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Abstract. Artificial Intelligence (AI)-based drug repurposing is an emerging strategy to identify drug candidates to treat rare
diseases. However, cutting-edge algorithms based on Deep Learning (DL) typically don’t provide a human understandable ex-
planation supporting their predictions. This is a problem because it hampers the biologists’ ability to decide which predictions
are the most plausible drug candidates to test in costly lab experiments. In this study, we propose rd-explainer a novel AI drug
repurposing method for rare diseases which obtains possible drug candidates together with human understandable explanations.
The method is based on Graph Neural Network (GNN) technology and explanations were generated as semantic graphs using
state-of-the-art eXplainable AI (XAI). The model learns features from current background knowledge on the target rare disease
structured as a Knowledge Graph (KG), which integrates curated facts and their evidence on different biomedical entities such
as symptoms, drugs, genes and ortholog genes. Our experiments demonstrate that our method has excellent performance that is
superior to state-of-the-art models. We investigated the application of XAI on drug repurposing for rare diseases and we prove
our method is capable of discovering plausible drug candidates based on testable explanations. The data and code are publicly
available at https://github.com/PPerdomoQ/rare-disease-explainer.

Keywords: Rare Disease (RD), Knowledge Graph (KG), Drug Repurposing, Graph Neural Network (GNN), Explainable AI
(XAI)

1. Highlights

– We demonstrated the use of graph-based explainable AI for drug repurposing on rare diseases to accelerate
sound discovery of new therapies for this underrepresented group.

– We developed rd-explainer for rare disease specific drug research for faster translation. It predicts drugs to treat
symptoms/phenotypes, it is highly performant and novel candidates are plausible according to evidence in the
scientific literature and clinical trials. Key is that it learns a GNN model that is trained on a knowledge graph
built specifically for a rare disease. We provide rd-explainer code freely available for the community.

– rd-explainer is researcher-centric interpretable ML for hypothesis generation and lab-in-the-loop drug research.
Explanations of predictions are semantic graphs in line with human reasoning.

– We detected an effect of knowledge graph topology on explainability. This highlights the importance of knowl-
edge representation for the drug repurposing task.

*Corresponding author. E-mail: n.queralt_rosinach@lumc.nl.
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2. Introduction

Developing new drugs can be a challenging effort that often ends with the drug not being able to launch. Recent
studies have shown that around 90% of drugs fail to be approved during their clinical development [1]. This leads
to a fruitless expenditure of both time and money that will yield no financial returns. The situation is even worse in
the case of rare diseases, as pharmaceutical companies may consider it risky to invest large amounts of resources
into developing drugs that only a small percent of the population will need. Nonetheless, in total, human beings are
affected by approximately 7,000 rare diseases, of which only 5% have an effective treatment [2]; and only in Europe
about 36 million people suffer from rare diseases [3].

In this scenario, drug repurposing strategies have appeared as a possible approach to solve these issues. By reusing
drugs that have already been approved, companies can avoid many of the costly and time-consuming steps of clinical
trials. In this context, innovative approaches to drug repurposing, such as computational strategies and AI-driven
methodologies, have emerged as promising solutions to address these challenges. Graph-based drug repurposing is
another noticeable strategy that has gained attention in recent years. By constructing intricate networks of molecular
interactions, genes, proteins, and diseases, this approach unveils hidden relationships and connections that might
otherwise go unnoticed [4].

Still, many people remain skeptical about AI-driven decisions, specially Machine Learning (ML) and Deep Learn-
ing (DL), as many of them come with no explanation that can help to understand the reason why they should be
trusted (also called black-box AI). This issue is especially significant in the healthcare field, where decisions may
have an important impact on people’s lives. Also, giving valid explanations can help researchers to point in the
right direction in the generation of hypotheses that are testable in the lab and enable a solid knowledge discovery.
Furthermore, the EU General Data Protection Regulation (GDPR) is requesting the AI industry to fulfill the ’right
to explanation’ [5]. This ’right to explanation’ implies that when a decision is significantly affected by an automated
process/algorithm, the individual can demand an explanation. In recent years, many different tools have appeared to
try and cover this gap in the emerging explainable AI (XAI) research area [6–8].

In this study, we explore whether AI can be used to produce both predictions and explanations in computational
drug repurposing for rare diseases and, if so, how helpful can these explanations be for hypothesis generation. The
main objective of this work was to develop and implement a pipeline to find marketed drugs that can be used to
treat the symptoms of a rare disease. Our approach is based on cutting-edge AI algorithms used in computational
drug repurposing such as graph ML using knowledge graphs (KG) and graph neural networks (GNN), and XAI
methodology to provide the explanations supporting the drug predictions made by the AI model. The approach was
evaluated by selecting Duchenne muscular dystrophy (DMD) as a case study, a genetic disorder that is the most
common form of muscular dystrophy [9]. We demonstrate the generalizability of our approach by applying the
pipeline to different rare diseases.

3. Related work

3.1. Knowledge graph-based drug repurposing

The state-of-the-art of computational drug repurposing approaches make use of graph-based structures and AI
techniques to find potential drug candidates. One of the main advantages of using graph structures is that they can
easily incorporate information from different sources. This is especially important in the domain of rare diseases,
where information is distributed and often scarce. The ability to integrate as much relevant data as possible can
confer a significant advantage. An example of this would be the recent study of Al Saleem et al. [10], where a
knowledge graph was used to discover drug candidates to treat COVID-19.

Different ML algorithms can be used to analyse knowledge graphs, including matrix factorization, random-walk
approaches (node2vec [11]), geometric embeddings (DistMul [12]) and GNNs [13, 14], each one of them with its
own advantages and disadvantages, see Table 1. In our study, we used a combination of random-walk approaches
and GNNs as in contrast to other methods (like matrix factorization or geometric embeddings) they can easily
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incorporate new information without the need of retraining the ML model. This is especially relevant in the field of
drug repurposing where new information about drugs, genes and diseases is being published [15–17].

Table 1
Table showing the main advantages and disadvantages of different graph ML methods.

