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Abstract. Knowledge graphs (KGs) are an established paradigm for integrating heterogeneous data and representing knowledge.
As such, there are many different methodologies for producing KGs, which span notions of expressivity, and are tailored for
different use-cases and domains. Now, as neurosymbolic methods rise in prominence, it is important to understand how the
development of KGs according to these methodologies impact downstream tasks, such as link prediction using KG embeddings
(KGE). In this paper, we examine how various perturbations of graph structures impact downstream tasks. These perturbations
are sourced from how various methodologies (or design practices) would impact the model, starting with simple inclusions
of schema and basic reification constructions. We assess these changes across synthetic graphs and FB15k-237, a common
benchmark. We provide visualizations, graph metrics, and performance on the link prediction task as exploration results using
various KGE models.

Keywords: Knowledge Graphs, Knowledge Graph Embeddings, Graph Metrics

1. Introduction

Knowledge graphs (KGs) are an established paradigm for effectively and efficiently integrating heteroge-
neous data [21, 24, 37]. Many methodologies for creating KGs (and the ontologies that act as their schema
[22]) have been developed over the years [12], which recommend or otherwise emphasize the use of vari-
ous techniques. These range from the use of upper ontologies [14, 46], the use of ontology design patterns
[5, 15, 43], or even the use of LLMs alone [35], or combined with other methods [45].

Evaluating of KGs (or the ontologies that act as their schemas) can be done in many ways [17, 40], including
the use of large language models [50], logical and mathematical characteristics [18], heuristics [39], or
competency questions [34]. On the other hand, validation tools (e.g., SHACL [29] or ShEx [4]) can measure
whether or not the KG adheres to the schema.

As such, these also widely vary along which dimensions the evaluation occurs (e.g., is the ontology well-
formed?) and how the quality is reported (i.e., quantitative or qualitative reporting). Of particular impor-
tance, in any case, is determining whether or not the resultant KG after executing a methodology indeed
serves the needs of the stakeholders. For example, competency questions act as both a guide during the
development (in many methodologies) and also as a mechanism to confirm if the KG appropriately models
– and returns – the correct data [3].

Beyond these particular assessments of quality, however, is also whether or not a KG is appropriate for
downstream tasks, such as KG embeddings (KGEs) [28]. Depending on the model, entities and relationships
are somehow vectorized, which allow, for example, predicting relationships between entities [42]. A recent
study revealed that KGE model performance for link prediction can be impacted by the underlying structure
of KGs [9].
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The work presented in this paper explores how various graphical structures, such as those that would pro-
duced via different KG or ontology development methodologies, impact how various KGE models are
impacted by those changes, when evaluated against the link prediction task. To the authors’ knowledge,
beyond their own work [8] that this paper extends, there has yet to be any comprehensive investigation in
this area (although recently a pipeline for conducting such assessment has been developed [20]).

Specifically,

– instance graph, which we call SKG-4;
– SKG-4 plus type annotations, which we call SKG-5;
– SKG-5 plus superclasses for each type, which we call SKG-6;
– SKG-5 with reified properties, which we call SKG-5r;
– SKG-5r with shortcuts, which we call SKG-5rs; and
– SKG-5rs with added contextual nodes, which we call SKG-5rsc.

We furthermore note that these various representations span complexity. On one hand, they represent a
richer ontological reality, but on the other hand simpler semantics (and thus KG structures) are easier to
consume and query. This is inline with how patterns can be used to flatten or expand views of data to aid in
data publishing and consumption [30, 31, 41]. Similarly, it is worth exploring how the various views over
a KG can be used for human consumption, but tied directly to a version that is easier for different KGE
models to learn.

Concretely, this paper contributes: (a) various synthetic graphs and mechanism for their generation. (b) the
FB15k isotopes: FB15k-238 and FB15k-239,1 (c) the scripts and configuration files to generate these
datasets, (d) a thorough evaluation of the effects that the incorporation of increasing metadata has on the per-
formance of the KGE models in the link prediction task2, (e) the creation of SKG-237, a graph mimicking
FB15k-237 in structure as far as node, edge , node/ratio and degree centrality, that is trained and validated
in the same way as the ones above on TransE, (f) the creation of synthetic knowledge graphs (SKGs) of
increasing complexity, showcasing their generation, training, and evaluation on different hyperparameters
from our original isotopes, along with visualizations using t-SNE and UMAP. and (g) a discussion of results
and insights.

2. Background

2.1. Related Work

In [25], Iferroudjene et al. argue that the removal of Freebase Compound Value Types (CVTs) from the
FB15k and FB15k-237 datasets, consequently, removes valuable information from the KG. They create
FB15k-CVT that re-introduces an exact subset of Freebase with CVTs, which allow KGs to create more
structured and detailed representation of entities with multiple values of a type of data. When evaluating
KGE models against FB15k-237 and FB15k-CVT, FB15k-CVT underperformed on link prediction tasks.
This work indicates that current KGE models may not effectively incorporate semantic data and additional
research can be done to understand the limitations.

