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Abstract.
Graph Neural Networks (GNNs) have shown significant potential in learning representations from complex graph-structured

data. However, explainability for GNN still relies mostly on identifying parts of the input graph that is relevant for a particular
instance (local explanations) while the ability to understand the model global explanation is still underinvestigated. In addition
to that, the impact of the GNN structure on the quality of the deep representation is not well understood and determining the
best configuration of layers for a given problem is still a trial-and-error process. In this paper, we extend our previous work on
Functional-Semantic Activation Mapping (FSAM) to investigate how changing the number of GNN layers affects the quality of
the deep representation and as a result its performance. Through experiments on multiple datasets, we observe that while adding
layers may enhance accuracy, it does not consistently lead to improved semantic representations; in some cases, performance
increases while semantic quality declines, suggesting correct predictions for incorrect reasons. FSAM allowed us to track neu-
ron activations across layers, revealing that deeper layers can reduce neuron specialisation and lead to class misclassifications.
Community analysis further indicates that certain misclassified classes share neurons in overlapping communities, highlighting
a loss of class-specific representations at greater depths. Our findings emphasise that adding layers does not always improve the
GNN’s deep representation and may, in fact, hinder its ability to learn meaningful semantic distinctions. This work underlines the
importance of assessing GNNs beyond accuracy alone, advocating for a deeper analysis of the effects of layer depth, specifically
in relation to performance versus semantic coherence in model interpretations.

Keywords: Explainable AI, Graph Neural Network, Graph Analysis, Neuro-Symbolic AI

1. Introduction

Graph Neural Networks (GNNs) [1, 2, 3] have demonstrated remarkable performance across a wide array of
tasks, including node classification, link prediction, and graph classification, across diverse datasets such as citation
networks, molecular data, and social networks. GNNs leverage both the structural information and node features
of graph data, enabling them to capture complex relationships in the deep representation. However, despite these
advances, explaining GNN predictions remains an open challenge, primarily due to the intricate topological nature
of graphs and the opaque way this is reflected or learned in GNN embeddings. Unlike traditional neural networks,
where inputs have fixed structures (e.g., grids in images), GNNs operate on graph structures as input. This might
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suggest there is a potential for GNN to have better interpretability as input features have meaningful, graph-like rela-
tions rather than pixel-based data. However, the challenge lies in understanding how these relationships are learned
and embedded within the GNN layers. This ambiguity complicates the interpretation of learned embeddings, mak-
ing it essential to understand model behaviour through detailed activation analysis.
Current research in GNN explainability has focused on generating local explanations by identifying small sets of
nodes and edges from the input data that have influenced the outcome for a specific test data sample [4]. These type
of explanations based on input features provide insights into the decision-making process of GNNs by highlighting
the critical parts of the input graph which most affected the final predictions [5]. While effective at the local level,
these methods do not provide a holistic view of the model’s overall behaviour. A global understanding of GNNs
remains underexplored, particularly in terms of how individual layers contribute to the final representation.
In our previous work [6], we introduced Functional-Semantic Activation Mapping (FSAM), a method aimed
at improving the global interpretability of GNNs by constructing functional-semantic graphs that capture neuron
activations across all layers of the network. FSAM links neural activations to human-interpretable concepts (the
output classes), thereby providing a deeper understanding of how different parts of the network contribute to the
final predictions. Through this, we laid the groundwork for analysing the relationship between relevance of neuron
activations and output classes within GNNs.
In this extended work, we address a critical question in GNN design: to what extent does adding an additional layer
enhance the model’s ability to represent network behaviour? And does improved performance always correspond to
better deep representations?
Our findings indicate that adding layers does not necessarily yield a better deep representation; in some cases, even
a single GNN layer can achieve strong performance and effectively capture the relations in the input data. As an-
ticipated, our thorough evaluation of GNNs across multiple datasets shows that adding layers eventually leads to
over-smoothing, where node embeddings become overly similar, reducing model accuracy and increasing misclas-
sifications. This degradation in performance aligns with FSAM quality, particularly when the semantic structure
of the input data is poorly preserved, highlighting how over-smoothing can compromise both classification perfor-
mance and representation integrity.
However, there are cases where improved GNN performance does not correlate with enhanced quality in the acti-
vation graph generated by FSAM. These cases are particularly insightful: they reveal instances where GNN perfor-
mance increases even as neuron activations fail to adequately reflect the input data’s semantic structure, suggesting
that the GNN achieves the correct outcome, albeit for the wrong reasons.
Given the approach in this paper relies on capturing the GNN’s behaviour through activation analysis with FSAM,
our first contribution is to extend the FSAM validation beyond our previous experiments on CORA [7] and Cite-
Seer [8]. To do that, we carry on additional experiments on four datasets: PubMed [9], Amazon Computers [10],
Amazon Photos [10], and Coauthor [11]. These datasets, with their distinct topological complexities, allow us to
comprehensively evaluate the FSAM’s approach and how well the resulting activation graph reflects the behaviour
of the GNN and indicates how well the semantic structure of the input data has been learned by the network.
The contribution of this work can be summarised as follows: Firstly, we extend the FSAM approach by conduct-
ing experiments across a broader range of datasets to validate that the activation analysis and graphs generated
by FSAM consistently reflect the network’s behaviour. This contribution includes community analysis across the
additional datasets to demonstrate FSAM’s capability to reliably capture the semantic structure between classes.
Secondly, we extend our experimental analysis to validate that the functional activation graph generated by FSAM
aligns with the network’s behaviour as the number of layers changes. By examining networks with varying depths
(from 1 to 4 layers) and comparing the correlation between misclassifications and class similarity, we demonstrate
that improvements in network accuracy are reflected in the FSAM graph, and similarly, any decline in accuracy is
captured by the FSAM structure. This analysis reinforces FSAM’s capability to accurately represent network be-
haviour across different layer configurations. Thirdly, we conduct a detailed layer-by-layer analysis to assess the
impact of varying GNN layer configurations on the model’s performance in node classification tasks. Specifically,
we evaluate how different numbers of layers influence the FSAM and corresponding community structures, veri-
fying whether improvements in accuracy align with a better FSAM graphs and, conversely, whether decreases in
accuracy correlate with a decline in FSAM quality. This analysis demonstrates that while additional layers may
initially enhance performance, deeper layers can lead to over-smoothing and neuron activation overlap, ultimately
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diminishing the model’s discriminative power. In our comprehensive analysis, we also identify a few interesting
cases where accuracy improves without a corresponding improvement in FSAM’s semantic quality. These instances
reveal situations where the GNN achieves better predictions but not likely due to a better embedding of the semantic
structure in the input data. We believe this indicates a potential for FSAM’s in identifying situations in which a
model makes accurate predictions for the wrong reasons.
This work demonstrates that FSAM not only serves as a reliable tool for aligning accuracy with the GNN’s internal
representations but also offers unique insights when discrepancies between accuracy and FSAM quality arise. These
findings underscore the importance of optimising GNN layer depth to balance model complexity with representation
quality, providing a valuable resource for researchers and practitioners aiming to improve GNN interpretability and
performance in real-world applications.