Method Example Advantages Disadvantages

Matrix factorization ADA-GRMFC [18] Simple Model
Global Information

Computationally expensive
Scalability
Difficult to include new values

Random-walks node2vec [11] Simple model
Computationally efficient

Only local information
Can’t learn from features
Can’t capture structural information

Geometric Embeddings DistMult [19] Interpretability
Good performance

Only local information
Can’t capture structural information

GNNs GraphSAGE [20] Global and local information
Structural information

Black-box
Computationally expensive

3.2. Explainable AI on graph ML

One of the graph-based methods that can provide explanations of the predictions, also called local explanations, is
(Graph)LIME [6], an adaptation of the popular and more general explainability method LIME [7]. The idea behind
this method is the following: when trying to get an explanation for a given prediction, (Graph)LIME performs
small perturbations to the features of nodes, and sees how the predictions vary with respect to the initial prediction.
The more the prediction changes, the more the model is relying on that feature to obtain its prediction. This way,
explanations in this model are given in the form of a set of node features. Among its drawbacks, this method can
only be used in node classification tasks. Another explainability method is CRIAGE [8] where explanations are
given as a set of rules.

Finally, the method chosen in this work is GNNExplainer [21]. The insight of how this method works is the
following: given an initial prediction (link prediction, node classification or graph classification) obtained through
a GNN, GNNExplainer finds a subset of node features and edges that are responsible for the prediction. This
subset is obtained by training an edge and node mask. This method was chosen as explanations are provided in
the form of a subgraph that can be easily understandable. Additionally, it is a post-hoc XAI method, i.e., it is
model-agnostic, which means that if more sophisticated GNNs are developed in the future, these new GNNs can be
easily incorporated into the pipeline. These features make it a popular method in the research community [22–24].
However, a major drawback is that it lacks consistency when obtaining explanations. This means that explanations
on the same prediction can significantly change if running GNNExplainer several times.

4. Methods

4.1. rd-explainer method overview

rd-explainer is the drug repurposing method we developed for rare diseases and its pipeline is illustrated in Figure
1. rd-explainer has three modules: the Knowledge Graph Construction module constructs a KG for the specific rare
disease and drug repurposing task, the Prediction module trains a GNN model and predicts drug candidates for the
rare disease symptoms, and the Explainer module computes the most important semantic subgraphs that explain
the connection between the predicted drug and the symptom. Firstly, information related to the disease is gathered
from different data sources: Monarch Initiative knowledge base [25] for disease pathology, and DrugCentral [26]
and Therapeutic Target Database [27] for disease druggability. This information is then preprocessed and captured
as a knowledge graph. Next, for each node in the graph a feature vector is obtained that will be used as input for
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the GNN model. This is done by making use of a method known as edge2vec [28] to consider the different edge
semantics in the KG for node embedding learning. We used the version extracted from GitHub (accessed in 2021)
1. The following step is to build and train the GNN model, which is done using the GraphSAGE framework for
graph representation learning [20]. Next, it is the link prediction for each drug-symptom node embeddings pair by
using the dot product as scoring function. Finally, we produced prediction explanations as semantic graphs using
GNNExplainer [21], a recent and, to our knowledge, one of the first XAI methods for obtaining explanations from
GNN predictions. GraphSAGE and GNNExplainer were implemented using using Pytorch Geometric version 2.0.4.

The code is freely accessible with an open license at https://github.com/PPerdomoQ/rare-disease-explainer.

Fig. 1. rd-explainer drug repurposing method pipeline developed in this work.

4.2. Rare disease-specific drug repurposing knowledge graphs

4.2.1. Data sources
Data was obtained from three different sources: Monarch [25] (accessed in 2021), DrugCentral [26] (2021 ver-

sion) and Therapeutic Target Database (TTD) [27] (November 8th, 2021 version). Monarch is a knowledge base
built on semantic principles, unifying gene, variant, genotype, phenotype, and disease data across different species.
Its primary aim is to establish links between genes and phenotypes, thereby facilitating computational exploration of
human disease biology. Monarch was chosen as it contains curated information across different species. This way,
because rare diseases are often less studied than common diseases, incorporating information from other species
can maximize the amount of knowledge in the graph. However, Monarch does not specialize in drug information.

Drug information was incorporated from DrugCentral (drug-target information) and from Therapeutic Target
Database (drug-disease information). DrugCentral is a comprehensive online database that provides information
about approved drugs, active ingredients and other pharmaceutical products. One of its major features is that it
is open source and its data is freely available to anyone. For this project, we made use only of the drug-target
information (as it is the main piece of information that is not present in Monarch) downloaded as a tsv file from
their site [27] 2. Similarly, TTD is a database that specializes in drugs and their respective therapeutic targets. Once

1https://github.com/RoyZhengGao/edge2vec
2DrugCentral, Download site, accessed March 2022, https://unmtid-dbs.net/download/DrugCentral/2021_09_01/drug.target.interaction.tsv.gz

https://github.com/PPerdomoQ/rare-disease-explainer
https://github.com/RoyZhengGao/edge2vec
https://unmtid-dbs.net/download/DrugCentral/2021_09_01/drug.target.interaction.tsv.gz
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more, this database is freely accessible and its information can be easily downloaded in csv format (in this project,
we just made use of the drug-disease information [27] 3, once again because it is the information that is missing in
Monarch).

4.2.2. Knowledge graph construction
To extract information from Monarch, the BioKnowledge Reviewer [29] tool version 1.0 was used. This tool was

originally created to collect knowledge from several sources and create a knowledge graph that could be later used
for hypothesis generation. It works by using several seeds (node identifiers (IDs)) as input to query the Monarch API
and constructing the graph based on the neighborhood of those seeds. After introducing the seeds in the BioKnowl-
edge Reviewer pipeline, the final output is the rare disease research question specific knowledge graph structured in
two dataframes (stored as csv files). One of them contains a list of nodes with their respective name, IDs, semantic
entity type, synonyms and description. The second file contains the list of edges, again containing the IDs of the en-
tities participating in each link and other edge information such as type of edge, supporting evidence and reference
date. Monarch was our main source of information, and so it served as a starting point to create the rest of the graph.
This way, data from other data sources was modified to fit Monarch’s standards. Finally, the graphs were constructed
using the networkx Python library [30] version 2.3.6. With this library the dataframes extracted using BioKnowledge
Reviewer were converted into a Graph object. For a more detailed understanding of the knowledge graph generation
process, please consult the associated code available at: https://github.com/PPerdomoQ/rare-disease-explainer.

We integrated data in two different knowledge graphs to perform the experiments. Each one of them was con-
structed using different (number of) node seeds to extract information from Monarch. The first one (KG A) only
uses two seeds: DMD seed (HGNC:2928), corresponding to the human gene that causes the disease; and DMD seed
(MONDO:0010679), corresponding to the disease itself. The second graph (KG B), extends KG A by including as
seeds all phenotypes of the rare disease (in total, 27 more seeds). The seeds used for the construction of each graph
can be found in Tables S1 and S2. The idea of creating two different graphs is to find out if the performance of the
model and the quality of the explanations increases by incorporating more (phenotypic) information.

