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Abstract. While remarkable recent developments in deep neural networks have significantly contributed to advancing
the state-of-the-art in Computer Vision (CV), several studies have also shown their limitations and defects. In
particular, CV models often make systematic errors on important subsets of data called slices, which are groups of
data sharing a set of attributes. The slice discovery problem involves detecting semantically meaningful slices on
which the model performs poorly, called rare slices. We propose a modular neurosymbolic AI approach for slice
discovery whose distinctive advantage is the extraction via inductive logic programming of human-readable logical
rules describing rare slices, and thus enhancing the explainability of CV models. To this end, a methodology for
inducing the occurrence of rare slices in a model is presented. Experiments conducted on datasets produced by our
modified version of the Super-CLEVR data generator show that our approach can correctly identify rare slices and
produce logical rules describing them. The rules can be fruitfully used to generate new training data to mend model
behaviour and thus enhance its inference capabilities.1
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1. Introduction

Computer Vision (CV) [48] is a field of Artificial Intelligence (AI) that enables computer systems to extract
valuable information from digital images and videos. Following the remarkable recent developments of deep
neural networks, significant achievements have been made in advancing state-of-the-art performance in
various CV tasks [26], among which it is crucial to mention safety-critical applications, such as autonomous
driving [53].

However, empirical studies, e.g. [40], show that CV models struggle to generalise to new data slightly
different from those on which they were initially trained and tested. A related problem is the presence of
important subsets of data, called slices, for which deep learning models often make systematic errors [16]. A
slice is defined as a group of data sharing a set of attributes. For instance, regarding the task of identifying
collapsed lungs in chest X-rays, it was observed in [37] that CV models base predictions on the presence of
chest drains, which is a device used in treatment. Consequently, such models often make prediction errors
on crucial slices where chest drains are absent, posing a significant risk of life-threatening false negatives.

Accurately detecting underperforming slices, called rare slices, allows one to carefully analyse such
prediction errors and subsequently improve the model. However, identifying rare slices is a complex
task, especially for high-dimensional data, e.g. images, where slices are very difficult to spot and extract.

1The code for reproducing the experiments is available as an online repository: https://gitlab.tuwien.ac.at/kbs/nesy-ai/ilp4sd.
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Furthermore, it is non-trivial to understand what makes slices rare. In view of this, the slice discovery
problem [16] has been described as mining unstructured input data for semantically meaningful slices on
which the model performs poorly.

In this work, we propose to tackle the slice discovery problem with a neurosymbolic AI approach [20],
given the capabilities of Machine Learning (ML), and in particular Deep Learning (DL), for unstructured
data classification and Knowledge Representation and Reasoning (KRR) methods for transparent logical
inference and explainability. In particular, we provide a framework to experiment with different datasets the
effectiveness of our inductive logic programming-based slice discovery method (SDM). This framework allows
us to evaluate our SDM according to the semantic quality of the extracted rules in describing rare slices and
the effect of such rules in reducing model misclassifications. To this end, we leverage Super-CLEVR [31], a
well-known synthetic dataset with a data generator for images of vehicles organised in hierarchical classes.

The main contributions of our work are summarised as follows:

1. We present our modular neurosymbolic framework for slice discovery, which consists of a closed loop
that involves training and validation data generation, image classification, scene graph generation
describing the semantic contents of images, rule learning to detect rare slices, and neural network
model mending. To achieve these tasks, we provide a generator for datasets with rare slices leveraging
Super-CLEVR, and on which we train YOLOv5 [41]. We then translate the images classified by
YOLOv5 into scene graphs in the language of Inductive Logic Programming (ILP) [9]. Depending on
the ground truth, these scene graphs constitute the positive and negative ILP examples, i.e. those in
which the neural network incorrectly resp. correctly classified the image. Subsequently, we use three
different ILP systems, Popper [10], FOLD-R++ [50], and FastLAS [29], to obtain succinct logical
rules that reveal which images are hard for the model to classify. Finally, the neural network model is
trained on its checkpoint with further data generated using these rules.

2. In order to test the proposed approach on various slice discovery settings, we focus on generating
datasets with rare slices. Closest to our work, Eyuboglu et al. [16] considered the generation of rare
slices in the context of the hierarchical class structure but did not take semantic relationships into
account; this makes their method inapplicable to scenarios that we are considering. In contrast, a
taxonomy-based approach is pursued in this work, and a methodology for building datasets with rare
slices is presented.

3. We provide an implementation along with experimental results for datasets that we generate to test
the effectiveness of rare slice generation, rule extraction on the classification results of the neural
network model, and model mending. The results show that our approach could reliably generate rare
slices and that rule learning delivered meaningful rules describing rare slices. Furthermore, feeding the
neural network with additional training data generated according to such rules resulted in a significant
performance improvement, as misclassifications decreased considerably.

With our framework, we can generate controlled rare slices in datasets to then test the model behaviour
on them. Furthermore, it allows the automatic mining via ILP of human-readable logical rules that pinpoint
the deficiencies of a classification model and benefit the user’s intuition for model mending. The transparent
nature of logical rules makes them highly interpretable and provides a basis for finding model explanations
from possible background information.

This article extends our previous work [7] with (i) a considerably more detailed and extended related
work section, (ii) the use of further ILP systems, (iii) a more rigorous experimental evaluation, and (iv) an
improved implementation of the proposed SDM framework.

The remainder of the article is organised as follows. In Section 2, we provide a review of related work on
SDMs and ILP systems. Section 3 presents an introduction to the Super-CLEVR dataset and ILP. Section 4
describes the proposed neurosymbolic framework for slice discovery. Section 5 presents a taxonomy-based
methodology for generating datasets containing rare slices. Section 6 describes the experimental setup and
presents an overview of the obtained results. The experimental results are discussed in Section 7. Finally,
conclusions and future work are provided in Section 8.



M. Collevati et al. / Leveraging Neurosymbolic AI for Slice Discovery 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2. Related Work

We organise the review of related work by first presenting SDMs and then ILP systems.

2.1. Slice Discovery Methods

Several studies [5, 13, 24, 37] have shown that neural network models often make systematic errors
on data slices. The impact of such errors is especially pronounced for critical application areas, such as
medical diagnostics [38] and fraud detection [23], where accurate identification of rare slices positively
influences essential decision-making. Consequently, recent research has proposed automated SDMs aimed
at identifying semantically meaningful slices in which the model exhibits prediction errors. An optimal
SDM should automatically detect data slices containing coherent instances that closely correspond to a
concept understandable by humans [22] and on which the model underperforms.

