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Abstract. We propose an end-to-end approach for Answer Set Programming (ASP) and linear algebraically compute stable
models satisfying given constraints. The idea is to implement Lin-Zhao’s theorem [1] together with constraints directly in vector
spaces as numerical minimization of a cost function constructed from a matricized normal logic program, loop formulas in Lin-
Zhao’s theorem and constraints, thereby no use of symbolic ASP or SAT solvers involved in our approach. We also propose
precomputation that shrinks the program size and heuristics for loop formulas to reduce computational difficulty. We empirically
test our approach with programming examples including the 3-coloring and Hamiltonian cycle problems.

Keywords: Answer Set Programming, end-to-end ASP, vector space, cost minimization, loop formula, supported model, stable
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1. Introduction

Computing stable model semantics [2] lies at the heart of Answer Set Programming (ASP) [3–5] and there have
been a variety of approaches proposed so far. Early approaches such as smodels [6] used backtracking. Then the
concept of loop formula was introduced and approaches that use a SAT solver to compute stable models based on
Lin-Zhao’s theorem [1] were proposed. They include ASSAT [1] and cmodels [7] for example. Later more elabo-
rated approaches such as clasp [8, 9] based on conflict-driven no good learning have been developed. While these
symbolic approaches continue to predominate in ASP, there has been another trend towards differentiable methods.
For example Differentiable ASP/SAT [10] computes stable models by an ASP solver that utilizes derivatives of a
cost function. More recently NeurASP [11] and SLASH [12] combined deep learning and ASP. In their approaches,
deep learning is not used in an end-to-end way to compute stable models, but used as a component to compute and
learn probabilities represented by special atoms interfacing to ASP. Takemura and Inoue [31] proposed a neurosym-
bolic learning pipeline that leverages differentiable computation of supported models. Although their method does
not specifically address stable model computation, it bypasses the need for a symbolic solver and illustrates how
differentiable computation facilitates integration with deep learning. A step towards end-to-end computation was
taken by Aspis et al. [13] and Takemura and Inoue [14]. They formulated the computation of supported models, a
super class of stable models, entirely as fixedpoint computation in vector spaces, and obtain supported models rep-
resented by binary vectors. However, there still remains a gap between computing supported models and computing
stable models.

In this paper, we propose an end-to-end approach for ASP and compute stable models satisfying given constraints
in vector spaces. The idea is simple; we implement Lin-Zhao’s theorem [1] together with constraints directly in
vector spaces as a cost minimization problem, thereby no use of symbolic ASP or SAT solvers involved. Since our
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approach is numerical and relies solely on vector and matrix operations, future work could explore the potential
benefits of parallel computing technologies such as many-core CPUs and GPUs.

Technically, Lin-Zhao’s theorem [1] states that a stable model of a ground normal logic program coincides with
a supported model which satisfies “loop formulas” associated with the program. Loop formulas are propositional
formulas indicating how to get out of infinite loops of top-down rule invocation. We formulate finding such a model
as root finding in a vector space of a non-negative cost function represented in terms of the matricized program
and loop formulas. The problem is that in whatever approach we may take, symbolic or non-symbolic, computing
supported models is NP-hard (for example graph coloring is solved by computing supported models) and there can
be exponentially many loop formulas to be satisfied [30]. We reduce this computational difficulty in two ways. One
is precomputation that removes atoms from the search space which are known to be false in any stable model and
yields a smaller program. The other is to heuristically choose loop formulas to be satisfied. The latter would mean
allowing non-stable model computation, and in our continuous approach, we modify the cost function to be affected
only by these chosen loop formulas. The intuition behind this heuristic is that the modified cost function would
assign higher cost to models that do not satisfy the chosen loop formulas, thus driving the search process away from
them.

Our end-to-end computing framework differs from those by [13] and [14] in that they basically compute supported
models and the computing process itself has no mechanism such as loop formulas to exclude non-stable models. In
addition, any propositional normal logic program is acceptable in our framework, since we impose no restrictions
on the syntax of programs like the MD condition [13] or the SD condition [14]. More importantly, we incorporate
the use of constraints, i.e., rules with an empty head, which make ASP programming smooth and practical.

Hence, our contributions include:

– a proposal of end-to-end computing of stable models in vector spaces for propositional normal logic programs
– augmentation of the above by constraints
– introduction of precomputation and heuristics to reduce computational difficulty of stable model computation.

We add that since our primary purpose in this paper is to establish theoretical feasibility of end-to-end ASP comput-
ing in vector spaces, programming examples are small and implementation is of preliminary nature. Furthermore,
the main search algorithm we propose in this paper is incomplete, in the sense that it does not guarantee reaching a
global minimum if it exists, nor it cannot conclusively prove that no solution exists.

In what follows, after preliminaries in Section 2, we formulate the computation of supported models in vector
spaces in Section 3 and that of stable models in Section 4. We then show programming examples in Section 5 includ-
ing ASP programs for the 3-coloring problem and the Hamiltonian cycle problem. We there compare performance
of precomputation and loop formula heuristics. Section 6 contains related work and Section 7 is the conclusion.

2. Preliminaries

In this paper, we mean by a program a propositional normal logic program P which is a finite set of rules of the
form a←G where a is an atom called the head, G is a conjunction of literals called the body of the rule, respectively.
We equate propositional variables with atoms. A literal is an atom (positive literal) or its negation (negative literal).
The logical connective ¬ in this paper denotes negation as failure. We suppose P is written in a given set of atomsA
but usually assume A = atom(P), i.e., the set of atoms occurring in P. We use G+ and G− to denote the conjunction
of positive and negative literals in G, respectively. G may be empty. The empty conjunction is always true. We call
a← G rule for a. A rule with an empty head is called a constraint. Let a← G1, . . . ,a← Gm be rules for a in P.
When m > 0, put iff(a) = a⇔G1∨·· ·∨Gm. When m = 0, i.e., there is no rule for a, put iff(a) = a⇔⊥ where⊥ is
a special symbol representing the empty disjunction which is always false. We call iff(a) the completed rule for a.
The completion of P, comp(P), is defined as comp(P) = {iff(a) | atom a occurs in P}. For a finite set S, we denote
the number of elements in S by |S|. So |P| is the number of rules in the program P.

An interpretation (assignment) I over a set of atomsA is a mapping which determines the truth value of each atom
a ∈A. Then the truth value of a formula F is inductively defined by I, and if F becomes true evaluated by I, we say
I satisfies F , F is true in I, or I is a model of F and write I |= F . This notation is extended to a set F = {F1, . . . ,Fu}
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by considering F as a conjunction F1∧·· ·∧Fu. For convenience, we always equate I with {a ∈ A | I |= a}, i.e., the
set of atoms true in I. When I satisfies all rules in the program P, i.e., I |= P, I is said to be a model of P. If no rule
body contains negative literals, P is said to be a definite program. In that case, P always has the least model (in the
sense of set inclusion) {a ∈ A | P ⊢ a}, i.e., the set of atoms provable from P.

A model I of comp(P) is a supported model of P [19, 20]. When P is a definite program, there is at least one
supported model, and its least model is also a supported model. In general, there can be multiple supported models
for both definite and non-definite programs P. Stable models are a subclass of supported models. They are defined as
follows. Given a program P and a model I, remove all rules from P whose body contains a negative literal false in I,
then remove all negative literals from the remaining rules. The resulting program, PI , is called the Gelfond-Lifschitz
(GL) reduct of P by I or just the reduct of P by I. It is a definite program and has the least model. If this least model
is identical to I, I is called a stable model of P [2]. P may have zero or multiple stable models, as in the case
of supported models. Since the existence of a stable model is NP-complete [4] and so is a supported model, their
computation is expected to be hard. Supported models and stable models of a propositional normal logic program
coincide when the program is tight (no infinite call chain through positive goals) [15, 16].

Let F = d1∨ ·· ·∨dh be a Boolean formula in n variables (atoms) in disjunctive normal form (DNF) where each
di (1 ⩽ i ⩽ h) is a conjunction of literals and called a disjunct of F . When F has no disjunct, F is false.

A walk in a directed graph is a sequence v1→ v2→ ·· · → vu (u ⩾ 1) of vertices representing the corresponding
non-zero sequence of edges (v1,v2), . . . ,(vu−1,vu). When vu = v1, it is said to be closed. A cycle is a closed walk
v1→ v2→ ·· ·→ vu→ v1 where {v1, . . . ,vu} are all distinct. A Hamiltonian cycle (HC) is a cycle which visits every
vertex exactly once. A path is a walk with no vertex repeated. A directed subgraph is called strongly connected if
there are paths from v1 to v2 and from v2 to v1 for any pair of distinct vertices v1 and v2. This “strongly connected”
relation induces an equivalence relation over the set of vertices and an induced equivalence class is called a strongly
connected component (SCC).

The positive dependency graph pdg(P) for a program P is a directed graph where vertices are atoms occurring in
P and there is an edge (a,b) from atom a to atom b if and only if (iff) there is a rule a←G in P such that b is a positive
literal in G. P is said to be tight [15, 16]1 when pdg(P) is acyclic, i.e., has no cycle. A loop S= {a1, . . . ,au} (u> 0) in
P is a set of atoms where for any pair of atoms a1 and a2 in S (a1 = a2 allowed), there is a path in pdg(P) from a1 to a2
and also from a2 to a1. A singleton loop S = {a} is induced by a self-referencing rule of the form a← a∧G where G
is possibly empty, i.e., a self-loop a← a. A support rule for a relative to a loop S is a rule a←G such that G+∩S= /0.
Given a loop L = {a1, . . . ,au} and its external support rules {a1←G11, . . . ,a1←G1n, . . . ,au←Gu1, . . . ,au←Gun},
the (conjunctive) loop formula is the following implication: (a1∧·· ·∧au)→ (G11∨·· ·∨G1n∨·· ·∨Gu1∨·· ·∨Gun).

We denote vectors by bold lower case letters such as a where a(i) represents the i-th element of a. Vectors
are column vectors by default. We use (a • b) to stand for the inner product (dot product) of vectors a and b of
the same dimension. ∥a∥1 and ∥a∥2 respectively denote the 1-norm and 2-norm of a where ∥a∥1 = ∑ |a(i)| and
∥a∥2 =

√
∑a(i)2. We use 1 to denote an all-ones vector of appropriate dimension. An interpretation I over a set

A= {a1, . . . ,an} of n ordered atoms is equated with an n-dimensional binary vector sI ∈ {0,1}n such that sI(i) = 1
if ai is true in I and sI(i) = 0 otherwise (1 ⩽ i ⩽ n). sI is called the vectorized I.

