RSA Score BERT Layer RSA Score* BERT Layer

case (case marking) 0.992 0.686 5 0.759 2
cc (coordinating conjunction) 0.987 0.591 6 0.741 6
det (determiner) 0.987 0.584 8 0.817 6
mark (marker) 0.981 0.676 6 0.769 6
advmod (adverbial modifier) 0.932 0.733 6 0.774 8

Table 9 lists partial results from an RSA analysis comparing Baseline BERT and SGB models based on syntactic
prediction scores by GAT (full results are provided in Appendix A). The analysis shows that the lowest RSA scores
mainly occur in the lower and middle layers of BERT, regardless of whether the model is used in the SGBC or SGBD
engine. Specifically, when GAT achieves high F1 scores for a particular dependency relation, the representations
of sentences containing this relation typically undergo significant changes in the lower and middle layers of BERT.
These changes are most pronounced in layers 3-5 for Chinese and Russian, and in layers 5-8 for German. This
suggests that the syntactic structure represented through graphs influences BERT’s reanalysis of input sentences,
leading to a syntactic reconstruction of the input sentence. Also, the lower and middle layers of BERT are particu-
larly sensitive to modifications in modeling both shallow and deep syntactic structures. In contrast, layers 9-12 are
primarily involved in processing abstract semantic information and are task-oriented. However, the RSA scores in
these layers do not consistently reach 0.8 or higher (see detailed results in Appendix A), indicating that changes
in the syntactic representation in the lower layers can also affect the processing of deep linguistic information in
the upper layers. These findings further explain why integrating syntactic structures represented through graphs can
help BERT reconstruct the structure of input sentences, leading to a more accurate representation of source language
sentences and, consequently, improved translation quality.

*RSA scores for representations from the baseline and SGBD models for comparison.
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Fig. 3. The box plot distribution of QE scores for translations in three MT directions, contrasting translations from ordered (above) versus
disordered (below) source language sentence arrangements.

6.2. Randomization of Word Order and Disruption of Syntactic Graphs

The impact of BERT and graph-based syntactic knowledge on enhancing translation quality presents an area for
further investigation, particularly concerning the robustness of syntactic knowledge. This raises questions about
the relative contributions of BERT versus graph-based syntactic knowledge to translation quality and the potential
limitations of the proposed MT engines. To address these questions, the study involves altering the word order in
source language sentences from each language in the PUD corpus. For example, the sentence "A B C D E F" is
transformed into a randomized sequence like "C B A D F E". Both the baseline and SGB engines are then tasked
with translating these modified sentences. The translations are subsequently reassessed by Transquest QE model,
which compares the translations of the shuffled sentences against those of the original, orderly sentences. This
comparison provides insights into the adaptability and efficacy of syntactic knowledge in translation.

To further validate the importance of accurate syntactic knowledge in enhancing the performance of the proposed
MT engines, we conduct an additional experiment where we intentionally introduce incorrect syntactic graphs.
In this experiment, we replace the parsers for Chinese, Russian, and German with an English parser to extract the
syntactic structures of these three source languages. This deliberate introduction of incorrect syntactic graphs is then
applied to the SGBC and SGBD engines. The goal is to observe how the performance of these models is affected
when provided with inaccurate syntatic information.

As shown in Figure 3, scrambled word sequences in source sentences cause a significant decrease in translation
quality for both baseline and SGB engines across all MT directions. Integrating GAT into the encoder or providing
explicit syntactic knowledge to the decoder does not guarantee a substantial improvement in translation quality. It is
unrealistic to expect the median QE scores in the box plots to increase from below 0.4 to 0.7. This finding suggests
that BERT plays a more crucial role in forming representations of source sentences and influencing translation qual-
ity in this hybrid approach. The scrambling of input sentence order, which leads to a loss of syntactic information,
indicates that while SGB engines, enhanced by graph-based syntactic knowledge, can mitigate some of the negative
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Table 10
Comparison of QE scores with correct and incorrect syntactic graphs for SGBC and SGBD engines and the percentage decrease in QE scores.

SGBC Model SGBD Model

Correct Graph Incorrect Graph % Correct Graph Incorrect Graph %

Zh→En 0.682 0.510 -25.21% 0.726 0.558 -23.14%
Ru→En 0.757 0.621 -17.96% 0.770 0.618 -19.74%
De→En 0.669 0.545 -18.53 % 0.720 0.599 -16.80%

effects, they are still unable to interpret and comprehend the correct semantics of jumbled sentences as effectively
as humans.

The table 10 provides a detailed comparison of QE scores for the SGBC and SGBD models when using correct
versus incorrect syntactic graphs. In all translation directions, the introduction of incorrect syntactic graphs results
in a significant decrease in QE scores for both the SGBC and SGBD models, with reductions exceeding 15% in all
cases. The largest decrease in QE scores is observed for the Zh→En direction, where both the SGBC and SGBD
engines experience a decline of over 20%. Conversely, the smallest decrease is noted for the De→En direction, with
reductions of 18.53% and 16.80% for the SGBC and SGBD models, respectively. This difference may be attributed
to the closer linguistic proximity between German and English, which results in fewer detrimental effects from the
parser’s incorrect syntactic structures. In contrast, the lower similarity between Chinese and English means that
incorrect syntactic structures have a more significant adverse impact on the SGBC and SGBD engines. Despite the
use of incorrect syntactic graphs, the SGBD engine still demonstrates a greater likelihood of maintaining higher
translation performance, indicating that the SGBD model benefits more from syntactic graphs, even when they are
incorrect.

