
Learning Semantic Association Rules
from Internet of Things Data

Journal Title
XX(X):1–14
©The Author(s) 2024
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Erkan Karabulut1, Paul Groth1 and Victoria Degeler1

Abstract
Association Rule Mining (ARM) is the task of discovering commonalities in data in the form of logical implications. ARM
is used in the Internet of Things (IoT) for different tasks including monitoring and decision-making. However, existing
methods give limited consideration to IoT-specific requirements such as heterogeneity and volume. Furthermore, they
do not utilize important static domain-specific description data about IoT systems, which is increasingly represented
as knowledge graphs. In this paper, we propose a novel ARM pipeline for IoT data that utilizes both dynamic sensor
data and static IoT system metadata. Furthermore, we propose an Autoencoder-based Neurosymbolic ARM method
(Aerial) as part of the pipeline to address the high volume of IoT data and reduce the total number of rules that are
resource-intensive to process. Aerial learns a neural representation of a given data and extracts association rules from
this representation by exploiting the reconstruction (decoding) mechanism of an autoencoder. Extensive evaluations
on 3 IoT datasets from 2 domains show that ARM on both static and dynamic IoT data results in more generically
applicable rules while Aerial can learn a more concise set of high-quality association rules than the state-of-the-art with
full coverage over the datasets.

Keywords
association rule mining, neurosymbolic AI, semantic web, autoencoder, internet of things, sensor data

Introduction

Association Rule Mining (ARM) is a common data
mining task that aims to discover associations between
features of a given dataset in the form of logical
implications (Agrawal et al. 1994). In Internet of Things
(IoT) systems, ARM methods are utilized for various tasks
including monitoring, decision-making, and optimization,
for example, of a system’s resources (Sunhare et al. 2022).
Some IoT application domains in which ARM has been
successfully utilized include agriculture (Fan et al. 2021),
smart buildings (Degeler et al. 2014) and energy (Dolores
et al. 2023). However, most applications of ARM in IoT give
limited considerations to characteristics of IoT data such as
heterogeneity and volume (Ma et al. 2013) as they are mere
adaptations of rule mining methods not specifically tailored
to IoT requirements.

IoT systems can produce or use data from diverse sources
which can be categorized as static and dynamic. Static
data refers to data that is not subject to frequent changes
such as system models while dynamic data is subject to
frequent changes, for instance, sensor data. The static part
of IoT systems is increasingly represented as knowledge
graphs (Rhayem et al. 2020; Karabulut et al. 2024), large
databases of structured semantic information (Hogan et al.
2021). ARM algorithms are often run on the dynamic part of
IoT data, not utilizing the valuable information in knowledge
graphs. In addition, ARM algorithms can generate a high
number of rules as the input dimension increases (Kaushik
et al. 2023; Telikani et al. 2020), which is time-consuming to
process and maintain. Generating a high number of rules can

be the case for large-scale IoT environments, as each sensor
is treated as a different data dimension.

To address these two issues, this paper presents two new
contributions. The first contribution is a novel ARM pipeline
for IoT data that combines knowledge graphs and sensor
data to learn association rules with semantic properties,
semantic association rules (Section Problem Statement),
that represent IoT data as a whole (Section Pipeline).
We hypothesize that semantic association rules are more
generically applicable than association rules based on sensor
data only, requiring fewer rules to have full data coverage.
As an example, an association rule based on sensor data
only looks as follows: ‘if sensor1 measures a value in range
R, then sensor2 must measure a value in range R2’. This
rule can only be applied to sensor1 and sensor2. In contrast,
semantic association rules are more contextual as seen in the
following example in the water network domain: ‘if a water
flow sensor placed in a pipe P1 with diameter ≥ A1 measures
a value in range R, then a water pressure sensor placed in a
junction J1 connected to P1 measures a value in range R2’.
The semantic association rule is no longer about individual
sensors. Instead, it describes a certain context that the sensor
is placed in and therefore is more generically applicable and
explainable.

1University of Amsterdam, The Netherlands

Corresponding author:
Erkan Karabulut, University of Amsterdam, Science Park 904, 1098 XH,
The Netherlands
Email: e.karabulut@uva.nl

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

However, enriching sensor data with semantics from a
knowledge graph increases input size and may result in
a high number of rules. Hence, the second contribution
of this paper is an Autoencoder-based (Vincent et al.
2008) Neurosymbolic ARM method (Aerial) as part of the
proposed pipeline that can learn a concise set of high-quality
rules with full data coverage (Section Rule Extraction from
Autoencoders). Aerial learns a neural representation of a
given input data and then extracts association rules from the
neural representation. This approach can be supplemented
by and is fully compatible with other ARM variations that
aim to mine a smaller subset of high-quality rules such
as top-k rules mining (Fournier-Viger et al. 2012), and
ARM with item constraints (Baralis et al. 2012; Srikant
et al. 1997). An extensive set of experiments (Section
Evaluation) is performed and the results show that ARM
on knowledge graphs and sensor data together results in
more generically applicable rules with high support and data
coverage in comparison to ARM on sensor data only (Section
Discussion). Furthermore, the results show that the proposed
Aerial approach is capable of learning a concise set of high-
quality rules with full coverage over the entire data.

In summary, the two contributions of this paper are:
(1) a pipeline of operations to learn contextual and more
generically applicable semantic association rules from IoT
data compared to existing methods; and (2) an Autoencoder-
based ARM approach for learning a more concise set of high-
quality semantic association rules than the state-of-the-art,
with full data coverage. This approach is orthogonal and can
be used with other ARM variations.

Related Work
This section introduces the related work and background
concepts.

Association Rule Mining
ARM is the problem of learning commonalities in data
in the form of logical implications, e.g., X → Y , which
is read as ‘if X then Y’. Initial ARM algorithms such
as Apriori (Agrawal et al. 1994) and HMine (Pei et al.
2001) focused on mining rules from categorical datasets.
The initial methods needed pre-discretization for numerical
data, struggled with scaling on big high-dimensional data,
and produced a high number of rules that are costly to
post-process. FP-Growth (Han et al. 2000), a widely used
ARM algorithm, has many variations to tackle some of the
aforementioned issues. ARM with item constraints (Srikant
et al. 1997) is an ARM variation that focuses on mining rules
for the items of interest rather than all, which reduces the
number of rules and execution time (Baralis et al. 2012).
Guided FP-Growth (Shabtay et al. 2021) is an FP-Growth
variation for ARM with item constraints. Other variations
include Parallel FP-Growth (Li et al. 2008) and FP-Growth
on GPU (Jiang and Meng 2017) for better execution times.

Recently, a few DL-based ARM algorithms have been
proposed. Patel et al. (Patel et al. 2022) proposed to
use Autoencoders (Chen and Guo 2023) to learn frequent
patterns in a grocery dataset, however, no source code
or pseudo-code was given. Berteloot et al. (Berteloot
et al. 2023) also utilized Autoencoders (ARM-AE) to learn

association rules directly from categorical tabular datasets.
However, ARM-AE has fundamental issues while extracting
association rules from an Autoencoder, which we elaborate
on in Section Setting 2: Aerial vs state-of-the-art.

Numerical Association Rule Mining (NARM) aims to
identify intervals for numerical variables to generate high-
quality association rules based on specific quality criteria.
Following the recent systematic literature reviews (Telikani
et al. 2020; Kaushik et al. 2023), the state-of-the-art in
NARM is nature-inspired optimization-based algorithms
which include evolutionary, differential evolution, swarm
intelligence, and physics-based approaches. They employ
heuristic search processes to find association rules that
optimize one or more rule quality criteria and are used for
both numerical and categorical datasets (Fister et al. 2018).
However, optimization-based ARM methods too suffer from
handling big high-dimensional data, together with other
broader issues in NARM such as having a large number of
rules, and explainability as also mentioned by Kaushik et al.
and other works (Telikani et al. 2020; Berteloot et al. 2023;
Kishore et al. 2021).

Association Rule Mining in Internet of Things
In IoT, both exhaustive ARM, such as Apriori and FP-
Growth, and the optimization-based NARM methods are
used for various tasks. Shang et al. (2021) utilized the Apriori
algorithm for big data mining in IoT in the enterprise finance
domain for financial risk detection. Sarker and Kayes (2020)
utilized an exhaustive ARM approach with item constraints
on phone usage data to learn user behaviors. Khedr et al.
(2020) proposed a distributed exhaustive ARM approach
that can run on a wireless sensor network. Fister Jr et al.
(2023), proposed TS-NARM, an optimization-based NARM
approach, and evaluated it on a smart agriculture use case
with 5 optimization-based methods.

Sequential or temporal ARM is another ARM variant used
in IoT (Wedashwara et al. 2019). The goal is to learn patterns
between subsequent events, rather than events that happen
in the same time frame, concurrent events. In this paper,
we focus on mining association rules for concurrent events,
rather than sequential events which is a different task.