Bold upper case letters such as A stand for a matrix. We use A(i, j) to denote the i, j-th element of A, A(i, :) the
i-th row of A and A(:, j) the j-th column of A, respectively. We often consider one dimensional matrices as (row or

column) vectors. ∥A∥F denotes the Frobenius norm of A, i.e.,
√

∑i, j A(i, j)2. Let A,B ∈ Rm×n be m× n matrices.
A⊙B denotes their Hadamard product, i.e., (A⊙B)(i, j) = A(i, j)B(i, j) for i, j(1 ⩽ i ⩽ m,1 ⩽ j ⩽ n). [A;B]
designates the 2m×n matrix of A stacked onto B. We implicitly assume that all dimensions of vectors and matrices
in various expressions are compatible. We introduce a piece-wise linear function min1(x) =min(x,1) that returns the
lesser of 1 and x as an activation function which is related to the popular activation function ReLU(x) = max(x,0)
by 1−min1(x) = ReLU(1− x). min1(A) denotes the result of component-wise application of min1(x) to matrix A.
We also introduce thresholding notation. Suppose θ is a real number and a an n-dimensional vector. Then [a ⩽ θ ]
denotes a binary vector obtained by thresholding a at θ where for i(1 ⩽ i ⩽ n), [a ⩽ θ ](i) = 1 if a(i) ⩽ θ and
[a ⩽ θ ](i) = 0 otherwise. [a ⩾ θ ] is treated similarly. We extend thresholding to matrices. Thus [A ⩽ 1] means a

1In [15], it is called “positive-order-consistent”.
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matrix such that [A ⩽ 1](i, j) = 1 if A(i, j)⩽ 1 and [A ⩽ 1](i, j) = 0 otherwise. For convenience, we generalize bit
inversion to an n-dimensional vector a and use an expression 1− a to denote the n-dimensional vector such that
(1−a)(i) = 1−a(i) for i(1 ⩽ i ⩽ n). 1−A is treated similarly.

3. Computing supported models in vector spaces

In this section, we formulate the semantics of supported models in vector spaces and show how to compute it by
cost minimization.

3.1. Matricized programs

Definition 1 (Matricized program). A program P that has m rules in n atoms is numerically encoded as a pair
P = (C,D) of binary matrices C ∈ {0,1}m×2n and D ∈ {0,1}n×m, which we call a matricized program P.

C represents rule bodies in P. Suppose atoms are ordered like A = {a1, . . . ,an} and similarly rules are ordered
like {r1 : ai1 ← G1, . . . ,rm : aim ← Gm}. Then the j-th row C( j, :) (1 ⩽ j ⩽ m) encodes the j-th conjunction G j of
the j-th rule ai j ←G j. Write G j = ai1 ∧·· ·∧aip ∧¬aip+1 ∧·· ·∧¬aip+q (1 ⩽ p,q ⩽ n). Then an element of C( j, :) is
zero except for C( j, i1) = · · ·= C( j, ip) = C( j,n+ ip+1) = · · ·= C( j,n+ ip+q) = 1. D combines these conjunctions
as a disjucntion (DNF) for each atom in A. If the i-th atom ai ∈A (1 ⩽ i ⩽ n) has rules {ai←G j1 , . . . ,ai←G js} in
P, we put D(i, j1) = · · · = D(i, js) = 1 to represent a disjunction G j1 ∨ ·· · ∨G js which is the right hand side of the
completed rule for ai: iff(ai) = ai⇔ G j1 ∨·· ·∨G js . If ai has no rule, we put D(i, j) = 0 for all j (1 ⩽ j ⩽ m). Thus
the matricized P = (C,D) can represent the completed program comp(P).

For concreteness, we explain by an example below.

Example 1 (Encoding a program). Suppose we are given a program P0 below containing three rules {r1,r2,r3} in
a set of atoms A0 = {p,q,r}.

P0 =

 p← q ∧ ¬r : rule r1 for p
p← ¬q : rule r2 for p
q : rule r3 for q

(1)

Assuming atoms are ordered as p,q,r and correspondingly so are the rules {r1,r2,r3} as in (1), we encode P0 as a
pair of matrices P0 = (C0,D0). Here C0 represents conjunctions (the bodies of {r1,r2,r3}) and D0 their disjunctions
so that they jointly represent P0.

C0 =

p q r ¬p ¬q ¬r 0 1 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0

 : r1 has the body q∧¬r
: r2 has the body ¬q
: r3 has the empty body

(2)

D0 =

r1 r2 r3 1 1 0
0 0 1
0 0 0

 : p has two rules r1 and r2
: q has one rule r3
: r has no rule

(3)

As can be seen, C0 represents conjunctions in P0 in such a way that C0(1, :) for example represents the conjunction
q∧¬r of the first rule in P0 by setting C0(1,2) = C0(1,6) = 1 and so on. D0 represents disjunctions of rule bodies.
So D0(1,1) = D0(1,2) = 1 means the first atom p in {p,q,r} has two rules, the first rule r1 and the second rule r2,
representing a disjunction (q∧¬r)∨¬q for p.
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3.2. Evaluation of formulas and the reduct of a program in vector spaces

Here we explain how the propositional formulas and the reduct of a program are evaluated by a model in vector
spaces. Let I be a model over a set A of atoms. Recall that I is equated with a subset of A. We inductively define
the relation “a formula F is true in I”, I |= F in notation, as follows. For an atom a, I |= a iff a ∈ I. For a compound
formula F , I |= ¬F iff I ̸|= F . When F is a disjunction F1∨·· ·∨Fu (u ⩾ 0), I |= F iff there is some i (1 ⩽ i ⩽ u) s.t.
I |= Fi. So the empty disjunction (u = 0) is always false. We consider a conjunction F1∧·· ·∧Fu as a syntax sugar for
¬(¬F1∨·· ·∨¬Fu) using De Morgan’s law. Consequently the empty conjunction is always true. Let P be a program
having m ordered rules in n ordered atoms as before and G = ai1 ∧·· ·∧aip ∧¬aip+1 ∧·· ·∧¬aip+q the body of a rule
a←G in P. By definition, I |= G (G is true in I) iff {ai1 , . . . ,aip} ⊆ I and {aip+1 , . . . ,aip+q}∩ I = /0. Also let iff(ai) =
ai⇔G j1 ∨·· ·∨G js be the completed rule for an atom ai in P. We see I |= iff(ai) iff (ai ∈ I iff I |= G j1 ∨·· ·∨G js).

Now we isomorphically embed the above symbolic evaluation to the one in vector spaces. Let I be a model over
ordered atoms A = {a1, . . . ,an}. We first vectorize I as a binary column vector sI such that sI(i) = 1 if ai ∈ I and
sI(i) = 0 (1 ⩽ i ⩽ n) otherwise, and introduce the dualized sI written as sδ

I by sδ
I = [sI ;(1− sI)]. sδ

I is a vertical
concatenation of sI and the bit inversion of sI .

Consider a matricized program P = (C,D) (C ∈ {0,1}m×2n, D ∈ {0,1}n×m) and its j-th rule r j having a body
G j represented by C( j, :). Compute C( j, :)sδ

I which is the number of true literals in I in G j and compare it with
the number of literals |C( j, :)|12 in G j. When |C( j, :)|1 = C( j, :)sδ

I holds, all literals in G j are true in I and hence
the body G j is true in I. In this way, we can algebraically compute the truth value of each rule body, but since we
consider a conjunction as a negated disjunction, we instead compute C( j, :)(1− sδ

I ) which is the number of false
literals in G j. If this number is non-zero, G j have at least one literal false in I, and hence G j is false in I. The
converse is also true. The existence of a false literal in G j is thus computed by min1(C( j, :)(1− sδ

I )) which is 1 if
there is a false literal, and 0 otherwise. Consequently 1−min1(C( j, :)(1− sδ

I )) = 1 if there is no false literal in G j

and vice versa. In other words, 1−min1(C( j, :)(1− sδ
I )) computes I |= G j.

Now let {ai←G j1 , . . . ,ai←G js} be an enumeration of rules for ai ∈A and G j1 ∨·· ·∨G js the disjunction of the
rule bodies. di = ∑

s
t=1(1−min1(C( jt , :)(1− sδ

I ))) is the number of rule bodies in {G j1 , . . . ,G js} that are true in I.
Noting D(i, j) = 1 if j ∈ { j1, . . . , js} and D(i, j) = 0 otherwise by construction of D in P = (C,D), we replace the
summation ∑

s
t=1 by matrix multiplication and obtain di = D(i, :)(1−min1(C(1− sδ

I ))). Introduce a column vector
dI = D(1−min1(C(1−sδ

I ))). We have dI(i) = di = the number of rules for ai whose bodies are true in I (1 ⩽ i ⩽ n).
In the case of P0 = (C0,D0) in (1) having three rules {r1,r2,r3}, take a model I0 = {p,q} over the ordered atom

setA0 = {p,q,r}where p and q are true in I0 but r is false in I0. Then we have sI0 = [1 1 0 ]T , sδ
I0 = [1 1 0 0 0 1 ]T ,

1−sδ
I0 = [0 0 1 1 1 0 ]T and finally C0(1−sδ

I0) = [0 1 0 ]T . The last equation says that the rule bodies of r1, r2 and
r3 have respectively zero, one and zero literal false in I0. Hence min1(C0(1−sδ

I0)) = [0 1 0 ]T indicates that only the
second rule body is false and the other two bodies are true in I0. So its bit inversion 1−min1(C0(1−sδ

I0)) = [1 0 1 ]T

indicates that the second rule body is false in I0 while others are true in I0. Thus by combining these truth values in
terms of disjunctions D0, we obtain dI0 = D0(1−min1(C0(1− sδ

I0))) = [1 1 0 ]T . The elements in dI0 = [1 1 0 ]T

denote for each atom a ∈ A0 the number of rules for a whose body is true in I0. For example dI0(1) = 1 means that
the first atom p in A0 has one rule (p← q∧¬r) whose body (q∧¬r) is true in I0. Likewise dI0(2) = 1 means that
the second atom q has one rule (q←) whose body (empty) is true in I0. dI0(3) = 0 indicates that the third atom r
has no such rule. Therefore min1(dI0) = [1 1 0 ]T denotes the truth values of the right hand sides of the completed
rules {iff(p), iff(q), iff(r)} evaluated by I0.

Proposition 1. Let P = (C,D) be a matricized program P in a set of atoms A and sI a vectorized model I over A.
Put dI = D(1−min1(C(1− sδ

I ))). It holds that

I |= comp(P) iff ∥sI−min1(dI)∥2 = 0. (4)

2|v|1 = ∑i |v(i)| is the 1-norm of a vector v.
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(Proof) Put n = |A|. Suppose I |= comp(P) and write iff(ai), the completed rule for an atom ai ∈ A (1 ⩽ i ⩽ n), as
iff(ai) = ai ⇔ G j1 ∨ ·· · ∨G js (s ⩾ 0). We have I |= iff(ai). So if sI(i) = 1, I |= ai, and hence I |= G j1 ∨ ·· · ∨G js ,
giving di ⩾ 1 because di is the number of rule bodies in {G j1 , . . . ,G js} that are true in I. So min1(di) = 1 holds.
Otherwise if sI(i) = 0, we have I ̸|= ai and I ̸|= G j1 ∨ ·· · ∨G js . Consequently none of the rule bodies are true in
I and we have di = min1(di) = 0. Putting the two together, we have sI(i) = di. Since i is arbitrary, we conclude
sI = min1(dI), or equivalently ∥sI−min1(dI)∥2 = 0. The converse is similarly proved. Q.E.D.