Previous research has addressed the slice discovery problem by focusing on datasets with metadata or
structured (e.g. tabular) data. In [6] the Slice Finder system is proposed, which employs two different
automated data slicing methods, viz. decision tree training and lattice searching. In [42], the authors
present SliceLine, an exact yet fast and practical enumeration algorithm to find problematic data slices
leveraging monotonicity properties and upper bounds for effective pruning. On the other hand, the Premise
algorithm [19] heuristically discovers those feature-value combinations (i.e. patterns) that provide clear
insight into the systematic errors of NLP classifiers.

Dealing with the slice discovery problem becomes particularly challenging for unstructured data, such
as images and audio. Recent studies have proposed methods for identifying slices in this context. Several
of them embed the data in a representation space and then use clustering or dimensionality reduction
techniques. The Domino SDM [16] exploits cross-modal embeddings and an error-aware Gaussian mixture
model to discover and describe coherent slices, while the Spotlight method [12] for finding systematic errors
is based on the idea that similar inputs tend to have similar representations in the final hidden layer
of a neural network. Spotlight exploits this similarity by focusing on such representation space, aiming
to identify contiguous regions where the model underperforms. In [47], the authors describe a two-step
method, called George, for identifying underperforming slices without requiring access to slice labels. In
the first step, slice labels are estimated by training a model and splitting each class into estimated slices
through unsupervised clustering in the model feature space. In the second step, these estimated slices are
used to train a new model, optimizing for worst-case performance over all estimated slices via a robust
optimisation technique [43].

The recent explosion of generative AI has seen various works considering the use of such models to
address the slice discovery problem. The PromptAttack procedure [35] identifies systematic errors by
exploiting a text-to-image model to synthesise images, conditioned on a prompt that encodes information
about subgroups and classes. In [18], a human-in-the-loop tool is proposed, called AdaVision, which uses
GPT-3 [4] to suggest coherent but potentially underperforming slices to explore, and CLIP [39] to retrieve
relevant images to improve slice identification. In [1], the authors present the SCROD pipeline for slice
discovery in object detectors applied to synthetic street scenes. Such a pipeline consists of several generative
models to synthesise images with fine-grained control in a fully automated and scalable way. The interactive
VLSlice system [46] is designed to test vision-and-language (ViL) models by discovering their slices from
unlabelled image datasets. In [33], the SSD-LLM framework is proposed for automatic subpopulation
structure discovery using a Large Language Model (LLM) [4]. Such a framework is based on the idea of
generating informative image captions via a multimodal LLM [51], and then analysing and summarising
the subpopulation structure of datasets through an LLM. SSD-LLM can be combined with subsequent
operations to tackle various tasks better, including slice discovery.

2.2. Inductive Logic Programming Systems

Previous research uses statistical or subsymbolic methods to address the slice discovery problem. We
instead present a neurosymbolic approach consisting of a symbolic module based on ILP to extract human-
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Fig. 1. The figure on the left shows images from Super-CLEVR [31] of vehicles made up of their parts characterised by four
attributes, i.e. colour, size, material, and texture. The middle and right figures show examples of Super-CLEVR renderings
with generated questions.

readable logical rules describing underperforming slices. ILP [9] is a rule-based learning method that aims
to find patterns in data formulated through logical rules. It has found application in various fields, such as
robotics [52], bioinformatics, for protein structure discovery [49], and medicine, for drug design [14, 17] and
ECG waveform learning [25]. Further ILP applications can be found in [3, 27].

A well-known state-of-the-art ILP system is Popper [10], which implements the learning from failures
approach by combining Answer Set Programming (ASP) [32] and Prolog [2]. Another modern ILP system
is ILASP [28], which is designed for learning ASP programs containing normal rules, choice rules, and
hard and weak constraints from examples. Furthermore, FastLAS [29] is a recent ILP system based on the
context-dependent learning from answer sets framework used by ILASP. It comes with several restrictions,
i.e. it is not as general as ILASP, but it is significantly more scalable and allows users to express their
optimisation criteria. In [50], the authors present FOLD-R++, which is an improvement in terms of
efficiency and scalability of the FOLD-R inductive learning algorithm [44] that learns ASP rules from
mixed data for classification tasks.

Recently, some neurosymbolic ILP systems that attempt to combine the advantages of ILP with those of
neural networks have been proposed. For example, δILP [15] is a differentiable ILP system for learning
explicit human-readable symbolic rules, which is robust to noisy and ambiguous data and does not
deteriorate when applied to unseen test data. αILP [45] instead is an extension of δILP that combines
object-centric perception with ILP to learn representations of visual scenes as logic programs.

3. Preliminaries

In this section, we provide an overview of the Super-CLEVR dataset and briefly recall ILP.

3.1. Super-CLEVR

Inspired by the seminal work on CLEVR [21], the Super-CLEVR dataset was designed to test the visual
reasoning capabilities of AI systems. It comprises images featuring classes of vehicles, such as motorcycles,
cars, and aeroplanes. The classes are further divided into subclasses, which make the dataset hierarchical, a
crucial characteristic for the realisation of our SDM. For example, the “motorcycle” class contains “chopper”,
“sportbike”, “dirtbike”, and “scooter” subclasses. Vehicles have four attributes, i.e. colour, size, material,
and texture. Each image is accompanied by a set of questions designed to test various aspects of visual
reasoning, including types such as counting, existence, comparison, attribute identification, and spatial
relationships as shown in Fig. 1. Super-CLEVR contains about 30k images and 10 question-answer pairs
for each of them.
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The Super-CLEVR dataset generator employs an algorithm that uses Blender [8] to create a diverse
set of images and corresponding questions. Each image is generated by randomly placing vehicles in a
three-dimensional scene. The attributes of these objects are also randomly assigned within predefined
categories. Spatial relationships are managed to ensure objects do not overlap unrealistically. Once an image
is composed, the generator creates questions based on different types of reasoning tasks. The questions
are formulated by randomly selecting objects and their attributes in the image and constructing queries
that require an understanding of the objects and their relations. This procedural generation ensures a wide
variety of questions and scenes, overcoming possible human biases when creating datasets.

3.2. Inductive Logic Programming

Inductive Logic Programming [36] is a subfield at the intersection of ML and KRR that focuses on
learning logical descriptions from examples, utilising background knowledge (B) and sets of positive (E+)
and negative (E−) examples. The learning process in ILP aims to find a hypothesis h from a hypothesis
space H, such that B ∪ h |= E+, and B ∪ h ̸|= E−, i.e. the background B plus the hypothesis h entails
each positive example while it does not entail any negative example. It typically involves, starting from the
known facts and relations contained in B, generating hypotheses consistent with E+, testing them against
E− to ensure that no negative example is entailed, and refining them until they entail all the positive and
none of the negative examples. If no hypothesis satisfies this condition, the learning process ends with no
solution. A number of ILP approaches and tools are available; for a comprehensive survey on ILP, we refer
to [11].