4.3. ML model and XAI

4.3.1. Node features
At this point, none of the nodes have any specific node features. It is possible to run a GNN relying only on graph

information, i.e., network topology (this is done, for example, by using the node degree as graph feature); nonethe-
less, this resulted in a poor performance (results not shown). To increase the efficiency of the model, edge2vec was
used to produce a specific embedding for each node that captures information about its neighborhood. edge2vec [28]
is a tool that generates node embeddings based on the node neighborhood and types of edges connecting each node.
After executing edge2vec, each node was given a unique feature vector.

4.3.2. Data splitting
As any other machine learning task, data needs to be splitted into training, (validation) and test sets. However,

when tackling a link prediction task, there are different ways to perform this split. In link or edge prediction tasks,
edges can be divided into two groups: message passing edges and supervision edges. Message passing edges are
the ones that will be used by our GNN to obtain the embeddings, while supervision edges are the ones that will be
used to test the performance of our model [31, 32]. Additionally, when creating the supervision edges it is necessary
to include negative examples by applying negative sampling. These negative sample edges are edges that are not
present in our original graph, i.e., entities that it is known are not linked or there is no known link between them,
and the idea is that the neural network is able to learn to distinguish true or positive edges from false or negative
edges. In general, one negative edge is created for each true edge [31, 32].

In this work, the method that was selected was the all-graph transductive split [31, 32]. When applying this
method the division is done in the following way: in the training dataset the supervision edges and the message
passing edges are the same; in the validation dataset the message passing edges are the training edges (message and

3Therapeutic Target Database, Download site, accessed March 2022,https://idrblab.net/ttd/sites/default/files/ttd_database/P1-05-Drug_diseas
e.txt

https://github.com/PPerdomoQ/rare-disease-explainer
https://idrblab.net/ttd/sites/default/files/ttd_database/P1-05-Drug_disease.txt
https://idrblab.net/ttd/sites/default/files/ttd_database/P1-05-Drug_disease.txt
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supervision) and the supervision edges are different from the training supervision edges; finally, the test set message
passing edges are formed by the validation edges and supervision edges that are different from the training and
validation supervision edges.

This method is one of the standard settings when performing link prediction tasks, as the whole graph can be seen
in all dataset splits [31]. The proportion used were 80% of edges used for training set, 10% for validation set and
10% for test set. The training set will be used to train the model, the validation set to select the best hyperparameters,
and the test set to obtain the global performance of the model.

4.3.3. GNN model
We first utilized a GNN algorithm to learn vector representation embeddings for nodes in our knowledge graphs.

Then, we applied these node embeddings for drug-phenotype link prediction. The GNN algorithm that we used in
this work is called GraphSAGE [20]. GraphSAGE performs inductive graph representation learning by leveraging
rich node attribute information. The main advantage that was brought by GraphSAGE is its scalability: instead of
working with full batches (the whole graph is seen during the training) it works with mini-batches. Each mini-batch
is a subset of computational graphs (a computational graph is the individual GNN that is built for each node) of N
nodes. By applying this technique, the GNN can better manage larger graphs. The GraphSAGE model was created
using the DeepSNAP library [32] version 0.2.1 to obtain the predictions. The hyperparameter optimization was
performed using RayTune [33] version 1.12.1, as it is a model-agnostic library that allows to run multiple trials
in parallel, reducing the training time. The list of hyperparameters that were needed to be tuned and the optimal
values can be found in Table S5. In total, 30 models were created (each of them containing a random selection of
parameters).

4.3.4. Drug-phenotype link predictions
The GNN model generates embeddings for individual nodes within the graph as its final output. By applying

the dot product between distinct node pairs and applying a sigmoid function, we obtain a value that shows the
likelihood of a link existing between those nodes. Consequently, we obtain dot products between each drug and
every phenotype in the graph, and rank them in descending order. The top-ranked dot products are considered the
most promising targets. Links that were already present in the graph were removed from the ranking.

4.3.5. Graph-based prediction explanations
We applied GNNExplainer to generate explanations for every drug-phenotype prediction. To do so, we adapted

the pipeline code (from Pytorch geometric version 2.0.9) to generate explanations for the link prediction task, which
was not implemented in authors’ version [21] (see pseudocode in Algorithm 1 in the Supplementary material).
However, this XAI algorithm has a problem of robustness in the explanations it produces [34] and, additionally,
it may yield disconnected graphs affecting to the interpretability of explanations by domain-users. To solve this
issue, we developed the following procedure. First, we make the assumption that a complete explanation is one
that connects the two targeted nodes. If drug A can treat phenotype B, there must be some common pathway that
allows A to interact with B. This way, the procedure starts by running GNNExplainer for several iterations. In each
iteration, networkx is used to check if, in the subgraph generated by GNNExplainer, a path exists between both
nodes. If no path is found, it continues with the next iteration; if it does exist, it stops iterating and that subgraph
is considered to be the final explanation. If no subgraph is found that satisfies the ’pathway’ condition, the last
subgraph is returned as a possible explanation.

In total 7 phenotypes were selected to evaluate the explanations (Muscular Dystrophy (HP:0003560), Res-
piratory Insufficiency (HP:0002093), Arrhythmia (HP:0011675), Congestive Heart Failure (HP:0001635), Di-
lated Cardiomyopathy (HP:0001644), Cognitive Impairment (HP:0100543) and Progressive Muscle Weakness
(HP:0003323)). These phenotypes were selected to cover all the main areas that are affected by the disease (mus-
cular, respiratory, cardiac and intellectual symptoms). For each prediction obtained in these phenotypes (three drug
predictions per phenotype), an explanation was obtained. This process was done for the predictions coming from
KG A and for those coming from KG B. This makes a total of 42 explanations (21 for each graph).

Regarding the parameters of GNNExplainer, because the graphs are highly connected, explanations were gener-
ated by using the 1-hop neighborhood around the graph. Using a higher k-hop neighborhood is not recommended



P. Perdomo-Quinteiro et al. / KG and XAI for Drug Repurposing on Rare Diseases 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

as the amount of nodes in the subgraph increases exponentially which can make it difficult to understand the expla-
nation. This happens because both graphs are scale-free graphs, and thus, by increasing the number of hops there is
a higher chance that a ’hub-node’ is hitted, and the number of nodes escalates exponentially (see Section 5.1 in the
results).