These findings highlight that accurate syntactic graphs are not only beneficial but essential for maintaining high-
quality translations, as inaccuracies in these graphs significantly affect the performance of MT systems. However,
the performance degradation is not as severe as when input sentences are randomized. This further suggests that
in the SGB models, BERT plays a dominant role, and while incorrect syntactic graphs do harm performance, the
impact is more severe when the input errors are so significant that even BERT cannot effectively process them.

7. What Happens when using Another Pre-trained Model

The central focus of this investigation is to determine whether the proposed use of syntactic knowledge on graphs
continues to benefit alternative pre-trained models, thereby further improving translation quality. XLM-Roberta-
large [39] replaces BERT in all three MT scenarios. To distinguish from earlier versions, MT engines incorporat-
ing XLM-Roberta-large are labeled Baseline-X, SGBC-X, and SGBD-X. The Chinese and Russian (Zh→En and
Ru→En) MT engines utilize the UNPC corpus, whereas the German (De→En) engines employ Europarl. Each
training set comprises 0.1M sentence pairs, with validation and test sets featuring 6K parallel sentence pairs each.
Specifications include word embeddings of 1024, a learning rate (excluding GAT) of 2e-5, a GAT learning rate of
5e-5, a GAT dropout rate of 0.1, a batch size of 8, and the Adam optimizer. Training is conducted on an RTX 3090
GPU.

Table 11 demonstrates that both SGB engines consistently achieve higher BLEU scores than Baseline-X across
various MT directions, with the SGBD-X engine surpassing the SGBC-X engine in every scenario through superior
BLEU scores. Furthermore, Figure 4 illustrates the QE scores for translations within the PUD corpus for each
engine. Baseline-X yields the highest number of translations with QE scores in the 0.2, 0.3, and 0.4 intervals along
the X-axis for both Zh and De, a pattern also observed in Ru at the 0.4 and 0.5 intervals. A notable shift in the
distribution of translations for Zh and De occurs at the 0.5 mark on the X-axis, where SGBC-X and SGBD-X
engines begin to outperform Baseline-X, a trend that persists up to the 0.8 interval. In Ru, the SGB engines similarly
exhibit a higher count of translations with elevated QE scores than the Baseline engine at the 0.7 and 0.8 intervals
on the X-axis.
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Table 11
BLEU scores in different MT directions for the MT engines that replaced BERT with XLM-Roberta-large.

Baseline-X SGBC-X SGBD-X
Zh→En 26.28 26.59 27.13
Ru→En 23.62 23.86 24.01
De→En 22.93 23.28 24.46

Fig. 4. Distribution of QE scores for the MT engines after replacing BERT. The Y-axis shows the number of sentences, while the X-axis shows
the range of scores for the QE scores of the translations.

The demonstrated efficacy of our method with XLM-Roberta indicates its applicability beyond a single pre-
trained model, extending to encoder-based pre-trained models in general. This suggests that our approach is not
confined to a specific architecture. However, adapting our method to other pre-trained models, such as GPT or
T5, presents distinct challenges. These models are primarily decoder-based and sequence-to-sequence models, re-
spectively, which differ significantly from the encoder-based architecture of XLM-Roberta. Integrating syntactic
knowledge into these models may necessitate alternative strategies, such as modifying the input format or adjusting
the attention mechanisms. Despite these challenges, the potential benefits of incorporating syntactic knowledge into
a broader range of pre-trained models are substantial, as it can lead to more accurate and contextually appropriate
translations. Future research will explore these adaptations to further enhance the robustness and applicability of
our method.
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8. Conclusions