This work tests the following three ILP systems as symbolic reasoning components within the proposed
neurosymbolic architecture for slice discovery.

1. Popper implements the learning from failures approach by combining ASP and Prolog. It supports
infinite problem domains, reasoning about lists and numbers, learning textually minimal programs,
and learning recursive programs. Furthermore, Popper can learn minimal description length logic
programs as hypotheses from noisy data.

2. FOLD-R++ is an improvement of the FOLD-R algorithm for learning answer set programs from mixed
(numerical and categorical) data for classification tasks. The three main improvements of FOLD-R++
are the following: (i) it uses the prefix sum algorithm to speed up computation; (ii) it allows negated
literals in the default portion of the learnt rules; (iii) it introduces the hyper-parameter exception
ratio, which is the threshold of the ratio of false-positive examples (i.e. exceptions) to true-positive
examples that a rule can imply.

3. FastLAS is a system designed to perform learning tasks in the context of ASP. A key feature of
FastLAS is its capability of handling noisy data by introducing a penalty mechanism. This mechanism
assigns a penalty to each example, which is a cost for not covering that example. The penalties
are defined by a user-specified weight, denoted by the variable λ > 0, λ ∈ N, which adjusts the
importance of different examples. Higher penalties may discourage the system from including certain
complex rules if simpler alternatives exist, thus balancing accuracy against simplicity in the learned
model. Furthermore, FastLAS has the advantage of taking as input a customised scoring function
for hypotheses that allows the user to express domain-specific optimisation criteria. Such a scoring
function defines the cost of a rule. FastLAS then computes an optimal solution with respect to the
given scoring function.

The ability of these three ILP systems to learn from noisy data is fundamental to the functioning of our
SDM. Indeed, a rare slice can be interpreted as a set of exceptions on which a classifier underperforms. In
order to find the pattern that characterises such a set of exceptions, we use the same idea as in [44], which
is to consider misclassifications as positive examples and correct classifications as negative examples to
obtain rules describing rare slices.
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Fig. 2. Overview of the proposed neurosymbolic SDM architecture. The solid arrows show the data flow, while the dashed
arrow represents the use of the extracted logical rules to generate further training data to improve classification performance.

4. Neurosymbolic Framework for Slice Discovery

In order to construct a neurosymbolic SDM approach, we propose an architecture of a system as shown
in Fig. 2. The system comprises several modules, shown as boxes, which process inputs in a pipeline. From
configuration files, synthetic datasets containing rare slices are generated on which a neural network model
is trained and evaluated. Then, a semantic description of the images is produced, from which rules for
detecting rare slices are extracted. Finally, the rules are used to generate further training data to mend the
neural network model, thus closing the loop of model learning. In the following, we describe the tasks in
the processing pipeline in more detail.

4.1. Data Generation

The first step in the pipeline is concerned with data generation, i.e. producing datasets containing rare
slices. To address this problem, we provide a methodology for generating datasets with rare slices, which
will be detailed in Section 5.

At an abstract level, the task consists of creating a labelled dataset D, where elements are labelled
with their attributes. In our Super-CLEVR setting, D consists of pairs (I, L), where I is an image and
L = {(b1, h1), . . . , (bn, hn)} is its label, where each bi is a bounding box of some object oi in I, i.e. a tuple
(x−, y−, x+, y+) where (x−, y−), (x+, y+) are the corners of the bounding box, and hi is in the underlying
hierarchy H the root class of the subclass of oi (e.g. the root class “motorcycle” for the vehicle subclass
“dirtbike”), 1 ⩽ i ⩽ n. Objects are identified by their bounding boxes, i.e. we can view bi as an object ID.

To generate such datasets, we modified the Super-CLEVR data generator that renders images, such that
we can control the distribution of objects depending on their class membership in H to create datasets
that contain controlled rare slices. Each dataset is split into a training and validation set, where the
respective information is provided in configuration files. Our data generator produces then a labelled
dataset D = {(I1, L1), . . . , (INs , LNs} with Ns ≈ ns/β images per split s, where β is the average number
of objects per image and ns corresponds to the total number of objects per split.

The Super-CLEVR generator produces further data for the images, such as questions about them (which
we disregard, as not needed) and scene descriptions consisting of object attributes (e.g. colour and size).
This enriched description is the ground truth of the images, which can be used for synthetic scene graph
generation and efficacy assessment. Our modified Super-CLEVR generator offers the user flexibility to
generate datasets with controlled rare slices and customised hierarchies, which allow one to study how a
classification model reacts and the effectiveness of rule extraction to identify rare slices.

4.2. Object Detection and Classification

The dataset generated in the previous step is fed into the neural network model, and the classification
results are collected. Specifically, the neural network model is expected to solve an object detection and
classification problem: given an image I, it returns a set f(I) of pairs (B, c), called predictions, where B is a
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bounding box, which is identified with an object o, and c is a class from the root classes of the hierarchy H;
in case of YOLOv5 , we also get for each object o the confidence cf in the bounding box and class detection.

The function f is obtained by training the neural network model on a dataset. For our aim, we use the
training split of dataset D featuring rare slices from above, where we expect the model to underperform.
After training, the model is run on the validation split of D and the validation images are then divided by
the model output f(I) into the sets E+ and E− of images that were incorrectly and correctly classified by
f , respectively.

4.3. Scene Graph Generation

Scene Graph Generation (SGG) deals with generating a scene graph from an input image, which is
a (labelled) directed graph G = (V, E) with three types of nodes: object nodes, attribute nodes, and
relation nodes. Each object in an image is located inside a bounding box and can have several attributes.
Furthermore, different types of relations between pairs of objects, e.g. spatial relations like behind, may
exist. Scene graphs provide a powerful semantic representation of images that can be exploited to understand
visual data and spot their misclassification patterns. Different SGG methods and tools are available, mainly
based on deep neural networks (see [30] for an overview).

In the realm of the Super-CLEVR setting, we can readily transform the sets E+ and E− of incorrectly
resp. correctly classified images into suitable scene graphs GE+ resp. GE− , by taking the bounding boxes
(i.e. objects) along with the classes detected for them and supplementing their attributes. In that, we
replace detected root classes with appropriate subclasses. The latter are not taken from the neural network
model as it is not trained for such classification, but from the ground truth found in the dataset. Similarly,
other object attributes, such as colour, size, material, and direction, are obtained from the ground truth.
This allows us to construct correct scene graphs that are on the positive (GE+), negative (GE−) set when
the neural network correctly, incorrectly classifies them, respectively.