Additionally, the maximum size of the explanations was set to 15 (this means that no more than 15 edges will be
part of the explanation). This way, we will avoid obtaining too complex explanations with many edges that might
be impossible to comprehend by researchers. This was done by selecting the edges whose contribution values are
among the 15th highest values.

Finally, the maximum number of iterations was set to 10. In other words, if after 10 iterations GNNExplainer
has not found an explanations that connects the drug candidate with the targeted phenotype it will conclude that no
’complete’ explanation was found, and the last explanation produced by GNNExplainer will be the one that will
serve as final answer. This parameter can be increased or reduced depending on the expectations of the researcher. A
large number of iterations increases the chances of finding a complete explanation at the cost of more computational
time. On the contrary, reducing the number of iterations reduces the computational time, which can be useful if a
researcher wants to obtain explanations for a large number of predictions.

4.4. Evaluation and metrics

4.4.1. Evaluation of GNN model
Data. We used both graphs KG A and B. Data was splitted into three sets: training set, validation set and test

set. Baselines. Our baselines include edge2vec [28], GraphSAGE [20], ComplEX [35], DistMult [19], and TransE
[36]. Evaluation metrics. The Area Under the Precision-Recall curve (AUPRC) was used to validate and test the
performance of the model, as it has been shown that it leads to better precision when evaluating link prediction
[37]. Additionally, we also computed the Area Under the ROC curve (AUROC), Precision, Recall and the F1-Score
metrics - the harmonic mean of precision and recall.

Other evaluations were developed to further assess the performance of the model. These evaluations include the
testing of different negative sampling sizes (n = 1, 5, 10 and 20) to determine the importance of keeping the data
balanced. Additionally, both a regular 10-fold cross validation and a biased 7-fold cross validation were performed.
The biased cross validation consists of the following: in each fold 4 phenotypes were removed from the training set,
and it was observed how well the model was able to predict the links of the removed phenotypes.

4.4.2. Evaluation of explanations
The evaluation of explanations was done manually, following a two-step process. Firstly, they were classified as

complete or incomplete explanations based on the appearance of connection between the drug and the phenotype.
We developed a function to visualize the explanations as semantic graphs (see section 9.5 in the supplementary
material for further details). This way, if the explanation contains a link between the drug and the phenotype it is
considered to be a complete explanation. These explanations are considered the ones that are truly useful as they
are the ones that can be easily understood and interpreted. On the other hand, explanations where there is no link
between drug and phenotype (where there are two separate clusters) or where only one of the target elements (either
the drug or the phenotype) is missing, are considered incomplete explanations. Several illustrative examples are
provided in the supplementary material (See section 9.6).

During the second step, we evaluated explanations using an objective and a subjective approach. First, complete
explanations were reviewed and a manual search was performed to check whether the explanation proposed by the
model had been already described in the literature (objective evaluation). This process was only performed for those
predictions that have supporting evidence in the literature and that were classified as complete explanations. The
examination of the literature was performed using PubMed and Google Scholar during the first half of 2022. Finally,
each explanation was evaluated with our own biological knowledge (subjective evaluation).
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5. Results

5.1. Rare disease KG topology and representation for drug repurposing

We generated two different drug repurposing knowledge graphs for the Duchenne muscular dystrophy rare dis-
ease. KG A contains 10786 nodes, 93905 directed edges. The average node degree of the graph ( 2×numbero f edges

numbero f nodes ) is
10.83, being the node with the highest degree, the human DMD gene, with a total degree of 1683. The diameter
of the graph was 6, meaning that the longest shortest path between two nodes is 6 (in other words, one can travel
from one node to another in 6 steps or fewer). The final feature that was obtained is the clustering coefficient, which
measures the extent to which a graph is clustered together. In a complete graph (where all nodes are connected to
all nodes) this clustering coefficient is equal to 1, while in a tree-like graph this coefficient is equal to 0. In KG A
this clustering coefficient is equal to 0.33. A summary of the features can be found in Table 2.

In the case of KG B (built from 29 nodes: KG A seeds extended by 27 phenotypes of DMD), the total number of
nodes is 83665, with a total of 1984774 directed edges. The average degree in this case is of 34.43, being the node
with the highest degree the physiological process ’Protein Binding’ with a total degree of 4817. The diameter of
the graph is of 7, which shows one of the features of scale-free networks: despite increasing the number of nodes 8
times and the number of edges 20 times, the diameter of graph B only increased one unit with respect to graph A. In
this case, the clustering coefficient is equal to 0.48, showing that KG B is more clustered. Table 2 shows a summary
of the features of both graphs.

Table 2
Table showing features of KG A and B.

Property KG A KG B

Number of Nodes 10786 83665
Number of Directed Edges 93855 1984774
Number of Undirected Edges 58435 1440418
Average Degree 10.83 34.43
Highest Degree 1683 4817
Diameter 6 7
Average Clustering Coefficient 0.33 0.48
Number of drugs 337 1565
Number of diseases 5419 25636
Number of drug-disease pairs 86 599

The schema of the knowledge graph, which is the same for KG A and KG B, can be seen in Figure 2 and shows
how the 8 different node types interact with each other. The schema contains 24 and 29 different edge types for
KG A and KG B respectively, which are not included in this figure for clarity, but are listed in the Supplementary
material S3 and S4.
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Fig. 2. Schema of the knowledge graph. Node types are: drugs or chemical compounds (DRUG), genes (GENE), symptoms/phenotypes or
diseases (DISO), gene variants (VARI), genotypes (GENO), gene orthologs (ORTHO), anatomical structures (ANAT), and biological processes
(PHYS).

5.2. GNN model performance for rare disease specific drug repurposing

In total, two GNNs were used, one trained on KG A and one trained on KG B. The hyperparameter optimization
was developed using RayTune and the optimal values can be found in Table S5. These hyperparameters were ob-
tained by training several GNN models (Random Search) on graph A; and were later used to train a GNN model on
graph B.

Table 3
Precision, Recall and F1-Score obtained on each dataset, trained on each graph.

Precision Recall F1-Score

Dataset KG A KG B KG A KG B KG A KG B

Training 0.93 0.96 0.96 0.93 0.95 0.95
Validation 0.93 0.96 0.93 0.92 0.93 0.94
Test 0.93 0.96 0.93 0.92 0.93 0.94

To measure link prediction performance, the scores obtained were Precision, Recall and the F1-Score, and can be
found in Table 3 (the threshold used was 0.8). We found that both models (the one trained with KG A and the one
trained with KG B) yield to high performance (F1-Score = 0.93 and 0.94 in KG A and B, respectively). To visualise
the performance of the link prediction task, the ROC curve of KG A and KG B obtained on the test set can be found
in Figure 3 and Figure 4, repectively.
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Fig. 3. AUROC on the test dataset using KG A.