Overall, we see that deductive reasoning is quite difficult outside of the symbolic algorithms dedicated to it.
In particular, neurosymbolic methods (e.g., as found in [23]) struggle quite a bit. As deductive reasoning is
a major hurdle for approaching human-level cognition, this provides further motivation for understanding
the impact of how the presence (or lack thereof) of semantic information impacts KGEs.

The importance of evaluating knowledge graph embeddings (KGEs) with respect to the underlying seman-
tics of the graph is brought up in recent research. When evaluating embedding performance, for instance,
Jain et al. [26] mentions the importance of evaluating how well these embeddings preserve the semantic
links within the knowledge graph in addition to using ordinary metrics. Our goal of understanding embed-
ding behavior in synthetic KGs is in support of this. Gutierrez et al. work [19] additionally points out the
significance of matching vector space representations to basic ontology rules and terminology, claiming that

1This is intended to be reminiscent of Uranium-238 or Plutonium-239.
2For the remainder of the paper, when we say performance of a model, we mean specifically for the link prediction task.
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Fig. 1. This figure shows the various schema diagrams for the synthetic KG isotopes. We have used consistently coloring across all
figures to demonstrate correspondence. For clarity, in SKG-5RSC, we denote contextual nodes with a C and reification nodes with an
R.

a more thorough examination of how well embedding methods work with complex semantic structures is
essential—a realization that directs our investigation of synthetic knowledge graphs.

Additionally, Kang et al. [27] showed how conditional information can make connections in data more
clear, which motivated us to use t-SNE visualizations to uncover important patterns in our embeddings.
Their research on demonstrating dataset properties guided our approach for using these visualizations to
identify patterns, improve our understanding of groups, and identify data cluster divisions. Building on this
visualization method, Damrich et al. [7] reveals how UMAP and t-SNE can be used to effectively study
high-dimensional data. Their usage of similar learning methods to modify embeddings offers a helpful
perspective on how visualizing models such as TransE might highlight structural ties in the data, which we
apply into our own visualizations of our synthetic KGs.

2.2. Knowledge Graph Embedding Models

We utilize the DGL-KE library for scalable training and evaluation of KGE models 3. KGE models that
implement an additive scoring function can be categorized as Translational Distance (TrD) Models. Tested
TrD Models include TransE [6], TransR [32], and RotatE [47]. KGE models that apply tensor decompo-
sition (TeD) techniques for scoring can be categorized similarly as TeD Models. Tested TeD Models that
fall under this category include RESCAL [36], DistMult [52], and ComplEx [49].

3. Methodology

In this section, we describe how we created the various synthetic KG and FB15k isotopes developed for our
evaluation. Specific implementation details, including hyper-parameters, are detailed in Section 3.4.

3.1. Creating SKG-4, SKG-5 and SKG-6

We created a total of six synthetic datasets to further our investigation regarding the graph structure of a KG
and how that may affect the link prediction aspect of KGEs. The structure of, or template for, each of these
synthetic KGs (SKGs) is shown in Figure 1.

We describe the templates for the SKG isotopes.

3https://dglke.dgl.ai/doc/

https://dglke.dgl.ai/doc/


4 3 METHODOLOGY

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

Fig. 2. This figure shows a schema diagram modeling a reified node. It includes a contextualization (the

(a) This represents the types of triples contained in each
of the datasets. The yellow ellipses are a set of triples ex-
tracted from T239. The dashed boxes correspond to the col-
ors in Figure 3b.

(b) A graphical overview of the different KGE models and
their corresponding augmentations. The right hand side
shows the different sets of test data used to evaluate the
models.

Fig. 3. Graphical overview of adding semantics to FB15k and the method of testing trained models.

– SKG-4: This isotope consists of a central node connected to four peripheral nodes via unique proper-
ties. That there are four unique properties in this isotope gives meaning to the numerical assignment
(i.e., SKG-4).

– SKG-5: Each node in the template for SKG-4 is assigned a type. In doing so, we introduce a new
predicate (rdf:type) and thus increase the isotope numeral. The type remains constant (and thus tied
to) the unique property. This is depicted using a consistent color in Figure 1. For example, the top
node in SKG-4 always has the “lavender” type.

– SKG-6: Each type node in SKG-5 is assigned a corresponding superclass. In doing so, we introduce
another new predicate (rdfs:subClassOf). In Figure 1, this corresponds to the “lavender” type having
“purple” superclass.

– SKG-5r: This isotope is built from SKG-5. Essentially, each unique property is no reified with a
consistently typed node. Reification can be interpreted a few different ways [13, 16]. In this case,
intend it to be a node that will somehow be used to attach context to a property. A modeling example
is show in Figure 2. This metapattern can be viewed in detail in [44].

– SKG-5rs: For each reified property, we include the original unique property, thus providing a shortcut
back to the original target node. This is the red dashed lines in Figure 1.

– SKG-5rsc: For each reification node, we attach a contextual node of specific type. This is labeled C
in the figure.

In this study, we currently instantiate each template 1,000 times. This can be improved in the future to pro-
duce templates that interlink or somehow connect via nodes. As it stands, each SKG has 1,000 disconnected
components.