This study explores the integration of syntactic knowledge into MT, particularly focusing on the evaluation of
BERT and GAT. Two SGB engines are introduced for translating from Chinese to English (Zh→En), Russian to
English (Ru→En), and German to English (De→En), and by leveraging GAT, the representation capabilities of the
BERT encoder are enhanced, and the decoder’s understanding of source language sentence structures is improved.
The results demonstrate that the proposed SGB engines outperform baseline models in terms of BLEU scores,
COMET QE scores, and TransQuest QE scores, indicating significant improvements in translation accuracy and ro-
bustness. When translating the PUD corpus, paired t-tests confirm a statistically significant difference in TransQuest
QE scores, further validating the substantial improvement in translation quality. We find that the SGB engines,
which incorporate graph-structured knowledge, are more adept at recognizing the structural nuances of source lan-
guage sentences, thereby enhancing translation quality, for instance, the SGB engines achieve notably higher QE
scores for Chinese sentences with the "obl:agent" (oblique agent) structure compared to baseline engines. The study
also evaluate the syntactic dependency learning performance of GAT using the PUD corpus, and the results show
that the learning efficiency improves with an increase in attention heads, though the optimal configuration varies
across languages, however, excessive model complexity, beyond two layers, tends to degrade prediction perfor-
mance, highlighting the importance of balancing complexity and predictive effectiveness. Additionally, the study
investigate the impact of GAT’s dependency prediction on translation quality, and the findings indicate that accurate
predictions by GAT for certain dependency relations can lead to better translations of source sentences containing
those dependencies. RSA experiments further reveal that although GAT is not initially part of BERT, its integration
allows specific BERT layers to re-evaluate the syntactic structure of source sentences through fine-tuning, and this
effect is particularly pronounced in the early and mid-layers of BERT across different languages. Experiments on
word order randomization and parser replacement emphasize the critical role of syntactic information embedded in
graph structures in enhancing translation quality. We also show that our approach is not limited to BERT; similar
performance improvements have been achieved with XLM-Roberta as an alternative model. In summary, this study
underscores the significant potential of combining syntactic knowledge embedded in graph structures with language
models like BERT and XLM-Roberta to enhance MT, and the findings support further research into these synergies
to improve translation accuracy and interpretability with better knowledge about syntax.
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Appendix A. Appendix A. Representational Similarity Analysis

Table 12 to Table 17 show the RSA tests of the dependency relations in the given groups of BERT in the Baseline,
SGBC and SGBD models for different languages in 12 layers (L).

Table 12
Comparison of the representation from BERT in the baseline and SGBC model when tested on Chinese sentences containing target dependency.

Baseline vs SGBC
Zh Relations L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
acl:relcl 0.891 0.733 0.877 0.239 0.452 0.656 0.506 0.712 0.587 0.623 0.442 0.424
advcl 0.875 0.734 0.203 0.479 0.378 0.685 0.462 0.693 0.664 0.668 0.517 0.522
advmod 0.856 0.794 0.878 0.292 0.528 0.781 0.576 0.733 0.638 0.697 0.514 0.512
amod 0.818 0.705 0.962 0.632 0.483 0.662 0.379 0.580 0.398 0.587 0.341 0.335
appos 0.908 0.770 0.901 0.411 0.429 0.694 0.519 0.653 0.599 0.677 0.483 0.485
aux 0.873 0.803 0.954 0.449 0.600 0.760 0.551 0.718 0.614 0.683 0.476 0.441
aux:pass 0.872 0.637 0.972 0.666 0.663 0.504 0.468 0.672 0.540 0.748 0.394 0.300
case 0.880 0.743 0.893 0.576 0.529 0.677 0.514 0.699 0.588 0.649 0.550 0.599
case:loc 0.898 0.744 0.216 0.322 0.477 0.752 0.553 0.762 0.684 0.669 0.509 0.587
cc 0.915 0.782 0.498 0.274 0.442 0.702 0.620 0.660 0.667 0.710 0.588 0.557
ccomp 0.847 0.767 0.808 0.403 0.442 0.783 0.572 0.757 0.684 0.752 0.503 0.570
clf 0.857 0.753 0.840 0.219 0.560 0.673 0.543 0.698 0.606 0.662 0.420 0.501
compound 0.877 0.748 0.871 0.402 0.483 0.727 0.545 0.692 0.615 0.650 0.506 0.684
conj 0.910 0.770 0.479 0.396 0.380 0.706 0.604 0.651 0.664 0.701 0.571 0.566
cop 0.898 0.785 0.480 0.238 0.484 0.743 0.578 0.722 0.720 0.738 0.634 0.613
csubj 0.889 0.895 0.283 0.467 0.623 0.751 0.563 0.761 0.814 0.799 0.557 0.567
dep 0.868 0.798 0.599 0.386 0.584 0.777 0.552 0.703 0.708 0.751 0.447 0.428
det 0.860 0.753 0.937 0.386 0.414 0.721 0.535 0.707 0.573 0.677 0.572 0.511
discourse:sp 0.898 0.810 0.961 0.855 0.784 0.804 0.635 0.802 0.638 0.747 0.627 0.615
flat 0.884 0.858 0.277 0.220 0.408 0.776 0.364 0.607 0.511 0.731 0.542 0.644
flat:name 0.868 0.769 0.330 0.285 0.579 0.594 0.644 0.689 0.594 0.643 0.374 0.409
iobj 0.674 0.478 0.427 0.798 0.382 0.679 0.635 0.701 0.719 0.414 0.289 0.391
mark 0.880 0.705 0.596 0.478 0.418 0.749 0.598 0.722 0.682 0.683 0.467 0.432
mark:adv 0.992 0.936 0.961 0.993 0.698 0.999 0.993 0.984 0.973 0.833 0.999 0.994
mark:prt 0.847 0.741 0.249 0.639 0.354 0.703 0.560 0.697 0.601 0.697 0.644 0.727
mark:relcl 0.889 0.771 0.859 0.545 0.418 0.674 0.484 0.686 0.607 0.655 0.484 0.494
nmod 0.882 0.751 0.870 0.584 0.566 0.668 0.485 0.675 0.579 0.620 0.569 0.593
nsubj 0.863 0.788 0.874 0.437 0.555 0.751 0.538 0.725 0.619 0.691 0.532 0.515
nsubj:pass 0.869 0.729 0.979 0.664 0.690 0.480 0.649 0.728 0.589 0.754 0.531 0.505
nummod 0.870 0.785 0.380 0.274 0.560 0.691 0.519 0.696 0.649 0.697 0.459 0.512
obj 0.873 0.792 0.881 0.469 0.507 0.720 0.577 0.713 0.639 0.683 0.507 0.493
obl 0.881 0.747 0.898 0.491 0.514 0.670 0.498 0.698 0.619 0.602 0.514 0.504
obl:agent 0.956 0.922 0.675 0.753 0.633 0.782 0.900 0.904 0.812 0.764 0.657 0.456
obl:patient 0.840 0.767 0.688 0.580 0.770 0.633 0.737 0.730 0.408 0.560 0.416 0.559
obl:tmod 0.867 0.763 0.391 0.200 0.357 0.817 0.587 0.739 0.697 0.697 0.294 0.403
xcomp 0.831 0.790 0.776 0.519 0.474 0.769 0.682 0.769 0.564 0.400 0.577 0.322
root 0.863 0.791 0.893 0.216 0.541 0.757 0.561 0.741 0.638 0.704 0.503 0.494
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Table 13
Comparison of the representation from BERT in the baseline and SGBD model when tested on Chinese sentences containing target dependency.