Proposition 1 says that whether I is a supported model of the program P or not is determined by computing
sI −min1(dI) in vector spaces whose complexity is O(mn) where m is the number of rules in P, n that of atoms
occurring in P. In the case of P0 = (C0,D0) with sI0 = [1 1 0 ]T as in the aforementioned example, since sI0 =
min1(dI0) holds, it follows from Proposition 1 that I0 is a supported model of P0.

We next show how PI , the reduct of P by I, is dealt with in vector spaces. We assume P has m rules {r1, . . . ,rm}
with a setA= {a1, . . . ,an} of n ordered atoms as before. We first show the evaluation of the reduct of the matricized
program P = (C,D) by a vectorized model sI . Write C ∈ {0,1}m×2n as C = [Cpos Cneg] where Cpos ∈ {0,1}m×n

(resp. Cneg ∈ {0,1}m×n) is the left half (resp. the right half) of C representing the positive literals (resp. negative
literals) of each rule body in C. Compute Mneg = 1−min1(CnegsI). It is an m×1 matrix (treated as a column vector
here) such that Mneg( j) = 0 if the body of r j contains a negative literal false in I and Mneg( j) = 1 otherwise (1 ⩽
j ⩽ m). Let r+j be a rule r j with negative literals in the body deleted. We see that PI = {r+j |Mneg( j) = 1,1 ⩽ j ⩽ m}
and PI is syntactically represented by (Cpos,DI) where DI = D with columns D(:, j) replaced by the zero column
vector if Mneg( j) = 0 (1 ⩽ j ⩽ m). DI(i, :) denotes a rule set {r+j |DI(i, j) = 1,1 ⩽ j ⩽ m} in PI for ai ∈A. We call
PI = (Cpos,DI) the matricized reduct of P by I.

The matricized reduct PI = (Cpos,DI) is evaluated in vector spaces as follows. Compute Mpos = Mneg⊙ (1−
min1(Cpos(1−sI))). Mpos denotes the truth values of rule bodies in PI evaluated by I. Thus Mpos( j) = 1 (1⩽ j ⩽m)
if r+j is contained in PI and its body is true in I. Otherwise Mpos( j) = 0 and r+j is not contained in PI or the body
of r+j is false in I. Introduce d+

I = DMpos. d+
I (i) (1 ⩽ i ⩽ n) is the number of rules in PI for the i-th atom ai in A

whose bodies are true in I.

Proposition 2. Let P = (C,D) be a matricized program P in a set A = {a1, . . . ,an} of n ordered atoms and I a
model overA. Write C = [Cpos Cneg] as above. Let sI be the vectorized model I. Compute Mneg = 1−min1(CnegsI),
Mpos = Mneg ⊙ (1−min1(Cpos(1− sI))) and d+

I = DMpos. Also compute dI = D(1−min1(C(1− sδ
I ))). Then,

I |= comp(P), ∥sI−min1(dI)∥2 = 0, ∥sI−min1(d+
I )∥2 = 0 and I |= comp(PI) are all equivalent. (Proof in Appendix

A.1.)

From the viewpoint of end-to-end ASP, Proposition 2 means that we can obtain a supported model I as a binary
solution sI of the equation sI−min1(dI) = 0 derived from P or sI−min1(d+

I ) = 0 derived from the reduct PI . Either
equation is possible and gives the same result but their computation will be different. This is because the former
equation sI−min1(dI) is piecewise linear w.r.t. sI whereas the latter sI−min1(d+

I ) is piecewise quadratic w.r.t. sI .

Example 2 (Evaluation of a reduct). Now look at P0 = {r1,r2,r3} in (1) and a model I0 = {p,q} again.

PI0
0 =

{
p← q
q ← is the reduct of P0 by I0. PI0

0 has the least model {p,q} that coincides with I0. So I0 is a sta-

ble model of P0. To simulate the reduction process of P0 in vector spaces, let P0 = (C0,D0) be the matricized P0. We
first decompose C0 in (2) as C0 = [Cpos

0 Cneg
0 ] where Cpos

0 is the positive part and Cneg
0 the negative part of C0. They

are

Cpos
0 =

 0 1 0
0 0 0
0 0 0

 and Cneg
0 =

 0 0 1
0 1 0
0 0 0

 .
Let sI0 = [1 1 0 ]T be the vectorized I0. We first compute Mneg

0 = 1−min1(Cneg
0 sI0) to determine rules to be

removed. Since Mneg
0 = [1 0 1 ]T , the second rule r2, indicated by Mneg

0 (2) = 0, is removed from P0, giving PI0
0 =
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{r+1 ,r
+
3 }. Using Mneg

0 and D0 shown in (3), we then compute Mpos
0 = Mneg

0 ⊙ (1−min1(Cpos
0 (1− sI0))) = [1 0 1 ]T

and d+
I0
= D0Mpos

0 = [1 1 0 ]T . The elements of d+
I0

denote the number of rule bodies in PI0
0 that are true in I0 for

each atom. Thus, since sI0 = min1(d+
I0
)(= [1 1 0 ]T ) holds, I0 is a supported model of P0 by Proposition 2.

3.3. Cost minimization for supported models

Having linear algebraically reformulated several concepts in logic programming, we tackle the problem com-
puting supported models in vector spaces. Although there already exist approaches for this problem, we tackle it
without assuming any condition on programs while allowing constraints. Aspis et al. formulated the problem as
solving a non-linear equation containing a sigmoid function [13]. They encode normal logic programs differently
from ours based on Sakama’s encoding [21] and impose the MD condition on programs which is rather restrictive.
No support is provided for constraints in their approach. Later Takemura and Inoue proposed another approach [14]
which encodes a program in terms of a single matrix and evaluates conjunctions by the number of true literals.
They compute supported models by minimizing a non-negative function, not solving an equation like [13]. Their
programs are however restricted to those satisfying the SD condition and constraints are not considered.

Here we introduce an end-to-end way of computing supported models in vector spaces through cost minimization
of a new cost function based on the evaluation of disjunction. We impose no syntactic restriction on programs and
allow constraints. We believe that these two features make our end-to-end ASP approach more feasible.

We can base our supported model computation either on Proposition 1 or on Proposition 2. In the latter case, we
have to compute GL reduction which requires complicated computation compared to the former case. So for the
sake of simplicity, we explain the former. Then our task in vector spaces is to find a binary vector sI representing
a supported model I of a matricized program P = (C,D) that satisfies ∥sI −min1(dI)∥2 = 0 where dI = D(1−
min1(C(1− sδ

I ))). For this task, we relax sI ∈ {0,1}n to s ∈ Rn and introduce a non-negative cost function LSU :

LSU = 0.5 ·
(
∥s−min1(d)∥2

2 + ℓ2 · ∥s⊙ (1− s)∥2
2
)

where ℓ2 > 0 and d = D(1−min1(C(1− sδ ))). (5)

Proposition 3. Let LSU be defined from a program P = (C,D) as above.
LSU = 0 iff s is a binary vector representing a supported model of P.

(Proof) Apparently if LSU = 0, we have ∥s−min1(d)∥2
2 = 0 and ∥s⊙ (1− s)∥2

2 = 0. The second equation means s
is binary (x(1− x) = 0⇔ x ∈ {0,1}), and the first equation means this binary s is a vector representing a supported
model of P by Proposition 1. The converse is obvious. Q.E.D.

LSU is piecewise differentiable and we can obtain a supported model of P as a root s of LSU by minimizing LSU to
zero using Newton’s method. The Jacobian JaSU required for Newton’s method is derived as follows. We assume P
is written in n ordered atoms {a1, . . . ,an} and s = [u1, . . . ,un]

T represents their continuous truth values where s(p) =
sp ∈ R is the continuous truth value for atom ap (1 ⩽ p ⩽ n). For the convenience of derivation, we introduce the dot
product (A•B) =∑i, j A(i, j)B(i, j) of matrices A and B and a one-hot vector Ip which is a zero vector except for the
p-th element and Ip(p) = 1. We note (A• (B⊙C)) = ((B⊙A)•C) and (A• (BC)) = ((BT A)•C) = ((ACT )•B)
hold (see Appendix B.1 for details).

Let P = (C,D) be the matricized program and write C = [Cpos Cneg]. Introduce N, M, d, E, F and compute LSU
by

N = C(1− sδ ) = Cpos(1− s)+Cnegs : (continuous) counts of false literals in the rule bodies
M = 1−min1(N) : (continuous) truth values of the rule bodies
d = DM : (continuous) counts of true disjuncts for each atom
E = min1(d)− s : error between the estimated truth values of atoms and s
F = s⊙ (1− s) : (continuous) 0 iif s is binary
Lsq = (E•E)
Lnrm = (F•F)
LSU = 0.5 · (Lsq + ℓ2 ·Lnrm).

(6)
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We then compute the Jacobian JaSU of LSU as follows (full derivation in Appendix B.2):

JaSU =

(
∂Lsq

∂ s

)
+ ℓ2 ·

(
∂Lnrm

∂ s

)
= (Cpos−Cneg)T ([N ⩽ 1]⊙ (DT ([d ⩽ 1]⊙E)))−E+ ℓ2 · ((1−2s)⊙F) (7)

where N = C(1− sδ ), d = D(1−min1(N)), E = min1(d)− s, and F = s⊙ (1− s).

Note that since s is a vector, the Jacobian in this case is also a vector.

3.4. Adding constraints

A rule which has no head like← a∧¬b is called a constraint. We oftentimes need supported models which satisfy
constraints. Since constraints are just rules without a head, we encode constraints as rule bodies in a program using
a binary matrix Ĉ = [Ĉpos Ĉneg]. We call Ĉ constraint matrix. We introduce Nĉ, a non-negative function Lĉ of s and
Lĉ’s Jacobian Jaĉ as follows (derivation in Appendix B.3):

Nĉ = Ĉ(1− sδ ) = Ĉpos(1− s)+ Ĉnegs : number of literals falsified by s

Lĉ = (1• (1−min1(Nĉ))) where 1 is an all-ones vector : counts of violated constraints (8)

Jaĉ = (Ĉpos− Ĉneg)T [Nĉ ⩽ 1] : the Jacobian of Lĉ (9)

The meaning of Nĉ and Lĉ is clear when s is binary. Note that any binary s is considered as a model over a set
A= {a1, . . . ,an} of n ordered atoms in an obvious way. Suppose k constraints are given to be satisfied. Then Ĉ is a
k×2n binary matrix and Nĉ is a k×1 matrix. Nĉ(i) (1 ⩽ i ⩽ k) is the number of literals falsified by s in a conjunction
Gi of the i-th constraint← Gi. So Nĉ(i) = 0, or equivalently 1−min1(Nĉ(i)) = 1 implies Gi has no false literal i.e.,
s |= Gi, and vice versa. Hence Lĉ = ∑

k
i=1(1−min1(Nĉ(i))) = (1 • (1−min1(Nĉ))) equals the number of violated

constraints. Consequently when s is binary, we can say that Lĉ = 0 iff all constraints are satisfied by s.
When s is not binary but just a real vector s ∈ Rn, Nĉ and Lĉ are thought to be a continuous approximation to their

binary counterparts. Since Lĉ is a piecewise differentiable non-negative function of s, the approximation error can
be minimized to zero by Newton’s method using Jaĉ in (9).