3.2. Creating FB15k-238 and FB15k-239

FB15k-237 is published with the data split to allow for training, evaluation, and validation of KGE models.
This research introduces FB15k-238 and FB15k-239 as augmentations of the FB15k-237 dataset. Expanding
from FB15k-237, FB15k-238 includes exactly one new relation, P31 (hence the 238). P31 is taken from
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Dataset # Entities # Rel.s # Train # Validation # Test

FB15k-237 14541 237 272115 17535 20466
FB15k-238 16414 238 293471 31482 35257
FB15k-239 17494 239 296822 33879 37738

Table 1
This table shows a comparison of different counts for the Freebase subset and the created augmentations.

Hyper-Parameter Setting

emb_size 400
max_train_step 500
batch_size 1000
neg_sample_size 1000
learning rate 0.25
gamma 19.9
double_ent FALSE
double_rel FALSE
neg_adversarial_sampling TRUE
adversarial_temperature 1
regularization_coef 1.00E-09
regularization_norm 3

Table 2
This table details the hyper-parameter settings used for the training and evaluation during training of the KGE models with respect to FB15k-237,
FB15k-238, and FB15k-239.

Hyper-Parameter Setting-SKG

max_train_step 50
batch_size 10
neg_sample_size 10
learning rate 0.25
gamma 19.9
hidden_dim 10
log_interval 25
reg_coeff 1.00E-05

Table 3
This table details the standardized lowest hyper-parameter settings used for the training and evaluation during training of the KGE models for
the SKGs.

Wikidata and has the label instanceOf or is a.4. FB15k-239 extends from FB15k-238 and adds exactly one
new relation: P279. P279 is taken from Wikidata and has the label “subclass of.”5 FB15k-238 is constructed
by iterating through each Freebase entity (MID) and querying Wikidata for its entity typing via the P31
property. The found facts of P31 are appended to the respective data split files of FB15k-237. FB15k-239
is constructed by iterating through each new entity typing entry from FB15k-238 and querying Wikidata
for the entity typing’s superclass relationship via the P279 property. The found facts of P279 are appended
to the data split files of FB15k-238. We note that not every MID remains incorporated into Wikidata from
the original transfer (either they were never transferred or, over time, were for some reason removed).6 As
such, our FB15k-238 dataset is missing the type information for 42 entities.

We provide Table 1 as a summary of the count of entities, edges, and triples per data split in FB15k-237 and
our augmentations.

3.3. Creating SKG-237

We constructed a synthetic graph with the same number of unique nodes, unique predicates, and triple
count as FB15k-237. However, the exact facts are not. Instead, triples are added in such a way to create
synthetic version of FB15k-237 (which we creatively call SKG-237) that has the same graph centrality
metrics: degree, betweenness, and closeness.

3.4. Implementation

Our graphs are generated using a set of scripts which can be found online. Research artifacts include the
scripts for generating the SKG and FB15k isotopes, for calculating the ratio and centrality metrics, for
generating the visualizations, and a container for training the KGE models, as well as each of the graphs

4https://www.wikidata.org/wiki/Property:P31
5https://www.wikidata.org/wiki/Property:P279
6For example, Freebase MID /m/01sxq9, Wikidata had once listed this entity as “Bebe Neuwirth” but has since removed the MID

Property from the respective page. During the initial data migration, technical and non-technical challenges resulted in some missing
MIDs in Wikidata [38].

https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Property:P279
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themselves. They are provided through a Zenodo repository7 and a GitHub repository8 under the MIT
License, which is also included in the repository.

The KGE models are trained through the Deep Graph Learning - Knowledge Embedding (DGL-KE) library
[53].

Hyper-parameters play a crucial role in training machine learning models, and adjustments to hyper-
parameters have a sizable impact on model performance, choosing them for knowledge graph embedding
model training is a difficult but important issue [33].

Due to the smaller size of these synthetic KGs, we had different hyper-parameter configurations for them,
due to incompatibilities between the graph size and the DGL-KE configuration. Further, we were not able to
identify the hyper-parameters used in the initial publications of the KGE models, so we opted to standardize
their values across our experimentation with the implemented models in DGL-KE. As used by DGL-KE,
the list of hyper-parameters9 are found in Table 2.

3.5. Evaluation

The experiment consists of four overall analyses: (a) We evaluate the performance of each model across the
previously described KGs to examine the respective model’s impact to semantic inclusion. In this experi-
ment, the models are trained and evaluated with their respective training and test data. (b) We evaluate the
performance of each model by training them on their own respective training data. We continue to evaluate
them with the test data provided by FB15k-237. This allows for an examination of how models are trained
with and without semantics when evaluating data. (c) We include an ablation-like study which experiments
solely with models trained with FB15k-238 and FB15k-239 data (as respectively denoted by M238 and
M239 in Table 10). These models are evaluated with the new data, challenging the models to perform link
prediction on the semantics of the KGs.

(d) With using the same hyperparameters shown in table 2, for training and evaluation of SKG-237 to
examine how the performance would be since the graphs are only the same in structure. We also include the
t-sne and umap figures.