4.4. Rule Extraction via Inductive Logic Programming

We specify a rule extraction problem instance by translating each scene graph GE+ resp. GE− into a
logical representation ILP(GE+) resp. ILP(GE−), and then assembling with them the sets E+

ILP and E−
ILP

of positive and negative examples, respectively, and the background knowledge B describing semantic
information about objects in the images. This is complemented with optional domain knowledge and
auxiliary control information. Then, E+

ILP, E−
ILP, and B are fed into a rule extraction system. Notably, the

positive examples E+
ILP are the input images for which the model made an incorrect classification, as we

look for an explanation of why the model fails. The rule extraction system, for which we envisage using an
ILP system, then outputs a set of rules as a hypothesis for rare slice detection.

As an example of ILP encoding, Fig. 3 shows excerpts of positive and negative examples and part of
the related mode bias used. The representation is in the language of FastLAS , a state-of-the-art ILP
system. Its expressive language allows the description of data and the specification of parameters and mode
declarations to shape the search space.

Specifically, FastLAS allows for a penalty to be set for each example by coding sX@Y, where X is a
scene ID and Y is the cost for not covering that example. The positive example, denoted by #pos, is
entailed by its background knowledge B, which is the third set {contains(19, 0)...} listed, combined
with the hypothesis h if there is at least one answer set that includes the ground atom hard(19). The
negative example, denoted by #neg, is not entailed if there is no answer set of its background knowledge B
(again, the third set) combined with h that includes the hard(32) atom. Background knowledge B for each
example is derived from the ground truth of the images. The hard/1 predicate was explicitly introduced
as a rule head to represent in which case a scene is difficult for the classifier, i.e., it contains rare slices,
depending on its composition of objects and attributes.

The mode bias in Fig. 3 specifies that the hard(X) predicate must only appear as a rule head, where
X is a scene ID. Conversely, the contains(X,Z) predicate, where X is a scene ID and Z is an object ID,
can only appear in the rule body. The same applies to the shape(Z,sha), color(Z,col), size(Z,siz),
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#pos(s19@4, {hard(19)}, {}, {
contains(19, 0).
color(0, yellow).
direction(0, south).
material(0, metal).
shape(0, utility).
size(0, large).

contains(19, 1).
...

}).

#neg(s32@2, {hard(32)}, {}, {
contains(32, 0).
color(0, gray).
direction(0, southwest).
material(0, rubber).
shape(0, tandem).
size(0, small).

contains(32, 1).
...

}).

% Configuration options
#maxv(2).

% Rule heads
#modeh(hard(var(sce_id))).
% Rule bodies
#modeb(contains(var(sce_id), var(obj_id))).
#modeb(not contains(var(sce_id), var(obj_id))).
#modeb(shape(var(obj_id), const(shape))).
#modeb(color(var(obj_id), const(color))).
#modeb(size(var(obj_id), const(size))).
#modeb(not size(var(obj_id), const(size))).
#modeb(direction(var(obj_id), const(direction))).
#modeb(not direction(var(obj_id), const(direction))).
#modeb(material(var(obj_id), const(material))).
#modeb(not material(var(obj_id), const(material))).

% Type domains
shape(utility).
direction(east).
...

% Scoring function
#bias("penalty(20, head(X)) :- in_head(X).").

Fig. 3. The left side of the figure shows excerpts of positive and negative examples, with their background knowledge B in the
language of FastLAS . The right side of the figure shows an excerpt of the related mode bias. The complete files defining the
examples and mode bias can be found in the online repository.

direction(Z,dir), and material(Z,mat) predicates, where Z is an object ID and sha, col, siz, dir, and
mat are constants of the respective domains. Furthermore, four predicates, i.e. contains, size, direction,
and material, can also appear as negative literals in the rule body. In the FastLAS mode bias, only a subset
of predicates is specified as negative to tailor the search space. Finally, FastLAS allows the specification of
the maximum number of variables per rule via the #maxv directive, and the scoring function via #bias.

Given the complete input in Fig. 3, FastLAS produces the following hypothesis h:
hard(V0) :- contains(V0,V1), size(V1,large), material(V1,rubber), shape(V1,utility),

direction(V1,south), sce_id(V0), obj_id(V1).
hard(V0) :- contains(V0,V1), shape(V1,utility), color(V1,yellow), direction(V1,south),

sce_id(V0), obj_id(V1).
hard(V0) :- contains(V0,V1), shape(V1,utility), direction(V1,north), sce_id(V0), obj_id(V1).
hard(V0) :- not size(V1,large), not direction(V1,east), not direction(V1,southeast),

contains(V0,V1), shape(V1,utility), color(V1,purple), sce_id(V0), obj_id(V1).

Informally, these rules express that a scene is considered difficult for the model to classify if it contains a
utility bike with specific attributes. For example, the first rule says that whenever there is a scene with a
large rubber utility bike facing south, the neural network model will likely make a misclassification error on
such an object.

The Popper encoding is very similar in structure to the FastLAS encoding since it consists of a file for
specifying examples, one for background knowledge, and one for mode bias. In contrast, the FOLD-R++
encoding is more simplified as it only consists of a CSV file of tabular data, where the first line specifies
the feature names of each column and the subsequent lines provide all examples. The complete encodings
for the FastLAS , Popper , and FOLD-R++ systems used in the experiments can be found in the online
repository.

4.5. Model Mending

The extracted rules can be used to mitigate the influence of rare slices on model performance, leading to
a more robust model. This improvement can be achieved by augmenting the training data with additional
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images generated from the rules. To this end, rules may be selected by the user to meet preferences or
desiderata; this may, to some degree, already be injected at the rule learning stage, depending on the
expressiveness of the rule extraction system.

5. Rare Slice Generation Methodology

Motivated by the limitations of existing methods for generating rare slices in our context and the need
for a reliable source of data to test our SDM, we present a taxonomy-based methodology to induce the
occurrence of controlled rare slices in a model. For the application of this methodology, it is necessary to
have a hierarchical dataset in which each class consists of a set of subclasses. Compared to related work [16],
the novelty is that we propose a heuristic that bases its intuition on the fact that a CV model is more
likely to confound visually similar objects that belong to different subclasses. Therefore, the heuristic is to
define a taxonomy by separating similar subclasses into different target classes to induce the generation of
rare slices in the classification model.