3.5. An algorithm for computing supported models with constraints

Here we present a minimization algorithm for computing supported models of the matricized program P = (C,D)

which satisfy constraints represented by a constraint matrix Ĉ. We first combine LSU and Lĉ into LSU+ĉ using ℓ3 > 0.

LSU+ĉ = LSU + ℓ3 ·Lĉ (10)

= 0.5 ·
(
∥s−min1(d)∥2

2 + ℓ2 · ∥s⊙ (1− s)∥2
2
)
+ ℓ3 · (1• (1−min1(Ĉ(1− sδ )))) ℓ2 > 0, ℓ3 > 0

where d = D(1−min1(C(1− sδ )))

JaSU+ĉ = JaSU + ℓ3 · Jaĉ (11)

The next proposition is immediate from Proposition 3.

Proposition 4. LSU+ĉ = 0 iff s represents a supported model of P satisfying a constraint matrix Ĉ.
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We compute LSU in LSU+ĉ by (6) and Lĉ by (8), and their Jacobians JaSU and Jaĉ by (7) and by (9), respectively. We
minimize the non-negative LSU+ĉ to zero by Newton’s method using Algorithm 1. It finds a solution s∗ of LSU+ĉ = 0
which represents a supported model of P satisfying constraint matrix Ĉ. The updating formula is derived from
the first order Taylor expansion of LSU+ĉ and by solving LSU+ĉ +(JaSU∗c • (snew− s)) = 0 w.r.t. snew. The updating
formula with a learning rate α > 0 is thus defined as follows:

snew = s−α

(
LSU+ĉ

(JaSU+ĉ • JaSU+ĉ)

)
JaSU+ĉ (12)

Algorithm 1: minimizing LSU+ĉ to zero

1 Input: matricized program P = (C,D), constraint matrix Ĉ, max_itr ∈ Z, max_try ∈ Z

2 Output: binary vector s∗ representing a supported model of P satisfying constraints represented by Ĉ
3 s← random initialization
4 for i← 1 to max_try do
5 for j← 1 to max_itr do
6 optimally threshold s to a binary vector s∗ so that
7 error←∥s∗−min1(d∗)∥2

2 +(1• (1−min1(Ĉ(1− sδ
∗ ))))

8 is minimum where d∗ = D(1−min1(C(1− sδ
∗ ))

9 if error = 0 then
break

10 Update s by (12)

11 if error = 0 then
break

12 perturbate s to escape from a local minimum

13 return s∗

Algorithm 1 is a double loop algorithm where the inner j-loop updates s ∈ Rn repeatedly to minimize LSU+ĉ
while thresholding s into a binary solution candidate s∗ ∈ {0,1}n for LSU+ĉ = 0. The outer i-loop is for retry when
the inner loop fails to find a solution. The initialization at line 3 is carried out by sampling s(i) ∼ N (0,1)+ 0.5
(1 ⩽ i ⩽ n) where N (0,1) is the standard normal distribution. Lines 6,7 and 8 collectively perform thresholding of
s into a binary s∗. As the inner loop repeats, LSU+ĉ becomes smaller and smaller and so do Lsq and Lnrm in LSU . Lsq
being small means s is close to a supported model of P while Lnrm being small means each element of s is close
to {0,1}. So binarization s∗ = [s ⩾ θ ] with an appropriate threshold θ 3 has a good chance of yielding a binary s∗
representing a supported model of P satisfying constraints represented by Ĉ. It may happen that the inner loop fails
to find a solution. In such a case, we retry another j-loop with perturbated s at line 12. There s is perturbated by
s← 0.5(s+∆+0.5) where ∆∼N (0,1) before the next j-loop.

4. Computing stable models in vector spaces

4.1. Loop formulas and stable models

Let P = (C,D) be a matricized program in a set of atoms A= {a1, . . . ,an} having m rules {ai1 ← G1, . . . ,aim ←
Gm} where C ∈ {0,1}m×2n and D ∈ {0,1}n×m. We assume atoms and rules are ordered as indicated.

3Currently given s, we divide the interval [min(s),max(s)] into 20 equally distributed notches and use each notch as a threshold value θ .
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Computing a supported model of P is equivalent to computing any binary fixedpoint s ∈ {0,1}n such that
s = min1(D(1−min1(C(1− sδ )))) in vector spaces and in this sense, it is conceptually simple (though NP-hard).
Contrastingly since stable models are a proper subclass of supported models, if one wishes to obtain precisely stable
models through fixedpoint computation, the exclusion of non-stable models is necessary. Lin-Zhao’s theorem [1]
states that I is a stable model of P iff I is a supported model of P and satisfies a set of formulas called loop formulas
associated with P.

Let S = {h1, . . . ,hp} ⊆ A be a loop in P. Recall that S is a set of atoms which are strongly connected in the
positive dependency graph of P4. A support rule for h with respect to S is a rule h← H such that H+∩S = /0. H is
called a support body for S. Introduce a (conjunctive) loop formula for S by

LF(S) = (h1∧·· ·∧hp)→ (H1∨·· ·∨Hq) where {H1, . . . ,Hq} are support bodies for S. (13)

Then define loop formulas associated with P as LF(P) = {LF(S) | S is a loop in P}, which is treated as the conjunc-
tion of its elements. We note that in the original form [1], the antecedent of LF(S) is a disjunction (h1 ∨ ·· · ∨ hp).
Later it was shown that the disjunctive and conjunctive loop formulas are equivalent [24], and we choose to use the
conjunctive form of LF(S) as it is easier to satisfy using our method.

We evaluate LF(P) by a real vector s∈Rn. Introduce an external support matrix Esup ∈{0,1}n×m by Esup(i, j)= 1
if there is a support rule ai← G j for ai ∈ A, else Esup(i, j) = 0 (1 ⩽ i ⩽ n,1 ⩽ j ⩽ m). Suppose there are w loops
{S1, . . . ,Sw} in P. Introduce a loop matrix Loop ∈ {0,1}w×m such that Loop(v, j) = 1 if the v-th loop Sv has G j as a
support body for Sv, else Loop(v, j) = 0 (1 ⩽ v ⩽ w).

Example 3 (Encoding loop formulas). Suppose we are given a program PL0:

PL0 =


p← q ∧ ¬r : rule r1 for p
p← ¬s : rule r2 for p
q ← p : rule r3 for q
r ← r : rule r4 for r

(14)

This program contains two loops: S1 = {p,q} and S2 = {r}. In this case, only S1 has an external support body
¬s. Thus, the external support matrix Esup0 and the loop matrix Loop0 for this program are as follows:

Esup0 =

r1 r2 r3 r4
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


: p has the body of r2 as the support body
: q has no external support
: r has no external support
: s is not part of any loops

(15)

Loop0 =

r1 r2 r3[
0 1 0
0 0 0

]
: S1 has the body of r2 as its support body
: S2 has no support bodies

(16)

We then introduce a loss function LLF , which is a non-negative piecewise linear function of s.

M = 1−min1(C(1− sδ )) : (continuous) truth values by s of the rule bodies in P

Sv = Loop(v, :) : represents the v-th loop in {S1, . . . ,St}

Av = Sv(1− s)+SvEsupM : (continuous) counts of true disjuncts by s of LF(Sv)

LLF =
w

∑
v=1

(1−min1(Av)) (17)

4In the case of a singleton loop S = {h}, we specifically require, following [1], that h has a self-loop, i.e.,there must be a rule of the form
h← h∧H in P.
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Proposition 5. Let LLF be defined as above. When s is a binary vector representing a model I over A, it holds that
LLF = 0 iff s |= LF(P).

(Proof) Suppose LLF = 0 and s is binary. A summand (1−min1(Av)) in LLF (17) corresponds to the v-th loop
Sv = {h1, . . . ,hp} and is non-negative. Consider LF(Sv) = (h1 ∧ ·· · ∧ hp) → (H1 ∨ ·· · ∨ Hq) as a disjunction
¬h1∨·· ·∨¬hp∨H1∨·· ·∨Hq. Then LLF = 0 implies (1−min1(Av)) = 0, or equivalently Av ⩾ 1. Consequently, as
s is binary, we have Sv(1− s)⩾ 1 or SvEsupM ⩾ 1. The former means I |= ¬h1∨·· ·∨¬hp. The latter, SvEsupM ⩾ 1,
means I |= H1 ∨ ·· · ∨Hq. This is because the element (EsupM)(i) is the number of support rules for ai ∈ A whose
bodies are true in I s (1 ⩽ i ⩽ n), and hence SvEsupM ⩾ 1 means some support body Hr (1 ⩽ r ⩽ q) for Sv is true
in I. So in either case I |= LF(Sv). Since v is arbitrary, we have I |= LF(P). The converse is straightforward and
omitted. Q.E.D.

The Jacobian JaLF of LLF is computed as follows (derivation in Appendix B.4):

N = C(1− sδ )

Nv = Sv(1− s)

Mv = min1(Nv)

JaLF =
∂LLF

∂ s
=

w

∑
v=1
−
(

∂min1(Av)

∂ s

)

=
w

∑
v=1

[Av ⩽ 1]
(
[Nv ⩽ 1]ST

v +(((SvEsup)⊙ [N ⩽ 1]T )(Cneg−Cpos)T ) (18)

Here C = [Cpos Cneg] and Sv, Av and M are computed by (17).

Now introduce a new cost function LSU+ĉ+LF by (19) that incorporates LLF and compute its Jacobian JaSU+ĉ+LF
by (11).

LSU+ĉ+LF = LSU+ĉ + ℓ4 ·LLF where ℓ4 > 0 (19)

JaSU+ĉ+LF = JaSU+ĉ + ℓ4 · JaLF (20)

By combining Proposition 4, 5 and Lin-Zhao’s theorem [1], the following is obvious.

Proposition 6. s is a stable model of P satisfying constraints represented by Ĉ iff s is a root of LSU+ĉ+LF .

We compute such s by Newton’s method using Algorithm 1 with a modified update rule (12) such that LSU+ĉ and
JaSU+ĉ are replaced by LSU+ĉ+LF and JaSU+ĉ+LF respectively.

When a program P is tight [15], for example when rules have no positive literal in their bodies, P has no loop and
hence LF is empty. In such a case, we directly minimize LSU+ĉ instead of using LSU+ĉ+LF with the empty LF .