Baseline vs SGBD
Zh Relations L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
acl:relcl 0.902 0.726 0.267 0.237 0.231 0.574 0.339 0.554 0.477 0.554 0.425 0.444
advcl 0.893 0.747 0.278 0.425 0.251 0.554 0.425 0.522 0.454 0.507 0.386 0.411
advmod 0.874 0.768 0.262 0.260 0.401 0.664 0.409 0.492 0.493 0.581 0.448 0.548
amod 0.813 0.688 0.569 0.476 0.411 0.498 0.217 0.364 0.289 0.411 0.260 0.416
appos 0.905 0.779 0.463 0.454 0.357 0.657 0.432 0.455 0.457 0.610 0.466 0.449
aux 0.884 0.770 0.369 0.291 0.400 0.622 0.443 0.512 0.483 0.559 0.458 0.489
aux:pass 0.915 0.692 0.463 0.591 0.728 0.656 0.473 0.355 0.360 0.676 0.386 0.531
case 0.884 0.736 0.678 0.456 0.272 0.573 0.363 0.444 0.435 0.526 0.424 0.492
case:loc 0.909 0.771 0.372 0.297 0.299 0.627 0.391 0.491 0.477 0.489 0.379 0.475
cc 0.885 0.780 0.607 0.362 0.354 0.540 0.360 0.410 0.535 0.660 0.496 0.448
ccomp 0.886 0.725 0.355 0.249 0.400 0.666 0.381 0.459 0.400 0.482 0.401 0.449
clf 0.881 0.725 0.635 0.421 0.378 0.597 0.392 0.500 0.490 0.540 0.371 0.425
compound 0.888 0.750 0.484 0.398 0.308 0.639 0.388 0.447 0.438 0.550 0.443 0.434
conj 0.887 0.777 0.599 0.340 0.452 0.552 0.346 0.405 0.515 0.654 0.494 0.555
cop 0.894 0.772 0.431 0.434 0.272 0.638 0.455 0.524 0.510 0.498 0.480 0.393
csubj 0.913 0.820 0.748 0.591 0.483 0.831 0.347 0.655 0.563 0.643 0.608 0.689
dep 0.881 0.819 0.523 0.491 0.420 0.627 0.436 0.470 0.513 0.566 0.395 0.419
det 0.855 0.713 0.269 0.217 0.285 0.581 0.355 0.517 0.507 0.578 0.384 0.406
discourse:sp 0.922 0.747 0.234 0.603 0.614 0.705 0.409 0.577 0.640 0.760 0.578 0.434
flat 0.891 0.857 0.342 0.445 0.257 0.585 0.342 0.457 0.400 0.682 0.442 0.486
flat:name 0.897 0.776 0.282 0.419 0.274 0.481 0.385 0.362 0.395 0.482 0.309 0.455
iobj 0.699 0.917 0.556 0.470 0.357 0.669 0.695 0.560 0.598 0.467 0.386 0.558
mark 0.901 0.723 0.407 0.408 0.434 0.641 0.684 0.469 0.452 0.428 0.482 0.417
mark:adv 0.970 0.994 0.883 0.992 0.975 0.999 0.993 0.988 0.657 0.716 0.984 0.958
mark:prt 0.883 0.800 0.759 0.527 0.240 0.584 0.346 0.544 0.451 0.482 0.377 0.446
mark:relcl 0.892 0.754 0.459 0.226 0.239 0.575 0.352 0.520 0.478 0.551 0.452 0.520
nmod 0.874 0.737 0.552 0.424 0.298 0.595 0.353 0.422 0.439 0.510 0.395 0.495
nsubj 0.879 0.777 0.508 0.427 0.436 0.662 0.412 0.501 0.492 0.560 0.462 0.554
nsubj:pass 0.909 0.755 0.508 0.601 0.765 0.553 0.552 0.504 0.488 0.678 0.389 0.524
nummod 0.886 0.790 0.237 0.371 0.384 0.606 0.375 0.467 0.490 0.575 0.434 0.533
obj 0.880 0.779 0.424 0.272 0.388 0.626 0.413 0.496 0.509 0.554 0.451 0.435
obl 0.907 0.717 0.585 0.430 0.218 0.575 0.366 0.503 0.515 0.570 0.480 0.430
obl:agent 0.953 0.864 0.920 0.860 0.374 0.635 0.496 0.706 0.687 0.768 0.653 0.639
obl:patient 0.822 0.789 0.654 0.720 0.604 0.673 0.502 0.540 0.345 0.586 0.480 0.530
obl:tmod 0.872 0.781 0.442 0.229 0.375 0.589 0.377 0.536 0.571 0.647 0.544 0.605
xcomp 0.900 0.747 0.220 0.330 0.347 0.692 0.468 0.497 0.505 0.576 0.465 0.433
root 0.878 0.781 0.413 0.390 0.431 0.669 0.433 0.525 0.511 0.583 0.480 0.460
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Table 14
Comparison of the representation from BERT in the baseline and SGBC model when tested on Russian sentences containing target dependency.