Based on recent surveys (Karabulut et al. 2024;
Listl et al. 2024), semantic web technologies such as
ontologies (Gruber 1993) and knowledge graphs (Hogan
et al. 2021) have been used for knowledge representation
in IoT, providing valuable knowledge related to IoT
systems and its components. Naive SemRL (Karabulut et al.
2023) is the only ARM method that utilizes semantics
when learning rules from pre-discretized sensor data. It
is based on FP-Growth, however, the paper does not
provide a complete evaluation. We adopt a similar semantic
enrichment approach but develop a completely new DL-
based pipeline, and provide an extensive evaluation.

Note that the term semantic association rules is also used
when mining rules from knowledge graphs (Barati et al.
2017) only, which is a different task than rule learning
from sensor data presented in this paper. To the best of
our knowledge, there has been no fully DL-based ARM
algorithm for learning association rules from concurrent
events in IoT data.

Prepared using sagej.cls

Karabulut et al. 3

Table 1. Input notation, explanations, and examples from water networks domain.

Notation Explanation Example

C Classes in an Ontology/Data schema Pipe, Junction
R, r Relations (R) in between the classes (C) mapped with

(r)
(Pipe) connectedTo (Junction)

A, a Properties for the classes and relations (Junction).elevation: elevation property of the class
Junction

V Node IDs in the knowledge graph P1, J2
E, e IDs of the edges (E) in between nodes (V) in the

knowledge graph mapped with (e)
(P1) (e1) (J2), P1 and J2 are node IDs, e1 is an edge
ID

L, l Labels for the nodes (V) and edges (E) in the
knowledge graph mapped with (l)

(P1:Pipe) (e1:connected to) (J2:Junction)

P, U, p Property (P) and value (U) pairs for nodes and edges
mapped with (p)

(P1:Pipe).elevation=v1, the elevation of pipe P1 is v1

M, S, F,
s

each timestamp (F) and sensor ID (S) pair is mapped
to a value (M) with (s)

a water flow sensor with the ID s1, measures u1 at a
time t1

V, S, b each sensor (S) is mapped (b) to a node (V) in the
knowledge graph

(S1:Sensor) (:has type) (:WaterFlow), a water flow
sensor

Our approach. In contrast to existing work, we utilize
both static knowledge graphs and dynamic sensor data
that represent IoT data as a whole and propose a novel
neurosymbolic ARM approach for learning semantic rules
from IoT data, for concurrent events. Our approach leads
to a more concise set of high-quality association rules that
are more generically applicable than sensor-only rules with
full coverage over the data. In addition, semantic association
rules facilitate domain knowledge integration as domain
knowledge can also be represented as semantic rules, e.g., as
part of a domain ontology underlying the knowledge graph.

Problem Definition
This research problem relates to learning association rules
from sensor data in IoT systems with semantic properties
from a knowledge graph describing the system and its
components.

Given a sensor dataset T with sensors mapped to nodes
in knowledge graph G with binding B, produce a set of
association rules with clauses based on T and G. Association
rules are formal logical formulas in the form of implications,
e.g. X → Y , where X → Y is a horn clause with |Y | = 1
referring to a single literal and |X| ≥ 1 referring to a set
of literals. X is referred to as the antecedent, and Y is the
consequent. A horn clause is defined as a disjunction of
literals with at most one positive literal. Note that p → q ∧ r
can be re-written as p → q and p → r, hence |Y | = 1.

Note that the T is converted to a set of transactions before
the learning process, e.g., by grouping sensor data based on
time frames. G is in the form of a directed property graph
which contains semantic information of the items in T, e.g.,
where a sensor is placed, and binding B maps sensors in T to
a corresponding node in G, assuming that each sensor has a
representation in G. Output rules can express conditions on
the sensor measurements and its context.

Input
This section presents input notation. To help readers
understand easier, Table 1 lists symbols used in the notation,

high-level explanations, and examples from the water
network domain.

Knowledge graph. The knowledge graph described in
this section is a property graph with an ontology or data
schema as the underlying structure (Tamašauskaitė and
Groth 2023). We adapt the definition for a property graph,
given in the next paragraph, from (Hogan et al. 2021).

Property Graph. Let Con be a countably infinite
set of constants. A property graph is a tuple G =
(V,E,L, P, U, e, l, p), where V ⊆ Con is a set of node IDs,
E ⊆ Con is a set of edge IDs, L ⊆ Con is a set of labels,
P ⊆ Con is a set of properties, U ⊆ Con is a set of values,
e : E → V × V maps an edge ID to a pair of node IDs,
l : V ∪ E → 2L maps a node or edge ID to a set of labels,
and p : V ∪ E → 2P×U maps a node or edge ID to a set of
property–value pairs.

Ontology/Data Schema. Let O = (C,R,A, r, a) be an
ontology or data schema, where C ⊆ Con is a set of
classes, R ⊆ Con is a set of relations, A ⊆ Con be a set
of properties, r : R → C × C maps a relation to a pair of
classes, and a : C ∪R → 2P maps a class or a relation to a
set of properties.

To express that G has O as its underlying structure, we
define; i) L ⊆ C ∪R, meaning that the labels in G can only
be one of the classes or relations defined in O, ii) P ⊆ A,
meaning that the properties of V and E in G, can only be one
of the properties in A.

Sensor data. We define sensor data generically as a
tuple T = (M,S, F, s), where M ⊆ (R ∪ Con) is either
real numbers representing numerical sensor measurements
or constants representing categorical sensor values (states,
e.g., a door is open or closed), S ⊆ Con is a set of sensor
IDs, F is an ordered numerical sequence of timestamps and
s : (S, F) → M maps every sensor ID and timestamp to a
value. Note, further in this approach, the order of timestamps
is considered only to aggregate sensor measurements into
transactions (of time frames) to enable generalizable rule
learning, since the task is not to learn temporal rules.

Binding. It is a tuple B = (V, S, b), where V is the set
of node IDs from G, and S is the set of sensors IDs from

Prepared using sagej.cls

4 Journal Title XX(X)

Figure 1. Proposed ARM pipeline for IoT data to learn semantic association rules from sensor data and knowledge graphs.

Table 2. Output item forms, explanations, and examples from
water network domain.

Form Example Explanation

i′= (p′#z′) p1.length > 100 Node p1 has length
bigger than 100

i′= (m′#z′) (s1:Sensor).value
< 10

Sensor s1 measures a
value smaller than 10

i′= (v′l = l′) p1 : Pipe Node p1 has the label
’Pipe’

i′= (e′l = l′) e1 : Junction Edge e1 has the label
’Junction’

i′= (v′ →
v′′ = e′)

p1 → p2 = e1 Node p1 is connected
to p2 with the edge e1

T, b : S → V maps each sensor ID to a node in G, and
b(S) ⊆ V meaning that there is a node ID for each sensor
ID, and there can be node IDs for more e.g., instances of
classes in C.

Output
The output is a set of rules of the form described below.

Let I be a set of items. We define the following forms
for an item, which are basic comparison operations:
∀i′ ∈ I(((i′ = (p′#z′)) ∨ (i′ = (m′#z′)) ∨ (i′ = (v′l =
l′)) ∨ (i′ = (e′l = l′)) ∨ (i′ = (v′ → v′′ = e′))), with
p′ ∈ P , m′ ∈ M , v′, v′′ ∈ V , e′ ∈ E, l′, v′l, e

′
l ∈ L where

v′l refers to a label mapped to a node with the ID v′, and e′l
refers to a label mapped to an edge with the ID e′. z′ refers
to a value that is either categorical or numerical, # refers to
one of the comparison operations with a truth value defined
below:
#categorical(p, g) ::= (p = g)|(p ̸= g)|(p ∈ {g})|(p /∈ {g})
#numerical(p, g) ::= (p = g)|(p ̸= g)|(p > g)|(p <
g)|(p ≤ g)|(p ≥ g)
X → Y is an association rule where (X,Y ⊆ I) ∧ (|Y | =

1). This means that items of the rule can only consist of
properties of classes or relations defined in the ontology,
and the consequent can only have 1 item. Examples and
explanations for item forms are given in Table 2. The item
forms consist of comparisons over m ∈ M or p ∈ P , labels
l ∈ L, and whether an edge e ∈ E exists for a pair of v ∈ V .
We call rules in this form semantic association rules.

Semantic Association Rules from IoT Data
This section introduces our proposed ARM pipeline for
IoT data and an Autoencoder-based Neurosymbolic ARM
approach (Aerial) as part of the pipeline. The goal is to learn

a concise set of high-quality semantic association rules from
sensor data and knowledge graphs with full coverage over
the data.