4.2. LF heuristics

Minimizing LSU+ĉ+LF is a general way of computing stable models under constraints. It is applicable to any
program and gives us a theoretical framework for computing stable models in an end-to-end way without depending
on symbolic systems. However there can be exponentially many loops and they make the computation of LLF (17)
extremely difficult or practically impossible. To mitigate this seemingly insurmountable difficulty, we propose two
heuristics which use a subset of loop formulas.
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LFmax: The first heuristic is LFmax. We consider only a set LFmax of loop formulas associated with SCCs in the
positive dependency graph pdg(P) = (V,E) of a program P. In the case of a singleton SCC {a}, a must have a
self-loop in pdg(P). We compute SCCs in O(|E|+ |V |) time by Tarjan’s algorithm [25].

LFmin: In this heuristic, instead of SCCs (maximal strongly connected subgraphs), we choose minimal strongly
connected subgraphs, i.e., cycle graphs. Denote by LFmin the set of loop formulas associated with cycle graphs
in pdg(P). We use an enumeration algorithm described in [26] to enumerate cycles and construct LFmin due to
its simplicity.

We remark that although LFmax and LFmin can exclude some of non-stable models, they do not necessarily exclude
all of non-stable models. However, the role of loop formulas in our framework is entirely different from the one in
symbolic ASP. Namely, the role of LF in our framework is not to logically reject non-stable models but to guide the
search process by their gradient information in the continuous search space. Hence, we expect, as actually observed
in experiments in the next section, some loop formulas have the power of guiding the search process to a root of
LSU+ĉ+LF .

4.3. Precomputation

We introduce here precomputation. The idea is to remove atoms from the search space which are false in every
stable model. It downsizes the program and realizes faster model computation.

When a program P in a setA = atom(P) is given, we transform P to a definite program P+ by removing all negative
literals from the rule bodies in P. Since P+ ⊇ PI holds as a set of rules for any model I, we have LM(P+)⊇ LM(PI)
where LM(P) denotes the least model of a definite program P. When I is a stable model, LM(PI) = I holds and we
have LM(P+) ⊇ I. By taking the complements of both sides, we can say that if an atom a is outside of LM(P+),
i.e.,if a is false in LM(P+), so is a in any stable model I of P. Thus, by precomputing the least model LM(P+), we
can remove a set of atoms FP = A\LM(P+) from our consideration as they are known to be false in any stable
model. We call FP stable false atoms. Of course, this precomputation needs additional computation of LM(P+) but
it can be done in linear time proportional to the size of P+, i.e., the total number of occurrences of atoms in P+

[27]5. Accordingly precomputing the least model LM(P+) makes sense if the benefit of removing stable false atoms
from the search space outweighs linear time computation for LM(P+), which is likely to happen when we deal with
programs with positive literals in the rule bodies.

More concretely, given a program P and a set of constraints K, we can obtain downsized ones, P′ and K′, as
follows.

Step 1: Compute the least model LM(P+) and the set of stable false atoms FP = atom(P)\LM(P+).
Step 2: Define

G′ = conjunction G with negative literals {¬a ∈ G | a ∈ FP} removed

P′ = {a← G′ | a← G ∈ P,a ̸∈ FP,G+∩FP = /0} where G+ = positive literals in G (21)

K′ = {← G′ |← G ∈ K,G+∩FP = /0} (22)

Proposition 7. Let P′ and K′ be respectively the program (21) and constraints (22). Also let I′ be a model over
atom(P′). Expand I′ to a model I over atom(P) by assuming every atom in FP is false in I. Then

I′ is a stable model of P′ satisfying constraints K′ iff I is a stable model of P satisfying constraints K.

(Proof) We prove first I′ is a stable model of P′ iff I is a stable model of P. To prove it, we prove LM(P′I
′
) = LM(PI)

as set.

5We implemented the linear time algorithm in [27] linear algebraically using vector and matrix and confirmed its linearity.
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Let a←G′+ be an arbitrary rule in P′I
′
. Correspondingly there is a rule a←G′ in P′ such that I′ |= G′−. So there

is a rule a← G in P such that G′ = G\{¬b | b ∈ FP} and G+∩FP = /0. I′ |= G′− implies I |= G− by construction
of I from I′. So a← G+ is contained in PI , which means a← G′+ is contained in PI because G′+ = G+ (recall that
G′ = G\{¬b | b ∈FP} and G′ and G have the same set of positive literals). Thus since a←G′+ is an arbitrary rule,
we conclude P′I

′ ⊆ PI , and hence LM(P′I
′
)⊆ LM(PI).

Now consider a ∈ LM(PI). There is an SLD derivation for← a from PI . Let b← G+ ∈ PI be a rule used in the
derivation which is derived from the rule b←G ∈ P such that I |= G−. Since PI ⊆ P+, we have LM(PI)⊆ LM(P+)
and hence LM(PI)∩FP = /0, i.e., LM(PI) contains no stable false atom. So b ̸∈ FP and G+∩FP = /0 because every
atom in the SLD derivation must belong in LM(PI). Accordingly b← G′ ∈ P′. On the other hand, I |= G− implies
I′ |= G′−. So b← G′ is in P′ and b← G′+ is in P′I

′
. Therefore b← G+ is in P′I

′
because G′+ = G+. Thus every

rule used in the derivation for ← a from PI is also a rule contained in P′I
′
, which means a ∈ LM(P′I

′
). Since a is

arbitrary, it follows that LM(PI) ⊆ LM(P′I
′
). By putting LM(P′I

′
) ⊆ LM(PI) and LM(PI) ⊆ LM(P′I

′
) together, we

conclude LM(PI) = LM(P′I
′
).

Then, if I′ is a stable model of P′, we have I′ = LM(P′I
′
) = LM(PI) as set. Since I = I′ as set, we have I = LM(PI)

as set, which means I is a stable model of P. Likewise when I is a stable model of P, we have I = LM(PI) = LM(P′I
′
)

and I = I′ as set. So I′ = LM(P′I
′
) as set and I′ is a stable model of P′.

As for the constraints, consider a constraint← G′ in K′. We consider two cases, where b ∈ FP occurs positively
and negatively in G and G′. In the former case, the body remains the same between G′ and G, thus if I′ |= G′ then
I |= G and vice versa. In the latter case, because ¬b always evaluates to true, the negative occurrence ¬b in the
body of the constraint will not change the result of the conjunction G. Thus, combining the two cases and since the
constraint← G′ is arbitrary, we conclude that I′ |= K′ iff I |= K. Q.E.D.

5. Programming examples

In this section, we apply our ASP approach to examples as a proof of concept and examine the effectiveness of
precomputation and heuristics. Since large scale computing is out of scope in this paper, the program size is mostly
small6.

5.1. The 3-coloring problem

We first deal with the 3-coloring problem. Suppose we are given a graph G1. The task is to color the vertices of
the graph blue, red and green so that no two adjacent vertices have the same color like (b) in Fig. 1.

e
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1

a b

c d

(a) Graph G1
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e
1

a b

c d

(b) A 3-coloring

Fig. 1. 3-coloring problem

6Matricized programs in this paper are all written in GNU Octave 6.4.0 and run on a PC with Intel(R) Core(TM) i7-10700@2.90GHz CPU
with 26GB memory.
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There are four nodes {a,b,c,d} in the graph G1. We assign a set of three color atoms (Boolean variables) to each
node to represent their color. For example, node a is assigned three color atoms {a1(red),a2(blue),a3(green)}. We
need to represent two facts by these atoms.

– Each node has a unique color chosen from {red,blue,green}. So color atoms assigned to each node are in an
XOR relation. We represent this fact by a tight program P1 below containing three rules for each node.

P1 =


a1←¬a2∧¬a3, a2←¬a3∧¬a1, a3←¬a1∧¬a2
b1←¬b2∧¬b3, b2←¬b3∧¬b1, b3←¬b1∧¬b2
c1←¬c2∧¬c3, c2←¬c3∧¬c1, c3←¬c1∧¬c2
d1←¬d2∧¬c3, d2←¬d3∧¬d1, d3←¬d1∧¬d2

(23)

– Two nodes connected by an edge must have a different color. We represent this fact in terms of constraints.

K1 =


← a1∧b1,← a2∧b2,← a3∧b3
← a1∧ c1,← a2∧ c2,← a3∧ c3
← b1∧ c1,← b2∧ c2,← b3∧ c3
← b1∧d1,← b2∧d2,← b3∧d3
← d1∧ c1,← d2∧ c2,← d3∧ c3

(24)

Assuming an ordering of atoms {a1,a2,a3, . . . ,d1,d2,d3}, the normal logic program P1 shown in (23) is matricized
to P1 = (C1,D1) where D1 is a (12×12) binary identity matrix (because there are 12 atoms and each atom has just
one rule) and C1 is a (12×24) binary matrix shown in (25). Constraints listed in (24) are a matricized to a (15×12)
constraint matrix ĈK1 (26). In (25) and (26), a for example stands for a triple (a1 a2 a3) and ¬a for (¬a1¬a2¬a3).

C1 =

a b c d ¬a ¬b ¬c ¬d
H3

H3
H3

H3

 where H3 =

0 1 1
1 0 1
1 1 0

 (25)

ĈK1 =

a b c d
E3 E3
E3 E3

E3 E3
E3 E3

E3 E3

 where E3 =

1 0 0
0 1 0
0 0 1

 (26)

We run Algorithm 1 on program P1 with constraints K1 to find a supported model (solution) of P1 satisfying K1
7.

Table 1
Time and the number of solutions

time(s) #solutions

6.7(0.7) 5.2(0.9)

To measure time to find a model, we conduct ten trials8 of running Algorithm 1 with max_try = 20, max_itr = 50,
ℓ2 = ℓ3 = 0.1 and take the average. The result is 0.104s(0.070)9 on average. Also to check the ability of finding

7Since P1 is a tight program, every supported model of P1 is a stable model and vice versa.
8One trial consists of max_itr×max_try parameter updates.
9The numbers in the parentheses indicate the standard deviation.



T. Sato et al. / 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

different solutions, we perform ten trials of Algorithm 110and count the number of different solutions in the returned
solutions. #solutions in Table 1 is the average of ten such measurements. Considering there are six solutions and the
naive implementation, the number of different solutions found by the algorithm, which was 5.2 on average, seems
rather high.

Next we check the scalability of our approach by a simple problem. We consider the 3-coloring of a cycle graph
like (a) in Fig. 2. In general, given a cycle graph that has n nodes, we encode its 3-coloring problem as in the
previous example by a matricized program P2 = (C2,D2) and a constraint matrix ĈK2 where D2(3n× 3n) is an
identity matrix and C(3n×6n) and ĈK2(3n×6n) represent respectively rules and constraints. There are 2n+2(−1)n

solutions (n ⩾ 3) in 23n possible assignments for 3n atoms11. So the problem will be exponentially difficult as n goes
up.