Fig. 4. AUROC on the test dataset using KG B.

5.3. Evaluating rd-explainer with state-of-the-art methods

Firstly, we evaluated our GNN model applying different strategies and compared its performance to the state-of-
the-art graph embeddings used in drug repurposing methods. Then, we evaluated our approach based on its ability
to predict drugs that are already reported in the literature for a new symptom or phenotype.

We performed a regular 10-fold cross-validation and a biased 7-fold cross-validation evaluation in KG A. The
regular 10-fold cross-validation obtained an average AUPRC of 0.98 and an average AUROC of 0.98. For the biased
7-fold cross-validation, in each fold 4 symptoms (along with the edges connected to those symptoms) were removed
from the training set. Then the performance of the model was tested on the removed symptoms. In this case, the
average AUPRC was 0.75 and the AUROC was 0.8.

The performance of the pipeline was evaluated for a different number of negative edges. This evaluation was only
performed in KG A due to the large increase in the number of edges in the evaluation tests (and the consequential
increase in the computational time). The results can be seen in Table 4. It is seen that as the number of negative
edges increases, the PR curve is affected while the ROC curve remains mostly intact, a result that has previously
been reported [38].
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Table 4
Performance as the number of negative edge samples increases. This results were obtained using KG A.

Number of
negative edges

Precision Recall F1-Score AUROC AUPRC

1 0.95 0.95 0.95 0.99 0.99
5 0.94 0.90 0.92 0.94 0.94
10 0.93 0.91 0.86 0.86 0.85
20 0.93 0.57 0.62 0.82 0.70

Finally, the performance of rd-explainer (tested in KG A) was also compared to other state-of-the-art methods,
including edge2vec, GraphSAGE, ComplEX, DistMult, and TransE. Our results can be seen in Table 5 and they
revealed that rd-explainer outperformed all the other methods based on the different evaluation metrics measured.

Table 5
Prediction performance metrics comparing rd-explainer with other state-of-the-art graph embedding methods including edge2vec, GraphSAGE,
CompleEX, DistMult and TransE. The best results are highlighted. In the headings, P stands for Precision, R for Recall, and F1 for F1-Score.

Method P R F1 AUROC AUPRC

edge2vec 0.90 0.90 0.90 0.98 0.97
GraphSage 0.71 0.65 0.62 0.64 0.87
ComplEX 0.84 0.76 0.74 0.95 0.99
DistMult 0.93 0.93 0.92 0.95 0.98
TransE 0.88 0.87 0.87 0.95 0.95
rd-explainer 0.95 0.95 0.95 0.99 0.99

5.4. Drug predictions validation based on the scientific literature

We also evaluated the prediction performance based on the capacity of our method to discover marketed drugs
already reported being used for a new phenotype. First, we listed for each of the 7 selected phenotypes the three
drugs with the highest scores. Because the objective is to find new indications for drugs; if any of the reported drugs
already appears in the graph as a treatment for the targeted symptom, this drug will be skipped and the next one
with the highest score will be selected. For example, if aprindine is selected as the drug with the highest score to
treat arrhythmia, but the relation ’aprindine is a substance that treats arrhythmia’ is already present in our graph,
aprindine won’t be reported as a possible drug candidate.

For each possible drug candidate, a literature search was carried out to find preliminary evidence if that drug had
already been used to treat the symptom. If the drug was contraindicated to treat the symptom (or if it could cause
the symptom) it was also annotated. Results regarding each drug candidate obtained using KG A can be found in
Table S9. Additionally, Table 6 summarizes the amount of drugs (in percentage) that contained supporting evidence,
contraindication evidence or no evidence at all. We found that only a fifth of the drug candidates had supporting
evidence in the literature, and that the vast majority of the candidates (65.43%) did not have any evidence at all.
There is a small percentage of them that are actually contraindicated to treat the targeted symptom/phenotype.
Finally, the amount of supporting/contraindicating evidence can be found summarized in Table S7.

Table 6
Percentage of drugs containing supporting evidence, contraindication evidence or no evidence at all for both Graph A and B.

Property KG A KG B

Supporting Evidence 20.99 % 27.16 %
Contraindication Evidence 13.58 % 14.82 %
No Evidence 65.43 % 58.02 %
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The same approach was followed in the case of KG B. Information regarding the drug candidates for each symp-
tom (as well as the supporting evidence) can be found also in Table S10. Additionally, the percentage of drugs with
supporting evidence, contraindication evidence or no evidence at all can be seen in Table 6. In this case, the number
of drug candidates with evidence has increased with respect to the drug candidates obtained with KG A (27% in B
vs 21% in A), and the number of drug candidates with no evidence has been reduced (58% in B vs 65% in A). The
number of drug candidates with contraindications remains almost the same (13% in A vs 14% in B).

5.5. Evaluating drug repurposing explanations as semantic graphs

Evaluating an explanation is a tough task and many different benchmarks are recently appearing to evaluate them
[39]. In this work, we followed two different approaches to evaluate the explanations: a more subjective one, where
the explanation was evaluated with our own biological knowledge; and a more objective one, where a manual litera-
ture search and curation was performed to check if the suggested explanation has already been reported. We selected
7 phenotypes (muscular dystrophy, respiratory insufficiency, arrhythmia, dilated cardiomyopathy, congestive heart
failure, progressive muscle weakness and cognitive impairment) and their top 3 predictions, then explanations were
produced from the models trained on both KGs. The selection of these phenotypes aimed to cover the diverse sys-
tems affected by the disease. Each explanation was analyzed and, if possible, compared to the one that was found in
the literature.

Explanations were classified into complete and incomplete explanations. Complete explanations are those that
show a connection (path) between the drug candidate and the targeted symptom/phenotype (Figure S3). They are
considered complete as they allow for an easy human-understandable interpretation. On the other hand, incomplete
explanations are those where the explanation is composed of two separated clusters (one for the drug and one for
the phenotype) (Figure S4) or by a unique cluster where either the drug or the phenotype is missing (Figure S5).

Table 7
Number and percentage of complete and incomplete explanations in each evidence type.