Super-CLEVR already defines a class hierarchy, but in our approach, the generator accepts as input
also custom hierarchies. To generate rare slices, consider a hierarchy H = {h1 : s̄1, . . . , hm : s̄m}, where
each hi defines a root class and s̄i is a set of subclasses for that root class. Then, consider a set P =
{(c1, c2), . . . , (cn−1, cn)}, n ⩾ 1, of pairs of visually similar subclasses, each belonging to some s̄i, that the
CV model is likely to confound. Similar to [16], we construct a dataset D such that, for a given class
hi ∈ H, one of its subclass ci appearing in a tuple of P occurs with a very low probability α in D. We use
the following methodology that we describe for the Super-CLEVR setting; applying it, with appropriate
adjustments, in similar application settings is suggestive.

1. We create a slice configuration file containing a set S = {ci | ci appears in a tuple of P} of visually
similar subclasses. For example, in Super-CLEVR, ci can be the “dirtbike” subclass, which is paired
with “mountain bike” in P because they are visually similar. The subclasses may have further attributes
that make the slices more specific such as picking a particular colour. The subclasses in S are defined
as rare, while any other subclass is non-rare.

2. We associate with each rare subclass ci ∈ S a low probability α; lower α means a lower probability of
creating a rare object.

3. A split configuration file is created defining the total number ns of objects per split s ∈
{train, validation} and whether the split should contain rare slices. We usually create rare slices in
the training split but validate on splits without rare slices, i.e. with a uniform distribution of objects.

4. A configuration file is generated containing the specification of all rare slices and other subclasses,
including their attributes, in the class hierarchy H.

5. The configuration files are passed to the modified image generator, which computes for each ci and s

the total number nci,s = α · ns

100 of rare objects to be generated, rounded to an integer. If nci,s = 0,
the process stops with an error that no rare objects can be generated with the given ns and asks the
user to increase it. Otherwise, nci,s (⩾ 1) rare objects are randomly distributed among the rendered
images, where ns −

∑n
i=1 nci,s is the number of random non-rare objects to be generated.

Following the above steps, specific rare slices can be generated depending on the taxonomy under consid-
eration. Furthermore, for each generated image, the Super-CLEVR generator produces the corresponding
description consisting of the objects in the scene, their attributes, and the relationships between them.
These descriptions allow scene graphs to be readily derived and then encoded into ILP examples, as shown
in Fig. 3.
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Fig. 4. The left figure shows a scene, based on hierarchy 4 of the Vehicle Type taxonomy, in which vehicles corresponding to
the “utility bike” and “articulated bus” rare slices are misclassified by YOLOv5 into the “sports bicycle” and “regular bus”
classes, respectively. In contrast, the right figure shows the same scene in which such vehicles are correctly classified after
model mending into their “urban bicycle” and “specialized bus” classes, respectively.

6. Experiments

The proposed SDM approach was evaluated in a series of experiments, which aimed to assess the
effectiveness of rare slice generation, rule extraction, and model mending. This section first describes the
experimental setup and then presents an overview of the results obtained. All data and details are available
in the online repository.

6.1. Experimental Setup

The evaluation platform is a server running Ubuntu 22.04.2 LTS (kernel version 6.8) with two Intel Xeon
Silver 4314 CPUs (each having 16 cores at 2.40GHz, 2 threads per core, and 24MB of cache), 1024GB of
DRAM, four NVIDIA RTX A5000 GPUs (each having 24GB of VRAM), and the CUDA 12.2 API. In the
following, we describe the experimental setup for each module of our SDM architecture.

Taxonomies. First, we considered the following pairs of vehicle subclasses as visually similar: (“dirtbike”,
“mountain bike”), (“articulated bus”, “transit bus”), (“utility bike”, “mountain bike”), (“pickup truck”,
“sedan”), and (“private jet”, “airliner”). Then, we defined two Super-CLEVR taxonomies according to the
proposed heuristic, separating the vehicle subclasses of some pairs into different classes. In this way, we
induced the generation of several rare slices to test the SDM implementation. The two taxonomies are
listed and described below:

1. Vehicle Type (VT) classifies vehicles according to their type in a multilevel taxonomy, where classes
become more and more specific at each level. The name of a class suggests the vehicles it contains.
For example, the “air vehicles” class contains air vehicles such as “airliner” and “biplane”. In contrast,
the “scooter” and “mountain bike” vehicles are in the “land vehicles” class, but also in the one below,
called “two-wheeler”, since they only have two wheels. However, “scooter” belongs to the more specific
“motorcycle” class while “mountain bike” is in the “bicycle” class. The same applies to the other
classes and vehicles, as shown in Fig. 6, where the vehicles are the leaves of the taxonomy. In the
following, the different hierarchies considered in the experiments to evaluate and compare the influence
of rare slices on classification performance are reported. For each hierarchy, the corresponding classes
constitute the targets of the neural network model.

– Hierarchy 1: “air vehicles” and “land vehicles”.
– Hierarchy 2: “air vehicles”, “two-wheeler”, and “multi-wheeler”.



M. Collevati et al. / Leveraging Neurosymbolic AI for Slice Discovery 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– Hierarchy 3: “air vehicles”, “bicycle”, “motorcycle”, “bus”, and “car”. These are the original classes
used in Super-CLEVR.

– Hierarchy 4: “air vehicles”, “sports bicycle”, “urban bicycle”, “sports motorcycle”, “urban motorcy-
cle”, “regular bus”, “specialized bus”, “offroad car”, and “urban car”.

Note that we purposely defined hierarchies 1 and 2 to not satisfy the heuristic criterion, i.e. no pair
of vehicle subclasses was separated into different classes. On the contrary, for hierarchies 3 and 4,
we defined the classes based on the heuristics. In particular, for hierarchy 3, we separated the pair
(“dirtbike”, “mountain bike”), while for hierarchy 4, we separated the pairs (“dirtbike”, “mountain
bike”), (“articulated bus”, “transit bus”), (“utility bike”, “mountain bike”), and (“pickup truck”,
“sedan”). In this way, we wanted to assess the effectiveness of the proposed heuristic in generating
rare slices depending on their presence or absence in the respective hierarchies.

2. Primary Purpose (PP) is based on the classification of vehicles according to their primary usage,
as shown in Fig. 7. For example, “scooter” is in the “urban vehicles” class, which contains vehicles
intended for urban transportation, while “dirtbike” is in the “offroad vehicles” class. The only hierarchy,
referred to as hierarchy 1, used in the experiments comprises the following classes: “urban vehicles”,
“offroad vehicles”, “specialized vehicles”, “high-speed vehicles”, and “recreational vehicles”. We defined
these classes to separate the following pairs of vehicle subclasses: (“articulated bus”, “transit bus”),
(“utility bike”, “mountain bike”), (“pickup truck”, “sedan”), and (“private jet”, “airliner”).