1

6

5

4

8

3

2

7

(a) A cycle graph (b) Minimization of LSU+ĉ with retry (c) Scalability

Fig. 2. Convergence and scalability

The graph (b) in Fig. 2 is an example of convergence curve of LSU+ĉ by Algorithm 1 with n = 10, max_try = 100,
max_itr = 50. The curve tells us that in the first cycle of j-loop, the inner for loop of Algorithm 1, no solution is
found after max_itr = 50 iterations of update of continuous assignment vector s. Then perturbation is given to s
which causes a small jump of LSU+ĉ at itr = 51 and the second cycle of j-loop starts and this time a solution is
found after dozens of updates by thresholding s to a binary vector s∗.

The graph (c) in Fig. 2 shows the scalability of computation time to find a solution up to n = 10000. We set
max_try = 100, max_itr = 2000 and plot the average of ten measurements of time to find a solution. The graph
seems to indicate good linearity w.r.t. n up to n = 10000.

5.2. The Hamiltonian cycle problem, precomputation and another solution constraint

A Hamiltonian cycle (HC) is a cycle in a graph that visits every vertex exactly once and the Hamiltonian cycle
problem is to determine if an HC exists in a given graph. It is an NP-complete problem and has been used as a pro-
gramming example since the early days of ASP. Initially, it is encoded by a non-tight program containing positive
recursion [3]. Later a way of encoding by a program that is not tight but tight on its completion models is proposed
[28]. We here introduce yet another encoding by a tight ground program inspired by SAT encoding proposed in [29]
where Zhou showed that the problem is solvable by translating six conditions listed in Fig. 3 into a SAT problem12.

In what follows, we assume vertices are numbered from 1 to N = the number of vertices in a graph. We use i→ j
to denote an edge from vertex i to vertex j and Hi, j to indicate there exists an edge from i to j in an HC. U j,q

10without another solution constraint introduced in Section 5.2
11Based on the chromatic polynomial for cycle graphs (for an introduction, see for example [32]), which is given by P(Cn,λ ) = (λ − 1)n +

(−1)n(λ −1) for a cycle graph Cn with n vertices (n ⩾ 3) colored by λ colors.
12Actually, [29] listed seven conditions to be encoded as a SAT problem. However, one of them is found to be redundant and we use the

remaining six conditions.
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conditions meaning

(1) one_of(Hi, j1 , . . . ,Hi, jk) : one of outgoing edges {i→ j1, . . . , i→ jk} from vertex i is in an HC
(2) U j,q← Hi, j ∧Ui,q−1 : if edge i→ j is in an HC and vertex i is visited at time q−1,

vertex j is visited at time q (1 ⩽ i, j,q ⩽ N)
(3) U1,1 : vertex 1 is visited at time 1 (starting point)
(4) one_of(Hi1, j, . . . ,Hik, j) : one of incoming edges {i1→ j, . . . , ik→ j} to vertex j is in an HC
(5) ← Hi,1∧¬Ui,N : if edge i→ 1 is in an HC, vertex i is visited at time N (2 ⩽ i ⩽ N)
(6) one_of(Ui,1, . . . ,Ui,N) : vertex i is visited once (1 ⩽ i ⩽ N)

Fig. 3. Conditions for SAT encoding of a Hamiltonian cycle problem.

means vertex j is visited at time q (1 ⩽ j,q ⩽ N) and one_of(a1, . . . ,ak) means that one of {a1, . . . ,ak} is true.
We translate these conditions into a program P3 = {(1),(2),(3)} and constraints K3 = {(4),(5),(6)}. To be more
precise, the first condition (1) is translated into a tight program just like a program P1 (23). The conditions {(2),(3)}
constitute a tight definite program. Constraints K2 = {(4),(5),(6)} are encoded as a set of implications of the form
← L1∧·· ·∧Lk where L1, . . . ,Lk are literals. A set of U j,q atoms contained in a stable model of P3 satisfying K3 gives
an HC.

We apply the above encoding to a simple Hamiltonian cycle problem for a graph G2 in Fig. 413. There are six
vertices and six HCs14. To solve this HC problem, we matricize P3 and K3. There are 36 Hi, j atoms (1 ⩽ i, j ⩽ 6) and
36 U j,q atoms (1 ⩽ j,q ⩽ 6). So there are 72 atoms in total. P3 = {(1),(2),(3)} contains 197 rules in these 72 atoms
and we translate P3 into a pair of matrices (C3,D3) where D3 is a 72×197 binary matrix for disjunctions15and C3 is
a 197×144 matrix for conjunctions (rule bodies). Likewise K3 = {(4),(5),(6)} is translated into a constraint matrix
ĈK3 which is a 67× 144 binary matrix. A more detailed description of the encoding is available in the appendix
(Appendix C). Then our task is to find a root s of LSU+ĉ (10) constructed from these C3, D3 and ĈK3 in a 72
dimensional vector space by minimizing LSU+ĉ to zero.

We apply precomputation in the previous section to P3 = (C3,D3) and ĈK3 to reduce program size. It takes
2.3ms and detects 32 false stable atoms. It outputs a precomputed program P′3 = (C′3,D

′
3) and a constraint matrix

Ĉ′K3
of size D′3(40× 90), C′3(90× 80) and Ĉ′K3

(52× 80) respectively, which is 1/4 or 1/2 of the original size. So
precomputation removes 45% of atoms from the search space and returns much smaller matrices.

3

1

5

2

4

6

(a) Graph G2

no precomp. precomp.

time(s) 2.08(2.01) 0.66(0.52)
#solutions 4.9 5.7

(b) Time and the number of different solutions

Fig. 4. A HC problem

We run Algorithm 1 on P3 = (C3,D3) with ĈK3 (no precomputation) and also on P′3 = (C′3,D
′
3) with Ĉ′K3

(pre-
computation) using max_try = 20, max_itr = 200 and ℓ2 = ℓ3 = 0.1 and measure time to find a solution, i.e., stable

13G2 is taken from: Section 6.2 in Potassco User Guide (https://github.com/potassco/guide/releases/tag/v2.2.0).
14They are 1→ 2→ 5→ 6→ 3→ 4→ 1, 1→ 2→ 6→ 3→ 5→ 4→ 1, 1→ 2→ 6→ 5→ 3→ 4→ 1, 1→ 3→ 5→ 6→ 2→ 4→ 1,

1→ 4→ 2→ 5→ 6→ 3→ 1, 1→ 4→ 2→ 6→ 5→ 3→ 1.
15For example, for each U j,q (1 ⩽ j,q ⩽ 6), condition (2) generates six rules {U j,q← Hi, j ∧Ui,q−1 | 1 ⩽ i ⩽ 6}.
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model satisfying constraints. The result is shown by Table (b) in Fig. 4 as time(s) where time(s) is an average of ten
trials. Figures in the table, 2.08s vs. 0.66s16, clearly demonstrate the usefulness of precomputation.

In addition to computation time, we examine the search power of different solutions in our approach by measuring
the number of obtainable solutions. More concretely, we run Algorithm 1 seven times, and each time a stable
model is obtained as a conjunction L1 ∧ . . .∧L72 of literals, we add a new constraint ← L1 ∧ . . .∧L72 to previous
constraints, thereby forcibly computing a new stable model in next trial. We call such use of constraint another
solution constraint. Since there are at most six solutions, the number of solutions obtained by seven trials is at
most six. We repeat a batch of seven trials ten times and take the average of the number of solutions obtained by
each batch. The average is denoted as #solutions in Table (b) which indicates that 5.7 solutions out of 6, almost all
solutions, are obtained by seven trials using another solution constraint.

Summing up, figures in Table (b) exemplify the effectiveness of precomputation which significantly reduces
computation time and returns a more variety of solutions when combined with another solution constraint.

5.3. LF heuristics and precomputation on loopy programs

So far we have been dealing with tight programs which have no loop and hence have no loop formulas. We
here deal with non-tight programs containing loops and examine how LF heuristics, LFmax and LFmin, introduced
in the previous section work. We use an artificial non-tight program P4_n (with no constraint) shown below that has
exponentially many loops.

P4_n =



a0 ← a1∧ . . .∧an
a0 ← ¬an+1
. . .
a2i−1← a0∨a2i for i : 1 ⩽ i ⩽ n/2
a2i ← a0∨a2i−1 for i : 1 ⩽ i ⩽ n/2
. . .
an+1 ← an+1

We here consider an even n, then P4_n program has n+2 atoms {a0,a1, . . . ,an,an+1}, 2n/2+1 supported models and
one stable model {a0,a1, . . . ,an}. There are n/2+1 minimal loops {a1,a2}, . . . ,{an−1,an},{an+1} and a maximal
loop {a0,a1, . . . ,an}. The set of loop formulas for LF heuristics are computed as follows.

LFmax = {(a0∧a1∧ . . .∧an)→¬an+1, an+1→⊥}

LFmin = {(a1∧a2)→ a0, . . . ,(an−1∧an)→ a0, an+1→⊥}

Note that although there are 2n/2 + 1 supported models, there is only one stable model. So LFmax and LFmin are
expected to exclude 2n/2 supported models.

After translating P4_n into a matricized program P4_n = (C4_n,D4_n) where C4_n is a (2n+ 3)× (2n+ 4) binary
matrix and D4_n is a (n+2)× (2n+3) binary matrix respectively, we compute a stable model of P4_n for various n
by Algorithm 1 that minimizes LSU+ĉ+LF (19) with coefficient ℓ3 = 0 for the constraint term (because of no use of
constraints) using Jacobian JaSU+ĉ+LF (11).

16This includes the time for precomputation.
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Below is an example of the program P4_n where n = 4.

P4_4 =



a0← a1∧a2∧a3∧a4
a0←¬a5
a1← a0 a1← a2
a2← a0 a2← a1
a3← a0 a3← a4
a4← a0 a4← a3
a5← a5

This program has three minimal loops {a1,a2},{a3,a4},a5 and a maximal loop {a0,a1,a2,a3,a4}. There are 11
rules and six atoms, so C4_4 is a (11×12) binary matrix.

Since all supported models of P4_n except for one stable model are non-stable, even if LFmax and LFmin are used
to guide the search process towards a stable model, Algorithm 1 is likely to return a non-stable model. We can avoid
such a situation by the use of another solution constraint.

Table 2
The effect of another solution constraint

another solution constraint time(s) #trials

not used 11.46(0.41) 104(0)
used 0.09(0.13) 3.5(1.6)

To verify it, we examine the pure effect of another solution constraint that guides the search process to compute
a model different from previous ones. Without using LFmax or LFmin heuristics, we repeatedly run Algorithm 1
with/without another solution constraint for 104 trials with n = 4, max_try = 20, max_itr = 50, ℓ2 = ℓ3 = 0.1 and
measure time to find a stable model and count the number of trials until then. We repeat this experiment ten times
and take the average. The result is shown in Table 2.

The figure 104(0) in Table 2 in the case of no use of another solution constraint means Algorithm 1 always
exhausts 104 trials without finding a stable model (due to implicit bias in Algorithm 1). When another solution
constraint is used however, it finds a stable model in 0.09s after 3.5 trials on average. Thus Table 2 demonstrates the
necessity and effectiveness of another solution constraint to efficiently explore the search space.