(e) We used drastically different hyperparameters from our original approach shown in 3 for training and
evaluation on SKG-4, SKG-5,SKG-5r, SKG-5rs, SKG-5rsc and SKG-6 for the TransE model in order to
examine how our isotope variations affect the link prediction aspect of learning when that structure is con-
trolled.

As a straightforward and widely used model that offers a clear baseline for evaluating embedding accuracy
and link prediction performance, we chose to focus on TransE as our starting point. TransE’s translation-
based approach fits in well with our goal of investigating how structural features affect model behavior,
and initial testing showed that it is very sensitive to graph structure changes. To compare the synthetic
knowledge graph with complex models created in future investigations, it was the perfect place to start
when evaluating how well it represents underlying relationships.

3.6. KGE Evaluation Metrics

The DGL-KE library provides an evaluation mechanism, configured with Mean Rank (MR), Mean Re-
ciprocal Rank (MRR), and Hits@K [1]. MR is a statistical metric representing the average position or
ordinal rank assigned to a set of items in a given ranking. A lower MR score indicates a better performing
model. MRR is a statistical measure that assesses the average of the reciprocals of the ranks assigned to
relevant items in a ranked list. A higher MRR score, constrained by {0,1}, indicates a better performing
model. Hits@K is an evaluation metric that measures the number of relevant items present in the top-k
positions of a ranked list. A higher value indicates a better performing model. Our evaluation uses k at 1, 3,
and 10.

7https://doi.org/10.5281/zenodo.10296229
8https://github.com/kastle-lab/kge-impact
9The description of the hyper-parameters can be found at https://dglke.dgl.ai/doc/train.html#arguments

https://doi.org/10.5281/zenodo.10296229
https://github.com/kastle-lab/kge-impact
https://dglke.dgl.ai/doc/train.html#arguments
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3.7. Graph Metrics

Important insights into the dynamics and structure of the underlying data are obtained by investigating graph
metrics in the context of KGs. The following explains each metric’s selection and the implications of each
datasets investigation.

The number of edges, nodes, and facts: The basic indicators of a KG’s size and scope. It is easier to
measure the complexity and range of the knowledge graph when one is aware of the quantity of facts
(triples), nodes (entities), and edges (relationships). Examining these parameters enables us to classify KGs
according on their sparsity and density. A dataset with a high degree of relation is shown by a graph with
a large number of edges in relation to its nodes. On the other hand, a lower percentage can indicate a
more domain-specific or scattered KG. Understanding the KG’s size helps in adjusting procedures to the
properties of the data, minimizing errors and increasing efficiency in applications like link prediction and
node categorization [11].

Degree Centrality: Degree centrality provides an simple yet effective method of identifying significant
nodes in the connections by counting the number of relationships that each node has. Knowing the degree
distribution makes it easier to identify the entities in the graph that may be more important. In applications
where integration is crucial, such as recommender systems or data retrieval, high-degree nodes can serve as
indicators of significant concepts or entities. In domain-specific analysis, low-degree nodes can be helpful
in identifying specialized or less well-known topics [11].

Inbetweeness Centrality: This metric measures how far a node is from other nodes along paths, indicating
that it serves as a link in the network. Nodes with a high betweenness centrality are those that control
the network’s information flow. These nodes may serve as crucial connections or limitations, which is
essential to comprehending the paths via which knowledge spreads. Examining betweenness centrality can
help identify entities that could interfere with how the graph connects if eliminated. For operations involving
pathway analysis or locating vulnerable positions in the graph, this is highly relevant [11].

Closeness Centrality: This metric quantifies a node’s closeness to every other node in the graph, indicating
whether efficiently information can get to it. Relevance: High closeness centrality nodes are positioned to
enable fast access to data from the whole graph. This aids in locating basic concepts that serve as points of
focus for the distribution or retrieval of information. In applications like query-answering systems or KG-
based search engines, where immediate access to scattered information is essential, knowing which nodes
have high proximity centrality can help with decision-making processes [11].

4. Results

We report our results along three dimensions, the graph centrality metrics, KGE model performance on
the link prediction task (including both the evaluation for the SKG isotopes and the ablation-like study for
FB15k isotopes), and visualizations using t-SNE [27] and UMAP [7].

4.1. Graph Metrics of the Isotopes

Table 4, Table 6 and Table 7 present important metrics, such as the total number of facts, nodes, edges,
and edge-to-node ratio, for the datasets and synthetic KGs. Additionally, they offers broad information for
degree centrality, betweenness centrality, and closeness centrality, displaying the average, maximum, and
minimum values for each of these metrics across the datasets.

As can be seen at table 5, even though SKG-237 is the same in structure with FB15k-237 as far as node, fact,
edges and degree centrality values, the train/evaluation and visualization results are so different as shown in
11.