2. State of the art (SOTA)

Interest in neurosymbolic AI has been steadily increasing, driven by the need for interpretable and accountable
machine learning systems, especially in domains requiring transparent decision-making. Research has focused on
integrating neural learning with symbolic reasoning, a vital step for enhancing the explainability of deep learning
models. This integration is particularly important for high-stakes domains where both accuracy and interpretability
are essential. GNNs have shown exceptional performance in handling graph-structured data across a range of fields,
such as social networks [12], molecular structures [13], and citation networks [14]. However, despite their success
in learning complex relationships, GNNs remain largely opaque in terms of how specific predictions are made, par-
ticularly when compared to models in other domains like image and text analysis. The challenge lies in interpreting
the internal representations learned by GNNs, particularly in relation to prior knowledge.
Most existing methods for GNN explainability focus on local explanations, identifying key input features,
nodes, or edges influencing individual predictions. These techniques are broadly divided into several categories:
Gradient/Feature-based methods [15], which use gradient information or hidden feature map values to assess
feature importance; Perturbation-based methods [16], which modify graph structures and monitor how these per-
turbations affect model outputs; Decomposition methods [17, 15], which break down the prediction score into
contributions from different neurons or layers, propagating these contributions backwards through the network; and
Surrogate methods [18, 19], which train interpretable models to approximate the GNN’s behaviour by sampling
the input graph’s neighbourhood and constructing an explanation based on the simplified model.
Although these methods provide valuable insights, they predominantly focus on instance-level predictions, failing
to capture the GNN’s global behaviour or how information is processed through the layers of the network. Local
methods often highlight specific features without offering a comprehensive view of the entire decision-making pro-
cess, which is essential for understanding the model’s behaviour in relation to prior knowledge and domain-specific
concepts. Additionally, these methods tend to provide explanations that are difficult for humans to interpret, as they
do not reveal the underlying relationships between the GNN’s learned representations and the data’s inherent struc-
ture. The non-grid structure of graphs further complicates the application of techniques traditionally used in image
or text domains, making direct adaptation infeasible [4].
Global explanations are comparatively underexplored in GNN research. One notable method is XGNN [20], which
generates synthetic graphs optimised for class predictions to explain the behaviour of the GNN. However, XGNN’s
assumption that a single synthetic graph can represent an entire class oversimplifies the complex relationships within
real-world datasets. Such approaches, while offering some insight into the final predictions, fail to account for how
intermediate layers contribute to the learned representations. They often focus on the GNN’s output rather than
explaining the interplay between graph components—nodes, edges, and their interactions—across layers. This ap-
proach is inadequate for providing human-understandable insights into how the model’s internal workings relate
to prior knowledge or domain-specific information, making it difficult for users to trust and interpret the model’s
decisions. Moreover, relevant SOTA research is summarized in Table. 1.

Our previous work addresses this gap by introducing the Functional-Semantic Activation Mapping (FSAM)
approach, which provides a global explanation of GNNs by extracting deep representations in the form of semantic
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Table 1
Relevant Work Summarized

Method TYPE LEARNING TASK TARGET BLACK-BOX FLOW DESIGN
SA [21, 15] Instance-level ✗ GC/NC N/E/NF ✗ Backward ✗

Guided BP [21] Instance-level ✗ GC/NC N/E/NF ✗ Backward ✗

CAM [15] Instance-level ✗ GC N ✗ Backward ✗

Grad-CAM [15] Instance-level ✗ GC N ✗ Backward ✗

GNNExplainer [16] Instance-level ✓ GC/NC E/NF ✓ Forward ✓

PGExplainer [22] Instance-level ✓ GC/NC E ✗ Forward ✓

GraphMask [23] Instance-level ✓ GC/NC E ✗ Forward ✓

ZORRO [24] Instance-level ✗ GC/NC N/NF ✓ Forward ✓

Causal Screening [25] Instance-level ✗ GC/NC E ✓ Forward ✓

SubgraphX [4] Instance-level ✓ GC/NC Subgraph ✓ Forward ✓

LRP [21, 26] Instance-level ✗ GC/NC N ✗ Backward ✗

Excitation BP [15] Instance-level ✗ GC/NC N ✗ Backward ✗

GNN-LRP [17] Instance-level ✗ GC/NC Walk ✗ Backward ✓

GraphLime [18] Instance-level ✓ NC NF ✓ Forward ✗

RelEx [27] Instance-level ✓ NC N/E ✓ Forward ✓

PGM-Explainer [19] Instance-level ✓ GC/NC N ✓ Forward ✓

XGNN [20] Model-level ✓ GC Subgraph ✓ Forward ✓

Our Work M/I-level ✓ NC/GC N/E/NF ✓ Forward ✓

graphs. FSAM focuses on capturing the global structure of the GNN, along with the semantic relationships between
neurons across different layers. This method not only explains which components contribute to predictions but also
reveals how information is processed throughout the network, offering a more transparent view of the GNN’s be-
haviour. Unlike traditional input optimisation methods used for image classifiers [28], which cannot be applied to
graph adjacency matrices without losing important structural information, FSAM is specifically designed to pre-
serve the discrete properties of graph structures. Furthermore, soft masking techniques [29], which are effective in
image domains, compromise the integrity of graph structures when adapted to GNNs. By taking both nodes and
edges into account, FSAM ensures that the model’s inner workings can be interpreted in relation to the underlying
graph structure and the relationships embedded within it.
One key advantage of FSAM over existing methods is its ability to map the learned representations of the GNN into
a human-interpretable semantic space. This allows us to link the model’s internal mechanisms to higher-level sym-
bolic concepts, facilitating the validation of model decisions against domain knowledge and prior information. By
explaining how the model processes graph data at each layer, FSAM enhances both transparency and accountabil-
ity, providing explanations that are intuitive and accessible to non-experts. This comprehensive approach to GNN
interpretability marks a significant advancement towards neurosymbolic AI, where models are not only accurate but
also provide clear, explainable reasoning aligned with human understanding.

3. Overall Methodology: Generating the Semantic Graph

The primary aim of this paper is to enhance the interpretability of GNNs by representing their internal mechanisms
as semantic graphs. In our extended study, we hypothesise that adding more layers to GNNs does not necessarily
increase their capacity for knowledge representation. Our FSAM method clarifies GNN decisions retrospectively,
focusing on how different layers contribute to, or in some cases reduce, model performance due to over-smoothing.
FSAM identifies neuron groups involved in decision-making, termed activation neurons, and constructs a semantic
graph to visualise their relationships. This section presents the mathematical formulation for generating the semantic
graph, integrated with insights from our expanded experiments.
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3.1. Mathematical Formulation

The process begins with computing the activation values for each neuron. Given an input graph G = (V, E),
where V represents nodes and E represents edges, the GNN processes this structure to produce an activation matrix
A = [ai1, ai2, . . . , ain] for each layer i. Here, n represents the number of neurons in layer i, corresponding either to the
number of nodes in G or the output dimensionality of that layer. Our extended analysis suggests that after a certain
number of layers, additional neurons contribute less meaningful information due to over-smoothing, resulting in
decreased model performance.

To capture the behaviour of neurons within the GNN, we calculate neuron activations using Graph Convolutional
Networks (GCNs), which classify nodes by embedding ego-graphs in Euclidean space. The embedding for a node
v at layer ℓ is computed as:

h(ℓ)
v = ReLU

W(ℓ) ·
∑

w∈N(v)

ev,w√
dvdw

h(ℓ−1)
w


where ev,w represents the edge weight between nodes v and w, N(v) includes v and its neighbours, dv and dw denote
the degrees of nodes v and w, ReLU is the activation function, and W(ℓ) are the learned parameters. Here, activation
values correspond to node embeddings in the input graph. Through our findings, we validate the hypothesis that
increasing layers can lead to reduced neuron specialisation and heightened activation overlap across classes.