Pipeline
Figure 1 depicts the proposed full pipeline of operations.
First, sensor data is aggregated into time frames (e.g., aver-
age measurements per minute), hence, forming transactions.
Each row in the Sensor Data depiction in Figure 1 refers
to a transaction, representing the state of the IoT system at
a certain moment in time. Second, binding B is utilized to
enrich sensor data with semantics from the knowledge graph.
Let j be the number of sensors in S, i be the number of
semantic property values in U mapped to each s1..j , z be
the number of classes per input feature for simplicity, and n
be the number of transactions. In practice, i and z usually
are different per s1..j , and property values p ∈ U can be
different per transaction if G changes over time. Property
values from neighbors of node v can also be in the transaction
set depending on the application.

Third, in the vectorize step, semantically enriched sensor
data is then one-hot encoded and fed into an under-
complete denoising Autoencoder (Vincent et al. 2008). The
Autoencoder creates a neural representation of the input data.
Our Autoencoder architecture is described in Autoencoder
Architecture section and the training process is described
in Training and Execution section. Input transactions to the
Autoencoder look as follows:

[{m11s1 , ...,m1zsj , p1
1
s11

, ..., p1zs11
, ..., p1zs1i

, ..., p1zsji},
...
{mn1

s1 , ...,mnz
sj , pn

1
s11

, ..., pnz
s11

, ..., pnz
s1i

, ..., pnz
sji

}]
The final step is to extract association rules from a

trained Autoencoder which is described in Section Rule
Extraction from Autoencoders. Note that some parts of the
architecture are kept flexible as they may vary depending on
the downstream task that the proposed approach is applied
to, such as the type of discretization, sensor data aggregation,
encoding, etc.

Autoencoder Architecture
We employ an under-complete denoising Autoencoder (Vin-
cent et al. 2008) which creates a lower dimensional rep-
resentation of the noisy variant of its input (encoder) and
then reconstructs the noise-free input from the dimensionally
reduced version (decoder). In this way, the model learns a
neural representation of the input data and becomes more
robust to noise. Our under-complete denoising autoencoder
has 3 layers for encoding and decoding units. During train-
ing, tanh(z) = ez−e−z

ez+e−z is preferred in the hidden layers

Prepared using sagej.cls

Karabulut et al. 5

and softmax(zi) =
ezi∑n

j=1 ezj
preferred at the output layer,

as activation functions. The softmax function is applied
per category of features so that probabilities per class
values are obtained for each category. As the lost func-
tion, aggregated binary cross-entropy loss, BCE Loss =
1
n

∑n
i=1 −(yilog(pi) + (1− yi)log(1− pi)), is applied to

each feature to calculate the loss between Autoencoder
reconstruction and the initial noise-free input. The training
process is described in Section Training and Execution.

Rule Extraction from Autoencoders
The last step of our pipeline is to extract association rules
from a trained Autoencoder using Algorithm 1. Aerial is
a Neurosymbolic approach to rule mining as it combines
a neural network (an Autoencoder) and an algorithm that
can extract associations in the form of logical rules from a
neural representation of input data created by training the
Autoencoder. Note that any other ARM algorithm can be
used within the pipeline after the semantic enrichment.

Intuition: Aerial exploits the reconstruction loss of a
trained Autoencoder to learn associations. If reconstruction
for an input vector with marked features is more successful
than a similarity threshold then we say that the marked
features imply the successfully reconstructed features.
Marking features is done by assigning 1 (100%) probability
to a certain class value for a feature, 0 to the other classes for
the same feature, and assigning equal probabilities to the rest
of the features in an input vector.

Example: Figure 2 depicts an example rule extraction
process. Assume that there are only two features in the
input vector with 2 and 3 possible class values, namely
f1 = {a, b} and f2 = {c, d, e}. One-hot encoded version of
f1 and f2 can be represented with 5 digits. Assume we
want to test whether f1(a) implies a certain class value of
f2. Here we do a forward run on the trained Autoencoder
with the input vector [1, 0, 0.33, 0.33, 0.33] in which f1(a)
is marked with 1, and equal probabilities are given for the
values of f2. We call this a test vector. Assume that the
output is [0.8, 0.2, 0.9, 0.04, 0, 06]. The third output digit
that corresponds to f2(c) is bigger than the threshold, 0.8.
Therefore, we say that f1(a) → f2(c).

Algorithm: The rule extraction algorithm is given in
Algorithm 1. The parameters are the set of input vectors
(input), a trained Autoencoder (ae), a similarity threshold
(sim threshold), and a maximum number of antecedents
(antecedents) that the rules will contain. Based on the
antecedents, in line 3, the algorithm creates combinations
of features to be tested (test ftrs), for instance, to test
whether values of features f1 and f2 are associated with

Figure 2. An illustration of association rule extraction from a
trained Autoencoder with our Aerial approach.

Algorithm 1 Aerial rule extraction algorithm

1: procedure ARM(input, ae, sim threshold, antecedent)
2: rules = []
3: test ftrs = combinations(input.features, antecedent)
4: for ftr list in test ftrs do:
5: init vector = equal prob vector(input.features)
6: test vectors = mark ftrs(ftr list, init vector)
7: for vector in test vectors do:
8: out probs = ae.forward(vector)
9: if out probs(ftr list) < sim threshold then:

10: continue with next test vector
11: for feature in out probs - ftr list do:
12: if feature.prob() > sim threshold then:
13: rules.append({antecedent: ftr list,

consequent: feature.index})
14: return rules

other features, a tuple of (f1, f2) is created. Lines 4-13 go
through each feature tuple (ftr list) in the test features and
first create an initial test vector with all equal probabilities
per feature (line 5). Line 6 marks feature values in the
ftr list with a probability of 1, and returns a list of test
vectors (test vectors). Lines 7-13 perform a forward run
per test vector and; i) check whether output probabilities
for the marked features are higher than the given threshold
(lines 9-10), ii) find features (other than marked features)
that have higher probability than the given threshold, which
are added to the rule list as consequences together with the
marked features which are the antecedents (lines 11-13). The
algorithm’s time complexity is O(

(
f
a

)
), where f represents

the number of features and a denotes the maximum number
of antecedents (see the section below for details).

Time Complexity Analysis of Aerial. This section
provides a time complexity analysis of our Aerial approach,
Algorithm 1, in big O notation. We analyze each line in the
algorithm and aggregate the results at the end.

Line 2 initializes the rules array, therefore it is O(1).
Line 3 is a combination operation over the input features,

input.features, taken antecedent at a time. Let’s assume f is
the total number of features, and a is the maximum number
of antecedents parameter, then the complexity is O(

(
f
a

)
).

Line 4 iterates over the test ftrs. Therefore, the
operations inside the loop are repeated

(
f
a

)
times.

Line 5 initiates a vector with equal probabilities per feature
class values. It is linear over the feature count, O(f).

Line 6 creates a set of vectors in which class values of
the features in ftr list are marked with 1. In the worst-case
scenario, this step is linear over features when the ftr list is
equal to all of the features in the input dataset, hence, O(f).

Assuming that line 6 generated m vectors, line 7 iterates
m times over the generated vectors.

Line 8 performs a forward pass with the given test vector.
Since each forward pass performs a softmax operation
over the class values of features, this operation is linear
over the number of features, O(f), assuming that softmax
is performed in O(1).

Lines 9 and 10 perform a comparison operation to
check whether probabilities inside the out probs array
that corresponds to the marked features are higher than a

Prepared using sagej.cls

6 Journal Title XX(X)

threshold or not. Assuming the worst-case scenario, this
operation is repeated for each feature in the input data, O(f).

Aggregation of the results:

1. The outer loop runs
(
f
a

)
times.

2. For each iteration of the outer loop, lines 5 and 6
create an initial vector with equal probabilities and
mark some of the features in O(f) time.

3. The middle loop (line 7) runs over the m test vectors.
A forward pass and the probability check in lines 8-10
are performed in O(f) time.

4. The inner-most loop (line 11) runs in O(f) time.

Therefore, the complexity is O(
(
f
a

)
)×O(f)×O(f ×

m)×O(f). Assuming that m is linear over the number of
features f , and

(
f
a

)
being the most expensive operation, the

time complexity of Algorithm 1 is O(
(
f
a

)
).

Evaluation
Two different experimental settings are used to evaluate
the two main contributions of this paper; i) evaluation of
utilizing semantics with sensor data for ARM in comparison
to ARM on sensor data only, and ii) evaluation of the
proposed Aerial approach in comparison to state-of-the-art
ARM algorithms.

This section first describes common elements across both
settings such as datasets, and then describes setting-specific
points including baselines. Additional experiments that are
not directly relevant to the two settings are given in Appendix
Additional Experiments.

Open source. The source codes of Aerial, base-
lines, and knowledge graph construction are written
in Python and are available online together with all
the datasets: https://github.com/DiTEC-project/semantic-
association-rule-learning.

Hardware. All experiments ran on an AMD EPYC 7H12
64-core CPU with 256 GiB memory. No GPUs were used.