We next compare the effectiveness of LF heuristics and that of precomputation under another solution constraint.
For n = 10, . . . ,50, we repeatedly run Algorithm 1 using LSU+ĉ+LF with max_try = 10,max_itr = 100 on matricized
P4_n = (C4_n,D4_n) (and no constraint matrix) to compute supported (stable) models. Coefficients in LSU+ĉ+LF are
set to ℓ2 = 0.1, ℓ3 = 0, ℓ4 = 1. To be more precise, for each n and each case of LFmax, LFmin, precomputation (without
{LFmax,LFmin}) and no {LFmax,LFmin,precomputation}, we run Algorithm 1 at most 100 trials to measure time to
find a stable model and count the number of supported models computed till then. We repeat this computation ten
times and take the average and obtain graphs in Fig. 5.

In Fig. 5, no_LF means no use of {LFmax,LFmin} heuristics. Also no_LF_pre means no_LF is applied to precom-
puted P4_n

17.
We can see from graph (a) in Fig. 5 that computation time is LFmin > LFmax > no_LF > no_LF_pre. This means

that using LF heuristics is not necessarily a good policy. They might cause extra computation to reach the same
model. Concerning the number of non-stable models computed redundantly, graph (b) in Fig. 5 tells us that LFmin
allows computing redundant non-stable models but the rest, LFmax, no_LF and no_LF_pre, return a stable model
without computing redundant non-stable models. This shows first that LFmax works correctly to suppress the com-
putation of non-stable models and second that the LFmin heuristics works adversely, i.e.,guiding the search process

17Precomputation takes 0.006s and removes only one stable false atom. So precomputation is not helpful in the current case.
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(a) Time to find a stable model (b) #computed models

Fig. 5. The effect of LF heuristics and precomputation on program P4_n

away from the stable model. This somewhat unexpected result indicates the need of (empirical) choice of LF heuris-
tics.

Finally to examine the effectiveness of precomputation more precisely, we apply precomputation to a more com-
plex program P5_nk. It is a modification of P4_n by adding self-loops of k atoms as illustrated by (a) in Fig. 6. The
addition of self-loop causes the choice of an+ j (1 ⩽ j ⩽ k) being true or being false in the search process. P5_nk has
(2n/2−1)(2k−1)+1 supported models but has just one stable model {a0,a1, . . . ,an}.

P5_nk =



a0 ← a1∧ . . .∧an
a0 ← ¬an+1∧ . . .∧¬an+k
. . .
a2i−1← a0∨a2i
a2i ← a0∨a2i−1
. . .
an+1 ← an+1
. . .
an+k ← an+k

(a) A non-tight program P5_nk (b) Scalability of precomputation w.r.t. P5_nk

Fig. 6. Precomputation applied to program P5_nk

We compute a stable model by running Algorithm 1 on precomputed P5_nk without using LF heuristics up to
n = k = 5000. When precomputation is applied to P5_nk where n = k = 5000, it detects 5000 false stable atoms
and downsizes the matrices in P5_nk = (C5_nk,D5_nk) from D5_nk(10001×15002) to D′5_nk(5001×10002) and from
C5_nk(15002×20002) to C′5_nk(10002×10002). Thus precomputed P′5_nk = (C′5_nk,D

′
5_nk) is downsized to 1/3 of

the original P5_nk.
We run Algorithm 1 on P′5_nk with ℓ2 = ℓ3 = 0.1 and max_try = 10, max_itr = 100 at most 100 trials to measure

time to find a stable model ten times for each n = 1000, . . . ,5000 and take the average. At the same time, we also
run clingo (version 5.6.2) on P5_nk and similarly measure time. Graph (b) in Fig. 6 is the result. It shows that as far
as computing a stable model of P5_nk is concerned, our approach comes close to clingo. However, this is due to a
very specific situation that precomputation removes all false atoms {an+1, . . . ,an+k} in the stable model of P5_nk and
Algorithm 1 run on the precomputed P′5_nk = (C′5_nk,D

′
5_nk) detects the stable model only by thresholding s before
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starting any update of s. So what graph (b) really suggests seems to be the importance of optimization of a program
like precomputation, which is to be developed further in our approach.

6. Related work

The most closely related work is [13] and [14]. As mentioned in Section 1, our approach differs from them in
three points: (1) theoretically, the exclusion of non-stable models by loop formulas, (2) syntactically, no restriction
on acceptable programs and (3) practically, incorporation of constraints. Concerning performance, they happen to
use the same N-negative loops program which consists of N copies (alphabetic variants) of a program {a←¬b,b←
¬a}. According to [13], the success rate w.r.t. N of returning a supported model goes from one initially to almost
zero at N = 64 in [13] while it keeps one till N = 100 in [14]. We tested the same program with max_try = 20,
max_itr = 100 and observed that the success rate keeps one till N = 10000.

Although our approach is non-probabilistic, i.e., purely linear algebraic, there are probabilistic differentiable
approaches for ASP. Differentiable ASP/SAT [10] iteratively samples a stable model by an ASP solver a la ASSAT
[1]. The solver decides the next decision literal based on the derivatives of a cost function which is the MSE
between the target probabilities and predicted probabilities computed from the sampled stable models via parameters
associated with “parameter atoms” in a program.

NeurASP [11] uses an ASP solver to obtain stable models including “neural atoms” for a program. They are
associated with probabilities learned by deep learning and the likelihood of an observation (a set of ASP constraints)
is computed from them. The whole learning is carried out by backpropagating the likelihood to neural atoms to
parameters in a neural network.

Similarly to NeurASP, SLASH [12] uses an ASP solver to compute stable models for a program containing
“neural probabilistic predicates”. Their probabilities are dealt with by neural networks and probabilistic circuits. The
latter makes it possible to compute a joint distribution of the class category and data. Both NeurASP and SLASH are
examples of symbolic ASP solver-based neuro-symbolic systems, where they include a neural frontend to process
the perception part of the problem, and a symbolic backend which typically is the ASP solver. Therefore, the neural
frontend does not need to be involved in the computational details and problems associated with computing stable
models (Section 4).

Independently of ASP solver-based approaches mentioned above, Sato and Kojima proposed a differentiable
approach to sampling supported models of (non-propositional) probabilistic normal logic programs [17, 18]. They
encode programs by matrices and formulate the problem of sampling supported models as repeatedly computing a
fixedpoint of some differentiable equations. They solve the equations in vector spaces by minimizing a non-negative
cost function defined by Frobenius norm. More recently, Takemura and Inoue [31] proposed a neuro-symbolic
learning pipeline for distant supervision tasks, which leverages differentiable computation of supported models.
Similarly to this work, they encode normal logic programs into matrices and define a differentiable loss function
which is based on the supported model semantics.

As for the non-differentiable linear-algebraic approaches to logic programming, Nguyen et al. adopted matrix
encoding for propositional normal logic programs based on [21] and proposed to compute stable models in vector
spaces by a generate-and-test approach using sparse representation [22].

6.1. Connection to neural network computation

At this point, it is quite interesting to see the connection of our approach to neural network computation. In (6), we
compute M and d = DM. We point out that the computation of this d is nothing but the output of a forward process
of a single layer ReLU network from an input vector s. Consider the computation of M = (1−min1(C(1− sδ ))).
We rewrite this using 1−min(x,1) = ReLU(1− x) to

M = 1−min1(Cpos(1− s)+Cnegs)

= ReLU(Ws+b)

where C = [Cpos Cneg], W = Cpos−Cneg, b = 1−Cpos1
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So M is the output of a ReLU network having a weight matrix W = Cpos−Cneg and a bias vector b = 1−Cpos1.
Then min1(d) = min1(DM) = min1(D ·ReLU(Ws+b)) is the output of a ReLU network with a single hidden layer
and a linear output layer represented by D having min1(·) as activation function.

Also when we compute a supported model s, we minimize LSU+ĉ (6) which contains an MSE error term Lsq =
∥min1(d)− s∥2 using JaSU+ĉ (11). This is precisely back propagation from learning data s.

Thus we may say that our approach is an integration of ASP semantics and neural computation and provides a
neuro-symbolic [23] way of ASP computation. Nonetheless, there is a big difference. In standard neural network
architecture, a weight matrix W and a bias vector b are independent. In our setting, they are interdependent and they
faithfully reflect the logical structure of a program.

7. Conclusion

We proposed an end-to-end approach for computing stable models satisfying given constraints. We matricized a
program and constraints and formulated stable model computation as a minimization problem in vector spaces of a
non-negative cost function. We obtain a stable model satisfying constraints as a root the cost function by Newton’s
method.

By incorporating all loop formula constraints introduced in Lin-Zhao’s theorem [1] into the cost function to be
minimized, we can prevent redundant computation of non-stable models, at the cost of processing exponentially
many loop formulas. Hence, we introduced precomputation which downsizes a program while preserving stable
model semantics and also two heuristics that selectively use loop formulas. Then we confirmed the effectiveness of
our approach including precomputation and loop formula heuristics by simple examples.

Future work could focus on improving the integration of neural networks with this proposed end-to-end approach
to tackle neuro-symbolic benchmark tasks that require both perception and reasoning. We also aim to improve the
optimization techniques, such as precomputation, to enhance efficiency and scalability.
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Appendix A. Proofs

A.1. Proposition 2

Recall that we write C ∈ {0,1}m×2n as C = [Cpos Cneg] where Cpos ∈ {0,1}m×n (resp. Cneg ∈ {0,1}m×n) is the
left half (resp. the right half) of C representing the positive literals (resp. negative literals) of each rule body in C.
Let Mneg = 1−min1(CnegsI), and let Mpos = Mneg⊙ (1−min1(Cpos(1− sI))).

We prove dI = d+
I first. Recall that a rule r+j in PI is created by removing negative literals true in I from the body

of r j in P. So for any ai ∈ A, it is immediate that ai has a rule r j ∈ P whose body is true in I iff ai has the rule
r+j ∈ PI whose body is true in I. Thus dI(i) = d+

I (i) for every i (1 ⩽ i ⩽ n), and hence dI = d+
I . Consequently, we

have ∥sI−min1(dI)∥2 = 0 iff ∥sI−min1(d+
I )∥2 = 0.

I |= comp(PI) iff ∥sI−min1(d+
I )∥2 = 0 is proved similarly to Proposition 1. Firstly, suppose that I is a supported

model of PI . By definition, for each ai that is true in I, there is at least one rule body in PI that is true in I,
i.e., I |= ai and I |= G j1 ∨ ·· · ∨G js. Since Mpos denotes the truth values of the rule bodies in PI evaluated by I,
Mpos( j) = 1 (1 ⩽ j ⩽ m) if r+j is contained in PI and its body is true in I, otherwise Mpos( j) = 0. Let d+

I = DMpos

where d+
I (i)⩾ 1 if ai is true in I, then we have sI(i) = min1(d+

I )(i). Since i is arbitrary, we conclude sI = d+
I , and

that ∥sI−min1(d+
I )∥2 = 0. Secondly, suppose that ∥sI−min1(d+

I )∥2 = 0. Since we have min1(d+
I )(i) = 1 if any of
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the rule bodies for ai is true in I, I |= G j1∨ ·· ·∨G js which we denote I |= iff(ai). Because i is arbitrary, and for all
atoms that are true in I the above condition holds, we conclude I |= comp(PI).