To analyse the relationships between neurons, we compute edge weights within the co-activation matrix using
Spearman’s correlation coefficient, an ideal metric for capturing monotonic relationships and non-linear associations
among activation patterns across layers. The Spearman correlation coefficient ρi j for neurons i and j is defined as:

ρi j =
cov(rank(ai), rank(a j))

σiσ j

where cov represents covariance, rank(ai) and rank(a j) are ranks of the activation values ai and a j, and σi and
σ j are their standard deviations. This measurement quantifies neuron relationships and highlights over-smoothing;
as layers increase, activations from different classes increasingly overlap, diminishing model performance. Our
observations confirm that co-activations escalate beyond a certain depth, validating our hypothesis.

Additionally, we employ the point-biserial correlation coefficient to evaluate the relationship between input fea-
tures and output classes. This coefficient measures the correlation between binary input variables and continuous
outputs, calculated as:

rpb =
X̄1 − X̄0

spooled

√
n1n0

n(n − 1)

where X̄1 and X̄0 denote the mean activations for the two groups, spooled is the pooled standard deviation, and n is
the total sample count. This calculation, when applied across layers, reveals diminishing feature-class correlations
as layer depth increases, further supporting our hypothesis regarding over-smoothing effects.

Finally, semantic graphs generated through FSAM depict the relationships between neurons across layers. We
visualise these graphs using thresholding techniques to identify the most influential neurons in decision-making.
In our extended analysis, we perform a layerwise comparison to observe how increased layers affect the semantic
structure. We find that additional layers beyond a certain threshold do not yield significant new information. Instead,
the overlap between neuron activations for different classes intensifies, undermining class-specific representation
and confirming our hypothesis that over-smoothing impairs the model’s ability to distinguish classes effectively.

This extended analysis substantiates our hypothesis that beyond an optimal point, adding layers fails to enhance
the GNN’s knowledge capacity. The FSAM framework thus proves to be an insightful tool, not only for visualising
these limitations but also for guiding the design of more efficient GNN architectures.
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4. Key Contributions and Findings

In this extended work, we explore how varying the number of layers in GNNs impacts both model performance
and the quality of knowledge representation. We build on our previous research, employing FSAM to systematically
assess how well different layer configurations capture the underlying structure of input data. Our contributions are
structured to answer a central question: do additional layers enhance the model’s interpretability and accuracy, or
do they introduce complexity that impairs representation quality? We present the following contributions:
Contribution 1: In the subsection 5.2 We are extending FSAM Validation Across Diverse Datasets.To evaluate
FSAM’s generalisability, we apply it to multiple datasets 5.1, we use Jaccard correlation graphs to analyse FSAM’s
ability to consistently capture semantic relationships across varied data. This cross-domain validation confirms that
FSAM reliably mirrors the network’s behaviour, as changes in model accuracy are generally reflected in FSAM
graph quality. However, we also observe rare cases where accuracy improves without a corresponding enhancement
in FSAM’s semantic alignment. Such instances suggest that while the model produces correct predictions, it may be
doing so for reasons that diverge from the semantic structure of the input data. This contribution highlights FSAM’s
value in diagnosing potential misalignments in GNN predictions.
Contribution 2: In the subsection 5.3 We are examining FSAM’s Reflection of Network Behaviour Across Layer
Configurations. We investigate FSAM’s consistency across GNNs with varying layer depths, from one to four lay-
ers. By analysing how misclassifications and neuron community structures correlate within FSAM graphs, we val-
idate that FSAM reliably captures network dynamics as layer configurations change. This analysis demonstrates
that FSAM effectively reflects the network’s evolving behaviour across layers, with improvements in accuracy
typically mirrored by more coherent FSAM representations. Conversely, when accuracy declines—often due to
over-smoothing in deeper layers—FSAM graphs capture this reduction in semantic clarity, underscoring FSAM’s
robustness as a tool for representing network behaviour across different layer depths.
Contribution 3: In the subsection 5.4, 5.3 We discuss a Layer-Wise Analysis of Knowledge Representation through
a comprehensive, layer-by-layer analysis, we assess how increasing the number of GNN layers impacts the model’s
performance, focusing on class-specific accuracy and the phenomenon of over-smoothing, where neuron activations
become overly similar. Our experiments reveal that while adding layers may initially enhance performance, beyond
a certain depth, additional layers result in a decline in discriminative power. This contribution provides empirical
support for optimising layer depth in GNN architectures, illustrating the trade-offs between model complexity and
representation quality.
Contribution 4: In the subsection 5.5 We discuss the semantic Divergences in FSAM Graphs A key insight from
our analysis is FSAM’s ability to identify instances where accuracy trends and FSAM quality diverge. Specifically,
we highlight cases where model accuracy improves, yet FSAM graph quality declines, revealing instances where
the network may achieve correct predictions without fully capturing the semantic structure of the input data. Con-
versely, we also identify scenarios where accuracy decreases, but FSAM graph quality improves, potentially due
to richer insights from misclassifications. These cases underscore FSAM’s diagnostic potential in detecting “right
for the wrong reasons” scenarios, providing a nuanced understanding of the network’s semantic alignment with the
data.

Overall, these contributions extend our prior findings, offering a detailed methodology for assessing GNN layer
depth and performance. Together, these insights position FSAM as a valuable framework for balancing layer depth
with interpretability and accuracy, ultimately enhancing the understanding and optimisation of GNN architectures
across varied datasets.

5. Experimental Results and Validation of Contributions

We conducted experiments to evaluate how semantic graphs capture the behavior of GNNs across different layer
depths, focusing on whether additional layers contribute meaningful knowledge or lead to over-smoothing. Using
semantic graphs, we mapped neuron relationships within hidden layers and correlated these with output classes,
identifying key neurons that influence model predictions. This approach demonstrated the effectiveness of semantic
graphs in extracting knowledge from trained GNNs. We utilized six benchmark datasets to assess the impact of
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layer depth on model performance and knowledge representation, testing our hypothesis that deeper layers may not
always provide additional knowledge and could hinder class differentiation.