Complete
Explanations

Percentage
Complete
Explanations

Incomplete
Explanations

Percentage
Incomplete
Explanations

Supporting Evidence 13 68 % 6 32 %
Contraindication Evidence 3 30 % 7 70 %
No Evidence 5 38 % 8 62 %

Total 21 50 % 21 50 %

The global analysis of the completeness of explanations generated can be seen in Table 7 (amount of complete
and incomplete explanations in each type of supporting evidence) and Table 8 (amount of supporting evidence in
each type of explanations). This analysis was performed taking into account the explanations from both graphs. As
it can be seen in Table 7, in total the same number of complete and incomplete explanations was obtained (21 each).
However, when looking at each category separately, it is seen that when there is evidence GNNExplainer tends to
produce complete explanations (68 %), and conversely when there is no supporting evidence or when the drug is
contraindicated the resulting explanation is usually incomplete (62 % and 70 %, respectively). As it can be seen in
Table 8, when a complete explanation is created, almost 2/3 of the time the explanation contains supporting evidence
(62 %); while when the explanation is incomplete, only 1/4 of the times it contains supporting evidence (28 %).
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Table 8
Number and percentage of explanations with no evidence, with supporting evidence and with contraindications in each type of explanation.

Supporting Evidence
Percentage
with
Evidence

Contraindication Evidence

Percentage
with
Contraindications

No
Evidence

Percentage
No
Evidence

Complete

Explanations
13 62 % 3 14 % 5 24 %

Incomplete

Explanations
6 28% 7 33 % 8 38%

An additional analysis was performed, this time considering each graph separately. This can be seen in Table
9 and Table S7. There is a clear difference between the explanations obtained in graph A and B. Firstly, KG A
explanations are more likely to be complete (72 % in A vs 28 % in B), while KG B produces more incomplete
explanations (72 % in B vs 28 % in A) (Table 9).

Table 9
Number and percentage of complete and incomplete explanations in each evidence type and in each graph.

Evidence Type
Complete Explanations Incomplete Explanations

Number Percentage Number Percentage

KG A

Supporting Evidence 9 100% 0 0%
Contraindication Evidence 1 17% 5 83%
No Evidence 5 83% 1 17%
Total 15 72% 6 28%

KG B

Supporting Evidence 4 40% 6 60%
Contraindication Evidence 2 50% 2 50%
No Evidence 0 0% 7 100%
Total 6 28% 15 72%

An example of an explanation produced by rd-explainer can be seen in Figure 5. This explanation is classified
into complete and suggests why Doxorubicin should be considered for treating respiratory insufficiency; as it is
a drug that targets CHRM1 a gene that interacts with DAG1, which causes the disease. Throughout this section
explanations have been classified into complete and incomplete. However, an explanation being complete does not
make it a good explanation. This way, for example, an explanation of the type ’Drug A targets Gene B, Gene B
interacts with Gene C, and Gene C causes Disease D’ can make biological sense such as in Figure 5. On the other
hand, an explanation of the type ’Drug A treats Disease B, Disease B is caused by Gene C, Gene C causes Disease
D’ does not make full biological sense (Drug A could treat Disease B by targeting a gene other than Gene C;
this way, the same treatment could not be applied for Disease D). This is in fact what is observed in Figure S6,
where disopyramide is said to treat muscular dystrophy following the next explanation: disopyramide treats urinary
incontinence, affectation in DMD gene can cause urinary incontinence, and DMD gene has as phenotype muscular
dystrophy. In this case, a person may have urinary incontinence for several reasons, and disopyramide may be able
to treat one of them, but not necessarily the one caused by affectation in DMD gene.

The objective evaluation is undoubtedly more unbiased and equitable. Nonetheless, subjective evaluations are
also significant since there are drug-phenotype interactions that are not fully understood (specially when a certain
drug is producing an undesired side effect), and so they are not well established in the literature. But, analyzing the
proposed explanations based on expert domain knowledge might shed light on the interaction and help to formulate
a hypothesis that can be clearly designed to be tested in the wet laboratory.

After applying the objective evaluation only one explanation (levosimendan - progressive muscle weakness) was
found to have supporting evidence (where levosimendan treats the disease by increasing the troponin C affinity for
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calcium), and two links’ explanations (doxorubicin - respiratory insufficiency and sorafenib - respiratory insuffi-
ciency) contained unclear interactions (both were of type contraindications). The results after applying this evalua-
tion can be found summarised in the Table S6. Regarding the subjective evaluations, 17 out of 21 explanations were
found to be good explanations (they were in accordance with biological reasoning) such as the one illustrated by
doxorubicin - respiratory insufficiency in Figure 5; and 4 were considered bad explanations (they made no biological
sense), the previously mentioned disopyramide - muscular dystrophy in Figure S6, and the explanations in Figures
S7, S8 and S9.

Fig. 5. Explanation of drug candidate Doxorubicin as possible treatment for Respiratory Insufficiency. Classified as complete explanation.

5.6. Generalizability of rd-explainer tested on other case studies

To show that this method can be extended to other rare diseases it was also tested in Alzheimer’s Disease (AD)
and Amyotrophic Lateral Sclerosis (ALS) type 1. Despite Alzheimer Disease not being a rare disease, there are
different types of Alzheimer with very little prevalence. This way, for the Alzheimer’s knowledge graph we used
the general disease (MONDO:0004975) and all its causal genes that were present in Monarch (APP (HGNC:620),
APOE (HGNC:613), PSEN1 (HGNC:9501) and PSEN2 (HGNC:9509)) as seeds. The final result would be a knowl-
edge graph that specializes in Alzheimer diseases and that we can use to focus on the symptoms of the rare types
of the disease. For the ALS type 1 knowledge graph we used the seed for the disease (MONDO:0007103) and the
causal gene according to Monarch (SOD1 (HGNC:11179)). Table 10 shows the GNN performance in both diseases,
showing once more a high AUROC and AUPRC for these diseases.

Table 10
Table showing different performance metrics tested in AD and ALS.

Precision Recall F1-score AUROC AUPRC

AD 0.95 0.95 0.95 0.98 0.97
ALS 0.94 0.93 0.94 0.97 0.97

Next, the same approach that was followed for DMD was followed for both diseases: for each symptom we
analysed the three drug candidates with the highest score (this drug candidates should not appear in the knowledge
graph); then a literature search was performed to check if the drug candidates had been reported by the scientific
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community. The complete list of phenotypes as well as the drug candidates and scores for each phenotype can be
found in Tables S11 and S12. This tables also contain whether the drug candidates had supporting evidence in the
literature.

Among the predictions, it is worth mentioning Pexidartinib, a drug candidate that was proposed by the model to
treat memory impairment in AD and that is currently undergoing a clinical trial as a drug that could be potentially
beneficial to treat the disease [40].