Baseline vs SGBC
Ru Relations L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
acl 0.824 0.424 0.392 0.625 0.555 0.738 0.646 0.618 0.571 0.644 0.641 0.559
acl:relcl 0.617 0.309 0.310 0.454 0.412 0.640 0.519 0.635 0.576 0.553 0.506 0.475
advcl 0.710 0.613 0.556 0.609 0.409 0.631 0.623 0.734 0.756 0.748 0.685 0.587
advmod 0.877 0.608 0.428 0.651 0.618 0.764 0.711 0.723 0.721 0.746 0.734 0.618
amod 0.855 0.572 0.444 0.635 0.576 0.731 0.668 0.694 0.693 0.731 0.722 0.597
appos 0.679 0.617 0.286 0.700 0.606 0.707 0.591 0.700 0.769 0.774 0.787 0.569
aux 0.627 0.590 0.504 0.445 0.556 0.527 0.303 0.690 0.768 0.571 0.431 0.396
aux:pass 0.699 0.528 0.357 0.706 0.644 0.730 0.586 0.632 0.605 0.691 0.742 0.560
case 0.856 0.574 0.572 0.462 0.591 0.756 0.694 0.725 0.721 0.740 0.733 0.624
cc 0.872 0.679 0.365 0.654 0.584 0.740 0.726 0.731 0.746 0.766 0.743 0.594
ccomp 0.600 0.566 0.320 0.568 0.561 0.714 0.716 0.806 0.835 0.792 0.778 0.700
compound 0.636 0.587 0.603 0.477 0.474 0.996 0.975 0.988 0.940 0.614 0.942 0.994
conj 0.821 0.663 0.355 0.641 0.595 0.744 0.738 0.739 0.751 0.753 0.743 0.585
cop 0.803 0.548 0.317 0.629 0.547 0.797 0.593 0.633 0.723 0.757 0.768 0.612
csubj 0.525 0.463 0.480 0.368 0.426 0.432 0.517 0.750 0.707 0.621 0.475 0.332
det 0.851 0.670 0.626 0.426 0.537 0.721 0.642 0.678 0.707 0.744 0.713 0.607
fixed 0.759 0.579 0.578 0.633 0.641 0.659 0.615 0.689 0.685 0.699 0.671 0.578
flat 0.665 0.404 0.514 0.572 0.565 0.608 0.484 0.666 0.677 0.627 0.593 0.424
flat:foreign 0.704 0.435 0.548 0.588 0.604 0.704 0.554 0.729 0.758 0.700 0.604 0.419
flat:name 0.703 0.533 0.442 0.596 0.636 0.748 0.629 0.658 0.639 0.599 0.596 0.555
iobj 0.629 0.474 0.553 0.685 0.606 0.659 0.603 0.719 0.697 0.655 0.673 0.556
mark 0.668 0.528 0.231 0.500 0.516 0.629 0.603 0.699 0.723 0.691 0.642 0.498
nmod 0.860 0.478 0.453 0.648 0.544 0.740 0.658 0.696 0.699 0.730 0.726 0.610
nsubj 0.820 0.584 0.466 0.687 0.567 0.732 0.685 0.718 0.719 0.738 0.729 0.596
nsubj:pass 0.711 0.580 0.336 0.723 0.561 0.711 0.575 0.614 0.618 0.708 0.732 0.610
nummod 0.575 0.624 0.270 0.515 0.610 0.689 0.526 0.669 0.618 0.591 0.562 0.445
nummod:gov 0.640 0.401 0.443 0.579 0.759 0.783 0.531 0.612 0.589 0.644 0.640 0.543
obj 0.756 0.542 0.483 0.661 0.506 0.691 0.641 0.683 0.645 0.675 0.674 0.535
obl 0.764 0.592 0.479 0.657 0.568 0.746 0.684 0.711 0.702 0.709 0.704 0.591
obl:agent 0.638 0.394 0.509 0.825 0.837 0.891 0.851 0.340 0.582 0.717 0.770 0.607
orphan 0.733 0.661 0.241 0.620 0.937 0.800 0.519 0.330 0.651 0.424 0.558 0.638
parataxis 0.825 0.629 0.391 0.598 0.659 0.786 0.714 0.723 0.683 0.670 0.621 0.680
xcomp 0.756 0.658 0.486 0.683 0.575 0.762 0.712 0.731 0.748 0.761 0.754 0.620
root 0.855 0.587 0.466 0.704 0.597 0.751 0.701 0.729 0.722 0.744 0.739 0.623