4.2. KGE Evaluation Results

Table 8 refers to the evaluation results of TransE.
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Metric FB15k-237 FB15k-238 FB15k-239
Total Facts 310114 360210 368439

Number of Nodes 14541 16414 17507

Number of Edges 248608 270023 273403

Edge-to-Node Ratio 17.10 16.45 15.62

Degree Centrality (Min) 6.90E-05 6.10E-05 5.70E-05

Degree Centrality (Max) 0.4782 0.4240 0.3975

Degree Centrality (Avg) 0.0024 0.0020 0.0018

Betweenness Centrality (Min) 0.00 0.00 0.00

Betweenness Centrality (Max) 0.2837 0.2555 0.2477

Betweenness Centrality (Avg) 0.0001 0.0001 0.0001

Closeness Centrality (Min) 0.0001 0.0001 0.1123

Closeness Centrality (Max) 0.6155 0.5681 0.5304

Closeness Centrality (Avg) 0.3732 0.3473 0.3261
Table 4

The table reports the graph metrics for FB15k-237, FB15k-238, FB15k-239.

Metric SKG-237
Total Facts 310114

Number of Nodes 14541

Number of Edges 248608

Edge-to-Node Ratio 17.10

Degree Centrality (Min) 6.90E-05

Degree Centrality (Max) 0.4782

Degree Centrality (Avg) 0.0024

Betweenness Centrality (Min) 0.00

Betweenness Centrality (Max) 0.0100

Betweenness Centrality (Avg) 0.0001

Closeness Centrality (Min) 0.2234

Closeness Centrality (Max) 0.3720

Closeness Centrality (Avg) 0.2757
Table 5

The table reports the graph metrics for SKG-237.

Metric SKG-4 SKG-5 SKG-6 Difference
Total Facts 4000 9000 9004 ↑

Number of Nodes 5000 5005 5009 ↑
Number of Edges 4000 9000 9004 ↑

Edge-to-Node Ratio 0.80 1.80 1.80 ↑
Degree Centrality (Min) 0.0002 0.0004 0.0002 ↑ and ↓
Degree Centrality (Max) 0.0008 0.1998 0.1999 ↑
Degree Centrality (Avg) 0.0003 0.0007 0.0007 ↑

Betweenness Centrality (Min) 0.00 0.0001 0.00 ↑ and ↓
Betweenness Centrality (Max) 0.00 0.3591 0.3586 ↑ and ↓
Betweenness Centrality (Avg) 0.00 0.0004 0.0004 ↑

Closeness Centrality (Min) 0.0046 0.2962 0.2920 ↑
Closeness Centrality (Max) 0.0005 0.2943 0.2939 ↑
Closeness Centrality (Avg) 0.0008 0.5553 0.5547 ↑ and ↓

Table 6
The table reports the graph metrics for SKG-4, SKG-5, SKG-6.
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Metric SKG-4 SKG-5 SKG-5r SKG-5rs SKG-5rsc Difference
Total Facts 4000 9000 13000 17000 25001 ↑

Number of Nodes 5000 5005 9005 9005 13007 ↑
Number of Edges 4000 9000 13000 17000 25001 ↑

Edge-to-Node Ratio 0.80 1.80 1.44 1.89 1.92 ↑
Degree Centrality (Min) 0.0002 0.0004 0.0001 0.0002 7.70E-05 ↑ and ↑
Degree Centrality (Max) 0.0008 0.1998 0.1111 0.1111 0.3076 ↑
Degree Centrality (Avg) 0.0003 0.0007 0.0003 0.00042 0.0003 ↑

Betweenness Centrality (Min) 0.00 0.0001 0.00 0.00 0.00 ↑ and ↓
Betweenness Centrality (Max) 0.00 0.3591 0.3081 0.5299 0.4748 ↑ and ↓
Betweenness Centrality (Avg) 0.00 0.0004 0.0003 0.0003 0.0002 ↑

Closeness Centrality (Min) 0.0046 0.2962 0.2047 0.2649 0.2602 ↑
Closeness Centrality (Max) 0.0005 0.2943 0.4285 0.5293 0.4813 ↑
Closeness Centrality (Avg) 0.0008 0.5553 0.2388 0.2814 0.2949 ↑ and ↓

Table 7
The table reports the graph metrics for SKG-4, SKG-5, SKG-5r,SKG-5rs,SKG-5rsc.

Model Metrics SKG-4 SKG-5 SKG-6 SKG-5r SKG-5rs SKG-5rsc

TransE

MRR 0.3068 0.2311 0.2366 0.2486 0.2410 0.2482
MR 5.6925 6.8772 6.7836 6.5969 6.6403 6.6325

HITS@1 0.1275 0.0683 0.06992 0.0800 0.0682 0.07620
HITS@3 0.2963 0.1972 0.2109 0.2269 0.2275 0.2371

HITS@10 0.9163 0.8678 0.8574 0.8881 0.8541 0.8419
Table 8

This table reports the performance results for the SKG isotopes using TransE with the standardized hyperparameters.

Table 9 reports the model performances when trained with their respective KGs. Models trained according
to a specific FB15k-x are denoted as Mx, where x is the appropriate value. Test datasets are denoted Tx,
analogously, and we may find their differences (e.g.„ T238 − T237 contains only the entity type triples).