5.1. Datasets

For our extended experiments, we used six benchmark datasets to study how GNNs behave in different contexts.
These datasets include Cora [7], CiteSeer [8], PubMed [9], Amazon Computers [10], Amazon Photos [10], and
Coauthor [11].
The Cora and CiteSeer datasets are citation networks where nodes represent academic publications, and edges
represent citation links between them. In Cora, there are 2,708 publications divided into seven categories: Neural
Networks, Rule Learning, Reinforcement Learning, Probabilistic Methods, Theory, Genetic Algorithms, and Case-
Based Reasoning. CiteSeer contains 3,312 publications in six categories: Agents, Artificial Intelligence, Database,
Information Retrieval, Machine Learning, and Human-Computer Interaction. These datasets allow us to explore
how GNNs classify papers based on their citation connections.
The PubMed dataset [9] is another citation network, focused on biomedical publications. It contains 19,717 pub-
lications, each classified into three categories: Diabetes, Cardiovascular Disease, and Breast Cancer. This dataset
challenges the GNN’s ability to handle complex medical literature classification, testing its ability to distinguish
between closely related categories in the biomedical domain.
The Amazon Computers and Amazon Photos datasets [10] are product co-purchase networks, where nodes rep-
resent products and edges indicate products frequently bought together. The Amazon Computers dataset includes
13,752 products, covering categories like desktops, laptops, and computer accessories. The Amazon Photos dataset
contains 7,650 products related to cameras, photography accessories, and digital media. These datasets evaluate the
GNN’s capacity to model product relationships and predict their respective categories.
Finally, the Coauthor dataset [11] represents a co-authorship network of academic authors. We used the Coauthor
CS variant, which includes 18,333 nodes, representing authors in the field of computer science. The classification
task is to assign authors to areas of expertise such as Machine Learning, Artificial Intelligence, and Data Mining.
This dataset evaluates the GNN’s ability to model relationships between authors and their research areas.
These datasets span a wide range of domains, from academic publications and biomedical research to product
co-purchases and academic co-authorships. By testing GNNs across these varied graph structures, we can better
understand how adding layers affects model performance and knowledge representation.

5.2. Analysing the Relationship between Semantic Graphs

As shown in Figure 1, the red dots represent the predicted classes, while blue nodes denote the activated neurons.
Our analysis began by mapping each activated neuron from layer 1 to the final predicted class, extending this
mapping progressively through each subsequent layer up to the output layer. This layer-wise mapping approach
enabled a deeper understanding of the model’s behaviour across layers and allowed us to evaluate the effects of
increasing model depth.

In our extended experiments, we examined the relationships within the semantic graphs across multiple datasets,
observing each layer’s contribution to class-specific predictions and knowledge representation. As shown in Fig-
ure 2, we visualised the semantic graph for the Coauthor dataset, with blue nodes representing hidden layer neurons
and red nodes indicating class labels. The predicted classes associated with activated neurons demonstrate align-
ment across layers, particularly in the earlier layers. Notably, in this model, layer 1 achieves an optimal accuracy
of 98%. However, As shown in Table 2, beyond this depth—specifically after the second layer—we observe a de-
cline in alignment, indicated by drops in accuracy and an increase in misclassification overlap as additional layers
are added. This degradation corresponds with shifts observed in the FSAM graphs, as presented in the layer-wise
semantic graphs in Appendix 8, where neuron activation patterns begin to lose their distinctiveness.
In contrast, the Amazon Photo dataset exhibited a distinct pattern, as outlined in Table 2, the addition of a second
layer initially enhanced accuracy, a result corroborated by the FSAM semantic graph, which accurately reflected the
network’s structure up to this depth. Beyond the second layer, however, the FSAM graph (see Appendix 8) indicated
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Fig. 1. Using Plotly.js, we visualised the semantic graph for the Cora dataset. Blue nodes, red nodes represent hidden layer neurons and classes,
respectively. The left graph maps from layer 1 to the final class, the right graph from layer 2 to the final class.

Fig. 2. Using Plotly.js, we visualised the semantic graph for the Coauthor dataset, with blue nodes representing hidden layer neurons and red
nodes indicating class labels. This semantic graph was constructed across four distinct layers, allowing for a clear, layer-by-layer comparison of
neuron-class relationships.

a divergence in representations from the network’s behaviour, suggesting that further layers did not contribute to
improved model performance.
For the Amazon Computers dataset, we constructed FSAM semantic graphs, as shown in Figure 4. In the initial two
layers, accuracy improved steadily, which was corroborated by the FSAM semantic graphs in Table 2, reflecting
well-aligned neuron activations and class distinctions that support accurate predictions. This indicates that the GNN
is effectively leveraging layer depth to enhance representational capacity up to this point. However, in Layer 3,
we observed a decrease in accuracy alongside a corresponding decline in the distinctiveness of FSAM representa-
tions, suggesting an onset of over-smoothing where neuron activations begin to overlap across classes. Interestingly,
while accuracy increased again in Layer 4, the FSAM graph no longer exhibited a clear alignment with network
behaviour. This divergence highlights a critical insight: the model’s predictions may improve quantitatively, yet the
qualitative alignment between FSAM activations and semantic coherence deteriorates. Such instances underscore
the importance of balancing layer depth to maintain meaningful semantic representation without compromising
interpretability.
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Fig. 3. Using Plotly.js, we visualised the semantic graph for the Amazon photo dataset, with blue nodes representing hidden layer neurons and
red nodes indicating class labels. This semantic graph was constructed across four distinct layers, allowing for a clear, layer-by-layer comparison
of neuron-class relationships.

Fig. 4. Using Plotly.js, we visualised the semantic graph for the Amazon computer dataset, with blue nodes representing hidden layer neurons and
red nodes indicating class labels. This semantic graph was constructed across four distinct layers, allowing for a clear, layer-by-layer comparison
of neuron-class relationships.

5.3. Extended Validation of FSAM Across Layer Configurations

Our second contribution involves validating the FSAM approach’s ability to reliably capture GNN behaviour
across varying layer configurations. Through systematic experiments on several datasets, as detailed in 5.1, we anal-
ysed each GNN configuration (from 1 to 4 layers) to assess the alignment between model accuracy, misclassification
patterns, and the community structures represented by FSAM graphs.

In Table 2, we present the results for the Amazon Photo dataset, illustrating the progression of layer-wise accu-
racy across configurations and highlighting how FSAM captures the relationship between classification errors and
community structures.
At Layer 1, the model achieves an accuracy of 95% with a Pearson correlation of 0.681. This positive correla-
tion suggests that class-specific representations are moderately well-separated, with fewer overlapping nodes in the
FSAM graph, leading to lower misclassification rates. The FSAM graph at this layer reveals distinct class represen-
tations, demonstrating effective differentiation early in the network. Adding a second layer improves accuracy to
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Table 2
Layer-wise Accuracy and Pearson Correlation for Various Datasets

Layer Amazon Photos CoauthorCs Amazon Computers
Accuracy Pearson Correlation Accuracy Pearson Correlation Accuracy Pearson Correlation

1 95% 0.681 98% 0.589 90% 0.683
2 96% 0.650 97% 0.756 91% 0.630
3 94% 0.752 96% 0.819 88% 0.785
4 93% 0.780 95% 0.834 89% 0.917

96%, while the Pearson correlation slightly decreases to 0.650. This layer further strengthens class-specific separa-
tion without significant overlap in neuron activations. FSAM visualisations at this stage show that while additional
depth aids in correct predictions, it does not compromise the integrity of class distinctions, reflecting the model’s
enhanced capacity to maintain semantic coherence. In Layer 3, accuracy begins to decline, dropping to 94%, while
the Pearson correlation rises to 0.752. This increased correlation value indicates heightened overlap in neuron acti-
vations, signaling a loss of distinctiveness among class-specific features. Here, FSAM reveals that over-smoothing
begins to emerge, with class representations blurring as neuron activations start to overlap. This finding aligns with
our previous work, which observed that classes with high node overlap in the FSAM graph tend to cause more
mistakes, highlighting the need for improved class separation strategies. At Layer 4, accuracy decreases further
to 93%, and the Pearson correlation reaches 0.780, confirming substantial activation overlap and diminished dis-
tinctiveness in class representations. FSAM visualisations reveal extensive overlap between neuron communities,
indicating that deeper layers are contributing to over-smoothing. These observations suggest that overlapping nodes
between similar classes might be prime targets for tuning, as reducing this overlap could improve the model’s ability
to distinguish these classes effectively.
These findings reinforce FSAM’s effectiveness in tracing the network’s behaviour across varying depths. While the
initial layers enhance accuracy with minimal activation overlap, further layers lead to increased correlation between
overlapping nodes and misclassification errors. This positive correlation between class similarity and mistake counts
underscores FSAM’s diagnostic potential, providing insights into where the network’s performance could be opti-
mised by minimising activation overlaps between similar classes, ultimately aiding in balancing depth and semantic
clarity within GNNs.