Setup
This section describes the common elements for both of the
evaluation settings.

Datasets. 3 open-source IoT datasets from two different
domains, water networks and energy, are used for all the
experiments. A knowledge graph is created per dataset by
mapping metadata about each component to domain-specific
data structures. LeakDB (Vrachimis et al. 2018) is an
artificially generated realistic dataset in water distribution
networks. It contains sensor data from 96 sensors of various
types, and semantic information such as the formation of the
network, sensor placement, and properties of components. L-
Town (Vrachimis et al. 2020) is another dataset in the water
distribution networks domain with the same characteristics.
It has 118 sensors. LBNL Fault Detection and Diagnostics
Dataset (Granderson et al. 2022) contains sensor data from
29 sensors and semantics for Heating, Ventilation, and Air
Conditioning (HVAC) systems. As semantic properties, it
only includes a type property.

Training and Execution. The Aerial Autoencoder is
trained for each dataset. The training parameters found via
grid search are as follows: learning rate is set to 5e−3, the

models are trained for 5 epochs, Adam (Kingma and Ba
2014) optimizer is used for gradient optimization with a
weight decay of 2e−8, and the noise factor for the denoising
Autoencoder is 0.5. All experiments are repeated 20 times
over 20 randomly selected sensors for each dataset, and the
average results are presented unless otherwise specified. The
random selection is done by picking a random sensor node
on the knowledge graph, and traversing through the first,
second, etc. neighbors until reaching 20 sensor nodes. Equal-
frequency discretization (Foorthuis 2020) with 10 intervals is
used for numerical features for the methods that require pre-
discretization (Table 3).

Evaluation Metrics. The most common way of evaluating
ARM algorithms is to measure the quality of the rules from
different aspects as there is no single criterion that fits
all cases. In the evaluation, we used the standard metrics
in ARM literature which are support, confidence, data
coverage, number of rules, and execution time (Kaushik et al.
2023; Telikani et al. 2020). In addition, we selected Zhang’s
metric (Yan et al. 2009) to evaluate the association strength
of the rules, commonly used in many open-source libraries
including MLxtend (Raschka 2018) and NiaARM (Stupan
and Fister 2022). The definitions are given below:

• Support: Percentage of transactions with a cer-
tain item or rule, among all transactions (D):
support(X → Y) = |X∪Y |

|D| .
• Confidence: Conditional probability of a rule, e.g.,

given the transactions with the antecedent X in, the
probability of having the consequent Y in the same
transaction set: confidence(X → Y) = |X∪Y |

|X| .
• Rule Coverage: Percentage of transactions that

contains antecedent(s) of a rule: coverage(X →
Y) = support(X).

• Data Coverage: It refers to the percentage of
transactions to which the learned rules are applicable.

• Zhang’s Metric: This metric also considers the
case in which the consequent appears alone in
the transaction set, besides their co-occurrence, and
therefore measures dissociation as well. A score of
> 0 indicates an association, 0 indicates independence
and < 0 indicates dissociation: zm(X → Y) =

confidence(X→Y)−confidence(X′→C)
max(confidence(X→Y),confidence(X′→Y)) in which X ′

refers to the absent of X in the transaction set.

Hyperparameters. There are two parameters to our
Aerial approach: similarity threshold and number of
antecedents. The effect of similarity threshold on rule quality
is investigated in Experiment 3. The effect of the number
of antecedents on execution time and the number of rules
learned is investigated in Experiment 2.1.

Experimental Settings
This section describes the two core experimental settings
together with baselines in each setting. Please refer to Table
3 for baseline methods described in the settings below.

Setting 1: Semantics vs without Semantics. To show
that semantics can enable learning more generically
applicable rules, two different ARM algorithms, our Aerial
approach and a popular exhaustive method FP-Growth (Han

Prepared using sagej.cls

Karabulut et al. 7

et al. 2000), are run with and without semantically enriched
sensor data. Two algorithms are used to show that including
semantics is beneficial regardless of the ARM method
applied. The results are compared based on the number
of rules, average rule support, confidence and coverage,
and execution time. FP-Growth is implemented using
MLxtend (Raschka 2018).

Setting 2: Aerial vs state-of-the-art. The goal is to
evaluate the proposed Aerial method for IoT data, and the
experiments are run on sensor data with semantics. The only
existing semantic ARM approach Naive SemRL (Karabulut
et al. 2023) is chosen as a baseline and executed with
the exhaustive FP-Growth (as in the original paper) and
HMine algorithms. In addition, the optimization-based
NARM method TS-NARM (Fister Jr et al. 2023) with
standard confidence metric as optimization goal is run with 5
algorithms (as in the original paper), Differential Evolution
(DE) (Storn and Price 1997), Particle Swarm Optimization
(PSO) (Kennedy and Eberhart 1995), Genetic Algorithm
(GA) (Goldberg 2013), jDE (Brest et al. 2006), and
LSHADE (Viktorin et al. 2016)). TS-NARM is implemented
using NiaPy (Vrbančič et al. 2018) and NiaARM (Stupan and
Fister 2022), and FP-Growth and HMine are implemented
using Mlxtend (Raschka 2018). All rule quality criteria
described earlier are used in the comparison.

ARM-AE (Berteloot et al. 2023), another Autoencoder-
based ARM method, uses an Autoencoder with equal size
layers (no dimensionality reduction), does not distinguish
between features (e.g., by applying softmax per features
as in our approach) and assumes that input to the
trained Autoencoder represents consequent while the output
represents an antecedent. We argue that this assumption
does not hold and the evaluation of ARM-AE resulted in
exceptionally low rule quality. Therefore, we opted not to
include it in the core Evaluation section. Please refer to
Experiment 6 in Appendices for the evaluation of ARM-AE.

Challenges in comparison. The distinct nature of
different types of algorithms makes comparability a
challenge. The exhaustive algorithms can find all rules
with a given support and confidence threshold. The

Table 3. Overall comparison of evaluated ARM approaches.

Exhaustive DL-based Optimization

Semantic
Assoc.
Rules

Supports Supports Does not
directly
support

Rule Con-
straints

Supports
constraints

Supports
constraints

Does not sup-
port

Number of
Rules

Very high Low with
full data
coverage

Medium to
High

Rule
Length

Controllable Controllable Uncontrollable

Rule Qual-
ity

Controllable Partially
controllable

Partially con-
trollable

Discretization Required Required Not required

Table 4. Aerial, baselines, and their parameters (Optimization
refers to TS-NARM and Exhaustive to Naive SemRL. See
Experiment 6 in Appendices for the evaluation of ARM-AE).

Algorithm Type Parameters

Aerial DL-based antecedents=2, similarity=0.8
ARM-AE DL-based antecedents=2, likeness=0.8

DE Optimization F = 0.5, CR = 0.9
GA Optimization pm = 0.01, pc = 0.8
PSO Optimization c1 = 0.1, c2 = 0.1, w = 0.8
LSHADE Optimization NPmax = 18.NP,NPmin =

4.NP,H = 5, p = 0.1, rarc =
2

jDE Optimization F (0) = 0.5, CR(0) = 0.9, τ =
0.1

FP-
Growth

Exhaustive (both) antecedents=2,
min support=(Aerial.rules.
avg support/2),
min confidence=0.8.

HMine Exhaustive

execution time of the 5 optimization-based approaches (TS-
NARM) is directly controlled by the pre-set maximum
evaluation parameter. And running them longer leads to
better results up to a certain point (Section Aerial vs state-
of-the-art). The quality of the rules learned by the DL-
based ARM approaches depends on the given similarity
threshold parameter (or likeness for ARM-AE). Given
these differences, we made our best effort to compare
algorithms fairly and showed the trade-offs under different
conditions. Table 4 lists the parameters of each algorithm
for both of the settings, unless otherwise specified. For TS-
NARM, the population size is set to 200 which represents
an initial set of solutions, and the maximum evaluation is set
to 50,000 which represents the number of fitness function
evaluations before convergence. The parameters of the 5
optimization-based methods, population size, and maximum
evaluation count are the same as in the original paper. The
antecedent length of both exhaustive and DL-based ARM
methods is set to 2 for fairness unless otherwise specified.
The minimum support threshold of the exhaustive methods
is set to half of the average support of the rules learned by
our Aerial method so that both approaches will result in a
similar average support value for fairness.

Experimental Results
This section presents the experimental results for both
settings.

Setting 1: Semantics vs without Semantics.
Experiment 1.1: Rule Quality. Table 5 shows the

results for running Aerial and FP-Growth with (w-s) and
without (wo-s) semantic properties. Average support and
rule coverage for both algorithms on all datasets increased
significantly upon including semantics. The rule count is
increased for FP-Growth with semantics, while it decreased
with our Aerial approach. The confidence values did not
change significantly.