6. Discussion

We integrated disease-specific knowledge graphs in combination with GNN and XAI for interpretable drug re-
purposing. We found that state-of-the-art XAI methods based on GNNs support in silico predictions of candidate
repurposable drugs for rare diseases by providing interpretable reasoning paths of mechanism of action. We devel-
oped rd-explainer, a method to perform computational drug repurposing specifically for rare diseases. It utilizes
cutting-edge deep learning methods such as edge2vec and GNNs and provides drug-symptom/phenotype predic-
tions with high performance scores, and utilizes a modified version of GNNExplainer to provide explanations as
semantic graphs for the interpretability of the results. We also found that these explanations have different levels of
usefulness to generate testable hypotheses: paths linking drug and phenotype nodes are more understandable versus
isolated clusters since they are similar to human reasoning; adding semantics to relations adds biological meaning
to help to formulate a hypothesis and design the experiment in the laboratory; and providing clear semantic graphs
by removing relations that are not contributors in the learning process. We tested the generalizability of our method
executing it on two additional diseases: ALS and AD. ALS type 1 was selected to test the pipeline in another mono-
genic disease with fewer information available. AD was selected as it is a common disease with rare subtypes that
can be caused by several genes, and we wanted to test the pipeline in a polygenic and multifactorial disease. We
demonstrated that our pipeline performs well on mono- and polygenic rare diseases.

rd-explainer is a researcher-centered drug repurposing method that has been demonstrated as an innovative AI
based method for rare disease drug research. rd-explainer’s main advantage is its interpretability. The main moti-
vation of this study was to provide explanations underlying AI predictions. rd-explainer provides explanations as
semantic graphs, a type of explanation that resembles to human reasoning. This is in line with current research
on user-centric XAI [41]. Not only does this have the high value to support rare disease researchers to formulate
evidence-based hypotheses testable in the wet laboratory (and reduce cost, time and risk), but to gain new disease
knowledge and speed up robust drug research. Our approach was to use state-of-the-art AI and XAI methods used
in drug repurposing such as knowledge graphs to naturally represent known associations among biological entities
with expressive semantics and supporting curated evidence, graph learning, and graph based XAI methods. The
advance in the rare disease field is that we provide interpretable predictions thanks to a pipeline that it seamlessly
integrates a graph learning model with an explainer, combining results of both model performance and explanation
accuracy to mitigate the black-box problem and foster XAI adoption in the field [42]. BioKnowledge Reviewer
tool provides rare disease specific knowledge graphs for disease biology data collection by means of the Monarch
knowledge base API [29]. We argue that a tool or approach that can collect associations from a virtual, federated
knowledge graph via APIs could extend this feature to any biomedical associations such as for drug data collection,
and improve data and knowledge driven research. Another great advantage of the rd-explainer method is its modular
implementation; this means that different parts of the workflow (data, features, GNN and explanations) can be inde-
pendently modified and the pipeline can still be run. For example, if one is interested in using another node feature
embedding algorithm instead of edge2vec, one can just modify that component of the pipeline and still run the rest
of the workflow.

Our results showed that rd-explainer is a highly performant graph ML based drug repurposing method. Our
method builds rare disease-specific models trained on newly generated KG for the disease of focus and enriched
with data for the prediction task. In comparison with state-of-the-art AI-based drug repurposing approaches, rd-
explainer demonstrates outstanding performance. Throughout this paper, we have compared rd-explainer with vari-
ous AI methods that employ different techniques for their predictions, including GNNs such as GraphSAGE, random
walk embeddings like edge2vec, and geometric embeddings using models like ComplEX, DistMult, and TransE.
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By combining random walk models (edge2vec) with GNNs (GraphSAGE), rd-explainer achieves superior results
in the link prediction task. Notably, edge2vec outperforms GraphSAGE, suggesting that the exceptional perfor-
mance of rd-explainer is primarily attributed to the random walk model, with the GNN providing an additional
performance boost. This level of performance rivals other models developed for drug repurposing, such as deepDR
(AUROC = 0.908) [43]. Although there are benchmarks and frameworks to evaluate the performance of GNNs [44–
49] to the best of our knowledge there is no a standard for drug repurposing, and makes it challenging to directly
compare rd-explainer to other methods due to one of its key features: the creation of high-quality disease specific
knowledge graphs. These knowledge graphs are enriched with data from a wide array of sources including domain
expert knowledge via the seed nodes, and curated known relations among genes, anatomical structures, biologi-
cal processes and diseases not only from humans, but also importantly numerous other species to fill the lack of
molecular knowledge. This comprehensive approach significantly boosts the graph’s richness and diversity, making
it a valuable resource for tackling rare diseases, which often suffer from limited research attention. By maximizing
the information available, rd-explainer enhances our ability to identify potential treatments for these understudied
conditions and, ultimately, enable more effective and faster translation. Conversely, Huang et al. recently proposed
a clinician-centered drug repurposing foundation model pre-trained on a medical KG composed of 17.000 diseases
and transfer learning by disease mechanism similarity [50]. It would be interesting to combine both approaches and
investigate the effect of extending our KGs with similar disease networks from well-known diseases.

Our new predictions are valid drug candidates since they are consistent with recent findings in the literature.
We demonstrated that rd-explainer can provide new interesting drug-phenotype predictions. For instance, Sunitinib,
one of the drugs that appear to be a good candidate to treat the symptoms of the disease according to both models
(using KG A and KG B), has been considered as a good drug candidate to treat DMD and in 2019 appeared to
be in preclinical trials [51]. This drug belongs to the group of tyrosine kinase inhibitors, and many other drugs
that belong to this category have been proposed by our model (Fedratinib, Sorafenib, Bosutinib, Ruxolitinib and
Midostaurin). Similarly, Mezlocillin, an antibiotic used to treat gram-negative bacterial infections, has also been
proposed by our model; while Gentamicin, another gram-negative antibiotic, was in 2019 in clinical trials to treat
DMD [51]. This way, despite not producing drugs candidates that are undergoing a clinical trial or treating the
disease, it produces drug candidates that participate in similar biological processes (i.e., tyrosine kinases inhibitor,
gram negative antibiotics)