Datasets. A training set consisting of 10,000 images was generated for the two taxonomies. Each image
contains at least three vehicles but no more than six, and the vehicle attributes taken into account with
their respective values are: “shapes” (e.g. “scooter”), “materials” (e.g. “metal”), “colors” (e.g. “gray”),
“sizes” (e.g. “small”), and “directions” (e.g. “southwest”). For the training set, one vehicle subclass was
selected for each of the five pairs mentioned above, i.e. “dirtbike”, “articulated bus”, “utility bike”, “pickup
truck”, and “private jet”, respectively. Then, their occurrence probability α in the dataset was set to 0.05%.
Depending on the taxonomy employed, these vehicle subclasses are the candidate rare slices; the remaining
vehicle subclasses are uniformly distributed. Lastly, a validation set of 2500 images is created, where all
vehicle subclasses are uniformly distributed to evaluate the model behaviour.

Neural Network. For each hierarchy, a YOLOv5 model was trained on the training set running 80, 160,
and 320 epochs. Then, each model trained for 160 epochs was evaluated on the validation set, and the
results were inspected.

Rule Extraction. For the rule extraction experiments, a timeout of 3600 seconds was set. For evaluation and
comparison, three different ILP systems were employed on the underperforming classes of each hierarchy
to extract the rules identifying their rare slices; an example is shown in Fig. 5. These systems were run
for three sample sizes of the validation examples, i.e. 25%, 50%, and 100%, to study their accuracy and
scalability as the amount of available data varied. The three ILP systems and their respective parameter
configurations are described below. All values mentioned were chosen experimentally to test the capabilities
and limitations of the systems.

1. Popper was used in the noisy mode, which allows it to learn the minimal description length program
from noisy data.

2. FOLD-R++ was run for three values of the exception ratio hyper-parameter, i.e. 0.25, 0.50, and 0.75.
This parameter represents the threshold of the ratio of false-positive examples (i.e. exceptions) to
true-positive examples that a rule can entail.

3. FastLAS was used in the opl mode, which runs the original algorithm (known as FastLAS1 ). Further-
more, to use FastLAS in the mode that supports noisy examples, for each example its penalty has
been specified, which is the cost of violating it. The penalty values for positive and negative examples
were set to 4 and 2, respectively. The maximum number of variables per rule was limited to 2 to
narrow down the hypothesis space. Three penalties, i.e. 10, 20, and 30, were also tested for the scoring
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hard(V0) :- contains(V0,V1), south(V1), utility(V1).
hard(V0) :- contains(V0,V1), north(V1), utility(V1).
hard(V0) :- contains(V0,V2), contains(V0,V1), small(V1), metal(V1), southeast(V2), utility(V2).

Fig. 5. Rules extracted by Popper for the “urban bicycle” class in hierarchy 4 of the Vehicle Type taxonomy, for sample size
100%. The rules correctly detect the “utility bike” rare slice.

function that charges such penalty values for each extracted rule head, to observe how they affect the
quality of the output result.

Rule selection. A set of rules was obtained for each experimental configuration based on the hierarchy,
class, ILP system, and parameter values considered. From their analysis and interpretation, the candidate
rules for slice identification were derived by selecting the vehicle attributes that occurred more often in the
extracted rules. The rationale behind this strategy is supported by the fact that if most of the extracted
rules agree on the choice of a vehicle attribute, it means that such an attribute is more likely to be the
most appropriate in characterising positive examples, i.e. rare slices.

Model Mending. According to the candidate rules identifying a slice of a hierarchy, 12 new images
containing the vehicle attributes described by those rules were generated to correct the model behaviour
on the problematic class. To this end, for each hierarchy, the previously trained YOLOv5 model (160
epochs version) was considered and further trained on the respective new images for 10 and 20 epochs.
Finally, each model retrained for 10 epochs was evaluated on the same validation set to see how the model
performance changed.

6.2. Experimental Results

This section provides the experimental results for rare slice generation, rule extraction, and model
mending.

6.2.1. Rare Slice Generation
The proposed method successfully generated rare slices only for those hierarchies based on the heuristic

that separates similar vehicle subclasses into different classes. Moreover, such rare slices negatively impacted
the inference capabilities of the respective YOLOv5 models across all epoch values considered, highlighting
the persistence of rare slices even as the number of training rounds increases. From the confusion matrices
obtained after model validation, e.g. as in Fig. 8 and 9, it can be observed that our taxonomy-based
method was effective in inducing the presence of rare slices in the neural network models of such hierarchies.
Specifically, as expected, no rare slices occurred in the two respective neural network models of hierarchies
1 and 2 of the VT taxonomy, as shown in Fig. 8. For hierarchy 3, only the “dirtbike” vehicle was found
to be a rare slice for the “motorcycle” class, thus showing that the other vehicles with low probability
did not affect model performance such that they were considered rare slices. In contrast, four rare slices,
“dirtbike”, “articulated bus”, “utility bike”, and “pickup truck”, were created for hierarchy 4 for the “sports
motorcycle”, “specialized bus”, “urban bicycle”, and “offroad car” classes, respectively, as shown in Fig. 9.
Finally, for hierarchy 1 of the PP taxonomy, “pickup truck” was found to be a rare slice for the “offroad
vehicles” class, “articulated bus” for the “specialized vehicles” class, “utility bike” for the “urban vehicles”
class, and “private jet” for the “high-speed vehicles” class.

6.2.2. Rule Extraction
We structure the presentation of experimental results for rule extraction according to taxonomy hierarchies.

Tables 1-3 show the results of the three ILP systems for the neural network models trained with 160 epochs;
the complete collection of all results can be found in the online repository.

VT Taxonomy: Hierarchy 3. All ILP systems identified the “dirtbike” slice in the “motorcycle” class. In
particular, Popper succeeded for sample sizes 50% and 100%, but not for 25%. In contrast, FOLD-R++
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detected such a slice for all parameter configurations. FastLAS was always successful for sample size 100%,
but not for 25% with rule head penalties 20 and 30, and 50% with 30.

VT Taxonomy: Hierarchy 4. All ILP systems identified the “utility bike” slice in the “urban bicycle” class,
except FastLAS for sample size 100% which always timed out. Examples of rules extracted from Popper
and FastLAS detecting the “utility bike” slice are shown in Fig. 5 and Sec. 4.4, respectively. Also for the
“dirtbike” slice in the “sports motorcycle” class all systems were successful, except FOLD-R++ for sample
size 25% which failed to extract any rules. As for the “pickup truck” slice in the “offroad car” class, both
FOLD-R++ and FastLAS managed to detect it while Popper did not. However, FastLAS experienced
difficulties, only being able to identify it for sample sizes 50% and 100% with rule head penalty 10. On the
other hand, FOLD-R++ succeeded for sample sizes 25% and 100%, but not for 50%. Finally, all systems
detected the “articulated bus” slice in the “specialized bus” class. In particular, FOLD-R++ was successful
for all parameter configurations. In contrast, Popper identified such a slice for sample sizes 50% and 100%,
but not 25%. FastLAS was almost only successful with rule head penalty 10 for all sample sizes.