Similarly, for the Coauthor CS dataset (Table 2), our findings strongly support the hypothesis that FSAM effec-
tively captures layer-wise shifts in network behaviour.
At the first layer, with a high accuracy of 98% and a low Pearson correlation of 0.589, neuron activations remain
largely distinct, allowing for clear class separations. As we add layers, accuracy decreases slightly (97% at Layer
2), while correlation rises (0.756), indicating a gradual increase in activation overlap. By the third layer, accuracy
drops further to 96%, with a higher Pearson correlation of 0.819, signalling the onset of over-smoothing as neuron
activations increasingly overlap, thus blurring class distinctions. In the fourth layer, with an accuracy of 95% and a
correlation of 0.834, this trend persists, showing that additional depth now undermines the model’s ability to sepa-
rate classes effectively.
These findings illustrate that FSAM consistently mirrors the network’s evolving behaviour across layers, accurately
capturing the interplay between model accuracy and neuron overlap, and reinforcing its usefulness in diagnosing
the point at which further layers no longer benefit performance.

In the Amazon Computers dataset (Table 2), we apply the same methodology, analysing how variations in ac-
curacy across layers relate to the underlying FSAM graph structures. In the first layer, with an accuracy of 90%
and a Pearson correlation of 0.683, the FSAM graph captures a balanced representation of the network’s behaviour.
This correlation level suggests that neuron activations are distinct enough to preserve class separations effectively,
reflecting that the FSAM captures clear distinctions among classes without excessive overlap.
When a second layer is added, accuracy increases slightly to 91%, while Pearson correlation decreases to 0.630.
This reduction in correlation, alongside improved accuracy, indicates that neuron activations remain well-separated,
supporting the model’s continued effectiveness in distinguishing between classes. The FSAM graph here effectively
aligns with the improved class distinction, reinforcing the model’s structural clarity.
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However, by the third layer, accuracy decreases to 88%, and the Pearson correlation rises to 0.785. This shift marks
an increase in overlapping neuron activations, suggesting a decline in class distinction, likely attributable to over-
smoothing. The FSAM graph reflects this change, capturing the network’s diminished ability to maintain distinct
class representations as neuron activations converge.
In the fourth layer, accuracy slightly recovers to 89%, yet the Pearson correlation further increases to 0.917. This
high correlation signals significant overlap among neuron activations, indicating that further depth contributes little
to class separation. Here, the FSAM graph reveals that, despite achieving correct classifications, the model no longer
fully preserves the semantic structure of class-specific features. This scenario, where the model’s predictions remain
accurate without robust semantic alignment, highlights FSAM’s diagnostic capability in identifying when a network
may be “right for the wrong reasons".
These experiments demonstrate FSAM’s capacity to accurately represent network behaviour across diverse configu-
rations. Specifically, as accuracy improves, the FSAM activation graph tends to exhibit stronger alignment with the
semantic structure. Initial layers, such as the second, achieve higher accuracy with low correlation, showing effec-
tive class distinction. Beyond this point, additional layers lead to diminished accuracy and increased neuron overlap,
confirming FSAM’s reliability in capturing the balance between model accuracy and class separation. These findings
attest to FSAM’s robustness and consistency in representing GNN behaviour across different depths. Furthermore,
these findings support Contribution 4, where we identify instances in which the FSAM graph quality declines even
as accuracy improves, underscoring FSAM’s value in diagnosing subtle discrepancies in the network’s semantic
coherence with the data.

5.4. Comparison of Mistakes Across Communities for Each Dataset

In Table 3, we present a detailed comparison of mistakes across communities for each dataset at varying layer
depths, structured around our core hypotheses. This analysis provides insights into the effects of layer depth on
knowledge representation, class-specific accuracy, and GNN interpretability using FSAM.
The analysis of mistakes across communities within the CoauthorCS dataset reveals a progressive shift in commu-
nity structure as the number of GNN layers increases, illustrating how layer depth impacts classification accuracy
and neuron activation overlap. Each layer’s community structure, represented by clusters of semantically related
fields, highlights distinct groupings at lower layers, which gradually blend as network depth increases, thus validat-
ing our results presented in Table 2.
In Layer 1, the community structure is clearly delineated, with minimal neuron overlap between different fields.
Community C0 groups Machine Learning, Data Mining, NLP, and AI, while separate clusters represent C1 for
Theory, Programming Languages, and Software Engineering, C2 for HCI, Robotics, Computer Vision, Computer
Graphics, and Computer Networking, and C3 for Databases and Information Retrieval. The mistake count of 1318
reflects a relatively low level of classification errors, indicating that the network maintains well-defined bound-
aries between these communities. This structure aligns with high accuracy and low overlap in neuron activations,
captured effectively by the FSAM graph. Upon analysing class-wise accuracy for this dataset in Layer 1, we
observed that C2—comprising Human-Computer Interaction, Robotics, Computer Vision, and Computer Graph-
ics—unexpectedly includes Computer Networking. Although the model placed Computer Networking within this
group, C2 is primarily centred on theoretical foundations and methodologies for software optimisation, suggesting
that Computer Networking may not belong in this cluster. Upon analysing class-wise accuracy for this dataset in
Layer 1, we observed that C2—comprising Human-Computer Interaction, Robotics, Computer Vision, and Com-
puter Graphics—unexpectedly includes Computer Networking. Although the model placed Computer Networking
within this group, C2 is primarily centred on theoretical foundations and methodologies for software optimisation,
suggesting that Computer Networking may not belong in this cluster. Our class accuracy representation Fig. 5 graph
supports this observation, yet further evaluation is necessary to confirm the optimal alignment of community struc-
tures within the network.
In Layer 2, we observe an evolution in the community structure with HCI merging into Community C0 (Machine
Learning, Data Mining, NLP, AI, HCI), signaling the onset of activation overlap as fields with closer semantic ties
cluster together. The mistake count increases to 1388, indicating a slight decline in accuracy as neuron activations
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Fig. 5. Layer wise accuracy per class contributionof CoAuthorCs

begin to overlap between certain communities. Here we represent ’Prediction decline changes A« and C»’ and ’Ma-
jor community shift’, respectively This trend is captured in the FSAM, showing increased correlation in activations
that reflects the blending of previously distinct class representations.
By Layer 3, further integration within the community structure occurs, with Theory joining Community C0, and
a more refined clustering among Programming Languages and Software Engineering in Community C1. Mistakes
continue to rise to 1410, signifying increased misclassifications as class boundaries blur. This layer also corresponds
to higher Pearson correlation, indicating substantial overlap in neuron activations. The FSAM graph effectively cap-
tures this over-smoothing, showing that the distinctiveness among communities is diminishing with deeper layers.
Overall, these results demonstrate that as layers are added, the CoauthorCS community structure evolves, with
previously distinct class groupings merging in response to overlapping neuron activations. This trend highlights
the limitations of deeper layers in maintaining class specificity and supports FSAM’s capability in capturing the
network’s shifting behaviour across layers. The increase in misclassification and Pearson correlation values illus-
trates how FSAM serves as a diagnostic tool, accurately reflecting the trade-off between layer depth and community
coherence, thereby validating the results as displayed in Table 2.