Y. Dai et al. / Graph-ic Improvements: Adding Explicit Syntactic Graphs to Neural Machine Translation 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 15
Comparison of the representation from BERT in the baseline and SGBD model when tested on Russian sentences containing target dependency.

Baseline vs SGBD
Ru Relations L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
acl 0.918 0.416 0.296 0.617 0.501 0.541 0.611 0.562 0.573 0.752 0.779 0.627
acl:relcl 0.505 0.299 0.292 0.484 0.402 0.474 0.606 0.643 0.628 0.739 0.744 0.651
advcl 0.585 0.541 0.489 0.508 0.505 0.562 0.665 0.676 0.692 0.747 0.804 0.686
advmod 0.931 0.442 0.509 0.608 0.613 0.646 0.731 0.720 0.710 0.830 0.846 0.666
amod 0.910 0.548 0.488 0.391 0.573 0.605 0.679 0.683 0.674 0.796 0.777 0.594
appos 0.574 0.331 0.303 0.614 0.432 0.517 0.618 0.715 0.740 0.787 0.731 0.581
aux 0.344 0.563 0.494 0.457 0.433 0.288 0.321 0.208 0.321 0.496 0.458 0.401
aux:pass 0.491 0.385 0.327 0.537 0.633 0.528 0.618 0.708 0.723 0.779 0.669 0.588
case 0.903 0.502 0.504 0.413 0.602 0.634 0.721 0.722 0.721 0.808 0.808 0.639
cc 0.943 0.392 0.417 0.624 0.590 0.626 0.705 0.719 0.724 0.822 0.826 0.646
ccomp 0.517 0.432 0.341 0.521 0.540 0.615 0.722 0.741 0.763 0.864 0.885 0.667
compound 0.699 0.777 0.474 0.902 0.365 0.902 0.991 0.764 0.996 0.988 0.954 0.955
conj 0.887 0.442 0.452 0.600 0.402 0.594 0.687 0.698 0.707 0.799 0.797 0.634
cop 0.651 0.415 0.545 0.536 0.586 0.722 0.729 0.668 0.761 0.833 0.758 0.583
csubj 0.450 0.488 0.473 0.417 0.496 0.229 0.480 0.603 0.676 0.544 0.468 0.393
det 0.895 0.446 0.408 0.675 0.616 0.673 0.759 0.755 0.774 0.848 0.854 0.742
fixed 0.666 0.415 0.516 0.673 0.605 0.599 0.698 0.644 0.683 0.800 0.748 0.603
flat 0.643 0.511 0.452 0.519 0.430 0.512 0.627 0.690 0.711 0.749 0.764 0.620
flat:foreign 0.638 0.520 0.387 0.542 0.523 0.545 0.621 0.683 0.728 0.772 0.786 0.677
flat:name 0.657 0.357 0.472 0.587 0.546 0.531 0.647 0.664 0.678 0.786 0.772 0.641
iobj 0.519 0.287 0.599 0.663 0.552 0.563 0.675 0.690 0.671 0.787 0.821 0.699
mark 0.537 0.367 0.274 0.288 0.515 0.591 0.711 0.714 0.724 0.817 0.842 0.704
nmod 0.911 0.379 0.462 0.596 0.573 0.611 0.686 0.682 0.677 0.787 0.771 0.594
nsubj 0.884 0.528 0.508 0.623 0.576 0.621 0.706 0.720 0.711 0.803 0.785 0.598
nsubj:pass 0.504 0.314 0.292 0.538 0.585 0.574 0.634 0.667 0.695 0.791 0.703 0.551
nummod 0.467 0.588 0.389 0.525 0.426 0.460 0.555 0.648 0.647 0.786 0.827 0.703
nummod:gov 0.570 0.536 0.331 0.686 0.523 0.595 0.682 0.689 0.726 0.825 0.815 0.639
obj 0.826 0.578 0.487 0.598 0.508 0.609 0.703 0.717 0.717 0.793 0.775 0.613
obl 0.797 0.520 0.507 0.619 0.572 0.618 0.715 0.720 0.721 0.780 0.756 0.579
obl:agent 0.806 0.454 0.250 0.742 0.744 0.607 0.472 0.633 0.640 0.694 0.479 0.299
orphan 0.301 0.240 0.524 0.420 0.750 0.709 0.579 0.427 0.419 0.322 0.228 0.243
parataxis 0.935 0.444 0.472 0.657 0.574 0.618 0.704 0.733 0.711 0.828 0.833 0.643
xcomp 0.611 0.587 0.593 0.565 0.569 0.665 0.729 0.765 0.754 0.830 0.808 0.648
root 0.901 0.506 0.504 0.637 0.612 0.649 0.720 0.724 0.716 0.806 0.787 0.612
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Table 16
Comparison of the representation from BERT in the baseline and SGBC model when tested on German sentences containing target dependency.