PP Taxonomy: Hierarchy 1. All ILP systems identified the “utility bike” slice in the “urban vehicles”
class, except FastLAS for sample size 100% which always timed out. In contrast, the “pickup truck” and
“articulated bus” slices in the “offroad vehicles” and “specialized vehicles” classes, respectively, proved
difficult for both Popper and FastLAS to detect. In particular, Popper never succeeded, while FastLAS
almost only with rule head penalty 10. Specifically, for the “offroad vehicles” class for sample sizes 50%
and 100%, and for the “specialized vehicles” class for 25% and 50%. As for FOLD-R++, it was successful
for both classes, except for “specialized vehicles” for sample size 50%. Finally, the “private jet” slice in the
“high-speed vehicles” class was identified by all systems. In detail, Popper only succeeded for sample size
100%, but not for 25% and 50%. Instead, FOLD-R++ detected such a slice for all parameter configurations.
In contrast, FastLAS was successful for sample sizes 25% and 50% with rule head penalties 10 and 20, but
for 100% it always timed out.

6.2.3. Model Mending
Candidate rules for slice identification were derived by analysing the extracted rules and selecting those

vehicle attributes that occurred more often in the ILP hypotheses. For example, from the rules extracted for
the “urban bicycle” class in hierarchy 4 of the VT taxonomy and shown in Fig. 5, the following candidate
rules were derived:

hard(V0) :- contains(V0,V1), south(V1), utility(V1).
hard(V0) :- contains(V0,V1), north(V1), utility(V1).
hard(V0) :- contains(V0,V1), southeast(V1), utility(V1).

These rules identify the rare slice containing utility bikes facing south, north, and southeast. Then, each
YOLOv5 model was retrained on new images generated according to the respective candidate rules. For
example, the model for hierarchy 4 of the VT taxonomy was retrained on new images generated according
to the candidate rules for the “sports motorcycle”, “specialized bus”, “urban bicycle”, and “offroad car”
classes. For each hierarchy, the confusion matrix obtained from model validation shows that the respective
YOLOv5 model has already been significantly corrected after 10 epochs, and further training for 10 epochs
did not lead to improvement. In particular, for hierarchy 3 of the VT taxonomy, model correction increased
the recall of the “motorcycle” class from 94% to 98%. For hierarchy 4 of the VT taxonomy, model mending
worked really well, as shown in the confusion matrices in Fig. 9. Specifically, the recall values for the
“urban bicycle” and “sports motorcycle” classes increased by around 11%, while for the “offroad car” and
“specialized bus” classes they increased by an average of 6%. The “sports motorcycle”, “offroad car”, and
“specialized bus” classes are now well-detected, while “urban bicycle” has improved significantly, as shown
in the scene in Fig. 4. Finally, for hierarchy 1 of the PP taxonomy, the “urban vehicles” and “offroad
vehicles” classes improved by 1%. More significant improvements are observed for the “specialized vehicles”
and “high-speed vehicles” classes: the former increased from 95% to 98%, the latter from 92% to 98%.
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Table 1
Summary of results of the Popper system for the neural network models trained with 160 epochs. ✓ stands for the successful
production of rare slice rules and ✗ stands for wrong or no rules obtained. The system running time in seconds is given for
each result.

Sample Size

25% 50% 100%

Vehicle Type: Hierarchy 3
Motorcycle ✗ (3) ✓ (14) ✓ (30)

Vehicle Type: Hierarchy 4
Urban Bicycle ✓ (12) ✓ (30) ✓ (72)

Sports Motorcycle ✓ (8) ✓ (27) ✓ (50)
Offroad Car ✗ (2) ✗ (8) ✗ (20)

Specialized Bus ✗ (3) ✓ (9) ✓ (30)

Primary Purpose: Hierarchy 1
Urban Vehicles ✓ (12) ✓ (26) ✓ (57)

Offroad Vehicles ✗ (4) ✗ (8) ✗ (31)
Specialized Vehicles ✗ (2) ✗ (7) ✗ (18)
High-Speed Vehicles ✗ (8) ✗ (18) ✓ (47)

Table 2
Summary of results of the FOLD-R++ system for the neural network models trained with 160 epochs. ✓ stands for the
successful production of rare slice rules and ✗ stands for wrong or no rules obtained. The system running time in seconds is
given for each result.

Sample Size

25% 50% 100%

Ratio
0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Vehicle Type: Hierarchy 3
Motorcycle ✓ (34) ✓ (34) ✓ (34) ✓ (73) ✓ (73) ✓ (73) ✓ (279) ✓ (277) ✓ (172)

Vehicle Type: Hierarchy 4
Urban Bicycle ✓ (34) ✓ (35) ✓ (35) ✓ (230) ✓ (232) ✓ (118) ✓ (642) ✓ (569) ✓ (447)

Sports Motorcycle ✗ (6) ✗ (6) ✗ (6) ✓ (148) ✓ (198) ✓ (197) ✓ (781) ✓ (508) ✓ (513)
Offroad Car ✓ (54) ✓ (54) ✓ (54) ✗ (16) ✗ (17) ✗ (17) ✓ (794) ✓ (802) ✓ (799)

Specialized Bus ✓ (85) ✓ (158) ✓ (120) ✓ (96) ✓ (97) ✓ (176) ✓ (2003) ✓ (781) ✓ (722)

Primary Purpose: Hierarchy 1
Urban Vehicles ✓ (132) ✓ (126) ✓ (127) ✓ (358) ✓ (267) ✓ (260) ✓ (2361) ✓ (545) ✓ (548)

Offroad Vehicles ✓ (102) ✓ (101) ✓ (102) ✓ (258) ✓ (260) ✓ (261) ✓ (242) ✓ (244) ✓ (241)
Specialized Vehicles ✓ (149) ✓ (148) ✓ (149) ✗ (17) ✗ (17) ✗ (17) ✓ (1938) ✓ (1935) ✓ (1930)
High-Speed Vehicles ✓ (264) ✓ (262) ✓ (110) ✓ (438) ✓ (431) ✓ (434) ✓ (703) ✓ (583) ✓ (546)

7. Discussion

From the confusion matrices, we observed that our taxonomy-based dataset generation method effectively
induced the presence of rare slices in neural network models. Each rare slice was identified by at least two
ILP systems in some specific configuration. Notably, both FOLD-R++ and FastLAS succeeded on all slices,
thus proving consistency. In contrast, Popper failed on the “pickup truck” and “articulated bus” slices,
which also proved to be the most problematic slices for the other two systems. In this context, the results
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Table 3
Summary of results of the FastLAS system for the neural network models trained with 160 epochs. ✓ stands for the successful
production of rare slice rules, ✗ stands for wrong or no rules obtained, and T stands for timeout. The system running time in
seconds is given for each result.