The analysis of mistakes across communities in the Amazon Photos dataset, as outlined in Table 2, provides valu-
able insights into how community structures evolve across layers and impact model performance. This breakdown
demonstrates FSAM’s capability to capture structural shifts as the network depth increases, highlighting changes in
how the model perceives class similarities.
In Layer 1, communities are clearly separated, with distinct groups: C0 (Cameras, Lenses, Camera Bags), C1
(Memory Cards, Flashes, Batteries), and C2 (Accessories, Tripods). The mistake count here is moderate, indicat-
ing that the model retains effective class distinction at this initial layer, with minimal overlap in neuron activations
across communities.
As we progress to Layer 2, the network restructures communities, with C0 narrowing its focus to Cameras and
Lenses, while C1 broadens to encompass Camera Bags, Memory Cards, Flashes, and Batteries. This reorganisa-
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tion corresponds to a slight reduction in mistakes, suggesting that the network’s representation has improved in
distinguishing between these communities, with FSAM accurately reflecting the adjusted relationships among class
representations.
However, in Layer 3, the model’s performance begins to deteriorate, with the mistake count increasing significantly.
Communities become less distinct, as seen with C0 now containing Memory Cards, Lenses, Flashes, Batteries, and
Camera Bags. This expansion points to an increased overlap in neuron activations, aligning with a higher misclassi-
fication rate, which FSAM effectively captures by illustrating blurred boundaries between communities.
By Layer 4, the network exhibits signs of over-smoothing, where distinctions between communities become less
clear. Although the mistake count decreases slightly, this improvement may be misleading as FSAM reveals consid-
erable overlap among communities. In this layer, C0 isolates to represent Cameras alone, while C1 groups Flashes,
Tripods, and Camera Bags, and C2 encompasses a diverse mix of Accessories, Memory Cards, Batteries, and
Lenses. This indicates that, although mistakes may appear to lessen, the underlying community distinctions are
weakened, suggesting that the model may be achieving accuracy without a robust semantic foundation.

This layer-wise community analysis, as detailed in Table 2, demonstrates that FSAM not only reflects accuracy
trends but also captures the nuanced structural shifts within the model as depth increases, reinforcing its utility in
diagnosing when additional layers may lead to diminished class coherence.

In Table 3, The analysis of the Amazon Computers dataset is effective in capturing effective shifts in network
behaviour across different layers, especially in cases where accuracy trends diverge from FSAM correlation trends.
This is demonstrated through the changes in community structures and mistake patterns across the layers.
In Layer 1, the FSAM community structure exhibits clear distinctions: C0 groups components like “Mice” and
“Speakers,” C1 includes more complex devices such as “Desktops” and “Laptops,” and C2 contains “Monitors”
and “Electronics.” The mistake count in this layer is relatively moderate (452), indicating that the network main-
tains distinct activations with reasonable classification performance. This structured community alignment suggests
a strong class separation in the network’s internal representation.
At Layer 2, there is a noticeable shift in community structure. Products such as “Keyboards” and “Mice” migrate
from C1 to C0, as denoted by the significant labels A» and C». Interestingly, accuracy improves in this layer, and the
mistake count decreases to 410. While this reflects enhanced model performance, it also marks a case where accu-
racy improvements do not entirely align with FSAM’s correlation trends. The slight decline in FSAM correlation
indicates that the model may be achieving correct classifications without fully distinct semantic representations—an
instance of potentially achieving the "right answer for the wrong reason." This scenario suggests that the network’s
internal representation might not be entirely aligned with the semantic structure of the input data, even as its accu-
racy improves.
Moving to Layer 3, accuracy begins to decline, with a further reduction in mistake count to 397. FSAM’s commu-
nity structure reveals additional overlap within C0, now encompassing “Speakers,” “Laptops,” and “Keyboards” in
close association, which suggests diminished class distinctions. The corresponding increase in Pearson correlation
in this layer implies greater overlap in neuron activations, indicative of over-smoothing. While the network’s classi-
fication ability is maintained, the underlying activations are less reflective of clear semantic boundaries, indicating
a potential alignment misalignment.
By Layer 4, accuracy further decreases, and the mistake count rises to 406. FSAM reveals that C0 now includes a
mix of “Desktops,” “Speakers,” and “Laptops,” signifying even greater overlap between distinct product categories.
The increase in Pearson correlation and decrease in accuracy indicate that additional layers now degrade the model’s
class-separation capability, aligning with FSAM’s observation of blurred distinctions in class-specific representa-
tions. This combined result demonstrates that the added depth diminishes the network’s ability to maintain semantic
coherence within the deeper layers.
These findings substantiate our hypothesis by demonstrating FSAM’s ability to capture both alignment and diver-
gence between accuracy and semantic quality in GNNs. As seen in Layer 2, where accuracy improves but FSAM
correlation declines, FSAM provides critical insight by identifying potential misalignments in the network’s internal
representations. Conversely, in Layer 4, where both accuracy and FSAM quality degrade, FSAM effectively reflects
the reduced class-specific representation, underscoring its utility as a diagnostic tool for evaluating layer-wise GNN
behaviour.
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Table 3
Community Structure and Mistakes Across Layers for Each Dataset, where A», A«, and C» represent ’Prediction changes noticeable’ and ’Major
community shift’, respectively.

Dataset Layer Community (Classes) Mistakes

CoauthorCS

1 C0: Machine Learning, Data Mining, NLP, AI; C1: Theory, Programming Languages,
Software Engineering; C2: HCI, Robotics, Computer Vision, Computer Graphics, Com-
puter Networking; C3: Databases, Information Retrieval.

1318

2 C0: Machine Learning, Data Mining, NLP, AI, HCI; C1: Theory, Programming Lan-
guages, Software Engineering; C2: Robotics, Computer Vision, Computer Graphics,
Computer Networking; C3: Databases, Information Retrieval.

1388
A«,C»

3 C0: NLP, AI, HCI, Machine Learning, Data Mining, Theory; C1: Programming Lan-
guages, Software Engineering; C2: Robotics, Computer Vision, Computer Graphics,
Computer Networking; C3: Databases, Information Retrieval.

1410

4 C0: AI; C1: Networking, Computer Graphics, Information Retrieval, Distributed Sys-
tems, Databases; C2: Machine Learning, Theory, HCI, Data Mining, NLP, Computer
Vision, Robotics, Programming Languages; C3: Software Engineering.