Baseline vs SGBC
De Relations L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
acl:relcl 0.696 0.776 0.763 0.690 0.601 0.604 0.670 0.627 0.621 0.629 0.613 0.629
advcl 0.640 0.776 0.781 0.716 0.645 0.506 0.632 0.602 0.572 0.514 0.527 0.575
advmod 0.775 0.819 0.841 0.800 0.737 0.733 0.750 0.793 0.747 0.790 0.750 0.748
amod 0.651 0.739 0.774 0.721 0.631 0.662 0.708 0.645 0.670 0.641 0.644 0.663
appos 0.695 0.766 0.814 0.751 0.682 0.664 0.702 0.667 0.671 0.678 0.680 0.674
aux 0.649 0.796 0.795 0.716 0.657 0.649 0.638 0.669 0.690 0.700 0.670 0.648
aux:pass 0.644 0.735 0.766 0.723 0.627 0.721 0.684 0.661 0.700 0.641 0.629 0.661
case 0.734 0.773 0.781 0.747 0.686 0.694 0.708 0.691 0.689 0.699 0.765 0.716
cc 0.613 0.721 0.719 0.675 0.602 0.591 0.631 0.592 0.606 0.595 0.595 0.598
ccomp 0.686 0.768 0.824 0.767 0.757 0.695 0.661 0.698 0.702 0.706 0.729 0.664
compound 0.687 0.780 0.785 0.733 0.661 0.649 0.721 0.700 0.688 0.653 0.654 0.691
compound:prt 0.671 0.760 0.763 0.662 0.703 0.694 0.730 0.680 0.717 0.735 0.681 0.790
conj 0.586 0.716 0.712 0.661 0.588 0.583 0.620 0.588 0.588 0.592 0.595 0.611
cop 0.679 0.794 0.808 0.772 0.649 0.690 0.753 0.735 0.730 0.670 0.695 0.726
csubj 0.686 0.730 0.860 0.809 0.770 0.853 0.798 0.660 0.824 0.860 0.714 0.737
cc:preconj 0.633 0.443 0.411 0.823 0.647 0.557 0.563 0.471 0.424 0.471 0.462 0.415
csubj:pass 0.868 0.742 0.886 0.904 0.492 0.937 0.977 0.731 0.760 0.806 0.785 0.638
det 0.628 0.757 0.773 0.724 0.654 0.694 0.702 0.584 0.597 0.596 0.587 0.597
expl 0.568 0.803 0.658 0.669 0.607 0.438 0.653 0.442 0.566 0.600 0.452 0.443
flat 0.609 0.770 0.921 0.721 0.761 0.554 0.923 0.455 0.577 0.520 0.786 0.649
flat:name 0.686 0.719 0.729 0.698 0.678 0.633 0.706 0.677 0.662 0.641 0.649 0.672
iobj 0.692 0.826 0.792 0.706 0.681 0.784 0.735 0.692 0.698 0.728 0.781 0.803
mark 0.693 0.787 0.799 0.752 0.701 0.676 0.684 0.696 0.708 0.681 0.682 0.693
nmod 0.725 0.767 0.776 0.750 0.677 0.711 0.695 0.586 0.649 0.649 0.617 0.657
nmod:poss 0.694 0.758 0.758 0.731 0.667 0.719 0.681 0.689 0.671 0.694 0.671 0.681
nsubj 0.655 0.794 0.806 0.768 0.695 0.705 0.725 0.610 0.780 0.788 0.793 0.760
nsubj:pass 0.694 0.758 0.758 0.731 0.667 0.719 0.681 0.689 0.671 0.694 0.671 0.681
nummod 0.716 0.858 0.839 0.728 0.714 0.705 0.730 0.777 0.790 0.714 0.741 0.729
obj 0.625 0.773 0.785 0.729 0.654 0.672 0.682 0.528 0.534 0.646 0.640 0.671
obl 0.659 0.767 0.776 0.753 0.684 0.685 0.703 0.656 0.678 0.663 0.667 0.706
obl:tmod 0.683 0.741 0.791 0.716 0.660 0.740 0.696 0.696 0.732 0.686 0.681 0.815
parataxis 0.652 0.798 0.792 0.756 0.775 0.674 0.645 0.658 0.700 0.667 0.674 0.689
xcomp 0.841 0.884 0.885 0.806 0.802 0.822 0.818 0.852 0.884 0.863 0.816 0.827
root 0.782 0.843 0.841 0.834 0.765 0.726 0.736 0.758 0.783 0.763 0.754 0.739
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Table 17
Comparison of the representation from BERT in the baseline and SGBD model when tested on German sentences containing target dependency.