As a space saving measure, the evaluation of FB15k-237 is reported only once, as the second test to compare
the various trained models repeat evaluation of FB15k-237 on its own test data. If there are no bold reports
shown for a particular model, the optimal reported results are from models trained with FB15k-237. If some
results are missing underline in the evaluation with T237, the next best results come from models trained on
FB15k-237.

Table 10 reports the result of the aforementioned ablation-like study.

4.3. Visualizations of TransE Embeddings

The figures are included in the Appendix so as to not overwhelm the narrative.

5. Discussion

5.1. KGE Performance over SKG Isotopes

For SKG-4, which has no hierarchical relationships or any sort of additional “semantic complexity,” shows
the best results overall. We note that these values will still be limited due to the low connectivity between
template structure instantiations. Yet, when we begin adding semantic annotations (in the form of rdf:type
triples) which should thereby connect

SKG-5 and its variations, adding reification, shortcut and contextual information show promising results.
For SKG-5, MRR drops showing a struggle in the prediction task but Hits@10 demonstrates that it eventu-
ally can achieve satisfactory numbers.
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Evaluation across KGs Evaluation with T237

Model Metrics FB15k-237 FB15k-238 FB15k-239 FB15k-238 FB15k-239

TransE

MRR 0.4143 0.7219 0.7342 0.5489 0.5566
MR 33.9947 11.1185 10.3057 17.2292 16.1160

HITS@1 0.2982 0.6440 0.6569 0.4349 0.4440
HITS@3 0.4701 0.7729 0.7836 0.6152 0.6195
HITS@10 0.6394 0.8577 0.8714 0.7575 0.7668

TransR

MRR 0.2901 0.2019 0.2361 0.3037 0.3058
MR 152.6647 241.1533 209.9060 138.4772 128.6830

HITS@1 0.2247 0.1538 0.1832 0.2401 0.2404
HITS@3 0.3148 0.2153 0.2526 0.3266 0.3293
HITS@10 0.4066 0.2871 0.3292 0.4188 0.4226

ComplEx

MRR 0.3064 0.1296 0.1909 0.0840 0.1297
MR 84.6207 225.5332 129.6837 281.7108 179.7169

HITS@1 0.2034 0.0809 0.1152 0.0425 0.0652
HITS@3 0.3532 0.1331 0.2053 0.0859 0.1398
HITS@10 0.5001 0.2206 0.3420 0.1612 0.2565

RESCAL

MRR 0.3520 0.3132 0.3939 0.3771 0.3766
MR 126.5442 134.8030 104.7880 119.2274 116.6290

HITS@1 0.2766 0.2478 0.3142 0.3108 0.3055
HITS@3 0.3884 0.3366 0.4305 0.4043 0.4076
HITS@10 0.4789 0.4320 0.5388 0.4957 0.5022

DistMult

MRR 0.3213 0.1644 0.2344 0.1097 0.1537
MR 80.7576 137.8459 108.8363 190.6282 158.1567

HITS@1 0.2180 0.0865 0.1452 0.0508 0.0800
HITS@3 0.3672 0.1785 0.2601 0.1147 0.1696
HITS@10 0.5176 0.3216 0.4122 0.2235 0.2993

RotatE

MRR 0.0769 0.0751 0.0629 0.0775 0.0664
MR 277.2960 287.1963 298.5854 265.2055 257.6581

HITS@1 0.0419 0.0394 0.0344 0.0408 0.0341
HITS@3 0.0757 0.0728 0.0592 0.0767 0.0625
HITS@10 0.1331 0.1361 0.1068 0.1387 0.1189

Table 9
This table reports the results of evaluating each of the models against their respective training data. This table reports the results of testing each
of the models against solely the FB15k-237 training data (i.e., T237).

Adding the reification relationship adds on the structural depth but makes it difficult to perform, the same
way with the shortcut addition. However, the contextual aspect of the information assists on the link predic-
tion capabilities.

Additional exploration, especially in the style of the ablation-like study below, for training between

5.2. KGE Performance over FB15k Isotopes

First, across the different isotopes, we see that the inclusion of the additional semantic data drastically
improves the performance of TransE and RESCAL, but otherwise impedes or has a marginal improvement
in the other models, when tested with the full training data for each corresponding FB15k isotope. We
believe this to largely be the product of the type of relationships being added. For example, DistMult works
best with symmetric relationships, and neither P31 nor P279 are as such. Treating this work as a more
traditional data science problem is slated for immediate next steps.