Sample Size

25% 50% 100%

Rule head penalty
10 20 30 10 20 30 10 20 30

Vehicle Type: Hierarchy 3
Motorcycle ✓ (165) ✗ (169) ✗ (171) ✓ (711) ✓ (704) ✗ (710) ✓ (1980) ✓ (2001) ✓ (1980)

Vehicle Type: Hierarchy 4
Urban Bicycle ✓ (429) ✓ (430) ✓ (433) ✓ (1778) ✓ (1733) ✓ (1748) T T T

Sports Motorcycle ✓ (268) ✓ (279) ✓ (277) ✓ (1243) ✓ (1233) ✓ (1188) ✓ (3186) ✓ (3146) ✓ (3118)
Offroad Car ✗ (131) ✗ (135) ✗ (136) ✓ (388) ✗ (391) ✗ (398) ✓ (1238) ✗ (1244) ✗ (1220)

Specialized Bus ✓ (184) ✗ (184) ✗ (176) ✓ (507) ✗ (514) ✗ (514) ✓ (1805) ✓ (1760) ✗ (1788)

Primary Purpose: Hierarchy 1
Urban Vehicles ✓ (588) ✓ (581) ✓ (575) ✓ (1903) ✓ (1931) ✓ (1940) T T T

Offroad Vehicles ✗ (188) ✗ (186) ✗ (191) ✓ (723) ✗ (722) ✗ (713) ✓ (2588) ✓ (2572) ✗ (2585)
Specialized Vehicles ✓ (133) ✗ (139) ✗ (135) ✓ (403) ✗ (416) ✗ (403) ✗ (1551) ✗ (1558) ✗ (1539)
High-Speed Vehicles ✓ (416) ✓ (423) ✗ (414) ✓ (1194) ✓ (1177) ✗ (1190) T T T

suggest that ILP systems tend to be more likely to succeed as the amount of available examples increases.
However, it is interesting and important to note that both FOLD-R++ and FastLAS identified most of
the rare slices even for sample size 25%. This was not the case for Popper , which halved the number of
identified slices by going from 100% to 25% sample size, thus showing less robustness. Interestingly and
unexpectedly, FOLD-R++ failed on the “sports motorcycle” class for sample size 25% and on the “offroad
car” and “specialized vehicles” classes for sample sizes 50%, as shown in Table 2. The reasons behind this
need further investigation. However, it can be speculated that the reason depends on the characteristics
and distribution of the positive and negative examples considered.

In addition to requiring less data for slice discovery, smaller samples have the advantage of significantly
reducing the running time of ILP systems, as shown in the Tables 1-3. In particular, using smaller samples
was necessary for FastLAS , which turned out to be the slowest system, timing out for three classes with
sample size 100%. One possible reason why FastLAS is slower may be its penalty mechanism and scoring
function, which make the optimisation problem more challenging to solve. In contrast, FOLD-R++ and
Popper never ran into timeout, with the latter being the fastest system, probably because Popper lacks
negation in the extracted rules. Indeed, it is important to consider that both FOLD-R++ and FastLAS
provide rules with negation, which greatly widens the hypothesis space. On the other hand, rules with
negation allow for alternative and more concise descriptions of slices by specifying which vehicle attributes
should not be present. The ability to express rules with negation may be one reason why FOLD-R++ and
FastLAS have succeeded more than Popper in identifying rare slices. Finally, the values of exception ratio
and rule head penalty subtly influenced the results and running times. In particular, exception ratio had a
substantial impact on the FOLD-R++ running times of some classes, e.g. in the “urban vehicles” class for
hierarchy 1 of the PP taxonomy, as shown in Table 2. In contrast, rule head penalty influenced the results
of slice identification by FastLAS .

Model mending based on the rules extracted from our SDM proved effective for all hierarchies. In
particular, the confusion matrices showed significant improvement in the recall values of the classes affected
by rare slices after re-training the classification models on the new rule-based images. The differences in
the improvements in recall values suggest that the effectiveness of model mending varies by class. Finally,
the results indicate that model mending allows significant improvements without extensive re-training, as
the recall values plateaued after 10 epochs.
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8. Conclusion and Future Work

In this work, we have presented a neurosymbolic AI approach to address the slice discovery problem. In
particular, we have provided a modular architecture and an implementation that leverages the Super-CLEVR
dataset and its synthetic data generator. The architecture connects data generation, model classification,
and rule extraction from scene graphs via ILP to detect rare slices that are misclassified. Furthermore,
we have described a taxonomy-based methodology for generating datasets in which rare slices occur. The
experiments have shown that the datasets with rare slices could be generated reliably, and that the rule
extraction approach using ILP could produce useful rules describing rare slices. Further training the neural
network model with data generated from these rules has resulted in significant performance improvement.

The results obtained are encouraging and demonstrate the potential of simultaneously exploiting DL and
KRR methods for slice discovery. In this way, compact and human-readable logical rules can be extracted
that improve the interpretability and explainability of a CV model under examination, also paving the way
to advanced concepts such as causal and contrastive explanations.

Ongoing and future work aims in different directions. One is to improve the current implementation and
make it more user-friendly and accessible. Another direction is the generation of native scene graphs, for
which tools and methods, as mentioned in Section 4, will have to be examined and assessed; generating
well-suited scene graphs by them is an interesting research issue. Then, the plan is to extend the work to
consider relationships between objects, which would be an important added value in identifying rare slices
with further precision but at the expense of higher computational cost. Moreover, exploring further ILP
systems as well as other rule learning approaches, such as those provided by Statistical Relational Learning,
e.g. LERND [34], is on our agenda.
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Fig. 6. Super-CLEVR Vehicle Type taxonomy.
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Fig. 8. The top figure refers to hierarchy 1 of the Vehicle Type taxonomy, while the bottom figure refers to hierarchy 2. Both
figures show the respective confusion matrix from model validation after training on the dataset with rare slices. Note that
rare slices did not affect the classification performance of both neural network models.
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Fig. 9. Both figures refer to hierarchy 4 of the Vehicle Type taxonomy. The top figure shows the confusion matrix from model
validation after training on the dataset with rare slices. The bottom figure shows the improvement after model mending for
those classes where rare slices were detected.
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