1542

Amazon Photos

1 C0: Cameras, Lenses, Camera Bags; C1: Memory Cards, Flashes, Batteries; C2: Ac-
cessories, Tripods

452

2 C0: Cameras, Lenses; C1: Camera Bags, Memory Cards, Flashes, Batteries; C2: Ac-
cessories, Tripods

410 A»,C»

3 C0: Memory Cards, Lenses, Flashes, Batteries, Camera Bags; C1: Accessories, Tripods,
Cameras

497

4 C0: Cameras; C1: Flashes, Tripods, Camera Bags; C2: Accessories, Memory Cards,
Batteries, Lenses

406

PubMed

1 C0: Cardiovascular Disease, Diabetes; C1: Breast Cancer 46
2 C0: Cardiovascular Disease, Diabetes; C1: Breast Cancer 38
3 C0: Breast Cancer; C1: Cardiovascular Disease, Diabetes 32 A»,C»

4 C0: Breast Cancer; C1: Cardiovascular Disease, Diabetes 62

Cora

1 C0: Case-Based, Neural Networks, Genetic Algorithms; C1: Theory; C2: Reinforce-
ment Learning, Probabilistic Methods

220

2 C0: Case-Based, Genetic Algorithms; C1: Reinforcement Learning, Rule Learning,
Probabilistic Methods; C2: Neural Networks, Theory

356

3 C0: Neural Networks, Theory; C1: Case-Based, Rule Learning, Genetic Algorithms;
C2: Reinforcement Learning, Probabilistic Methods

364 A»,C»

4 C0: Case-Based, Neural Networks, Probabilistic Methods, Theory; C1: Genetic Algo-
rithms, Reinforcement Learning, Rule Learning

378

Amazon Computers

1 C0: Components, Mice, Speakers; C1: Desktops, Laptops, Keyboards, Computers, Ac-
cessories; C2: Monitors, Electronics

452

2 C0: Keyboards, Components, Mice, Speakers ; C1: Desktops, Laptops, Computers,
Electronics; C2: Monitors, Accessories

410 A»,C»

3 C0: Speakers, Laptops, Keyboards, Components, Mice, Accessories; C1: Desktops,
Monitors, Electronics, Computers

397

4 C0: Desktops, Speakers, Laptops, Keyboards, Computers, Components, Accessories;
C1: Monitors, Electronics, Mice

406

5.5. Layer-Wise Class Similarity and Misclassification Analysis

A key insight from our analysis is FSAM’s ability to identify instances where accuracy trends and FSAM quality
diverge. Specifically, we highlight cases where model accuracy improves, yet FSAM graph quality declines, reveal-
ing instances where the network may achieve correct predictions without fully capturing the semantic structure of
the input data. Conversely, we also identify scenarios where accuracy decreases, but FSAM graph quality improves,
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potentially due to richer insights from misclassifications. These cases underscore FSAM’s diagnostic potential in
detecting “right for the wrong reasons” scenarios, providing a nuanced understanding of the network’s semantic
alignment with the data.
To validate our findings on the influence of layer depth and class similarity on GNN performance, we generated
several key figures to capture essential aspects of the model’s behaviour:

– Total Accuracy vs. Number of GCN Layers: This illustrates how overall model accuracy changes with the
addition of layers, providing a broad view of whether deeper architectures consistently improve performance
or contribute to over-smoothing, thereby reducing accuracy, as shown in section 8.

– Per-Class Accuracy vs. Number of GCN Layers: By examining class-specific accuracy across layers, this
figure reveals which classes experience increased misclassifications as layer depth grows, underscoring the
model’s reduced capacity to maintain distinct representations for these categories, as shown in section 8.

– FSAM Graphs Showing Neuron Activations for Specific Classes: These graphs display neuron activation
patterns within each class, allowing us to track the GNN’s ability to capture class-specific features across layers.
They reveal the points at which neuron activations begin to overlap, indicating where class boundaries start to
lose distinctiveness, as shown in section 8.

– Community Structures Highlighting Class Groupings: This visualisation illustrates the community struc-
tures of neuron activations, clustering classes based on co-activation. These clusters indicate relatedness among
certain classes and provide insight into the GNN’s knowledge organisation, revealing where class separability
degrades with additional layers, as shown in section 8.

– Jaccard Coefficient vs. Number of Mistakes at Layer 3: This presents the Jaccard similarity between mis-
classifications for class pairs, demonstrating a positive correlation between high similarity in neuron activation
overlaps and error rates. This relationship supports our observation that classes with greater overlap in FSAM
exhibit more frequent misclassifications, as shown in section 8.

Our extended analysis revealed a positive correlation between class similarity and the number of mistakes involv-
ing them, as illustrated with examples from the CoauthorCS and Amazon Photos datasets. Table 2 shows that class
pairs with higher overlap in the FSAM graph also exhibit more misclassifications. In the CoauthorCS dataset, our
findings reveal that Layer 1 achieves optimal performance, as demonstrated in . Adding further layers results in
decreased accuracy, corroborated by our FSAM graph analysis. The Jaccard similarity at Layer 2 aligns with this
trend, indicating that increased depth introduces more overlap in neuron activations, which diminishes the model’s
ability to distinguish between closely related fields such as Machine Learning and Data Mining. Grouped within
the same community, these fields are prone to misclassification due to their inherent similarity.
A similar trend appears in the Amazon Photos dataset, where accuracy increases from Layer 1 to Layer 2 but
declines with further layers. This pattern, shown in the Table 2, 3 is consistent with our Jaccard similarity analysis
at Layer 3. In this layer, product categories such as Memory Cards and Accessories show high Jaccard similarity,
resulting in frequent misclassifications due to overlapping neuron activations. This finding indicates that the GNN
model faces challenges in distinguishing between these similar classes, as they share substantial activation overlap
within the same community.
These findings suggest that adding layers beyond an optimal depth does not necessarily improve knowledge rep-
resentation. Instead, it introduces an over-smoothing effect, where neuron activations for different classes become
increasingly indistinct, reducing the model’s ability to differentiate between them. This effect is substantiated by
our correlation analysis, which shows that pairs of classes with significant overlap in the FSAM graph tend to expe-
rience higher misclassification rates.
Our analysis of community structures aligns with this observation, allowing us to identify classes that the GNN
perceives as similar based on FSAM patterns. By examining the Jaccard similarity coefficient, which quantifies
the overlap in neuron activations for each class pair, we assessed the impact of these similarities on the GNN’s
decision-making. In the Amazon Photos dataset, for instance, product categories such as Memory Cards and Acces-
sories displayed high Jaccard similarity, leading to frequent misclassifications.
These insights suggest that tuning efforts should focus on reducing overlap in the co-activation graph for similar
classes to enhance the GNN’s ability to differentiate between them. By targeting overlapping nodes, we can poten-
tially decrease misclassification rates and improve overall model accuracy. This comprehensive evaluation supports
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our hypothesis that increasing layers does not necessarily yield better performance and, in certain cases, may dimin-
ish the model’s discriminative power due to overlapping neuron activations.

6. Conclusion and Future Work

In this extended study, we’ve worked to deepen the understanding of how GNNs behave by using FSAM to
examine the link between model depth, performance, and semantic representation. Through experiments on several
datasets, we found that FSAM consistently captures meaningful semantic relationships across different contexts,
reinforcing its reliability as a tool for interpreting network behavior. Our findings also indicate that adding more
layers to GNNs doesn’t always lead to better performance or richer knowledge representation.