Importantly, explanations for hypothesis generation may enable to move towards lab-in-the-loop framework.
With respect to the interpretability and utility of explanations, one of the 21 examined explanations was supported
by evidence in the literature. Nonetheless, this does not mean that the explanations are useless. A good example of
this would be the explanation for the Methylprednisolone-Muscular Dystrophy link (Figure S10). The explanation
is simple: ’Methylprednisolone treats DMD, DMD has Muscular Dystrophy as phenotype; thus methylprednisolone
can treat Muscular Dystrophy’. In this case the explanation does not contain supporting evidence but the explanation
still makes sense. In the literature, methylprednisolone is said to be a good candidate to treat muscular dystrophies
because it interacts with the glucocorticoid receptor and this leads to the activation of anti-inflammatory signaling
and the inhibition of proinflammatory signaling [52]. The explanation proposed by rd-explainer doesn’t provide the
underlying causative mechanism that relates methylprednisolone and muscular dystrophy, but a researcher can still
be able to see that muscular dystrophies and methylprednisolone are interrelated. This illustrates how even though
an explanation may lack comprehensive supporting evidence, it can still provide valuable directional cues for further
more precise investigation. Another important aspect is that rare disease findings in the lab can be introduced back in
the knowledge graph to update and improve the disease specific AI model for continual learning and enabling precise
experimental design. Besides, this synergy fosters collaboration between computational and wet lab researchers to
increase efficiency for disease specific drug research [29].

Finally, we found that knowledge graph topology has an impact on explainability. It was also seen that KG A usu-
ally produces more complete explanations, while in KG B incomplete explanations appear to be more numerous.
This could happen due to the difference in the graph structure itself: graph A has a smaller clustering coefficient than
graph B (see Section 5.1), which leads to more edges being present in the subgraphs produced by GNNExplainer.
This way, because the 15th edges with the highest scores are selected, it is more likely to find a path between drug
and phenotype in KG A than in B. Another interesting difference is that explanations generated with KG A tend
to have a higher ’sensitivity’, while explanations generated with KG B tend to have a higher ’specificity’. When an



P. Perdomo-Quinteiro et al. / KG and XAI for Drug Repurposing on Rare Diseases 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

incomplete explanation is produced using graph A it is very unlikely that the explanation will contain supporting
evidence (0 explanations were found to have evidence if the explanation was incomplete in KG A). Similarly, when
a complete explanation is produced in KG B, it is very likely that the explanations have supporting evidence or
contraindication evidence (67% of complete explanations had supporting evidence and 33% of complete explana-
tions had contraindication evidence). For this reason, if one remains skeptical about the explanations themselves,
this quality of the explanations might be used as filter/validation. For example, if an incomplete explanation is ob-
tained with KG A, it is unlikely that it is trustworthy (none of the incomplete explanations had supporting evidence).
Similarly, if a complete explanation is obtained using KG B, it is likely that there is some interaction between the
drug and the phenotype (all of the complete explanations generated with graph B had either supporting or con-
traindication evidence). Our findings are aligned with recent studies where the influence of clustering coefficient
and topology has been observed in embedding-based predictions [53, 54], here we extend these observations to its
impact on graph-based explanations.

Limitations and future directions
An important limitation of this study is that we only utilize one XAI method, which is not model agnostic.

XAI is a hot research topic in the AI field, where new and more sophisticated methods are frequently published
[55]. It would be good to extend our study to other XAI types to check how applicable they are given the unique
characteristics of rare diseases, including limited annotated data, lack of knowledge of pertinent entity relations,
and lack of a gold drug-phenotype standard. Another important limitation is the lack of standard benchmarking and
metrics to systematically evaluate explainers and explanations. Currently, there are some initial efforts going in this
direction [34, 56–60], but there is still a lack of a common standard [61]. The known reproducibility issue of our
explainer [34] that may imply that the explanations are different each time it is used, may reduce the confidence and
reliance on the explanations. We did several experiments to try and bring consistency to explanations; for example,
executing GNNExplainer several times and using the mean mask as the final mask or increasing the number of
epochs. However, this still did not solve the issue. This experience makes us strongly recommend to work on the
standard evaluation of explanations by the XAI community to foster trust on the application of AI in bioinformatics
and biomedicine. Additionally, many times the explanation would consist in a subgraph where the two targeted
nodes would be disconnected from each other, which might bring confusion and could be seen as a ‘bad’ explanation.
Therefore, work towards methods that prioritize or focus on providing just connecting paths such as metapath based
ones [62–66] and on improving path visualisation for user interpretation [67–69] is arguably recommended. Finally,
while we focused primarily on integrating a graph ML model with an explainer, a clear line of research will be
to work on interpretability and reproducibility of explanations in the context of the drug repurposing task. The
reproducibility/incosistency could be affected by the size and complexity of our data. This inconsistency could make
the users of this pipeline skeptical about its explanations and for this reason more investigation should be done in
this element of the pipeline to make it a more robust model. To improve this, ontologies could be incorporated into
the knowledge graph to increase the quality and interpretability of our data. Ontologies help to standardize data
into the shared meaning by a community enhancing thus interpretability by domain users. Importantly, the formal
description of knowledge embedded in ontologies can be leveraged for data consistency checking, and for inference
to add implicit knowledge into the graph [70]. Nonetheless, knowledge graph and ontology changes pose a great
interoperability challenge to the community to keep up downstream bioinformatics and data science workflows and
analyses [71, 72]. Finally, it would make our work more ’FAIR’ [73], i.e., not only understandable by humans, but
also by machines, by providing our drug repurposing for DMD KG from a FAIR data point [74], and rd-explainer
from workflowHub [75].

7. Conclusion

We present the application of explainable AI on state-of-the-art computational drug repurposing for rare diseases.
Our knowledge graph based deep learning method provides human understandable explanations for the phenotype-
drug link prediction and we demonstrated that graph XAI can be applied to rare diseases. The rd-explainer method
provides an innovative approach that can maximize the available disease-specific knowledge and generate valuable
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predictions with its explanations. Our model has proven to obtain high evaluation scores, providing drug candidates
that are often supported by evidence. The key contribution of our study is that our pipeline gives possible explana-
tions in the form of semantic graphs that may help rare disease researchers to make informed decisions to exper-
imentally validate deep learning model predictions. However, we detected that data topology affects explanations,
highlighting the importance of investigating further how best represent graphical knowledge for model performance
and explanation accuracy. rd-explainer can be extended to other rare diseases and provide computer-aided guidance
for biologists and accelerate translational research. Finally, future studies should advance our understanding of the
necessary standard mechanism to evaluate explainability to foster adoption from domain experts and to mitigate
the black-box problem of trust on AI, especially for biomedicine where decisions can have an important impact on
people’s lives.

8. Code availability

The code to run the repurposing pipeline is available at https://github.com/PPerdomoQ/rare-disease-explainer.

https://github.com/PPerdomoQ/rare-disease-explainer
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