The results indicate that association rules learned from
sensor data and semantics are more generically applicable
than rules learned from sensor data only, as the support and

Prepared using sagej.cls

8 Journal Title XX(X)

Table 5. Comparison of ARM on sensor data with semantics
(w-s, our pipeline) and without (wo-s), showing a significant
increase in support and rule coverage (cov.) with semantics
(FP-G = FP-Growth, Conf = Confidence).

Rules Support Cov. Conf.

w-s|wo-s w-s|wo-s w-s|wo-s w-s|wo-s

LeakDB
FP-G 103K|9K 0.41|0.19 0.43|0.2 0.95|0.97
Aerial 554|2.5K 0.54|0.25 0.59|0.3 0.91|0.87

L-Town
FP-G 25K|5K 0.86|0.36 0.9|0.38 0.96|0.96
Aerial 1K|2.5K 0.59|0.39 0.65|0.45 0.91|0.88

LBNL
FP-G 7K|2K 0.84|0.73 0.85|0.75 0.98|0.99
Aerial 73|258 0.74|0.65 0.74|0.66 1.0|0.99

rule coverage values are significantly higher. Furthermore,
this experiment is repeated with varying numbers of
sensors, and the results (Experiment 4 in Appendices)
show that a higher number of sensors results in more
generically applicable rules. The comparison of rule count
and confidence for different approaches will be investigated
in Experimental Setting 2.

Experiment 1.2: Execution Time. Figure 3 shows the
effect of including semantics in the execution time of FP-
Growth and Aerial (training + rule extraction time). The
increase in the execution time of FP-Growth is 3-12 times
while it is 2-3 times in Aerial and is more stable. However,
since the semantic association rules have higher support
and data coverage, a smaller number of them can have full
data coverage (which is the case for Aerial and will be
investigated in Experimental Setting 2). Therefore, we argue
that the increment in the execution time is acceptable. Note
that despite FP-Growth running faster with the parameters
given in Table 4, it is strictly dependent on the preset
minimum support threshold value and it runs slower for
lower thresholds. This is investigated in Experiment 2.1.

Illustration. Table 6 shows two example association rules
learned from the LeakDB dataset. The first rule is based
on the semantics and sensor data and has higher support
and coverage than the second rule, which is only about two
specific water flow sensors.

Setting 2: Aerial vs state-of-the-art

Figure 3. Effect of using semantics (indicated as w-s, and wo-s
for without semantics) on execution time.

Table 6. Association rule examples with (top) and without
(bottom) semantics learned from LeakDB dataset.

Association Rule Support Coverage

if a water flow sensor s1 is inside
a Pipe with length 843-895, and a
water demand sensor s2 inside a
Junction measures 13-17, then s1
must measure between 23-31.

0.5 0.54

if the water flow sensor inside
Pipe 28 measures between 23-31,
then the water flow sensor inside
Pipe 18 must measure between -
767–471.

0.43 0.52

Experiment 2.1: Execution Time and Number of
Rules Analysis. This experiment investigates how execution
time and the number of rules change for the proposed
Aerial approach and baselines depending on their relevant
parameters.

The exhaustive methods’ execution time and number of
rules they mine are strictly dependent on the preset minimum
support threshold and the number of antecedents. Figure 4
shows how the number of rules and execution time change
based on antecedents (for 1, 2, 3, and 4 antecedents) and
minimum support thresholds (for 0.05, 0.1, 0.2 and 0.3). The
results show that the execution time increases as the support
threshold decreases and the number of rules increases above
10 million for LeakDB while it reaches 1-2 million for LBNL
and L-Town datasets which are highly costly to post-process.
Similarly, as the number of antecedents increases the number
of rules reaches the levels of millions, while the execution

Figure 4. Exhaustive methods have higher execution times
(dotted lines) and produce a larger number of rules (bars) as
the number of antecedents (top chart, conf=0.8, sup=0.1)
increase or min. support threshold (bottom chart,
antecedents=3) decrease.

Prepared using sagej.cls

Karabulut et al. 9

Table 7. TS-NARM needs long evaluations (Evals.) for good
performance (LeakDB, Conf=Confidence). The results are
consistent across all datasets (Experiment 5 in Appendices).

Evals. Algorithm # Rules Time(s) Conf.

10000

DE 1388 109.24 0.69
GA 106 120.58 0.47
PSO 3281 115.39 0.81
LSHADE 1786 133.01 0.77
jDE 1578 88.48 0.75

30000

DE 6868 344.73 0.80
GA 472 393.73 0.40
PSO 10491 425.44 0.74
LSHADE 9914 411.82 0.94
jDE 5441 300.94 0.78

50000

DE 32525 782.72 0.81
GA 11578 650.88 0.60
PSO 32502 784.96 0.84
LSHADE 34887 981.07 0.99
jDE 24978 567.10 0.83

time reaches minutes. The execution did not terminate for the
LeakDB dataset when using 4 antecedents after 30 minutes.

Execution time, number of rules as well as the quality
of the rules mined by the optimization-based methods (TS-
NARM) strictly depend on the number of evaluations. Table
7 shows the effect of the maximum evaluations parameter
on the execution time, number of rules, and confidence of
the rules for the LeakDB dataset (the results are consistent
across datasets, see Experiment 5 in Appendices). The results
show that longer executions lead to a higher number of rules
with higher confidence for all 5 algorithms. 50,000 is chosen
as the maximum evaluation for the rule quality experiment
(Experiment 2.2) as this is also the case in the original paper.

Lastly, the rule extraction time of the proposed Aerial
approach is affected by the number of antecedent parameters,
as it increases the number of test vectors used in the
algorithm. Figure 5 shows the effect of increasing the number
of antecedents on the number of rules and execution time.
The number of learned rules is 10-100 times lower than
the exhaustive methods. Exhaustive methods run slower on
datasets with low support rules, LeakDB (see Tables 5 and
8), while running faster on datasets with high support rules,
L-Town and LBNL. Both Aerial and exhaustive methods run

Figure 5. Execution time and the number of rules learned by
Aerial depends on the number of antecedents.

Table 8. Rule qualities of all algorithms across all datasets
(Exhaustive = FP-Growth and HMine, Sup = Support, Conf =
Confidence, Cov = Data Coverage).

Algorithm # Rules Sup. Conf. Cov. Zhang

LeakDB
Exhaustive 103283 0.41 0.95 1.0 0.82

DE 11841 0.19 0.77 1.0 0.24
GA 663 0.08 0.46 1.0 0.15
PSO 12566 0.08 0.75 1.0 0.16

LSHADE 23605 0.4 0.98 1.0 0.41
jDE 10270 0.25 0.77 1.0 0.29

Aerial 554 0.54 0.91 1.0 0.9
L-Town

Exhaustive 25421 0.86 0.96 1.0 -0.18
DE 15163 0.11 0.76 1.0 0.13
GA 1384 0.03 0.37 1.0 0.05
PSO 15651 0.03 0.75 1.0 0.04

LSHADE 22825 0.39 0.96 1.0 0.39
jDE 11255 0.19 0.78 1.0 0.21

Aerial 1005 0.59 0.91 1.0 0.4
LBNL

Exhaustive 7220 0.84 0.98 1.0 0.01
DE 17393 0.22 0.79 1.0 0.23
GA 580 0.1 0.45 1.0 0.11
PSO 17944 0.06 0.8 1.0 0.07

LSHADE 30799 0.52 0.98 1.0 0.52
jDE 15594 0.28 0.77 1.0 0.29

Aerial 73 0.74 1.0 1.0 0.15

faster than the optimization-based methods for at least a low-
to-medium-size antecedent (1-4).

Experiment 2.2: Rule Quality Analysis. The goal of
this experiment is to assess the quality of rules found by
Aerial and baselines, highlighting the trade-offs between
algorithms. How to read the results? The evaluation results
are shown in Table 8 and the highest scores are intentionally
not emphasized as ideal rule quality values can vary by task.
As an example, high-support rules can be good at discovering
trends in the data while low-support rules may be better
at detecting anomalies. The focus is on understanding each
algorithm’s strengths under diverse conditions, therefore,
results should be interpreted together.

Aerial was able to find a concise set of rules that
have full data coverage with 90%+ confidence, the highest
association strength (Zhang’s metric) in the LeakDB and
L-Town datasets, and the second highest in the LBNL
dataset. The FP-Growth and HMine algorithms yield the
same results as they are Exhaustive. They have full data
coverage, resulted in a high number of rules except for the
LBNL dataset, and had very low association strength on
L-Town and LBNL. The optimization-based methods had
low confidence except for the LSHADE which had a high
confidence score on all datasets, the highest association
strength among other optimization-based methods, and the
highest in LBNL among all algorithms.

These results show that Aerial was able to find prominent
patterns in the datasets that have high association strength
and achieved full data coverage with a concise number
of rules in comparison to state-of-the-art, which was the

Prepared using sagej.cls

10 Journal Title XX(X)

Table 9. Aerial learns a more concise set of higher quality rules
as the similarity threshold (Sim.) increases (Conf = Confidence,
Cov = Rule Coverage, Zhang = Zhang’s Metric).