We also test if the presence of additional semantic metadata present during training improves link prediction
only in the case of non-semantic metadata relations (i.e., not P31 or P279). For TransE and TransR this is
the case relative to baseline.
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Model Metrics
M238 � M239 �

T238−237 T238−237 T239−238 T239−237

TransE

MRR 0.9590 0.9465 0.9495 0.9470
MR 2.6546 3.1323 6.0362 3.4810

HITS@1 0.9280 0.9122 0.9132 0.9128
HITS@3 0.9910 0.9785 0.9851 0.9799

HITS@10 0.9970 0.9958 0.9910 0.9955

TransR

MRR 0.0632 0.1643 0.0770 0.1522
MR 383.1885 254.3162 618.0510 306.3611

HITS@1 0.0377 0.1215 0.0611 0.1139
HITS@3 0.0645 0.1744 0.0832 0.1617

HITS@10 0.1034 0.2377 0.1002 0.2175

ComplEx

MRR 0.1904 0.2250 0.4818 0.2614
MR 147.8925 75.8214 38.9972 70.3205

HITS@1 0.1317 0.1347 0.3841 0.1702
HITS@3 0.1957 0.2433 0.5261 0.2839

HITS@10 0.3033 0.4047 0.6724 0.4436

DistMult

MRR 0.2399 0.2989 0.5142 0.3316
MR 64.7679 53.2142 35.7648 50.5354

HITS@1 0.1350 0.1896 0.4160 0.2245
HITS@3 0.2652 0.3329 0.5661 0.3685

HITS@10 0.4593 0.5212 0.6941 0.5479

RESCAL

MRR 0.2238 0.3830 0.5886 0.4127
MR 156.3768 89.4667 99.9538 90.8974

HITS@1 0.1583 0.2852 0.5412 0.3223
HITS@3 0.2437 0.4319 0.6087 0.4571

HITS@10 0.3440 0.5639 0.6764 0.5801

RotatE

MRR 0.0707 0.0679 0.0049 0.0584
MR 317.6899 293.1596 669.9831 347.1890

HITS@1 0.0364 0.0418 0.0012 0.0352
HITS@3 0.0656 0.0645 0.0020 0.0549

HITS@10 0.1329 0.1071 0.0068 0.0923
Table 10

This table reports the results of our ablation-like study, where we change which component of the data against which we evaluate. Mx denotes
a model being trained with FB15k-x. Tx−y denotes test data, where x − y refers to the set difference resulting in data that can only be found in
FB15k-x.

Metric SKG-237

MRR 0.01209
MR 309.91

Hits1 0.0018
Hits3 0.0058

Hits10 0.0186
Table 11

This table reports the results of our evaluation of SKG-237 for TransE, using the standardized hyperparameters. We note a drastically negative
impact on performance.

5.3. KGE Performance over SKG-237

Despite utilizing a KG that has the same structural characteristics as FB15k-237 (nodes, predicates, and
triples), the TransE model does not do well on link prediction, according to the results . Low HITS@1,
HITS@3, and HITS@10 scores, along with poor Mean Reciprocal Rank (MRR) and Mean Rank (MR)
values, show that the model has struggled properly ranking pertinent entities, even among the top 10 predic-
tions. This suggests that although the synthetic KG shares structural similarities with FB15k-237, it does not
contain of the semantic relationships that underlie the original dataset. Thus, we note, that to some extent
TransE requires that the KG indeed more closely mimic real-world data. Further exploration is required to
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determine the exact connection between recurring entities in triple and the appearance of entities consis-
tently in appropriate domains and ranges of relations. That is to say, that we suspect in order for a KG to be
TransE-learnable, a minimum semantics is required in the graph.

5.4. Ablation-like Study with FB15k Isotopes

The purpose of our ablation-like study is to determine how different training data influences the model and,
subsequently, if the end results change for different test data. For example, the T238 − T237 task may be
also called type classification, as we are at this point simply predicting a P31 relation. We note that TransE
does exceptionally well, outperforming itself when all data is present, and irrespective of the training data.
Yet, this is not the case for any other model. One concern is that the relatively huge presence bias for P31
may be significantly skewing performance. On the other hand, given that performance still improves when
removing said assertions (Tab. 9, col.s 4-5).

Overall, we see that when looking to improve performance for link prediction, for simple assertional re-
lationships, TransE is effective and much improved when semantic metadata is included during training,
outperforming all other models.

5.5. Discussion of Graph Metrics

The graphs for SKG-4, SKG-5, and SKG-6 are getting more complex as reflected by their increased nodes,
edges, and edge-to-node ratio, which indicates their higher degree of connectivity. Degree and betweenness
centrality show that center nodes that are important are becoming more frequent, even while many nodes
are still less connected. Nodes become easier to locate in SKG-5, but somewhat less so in SKG-6, according
to closeness centrality.

When reification relationships (r), shortcuts (s), and contextual information (c) are added, the metrics for
SKG-4 through SKG-5rsc clearly show a pattern of a growing complexity. A significant increase is seen
in the overall number of facts, nodes, and edges; denser graphs are demonstrated by a higher edge-to-node
ratio. There is a range of degree centrality values, with some nodes growing closer together while others stay
just moderately connected. Although betweenness centrality points to the rise in important nodes, especially
in SKG-5rs, overall average values are still low, suggesting that there is no dominant centralization. As
shortcuts and context are introduced, nodes become easier to access, thus increasing total graph connection,
according to closeness centrality values. These trends demonstrate the graphs’ increasing structural changes
and depth as more semantic layers are added.