Baseline vs SGBD
De Relations L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
acl:relcl 0.793 0.740 0.860 0.831 0.845 0.883 0.850 0.828 0.863 0.801 0.778 0.689
advcl 0.773 0.720 0.843 0.815 0.820 0.894 0.867 0.856 0.894 0.842 0.840 0.747
advmod 0.782 0.796 0.849 0.832 0.856 0.859 0.827 0.774 0.787 0.783 0.785 0.794
amod 0.773 0.732 0.802 0.816 0.844 0.808 0.801 0.800 0.812 0.768 0.766 0.780
appos 0.762 0.778 0.806 0.830 0.855 0.729 0.812 0.820 0.817 0.767 0.735 0.788
aux 0.747 0.735 0.833 0.810 0.836 0.796 0.717 0.777 0.781 0.742 0.746 0.734
aux:pass 0.766 0.728 0.799 0.839 0.867 0.825 0.825 0.806 0.815 0.746 0.798 0.748
case 0.774 0.759 0.819 0.812 0.849 0.830 0.825 0.820 0.826 0.790 0.797 0.797
cc 0.777 0.780 0.764 0.789 0.816 0.741 0.775 0.766 0.779 0.759 0.749 0.742
ccomp 0.792 0.794 0.822 0.831 0.877 0.841 0.829 0.829 0.818 0.775 0.788 0.798
compound 0.790 0.788 0.845 0.847 0.849 0.797 0.778 0.789 0.790 0.798 0.790 0.780
compound:prt 0.795 0.795 0.808 0.791 0.827 0.811 0.831 0.850 0.879 0.865 0.835 0.804
conj 0.797 0.787 0.795 0.784 0.814 0.773 0.784 0.778 0.787 0.786 0.780 0.783
cop 0.792 0.779 0.839 0.831 0.874 0.855 0.840 0.830 0.839 0.801 0.797 0.790
csubj 0.679 0.767 0.939 0.901 0.922 0.651 0.668 0.664 0.710 0.792 0.733 0.692
cc:preconj 0.634 0.557 0.642 0.684 0.818 0.459 0.411 0.595 0.678 0.673 0.644 0.520
csubj:pass 0.843 0.805 0.799 0.770 0.786 0.850 0.897 0.839 0.773 0.774 0.781 0.800
det 0.872 0.889 0.837 0.819 0.836 0.817 0.851 0.849 0.831 0.820 0.866 0.827
expl 0.753 0.770 0.719 0.850 0.884 0.840 0.822 0.829 0.860 0.843 0.824 0.786
flat 0.679 0.610 0.913 0.958 0.933 0.956 0.977 0.958 0.953 0.835 0.747 0.779
flat:name 0.682 0.643 0.817 0.831 0.869 0.833 0.829 0.833 0.832 0.811 0.777 0.655
iobj 0.769 0.797 0.791 0.746 0.793 0.832 0.889 0.871 0.881 0.869 0.843 0.789
mark 0.804 0.812 0.798 0.804 0.848 0.796 0.813 0.814 0.802 0.802 0.799 0.801
nmod 0.759 0.716 0.834 0.825 0.835 0.824 0.814 0.744 0.735 0.762 0.748 0.744
nmod:poss 0.796 0.795 0.793 0.809 0.841 0.768 0.815 0.786 0.785 0.792 0.782 0.797
nsubj 0.794 0.795 0.835 0.820 0.854 0.851 0.834 0.717 0.735 0.731 0.771 0.723
nsubj:pass 0.888 0.875 0.821 0.853 0.878 0.829 0.828 0.808 0.819 0.855 0.819 0.882
nummod 0.844 0.879 0.847 0.842 0.841 0.856 0.854 0.854 0.859 0.892 0.871 0.849
obj 0.775 0.784 0.801 0.799 0.824 0.812 0.797 0.732 0.793 0.760 0.791 0.799
obl 0.787 0.793 0.814 0.812 0.850 0.828 0.820 0.814 0.818 0.780 0.746 0.782
obl:tmod 0.794 0.805 0.829 0.816 0.870 0.805 0.752 0.815 0.849 0.844 0.858 0.851
parataxis 0.792 0.792 0.811 0.877 0.866 0.776 0.726 0.729 0.754 0.753 0.739 0.767
xcomp 0.877 0.889 0.861 0.847 0.868 0.858 0.858 0.855 0.856 0.888 0.893 0.875
root 0.797 0.795 0.828 0.819 0.854 0.846 0.829 0.717 0.791 0.728 0.772 0.743
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