Sim. # Rules Support Conf. Cov. Zhang

LeakDB
0.9 412 0.47 0.92 1 0.91
0.8 554.4 0.54 0.91 1 0.9
0.7 1845 0.3 0.88 1 0.83
0.6 3027 0.25 0.84 1 0.79
0.5 9831 0.28 0.73 1 0.58

L-Town
0.9 116 0.7 0.98 1 0.06
0.8 1005.2 0.59 0.91 1 0.4
0.7 1860 0.39 0.82 1 0.33
0.6 3851 0.32 0.76 1 0.32
0.5 23017 0.38 0.65 1 0.2

LBNL
0.9 6 0.75 1 0.71 0
0.8 73 0.74 1 1 0.15
0.7 826 0.66 0.86 1 0.13
0.6 1730 0.64 0.75 1 0.08
0.5 2877 0.63 0.7 1 0.06

initially stated goal. In addition, Experiment 3 shows that
higher similarity thresholds in Aerial lead to even higher
quality association rules.

Experiment 3: Effect of similarity threshold on rule
quality in Aerial. The similarity threshold parameter of our
Aerial method affects the quality of the rules learned. This
experiment investigates the effect of the similarity threshold
parameter of Aerial on all 3 datasets.

Table 9 presents the results for all 3 datasets. We
observe that as the similarity threshold increases, the
number of learned rules decreases, while the average
support, confidence, and association strength (Zhang’s
metric) increase with the exception when the similarity
threshold is 0.9. In that case, we observe a decrement in the
association strength except in the LeakDB dataset. We argue
that this is due to both the relatively low number of rules (6
and 116) learned in comparison to a relatively higher number
of rules in LeakDB (412), and LeakDB being a low-support
dataset (see Table 5), meaning that the average rule support
for association rules in the LeakDB dataset is significantly
lower than the other two datasets.

These results imply that increasing the similarity threshold
results in more prominent rules but less in numbers, acting
similarly to the minimum confidence threshold of the
exhaustive algorithms.

Discussion
This section discusses and summarizes the experimental
findings.

Semantics for generalizability. The results in Experi-
mental Setting 1 showed that learning association rules from
both static and dynamic data in IoT systems results in rules
that have higher support and data coverage and, therefore,
are more generically applicable than rules learned from
sensor data only. The experiments also showed that including
semantics is beneficial regardless of the ARM approach as

the results were similar for both exhaustive FP-Growth and
our proposed Aerial approach.

Neurosymbolic methods can help learning a concise
set of high-quality rules. As semantic enrichment of sensor
data increases data dimension, current ARM methods result
in a higher number of rules which is already identified as a
research problem in the ARM literature. As an alternative,
our proposed Neurosymbolic Aerial approach can learn
a concise number of rules with full data coverage, high
confidence, and association strength, which is demonstrated
in Experimental Setting 2. We believe that there is a potential
in the direction of neurosymbolic rule learning, and Aerial is
a strong initial step.

Execution time. Semantic enrichment increases execution
time by 2-3 times for Aerial and 3-12 times for exhaustive
methods, as shown in Experiment 2.1. However, semantic
association rules have higher support and rule coverage,
and a substantially smaller number of them can have full
data coverage, therefore we argue that the increment is
acceptable. The exhaustive methods perform poorly on low-
support (LeakDB) datasets with a low minimum support
threshold and also perform poorly with a high number
of antecedents as demonstrated in Experiment 2.1. This
experiment also showed that Aerial runs faster than the
exhaustive methods on low-support datasets and Aerial’s
execution time does not depend on the datasets’ support
characteristics. Note that the Aerial can be parallelized
and run on GPU (similar to the exhaustive methods).
The optimization-based methods’ execution time is directly
controlled by the preset maximum evaluation parameter.
Longer executions are required to obtain higher-quality rules
and this also results in a high number of rules, which are
costly to process and maintain. Aerial is faster than the
optimization-based methods for learning rules with low-to-
medium-size antecedents (1 to 4). Note that the number of
antecedents for the optimization-based methods can not be
controlled.

Variations of Aerial. Many existing ideas in ARM
literature can be integrated into our Aerial approach. For
instance, in ARM with item constraints, rules of interest are
described using a taxonomy or an ontology and then ARM
algorithms focus on those rules only which speeds up the
execution and leads to a smaller number of rules (Srikant
et al. 1997; Baralis et al. 2012). A similar mechanism can be
implemented in Aerial, simply by creating the test vectors
in a way that only the items of interest are marked. This
will reduce the number of test vectors, and thus reduce the
execution time and the number of learned rules. Similarly,
top-k rule mining focuses on mining top-k association rules
with the highest quality (Fournier-Viger et al. 2012). An
analogous process in Aerial is to find the top-k rules with
the highest output probability. As shown in Experiment 3,
higher output probabilities lead to higher quality rules.

Scalability. Both time complexity and execution time
analyses (Experiments 1.2 and 2.1) show that our approach
is scalable on large-scale IoT data. The training is linear
over the number of features (sensors) and the number of
transactions. Algorithm 1 is parallelizable as test vectors
per feature subsets are created and processed independently.
Extrapolating the execution times (training + rule extraction)

Prepared using sagej.cls

Karabulut et al. 11

shown in Figure 5, Aerial can scale up to tens of thousands
of sensors on a laptop (see Hardware) in a day.

Conclusion and Future Work
This paper introduced two contributions; i) a novel ARM
pipeline for IoT systems, and lii) a Neurosymbolic ARM
method (Aerial). In contrast to the state-of-the-art, our
pipeline utilizes both dynamic sensor data and static
knowledge graphs that describe the metadata of IoT systems.
Aerial creates a neural representation of given input data
using an Autoencoder and then extracts association rules
from the neural representation. The experiments showed that
the proposed pipeline can learn rules with 2-3 times higher
support and coverage, which are more generically applicable
than ARM on sensor data only. Moreover, the experiments
further demonstrated that Aerial can learn a more concise set
of high-quality association rules than the state-of-the-art with
full data coverage. Aerial is also compatible with existing
work on addressing the high number of rule problems in the
ARM literature.

In future work, we first plan to investigate other neural
network architectures for their capabilities of learning
associations and develop new methods to extract rules from
neural representations created using various architectures.
Secondly, we plan to apply our methods to downstream
tasks such as leakage detection in water networks, or fault
diagnosis in energy systems.

Funding

This work has received support from The Dutch Research Council
(NWO), in the scope of the Digital Twin for Evolutionary Changes
in water networks (DiTEC) project, file number 19454.

References

Agrawal R, Srikant R et al. (1994) Fast algorithms for mining
association rules. In: Proc. 20th int. conf. very large data bases,
VLDB, volume 1215. Santiago, Chile, pp. 487–499.

Baralis E, Cagliero L, Cerquitelli T and Garza P (2012) Generalized
association rule mining with constraints. Information Sciences
194: 68–84.

Barati M, Bai Q and Liu Q (2017) Mining semantic association
rules from rdf data. Knowledge-Based Systems 133: 183–196.

Berteloot T, Khoury R and Durand A (2023) Association rules
mining with auto-encoders. arXiv preprint arXiv:2304.13717 .

Brest J, Zumer V and Maucec MS (2006) Self-adaptive
differential evolution algorithm in constrained real-parameter
optimization. In: 2006 IEEE international conference on
evolutionary computation. IEEE, pp. 215–222.

Chen S and Guo W (2023) Auto-encoders in deep learning—a
review with new perspectives. Mathematics 11(8): 1777.

Degeler V, Lazovik A, Leotta F and Mecella M (2014)
Itemset-based mining of constraints for enacting smart
environments. In: 2014 IEEE International Conference
on Pervasive Computing and Communication Workshops
(PerCom Workshops). pp. 41–46. DOI:10.1109/PerComW.
2014.6815162.

Dolores M, Fernandez-Basso C, Gómez-Romero J and Martin-
Bautista MJ (2023) A big data association rule mining based

approach for energy building behaviour analysis in an iot
environment. Scientific Reports 13(1): 19810.

Fan J, Zhang Y, Wen W, Gu S, Lu X and Guo X (2021) The
future of internet of things in agriculture: Plant high-throughput
phenotypic platform. Journal of Cleaner Production 280:
123651.

Fister I, Iglesias A, Galvez A, Del Ser J, Osaba E and Fister
I (2018) Differential evolution for association rule mining
using categorical and numerical attributes. In: Intelligent
Data Engineering and Automated Learning–IDEAL 2018: 19th
International Conference, Madrid, Spain, November 21–23,
2018, Proceedings, Part I 19. Springer, pp. 79–88.