With the most facts, nodes, and edges, FB15k-239 has the largest graph structures, according to the metrics.
In bigger datasets, the edge-to-node ratio drops from FB15k-237 to FB15k-239, indicating a lower rela-
tive graph density. While average values drop across the datasets, degree centrality measurements indicate
that FB15k-237 has a greater range with higher maximum values, suggesting better balanced connection
in larger graphs. Although betweenness centrality varies throughout the datasets, FB15k-237 has some-
what higher maximum values, suggesting that some nodes are essential for connecting. More direct node
interaction is suggested by FB15k-237’s greater maximum and average closeness centrality scores.

So far we managed to replicate the graph structure of FB15k-237, as far as node, edge count, node/edge
ratio and degree centrality.

Most nodes don not act as important information-transfer facilitators, given the low average and maximum
betweenness centrality numbers, thereby pointing to a graph structure in which no single node controls the
shortest paths.

Also, nodes appear to be in a similar location with respect to their average distance to every other node,
based on the very small variety of closeness centrality values. This suggests that a lot of nodes in the graph
are relatively easy to find, indicating a balanced connectivity pattern.

5.6. Discussion of Visualization Results

The distribution of the training embeddings for FB15k-237, FB15k-238 and FB15k-239 can be seen in
Figures ??, ?? and ??, showing discrete clusters within each dataset. The visualizations show distinct
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regions with dense node clusters and with minimal areas with scattered nodes. This suggests that the model
has effectively discovered significant connections between the knowledge graph’s entities.

The entities and relations are typically well-separated, suggesting that the model obtained distinct repre-
sentations of different entity and relation types. The relationships between entities in the embedding space
appear to be implied by the model, as shown by the red crosses that depict relations appearing between
clusters.

TransE t-SNE and UMAP visualizations are showcased in ?? and ??. Notably the nature of the clustering
is quite different. Of course, both t-SNE and UMAP are not appropriate for strictly defining cluster mem-
bership, they can give an understanding of what clusters might exist. In this case, we might inspect that the
centrality metrics for SKG-237 are misleading. Future work should include different investigations to the
centrality metric beyond the average, per se.

The dense mixing observed here may lead to the model miss-ranking predictions because of similar embed-
dings for different entities. As opposed to this, the UMAP plot in ?? displays elements within close clusters,
although this separation might simply represent key structural differences rather than expressing the more
complicated semantic connections required for accurate predictions.

Plots for the SKG isotopes are shown in Figures ??-??, displaying the TransE training results and giving
us an insight on the overall clustering and that the lack of interconnections between template structure
instantiations has a negative impact. Yet, in higher isotopes, we also notice a distinct lack of clustering
based on type (i.e., that consistent use of type for the range of a property does not seem to overtly influence
the distribution of embeddings).

The t-SNE and UMAP visualizations both demonstrate the creation of clusters that is similar for SKG-4
seen in figure ??, suggesting that entities with similar semantic properties are grouped together. Based on
embedding values, the color coding indicates that different entities have different semantic characteristics.
Along with SKG-5 and SKG-6 shown in figure ?? and ?? respectively, the clusters show the most separa-
tion, confirming the results we discussed above about the highest evaluation results.

The rest of the visualizations of the extended versions of SKG-5 that are SKG-5r/5rs/5rsc in figures ??, ??
and ?? respectively, show many small tight clusters again reflecting the evaluation results.

6. Conclusion

Surprisingly, creating SKG-237 with exact triple, node, predicate and degree centrality number as FB15k-
237 was not enough as a controlled environment in terms of training and evaluation results.

The semantic connections represented in the synthetic graph may not capture the complex patterns found
in FB15k-237, despite its structural features (such as node/edge counts and centrality measurements) be-
ing identical. Hence, we took the next step in creating SKG-4/5/6 and the variations of SKG-5 (SKG-
5/5r/5rs/5rsc).

In summary, controlling graph structure has yielded important information on KGE’s performance. With its
simple structure, SKG-4 provides the best link prediction results, indicating that model performance is im-
proved by minimal complexity. While adding complexity enhances semantic depth, it also makes prediction
more difficult. This is true for SKG-5 and its modified versions, which include reification, shortcuts, and
contextual information.

Simpler structure, such as SKG-4, are shown to form more distinct clusters, while more complicated graphs
create a balance between relationships and group formation. According to these findings, adjusting graph
complexity affects how effective KGEs are; simplicity and structural depth must be balanced. The experi-
ment described in this short paper invites further investigations towards understanding the impact of a KG’s
schema and KGE model performance. The reports of our experiment suggests a threshold of semantic in-
clusion exists that can assist in link prediction for all models. Understanding the effects of graph metrics
and structure on embedding outcomes is essential. Getting the best results out of knowledge graph embed-
dings can be complex as demonstrated by the impact of these metrics and the careful tuning of training and
evaluation parameters.
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Future Work

We have identified some next steps in this line of research:

1. Replicate the experiment on other benchmarks (e.g., YAGO [48] or WN18RR [6]).
2. Replicate the experiment using additional models (e.g., Deep Learning techniques for KGEs [10]),

which may better incorporate semantics, as well as establish no differences between implementations
(e.g., [2])

3. Increase the number of tested isotopes by adding even more semantic metadata and varying graph
structures.

4. Examine the impact on other downstream tasks (e.g., entity clustering [51]).
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