In these FSAM graphs, nodes represent neurons, and weighted edges indicate the strength of their co-activation
relationships, reflecting correlations in activation patterns across layers. This layered view of the GNN’s function
shows how neurons contribute to specific class predictions and influence overall model decisions. Our experiments
confirmed that FSAM’s graph structure aligns well with the knowledge stored in GNNs, especially in distinguishing
closely related classes. Across datasets, FSAM consistently highlighted key neurons and communities within the
GNN that are central to specific class predictions, providing valuable insights into the model’s decision-making
process.

Additionally, we used community detection in FSAM graphs to see how the GNN naturally groups classes based
on activation patterns. Our analysis showed that classes with high overlap in the FSAM graph are more likely to be
misclassified, suggesting that focusing on these overlapping nodes could help fine-tune the model and improve accu-
racy. This ability to identify cases where accuracy may be achieved “for the wrong reasons”—where predictions are
correct but lack deep semantic alignment—highlights FSAM’s diagnostic power. The FSAM graphs and community
detection further clarify how the GNN organizes knowledge, revealing class groups with high activation overlap that
the GNN treats as similar. This overlap is often associated with higher misclassification rates, supporting strategies
to reduce this overlap and improve the model’s ability to distinguish between classes.

For future work, we propose a few directions. One is to develop methods that dynamically adjust GNN layer
depth based on the properties of the input graph, allowing for model configuration without manual tuning. Another
focus could be on further class-level analysis within FSAM to develop more holistic metrics for evaluation. We also
plan to combine FSAM insights with contextual information from input graphs, aiming to create more detailed,
context-aware explanations that enhance both local and global interpretability.

7. Acknowledgement

This work was conducted with the financial support of the Science Foundation Ireland Centre for Research Train-
ing in Artificial Intelligence under Grant No. 18/CRT/6223.

References

[1] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolutional networks”. In: arXiv preprint arXiv:1609.02907
(2016).

[2] Petar Velickovic et al. “Graph attention networks”. In: stat 1050.20 (2017), pp. 10–48550.
[3] Hao Yuan and Shuiwang Ji. “Structpool: Structured graph pooling via conditional random fields”. In: Proceedings of the 8th International

Conference on Learning Representations. 2020.
[4] Hao Yuan et al. “On explainability of graph neural networks via subgraph explorations”. In: International conference on machine learning.

PMLR. 2021, pp. 12241–12252.
[5] Xiang Wang et al. “Towards multi-grained explainability for graph neural networks”. In: Advances in Neural Information Processing

Systems 34 (2021), pp. 18446–18458.
[6] Kislay Raj and Alessandra Mileo. “Towards Understanding Graph Neural Networks: Functional-Semantic Activation Mapping”. In: In-

ternational Conference on Neural-Symbolic Learning and Reasoning. Springer. 2024, pp. 98–106.
[7] Prithviraj Sen et al. “Collective classification in network data”. In: AI magazine 29.3 (2008), pp. 93–93.



K Raj and Dr.A Mileo / Towards Semantic Understanding of GNN Layers embedding with FSAM 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[8] Galen Namata et al. “Query-driven active surveying for collective classification”. In: 10th International Workshop on Mining and Learning
with Graphs (MLG) (2012).

[9] T. O. Botari et al. “Gene expression-based classification of diffuse large B-cell lymphoma”. In: Nature (2002), pp. 261–268.
[10] Julian McAuley et al. “Image-based recommendations on styles and substitutes”. In: Proceedings of the 38th International ACM SIGIR

Conference on Research and Development in Information Retrieval. ACM. 2015, pp. 43–52.
[11] Oleksandr Shchur et al. “Pitfalls of Graph Neural Network Evaluation”. In: Relational Representation Learning Workshop, NeurIPS 2018.

2018.
[12] Pinar Yanardag and SVN Vishwanathan. “Deep graph kernels”. In: Proceedings of the 21th ACM SIGKDD international conference on

knowledge discovery and data mining. 2015, pp. 1365–1374.
[13] Robert Geirhos et al. “Generalisation in humans and deep neural networks”. In: Advances in neural information processing systems 31

(2018).
[14] Weiting Xi et al. “A Graph Partitioning Algorithm Based on Graph Structure and Label Propagation for Citation Network Prediction”. In:

International Conference on Knowledge Science, Engineering and Management. Springer. 2023, pp. 289–300.
[15] Phillip E Pope et al. “Explainability methods for graph convolutional neural networks”. In: Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition. 2019, pp. 10772–10781.
[16] Zhitao Ying et al. “Gnnexplainer: Generating explanations for graph neural networks”. In: Advances in neural information processing

systems 32 (2019).
[17] Thomas Schnake et al. “Higher-order explanations of graph neural networks via relevant walks”. In: IEEE transactions on pattern analysis

and machine intelligence 44.11 (2021), pp. 7581–7596.
[18] Qiang Huang et al. “Graphlime: Local interpretable model explanations for graph neural networks”. In: IEEE Transactions on Knowledge

and Data Engineering (2022).
[19] Minh Vu and My T Thai. “Pgm-explainer: Probabilistic graphical model explanations for graph neural networks”. In: Advances in neural

information processing systems 33 (2020), pp. 12225–12235.
[20] Hao Yuan et al. “Xgnn: Towards model-level explanations of graph neural networks”. In: Proceedings of the 26th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery & Data Mining. 2020, pp. 430–438.
[21] Federico Baldassarre and Hossein Azizpour. “Explainability techniques for graph convolutional networks”. In: arXiv preprint

arXiv:1905.13686 (2019).
[22] Dongsheng Luo et al. “Parameterized explainer for graph neural network”. In: Advances in neural information processing systems 33

(2020), pp. 19620–19631.
[23] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. “Interpreting graph neural networks for nlp with differentiable edge masking”.

In: arXiv preprint arXiv:2010.00577 (2020).
[24] Thorben Funke, Megha Khosla, and Avishek Anand. “Hard masking for explaining graph neural networks”. In: Advances in neural

information processing systems (2020).
[25] Xiang Wang et al. “Causal screening to interpret graph neural networks”. In: (2020).
[26] Robert Schwarzenberg et al. “Layerwise relevance visualization in convolutional text graph classifiers”. In: arXiv preprint arXiv:1909.10911

(2019).
[27] Yue Zhang, David Defazio, and Arti Ramesh. “Relex: A model-agnostic relational model explainer”. In: Proceedings of the 2021

AAAI/ACM Conference on AI, Ethics, and Society. 2021, pp. 1042–1049.
[28] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. “Feature visualization”. In: Distill 2.11 (2017), e7.
[29] Jianbo Chen et al. “Learning to explain: An information-theoretic perspective on model interpretation”. In: International conference on

machine learning. PMLR. 2018, pp. 883–892.

8. Appendix



18 K Raj and Dr.A Mileo / Towards Semantic Understanding of GNN Layers embedding with FSAM

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 6. Total Accuracy vs. Number of GCN Layers for Amazon photo

Fig. 7. Total Accuracy vs. Number of GCN Layers for CoauthorCs
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Fig. 8. Total Accuracy vs. Number of GCN Layers for Computers

Fig. 9. Jaccard Similarity between different layers for AmazonPhoto dataset
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Fig. 10. Jaccard Similarity between different layers for CoauthorCs
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Fig. 11. Jaccard Similarity between different layers for Computers
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