Fister Jr I, Fister D, Fister I, Podgorelec V and Salcedo-Sanz S
(2023) Time series numerical association rule mining variants
in smart agriculture. Journal of Ambient Intelligence and
Humanized Computing 14(12): 16853–16866.

Foorthuis R (2020) The impact of discretization method on the
detection of six types of anomalies in datasets. arXiv preprint
arXiv:2008.12330 .

Fournier-Viger P, Wu CW and Tseng VS (2012) Mining top-k
association rules. In: Advances in Artificial Intelligence: 25th
Canadian Conference on Artificial Intelligence, Canadian AI
2012, Toronto, ON, Canada, May 28-30, 2012. Proceedings 25.
Springer, pp. 61–73.

Goldberg DE (2013) Genetic algorithms. pearson education India.
Granderson J, Lin G, Chen Y, Casillas A, Im P, Jung S, Benne

K, Ling J, Gorthala R, Wen J, Chen Z, Huang S, and Vrabie
D (2022) Lbnl fault detection and diagnostics datasets. DOI:
10.25984/1881324. URL https://data.openei.org/

submissions/5763.
Gruber T (1993) What is an ontology.
Han J, Pei J and Yin Y (2000) Mining frequent patterns without

candidate generation. ACM sigmod record 29(2): 1–12.
He G, Dai L, Yu Z and Chen CLP (2024) Gan-based temporal

association rule mining on multivariate time series data. IEEE
Transactions on Knowledge and Data Engineering 36(10):
5168–5180. DOI:10.1109/TKDE.2023.3335049.

Hogan A, Blomqvist E, Cochez M, d’Amato C, de Melo
G, Gutiérrez C, Kirrane S, Labra Gayo JE, Navigli R,
Neumaier S, Ngonga Ngomo AC, Polleres A, Rashid
SM, Rula A, Schmelzeisen L, Sequeda JF, Staab S
and Zimmermann A (2021) Knowledge Graphs. Num-
ber 22 in Synthesis Lectures on Data, Semantics, and
Knowledge. Springer. ISBN 9783031007903. DOI:10.
2200/S01125ED1V01Y202109DSK022. URL https://

kgbook.org/.
Jiang H and Meng H (2017) A parallel fp-growth algorithm based

on gpu. In: 2017 IEEE 14th International Conference on e-
Business Engineering (ICEBE). IEEE, pp. 97–102.

Karabulut E, Degeler V and Groth P (2023) Semantic association
rule learning from time series data and knowledge graphs.
In: Proceedings of the 2nd International Workshop on
Semantic Industrial Information Modelling (SemIIM 2023) co-
located with 22nd International Semantic Web Conference
(ISWC 2023). pp. 1–7. URL https://ceur-ws.org/

Vol-3647/SemIIM2023_paper_3.pdf.
Karabulut E, Pileggi SF, Groth P and Degeler V (2024) Ontologies

in digital twins: A systematic literature review. Future
Generation Computer Systems 153: 442–456. DOI:10.1016/
j.future.2023.12.013.

Prepared using sagej.cls

https://data.openei.org/submissions/5763
https://data.openei.org/submissions/5763
https://kgbook.org/
https://kgbook.org/
https://ceur-ws.org/Vol-3647/SemIIM2023_paper_3.pdf
https://ceur-ws.org/Vol-3647/SemIIM2023_paper_3.pdf

12 Journal Title XX(X)

Kaushik M, Sharma R, Fister Jr I and Draheim D (2023) Numerical
association rule mining: A systematic literature review. arXiv
preprint arXiv:2307.00662 .

Kennedy J and Eberhart R (1995) Particle swarm optimization. In:
Proceedings of ICNN’95-international conference on neural
networks, volume 4. ieee, pp. 1942–1948.

Khedr AM, Osamy W, Salim A and Abbas S (2020) A novel
association rule-based data mining approach for internet of
things based wireless sensor networks. Ieee Access 8: 151574–
151588.

Kingma DP and Ba J (2014) Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 .

Kishore S, Bhushan V and Suneetha K (2021) Applications of
association rule mining algorithms in deep learning. In: Com-
puter Networks and Inventive Communication Technologies:
Proceedings of Third ICCNCT 2020. Springer, pp. 351–362.

Li H, Wang Y, Zhang D, Zhang M and Chang EY (2008) Pfp:
parallel fp-growth for query recommendation. In: Proceedings
of the 2008 ACM conference on Recommender systems. pp.
107–114.

Listl FG, Dittler D, Hildebrandt G, Stegmaier V, Jazdi N and
Weyrich M (2024) Knowledge graphs in the digital twin: A
systematic literature review about the combination of semantic
technologies and simulation in industrial automation. arXiv
preprint arXiv:2406.09042 .

Ma M, Wang P and Chu CH (2013) Data management for internet
of things: Challenges, approaches and opportunities. In:
2013 IEEE International conference on green computing and
communications and IEEE Internet of Things and IEEE cyber,
physical and social computing. IEEE, pp. 1144–1151.

Patel HK et al. (2022) An innovative approach for association
rule mining in grocery dataset based on non-negative matrix
factorization and autoencoder. Journal of Algebraic Statistics
13(3): 2898–2905.

Pei J, Han J, Lu H, Nishio S, Tang S and Yang D (2001) H-mine:
Hyper-structure mining of frequent patterns in large databases.
In: proceedings 2001 IEEE international conference on data
mining. IEEE, pp. 441–448.

Raschka S (2018) Mlxtend: Providing machine learning and data
science utilities and extensions to python’s scientific computing
stack. The Journal of Open Source Software 3(24). DOI:
10.21105/joss.00638. URL https://joss.theoj.org/

papers/10.21105/joss.00638.
Rhayem A, Mhiri MBA and Gargouri F (2020) Semantic web

technologies for the internet of things: Systematic literature
review. Internet of Things 11: 100206.

Sarker IH and Kayes A (2020) Abc-ruleminer: User behavioral
rule-based machine learning method for context-aware
intelligent services. Journal of Network and Computer
Applications 168: 102762.

Shabtay L, Fournier-Viger P, Yaari R and Dattner I (2021) A guided
fp-growth algorithm for mining multitude-targeted item-sets
and class association rules in imbalanced data. Information
Sciences 553: 353–375.

Shang H, Lu D and Zhou Q (2021) Early warning of enterprise
finance risk of big data mining in internet of things based on
fuzzy association rules. Neural Computing and Applications
33(9): 3901–3909.

Srikant R, Vu Q and Agrawal R (1997) Mining association rules
with item constraints. In: Kdd, volume 97. pp. 67–73.

Storn R and Price K (1997) Differential evolution–a simple and
efficient heuristic for global optimization over continuous
spaces. Journal of global optimization 11: 341–359.

Stupan Ž and Fister I (2022) Niaarm: a minimalistic framework for
numerical association rule mining. Journal of Open Source
Software 7(77): 4448.

Sunhare P, Chowdhary RR and Chattopadhyay MK (2022) Internet
of things and data mining: An application oriented survey.
Journal of King Saud University-Computer and Information
Sciences 34(6): 3569–3590.

Tamašauskaitė G and Groth P (2023) Defining a knowledge graph
development process through a systematic review. ACM
Transactions on Software Engineering and Methodology 32(1):
1–40.

Telikani A, Gandomi AH and Shahbahrami A (2020) A survey
of evolutionary computation for association rule mining.
Information Sciences 524: 318–352.

Viktorin A, Pluhacek M and Senkerik R (2016) Success-
history based adaptive differential evolution algorithm with
multi-chaotic framework for parent selection performance
on cec2014 benchmark set. In: 2016 IEEE congress on
evolutionary computation (CEC). IEEE, pp. 4797–4803.

Vincent P, Larochelle H, Bengio Y and Manzagol PA (2008)
Extracting and composing robust features with denoising
autoencoders. In: Proceedings of the 25th international
conference on Machine learning. pp. 1096–1103.

Vrachimis S, Eliades D, Taormina R, Ostfeld A, Kapelan Z, Liu
S, Kyriakou M, Pavlou P, Qiu M and Polycarpou M (2020)
Dataset of battledim: Battle of the leakage detection and
isolation methods. In: Proc., 2nd Int CCWI/WDSA Joint Conf.
Kingston, ON, Canada: Queen’s Univ.

Vrachimis SG, Kyriakou MS et al. (2018) Leakdb: a bench-
mark dataset for leakage diagnosis in water distribution net-
works:(146). In: WDSA/CCWI Joint Conference Proceedings,
volume 1.

Vrbančič G, Brezočnik L, Mlakar U, Fister D and Fister I (2018)
Niapy: Python microframework for building nature-inspired
algorithms. Journal of Open Source Software 3(23): 613.

Wedashwara W, Ahmadi C and Arimbawa I (2019) Sequential
fuzzy association rule mining algorithm for plants environment
classification using internet of things. In: AIP Conference
Proceedings, volume 2199. AIP Publishing.