Here, we proved ∥sI −min1(dI)∥2 = 0 iff ∥sI −min1(d+
I )∥2 = 0, and I |= comp(PI) iff ∥sI −min1(d+

I )∥2 = 0.
From Proposition 1, we have that I |= comp(P) iff ∥sI−min1(dI)∥2 = 0. Hence, I |= comp(P), ∥sI−min1(dI)∥2 = 0,
∥sI−min1(d+

I )∥2 = 0 and I |= comp(PI) are all equivalent. Q.E.D.

Appendix B. Derivations

B.1. A note on the matrix-matrix dot product notation

B.1.1. A• (B⊙C) = (B•A)⊙C
In various parts of this paper, we use the notation of the dot product of matrices (A•B)=∑i, j A(i, j)B(i, j). This is

essentially an element-wise multiplication (the Hadamard product) followed by the summation of matrix elements.
Since the Hadamard product is associative and commutative, it follows that (A⊙ (B⊙C)) = ((B⊙A)⊙C) holds.
The summation is also associative and commutative; thus (A• (B⊙C)) = ((B•A)⊙C) holds.

B.1.2. A• (BC) = (BT A)•C
Using the aforementioned • notation, we have (A•(BC))=∑i, j A(i, j)(BC)(i, j)= ((BT A)•C)=∑i, j(BT A)(i, j)C(i, j).

Without the summation, this will not hold because the matrix multiplication is not commutative in general. Consider
a square N×N matrix A,B and C, then we have:

A⊙ (BC) =

 A(1,1)∑
N
i= j B(1, j)C(i,1) · · · A(1,N)∑

N
i= j B(1, j)C(i,N)

...
...

A(N,1)∑
N
:i= j B(N, j)C(i,1) · · · A(N,N)∑

N
i= j B(N, j)C(i,N)


and

(BT A)⊙C =

 C(1,1)∑
N
i A(i,1)B(i,1) · · · C(1,N)∑

N
i A(i,N)B(i,1)

...
...

C(N,1)∑
N
i A(i,1)B(i,N) · · · C(N,N)∑

N
i A(i,N)B(i,N)


Then, observe that an element in one matrix appears in the expanded elements in the columns of the other matrix.
For example, consider the A(N,N) term in A⊙ (BC) (bottom-right), and notice that the term containing A(N,N)
appears only in the rightmost column, and that they appear in the last elements after expansion, i.e.:

C(1,N)
N

∑
i

A(i,N)B(i,1) = C(1,N)
(

A(1,N)B(1,1)+ · · ·+A(N,N)B(N,1)
)

= A(1,N)B(1,1)C(1,N)+ · · ·+A(N,N)B(N,1)C(1,N)

C(N,N)
N

∑
i

A(i,N)B(i,N) = C(N,N)
(

A(1,N)B(1,N)+ · · ·+A(N,N)B(N,N)
)

= A(1,N)B(1,N)C(N,N)+ · · ·+A(N,N)B(N,N)C(N,N)

Since the summation operation in • is commutative, one can collect the underlined parts to the summation,
A(N,N)∑

N
i= j B(N, j)C(i,N), which is the bottom-right element in A⊙ (BC). One can show that this applies to

all other elements of the matrix, e.g., the C(N,N) term in (BT A)⊙C appears in the last elements in the rightmost
column of A⊙ (BC). Therefore, (A• (BC)) = ((BT A)•C) holds.
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B.2. JaSU : Jacobian for supported model computation (Section 3.3)

Let P = (C,D) be the matricized program and write C = [Cpos Cneg]. Introduce N, M, d, E, F and compute LSU
by

N = C(1− sδ ) = Cpos(1− s)+Cnegs : (continuous) counts of false literals in the rule bodies
M = 1−min1(N) : (continuous) truth values of the rule bodies
d = DM : (continuous) counts of true disjuncts for each atom
E = min1(d)− s : error between the estimated truth values of atoms and s
F = s⊙ (1− s) : (continuous) 0 iif s is binary
Lsq = (E•E)
Lnrm = (F•F)
LSU = 0.5 · (Lsq + ℓ2 ·Lnrm).

We first compute
∂Lsq

∂ sp
where sp = s(p) (1 ⩽ p ⩽ n).

∂M
∂ sp

= −[N ⩽ 1]⊙
(
(Cneg−Cpos)Ip

)
= [N ⩽ 1]⊙

(
(Cpos−Cneg)Ip

)
∂Lsq

∂ sp
=
(

E • [DM ⩽ 1]⊙
(

D
(

∂M
∂ sp

))
− Ip

)
=
(

E • [DM ⩽ 1]⊙ (D([N ⩽ 1]⊙ ((Cpos−Cneg)Ip)))− Ip

)
=
(

DT ([DM ⩽ 1]⊙E) • [N ⩽ 1]⊙ (((Cpos−Cneg)Ip)
)
− (E • Ip)

=
(
(Cpos−Cneg)T ([N ⩽ 1]⊙ (DT ([DM ⩽ 1]⊙E)))−E • Ip

)
Since p is arbitrary, we have

∂Lsq

∂ s
= (Cpos−Cneg)T ([N ⩽ 1]⊙ (DT ([DM ⩽ 1]⊙E)))−E.

Next we compute
∂Lnrm

∂ sp
:

∂F
∂ sp

=

(
∂ s
∂ sp

)
⊙ (1− s)+ s⊙

(
∂ (1− s)

∂ sp

)
= (Ip⊙ (1− s))− (s⊙ Ip) = (1−2s)⊙ Ip

∂Lnrm

∂ sp
=
(
F •

(
∂F
∂ sp

))
= (F • (1−2s)⊙ Ip) = ((1−2s)⊙F • Ip)

Again since p is arbitrary, we have
∂Lnrm

∂ s
= (1−2s)⊙F and reach

JaSU =

(
∂Lsq

∂ s

)
+ ℓ2 ·

(
∂Lnrm

∂ s

)
= (Cpos−Cneg)T ([N ⩽ 1]⊙ (DT ([d ⩽ 1]⊙E)))−E+ ℓ2 · ((1−2s)⊙F)

where N = C(1− sδ ), d = D(1−min1(N)), E = min1(d)− s, and F = s⊙ (1− s).
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B.3. Jaĉ : Jacobian for constraints (Section 3.4)

Let Ĉ = [Ĉpos Ĉneg] represent the rule bodies of constraints in a binary matrix. The rest of the derivation is similar

to the previous section, namely the derivation of
∂Lsq

∂ s
.

Nĉ = Ĉ(1− sδ ) = Ĉpos(1− s)+ Ĉnegs

Lĉ = (1• (1−min1(Nĉ))) where 1 is an all-ones vector

∂Jaĉ

∂ s
= −[Nĉ ⩽ 1]⊙

(
(Ĉneg− Ĉpos)I

)
= (Ĉpos− Ĉneg)T [Nĉ ⩽ 1]

B.4. JaLF : Jacobian for loop formula (Section 4.1)

Let C = [Cpos Cneg], and let Sv, Av and M be computed by (17).

N = C(1− sδ )

Nv = Sv(1− s)

Mv = min1(Nv)

JaLF =
∂LLF

∂ s
=

w

∑
v=1
−
(

∂min1(Av)

∂ s

)

= −
w

∑
v=1

[Av ⩽ 1]

((
∂Mv

∂ s

)
+SvEsup

(
∂M
∂ s

)T
)

=
w

∑
v=1

[Av ⩽ 1]
(
[Nv ⩽ 1]ST

v +(((SvEsup)⊙ [N ⩽ 1]T )(Cneg−Cpos)T )

Appendix C. Encoding the Hamiltonian Cycle Problem

This section describes the encoding and program used in solving the Hamiltonian cycle problem (Section 5.2).
Firstly, looking at the graph (Fig. 4a), it is evident that there are six vertices. We use an atom Hi, j to indicate there

exists an edge from vertices i to j in an HC. Then there are 36 atoms {H1,1,H1,2, · · · ,H1,6,H2,1, · · · ,H6,1, · · · ,H6,6}.
We also use an atom U j,q to indicate that the vertex j is visited at time q. Then there are 36 atoms
{U1,1,U1,2, · · · ,U1,6,U2,1, · · · ,U6,1, · · · ,U6,6}. Thus, in total, there are 72 atoms consisting of Hi, j and U j,q.

C.1. Encoding (1) (2) (3) into a program

The condition one_of is encoded as a set of normal rules whose body consists solely of negative literals. For
example, looking at vertex 1, there are 3 outgoing edges to vertices 2, 3 and 4. Then, we construct rules for (1):

PH1, j =

 H1,2←¬H1,3∧¬H1,4
H1,3←¬H1,2∧¬H1,4
H1,4←¬H1,2∧¬H1,3

In encoding this into a program matrix, we also create an empty (zero) row for a rule with a head atom that does not
appear in the program, so there will be 36 = 6×6 rules for (1).
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2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

For encoding rules with U j,q in the head, consider the following: (a) since we know U1,1 is always true (starting
point), U1,q(2 ⩽ q ⩽ 6) will always be false, and (b) for atoms U j,q( j ̸=1), U j,1 is always false, and for each q in
2 ⩽ q ⩽ 6, we generate 6 rules, i.e., there will be 31 = 1+(5×6). Therefore, there will be 161 = 6+(5×31) rules
for (2).

By combining the program matrices for (1) and (2) (because (3) is a fact, it is omitted here), we obtain a 197×144
program matrix C3.

C.2. Encoding (4) (5) (6) into constraints

Encoding of (5) is straightforward and results in 5 constraints (2 ⩽ i ⩽ 6). Encoding of (4) involves an XOR
constraint for each vertex, for example, for vertex i = 1, we have the following constraint:←¬H1,1∧¬H2,1∧ ·· ·∧
¬H6,1. Thus, encoding of (4) results in 6 constraints. For encoding (6), we construct these constraints in two parts:
(a) each vertex is visited at least once, and (b) each vertex is visited at most once. The first part (a) is straightforward:
for example, the constraint for i= 2 is←¬U2,1∧¬U2,2∧¬·· ·¬U2,6. Thus, (a) results in 6 constraints. The encoding
of (b) requires C5

2 = 10 constraints for each U j( j ⩾ 2). For example, for U2:

←U2,2∧U2,3
←U2,2∧U2,4
...
←U2,2∧U2,6
←U2,3∧U2,4
...
←U2,3∧U2,6
←U2,4∧U2,5
←U2,4∧U2,6
←U2,5∧U2,6

Thus, (b) results in 50 constraints. By combining all constraints, we obtain 67 = 5+6+6+50 constraints K3.
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