Yan X, Zhang C and Zhang S (2009) Confidence metrics for
association rule mining. Applied Artificial Intelligence 23(8):
713–737.

Additional Experiments
This section contains auxiliary experiments that were not
included in the core part of the paper. The experimental
setups described in Section Experimental Settings are
followed for these additional experiments as well unless
otherwise specified.

Experiment 4: Effect of sensor count on rule
generalizability. This experiment follows Experimental
Setting 1 and investigates whether the effect of semantic
enrichment of the sensor data is dependent on the number
of sensors in terms of the generalizability of the rules
learned. Note that we define the generalizability of rules as
having high support and high coverage over the data. This

Prepared using sagej.cls

https://joss.theoj.org/papers/10.21105/joss.00638
https://joss.theoj.org/papers/10.21105/joss.00638

Karabulut et al. 13

is an extension of the Experiments in Section Semantics vs
without Semantics.

Table 10. Comparison of ARM on sensor data with semantics
(indicated as w-s) and without semantics (wo-s) for 10, 15, and
20 sensors (Cov=Coverage, Conf=Confidence, FP =
FP-Growth, AE = Aerial).

Rules Support Cov. Conf.

w-s|wo-s w-s|wo-s w-s|wo-s w-s|wo-s

LeakDB
FP(10) 43K|472 0.23|0.22 0.24|0.23 0.96|0.96
FP(15) 130K|7321 0.27|0.14 0.28|0.15 0.96|0.97
FP(20) 103K|8974 0.41|0.19 0.43|0.2 0.95|0.97
AE(10) 123|109 0.31|0.24 0.33|0.27 0.94|0.91
AE(15) 547|940 0.31|0.27 0.37|0.31 0.88|0.89
AE(20) 554|2521 0.54|0.25 0.59|0.3 0.91|0.87

L-Town
FP(10) 11489|578 0.58|0.35 0.62|0.37 0.94|0.95
FP(15) 19447|2055 0.76|0.33 0.8|0.35 0.95|0.95
FP(20) 25421|5047 0.86|0.36 0.9|0.38 0.96|0.96
AE(10) 72|381 0.61|0.34 0.67|0.39 0.92|0.88
AE(15) 264|1300 0.54|0.35 0.6|0.42 0.9|0.87
AE(20) 1005|2551 0.59|0.39 0.65|0.45 0.91|0.88

LBNL
FP(10) 25|764 0.94|0.24 0.94|0.24 1|0.99
FP(15) 280|181 0.75|0.35 0.75|0.35 1|0.99
FP(20) 7220|2883 0.84|0.73 0.85|0.75 0.98|0.99
AE(10) 422|14 0.73|0.28 0.73|0.29 1|0.97
AE(15) 832|61 0.78|0.42 0.78|0.43 1|0.99
AE(20) 73|258 0.74|0.65 0.74|0.66 1|0.99

Table 10 shows the average rule count, support, rule
coverage, and confidence of the rules mined by FP-Growth
and our Aerial algorithms with varying numbers of sensors
(10, 15, and 20) with (w-s) and without (wo-s) the semantic
enrichment. On all 3 datasets, regardless of the number
of sensors used, the average support and coverage of the
rules increased upon semantic enrichment of the sensor data.
This is consistent with the results presented in Semantics
vs without Semantics section. In addition, the results show
that increasing the number of sensors leads to even higher
support and rule coverage values on average. The FP-
Growth algorithm mined significantly more rules upon
semantic enrichment across all datasets, while the number
of learned rules decreased for our Aerial approach after
semantic enrichment. We argue that due to the static semantic
properties in the knowledge graph, the FP-Growth generates
a high number of association rules in between those static
properties, while this is not the case for Aerial. Lastly, the
confidence values did not change significantly.

Experiment 5: Effect of maximum evaluations on
the execution time and rule quality of optimization-
based ARM. This section contains the experiments for
evaluating the effect of maximum evaluation parameters of
the optimization-based methods (TS-NARM) on execution
time and rule quality. The experiment results for the LeakDB
dataset are already given in Experiment 2.1. Therefore, this
section only contains the results for the L-Town and the
LBNL datasets and the results are consistent across all
datasets.

Table 11. TS-NARM needs high numbers of evaluations
(Evals.) for good performance (L-Town, Conf = Confidence).

Evals. Algorithm # Rules Time(s) Conf.

1000

DE 55.5 5.82 0.39
GA 46 5.53 0.26
PSO 67 6.52 0.4
LSHADE 76 7.08 0.36
jDE 76 3.81 0.5

10000

DE 2595 158.4 0.68
GA 270 127.64 0.38
PSO 2215.5 148.22 0.58
LSHADE 2369 131.73 0.75
jDE 2038.5 110.89 0.75

30000

DE 7686.5 610.8 0.75
GA 823.5 576.75 0.36
PSO 11026.5 572.44 0.82
LSHADE 12071.5 616.04 0.94
jDE 6297.5 403.73 0.76

50000

DE 31673.6 778.46 0.81
GA 11239 591.89 0.51
PSO 30570.2 828.5 0.75
LSHADE 35559.4 871.7 0.98
jDE 24245 433.69 0.78

Table 12. TS-NARM needs high numbers of evaluations
(Evals.) for good performance (LBNL, Conf = Confidence).

Evals. Algorithm # Rules Time(s) Conf.

1000

DE 90 6.91 0.49
GA 58.5 5.26 0.51
PSO 104.5 6.93 0.48
LSHADE 132.5 6.15 0.47
jDE 172.5 4.83 0.65

10000

DE 3037.5 115.96 0.72
GA 370.5 107.77 0.51
PSO 2825.5 108.82 0.78
LSHADE 3372.5 95.99 0.82
jDE 2919 51.2 0.73

30000

DE 9751 170.16 0.74
GA 419 185.84 0.5
PSO 8933 188.72 0.96
LSHADE 17624 182.64 0.97
jDE 7958 111.05 0.77

50000

DE 27778.8 479.6 0.77
GA 7945.4 501.37 0.47
PSO 25453.8 530.74 0.79
LSHADE 26864.4 787.79 0.97
jDE 20243.2 421.82 0.77

Tables 11 and 12 show the results for the L-Town and
LBNL datasets respectively. Similar to the results for the
LeakDB dataset, as the maximum number of evaluation
parameters increases, the number of rules, execution time
as well as average confidence of the rules increase.
The increment in the confidence values decreases as the
maximum evaluations increase. These experiments show that

Prepared using sagej.cls

14 Journal Title XX(X)

Table 13. Evaluation of ARM-AE on all 3 datasets for
experimental setting 2 (Conf = Confidence, Cov = Coverage).

Dataset
Rule

Count Support Conf.
Data
Cov.

Zhang’s
Metric

LeakDB 4400 0.08 0.13 0.05 -0.79
L-Town 5600 0.08 0.11 0.1 -0.89
LBNL 3440 0.36 0.46 0.08 -0.41

optimization-based methods require longer execution times
in order to obtain higher-quality rules.

Experiment 6: Extracting Association Rules with
ARM-AE. As mentioned in Section Rule Extraction from
Autoencoders, ARM-AE (Berteloot et al. 2023) resulted in
exceptionally low rule quality and therefore we opted not
to include it in the core evaluation. In the original paper,
ARM-AE is tested on categorical tabular data only, and to
the best of our knowledge, ARM-AE is the only fully DL-
based ARM approach, besides our approach, at the time of
writing this paper. Note that there are DL-based approaches
to sequential ARM (He et al. 2024), however, that is a
different task than the one we tackle in this paper. We adapted
ARM-AE to work with sensor data as part of our pipeline and
used it as a baseline for Experimental Setting 2. It expects a
number of antecedents, a number of rules per consequent,
and a likeness (similarity threshold) parameter. The number
of antecedents is set to 2, number of rules per consequent
is set to the number of rules learned by our Aerial approach
divided by the number of features (of the dataset subject to
evaluation), and the likeness is set to 80%, similar to our
approach for fairness.

The evaluation results, given in Table 13, show that ARM-
AE resulted in exceptionally low rule quality values on all
3 datasets. Therefore, the results were not included in the
core part of the paper, however, for the purpose of having
complete novel baselines, we included it in this section.

Prepared using sagej.cls

	Introduction
	Related Work
	Association Rule Mining
	Association Rule Mining in Internet of Things

	Problem Definition
	Input
	Output

	Semantic Association Rules from IoT Data
	Pipeline
	Autoencoder Architecture
	Rule Extraction from Autoencoders

	Evaluation
	Setup
	Experimental Settings
	Setting 1: Semantics vs without Semantics.
	Setting 2: Aerial vs state-of-the-art.
	Challenges in comparison.

	Experimental Results
	Setting 1: Semantics vs without Semantics.
	Setting 2: Aerial vs state-of-the-art

	Discussion

	Conclusion and Future Work
	Additional Experiments

