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Abstract. Knowledge Graph Embedding Models (KGEMs) project entities and relations from Knowledge Graphs (KGs) into
dense vector spaces, enabling tasks such as link prediction and recommendation systems. However, these embeddings typically
suffer from a lack of interpretability and struggle to represent entity similarities in a way that is meaningful to humans. To address
these challenges, we introduce InterpretE, a neuro-symbolic approach that generates interpretable vector spaces aligned with
human-understandable entity aspects. By explicitly linking entity representations to their desired semantic aspects, InterpretE
not only improves interpretability but also enhances the clustering of similar entities based on these aspects. Our experiments
demonstrate that InterpretE effectively produces embeddings that are interpretable and improve the evaluation of semantic simi-
larities, making it a valuable tool in explainable Al research by supporting transparent decision-making. By offering insights into
how embeddings represent entities, InterpretE enables KGEMs to be used for semantic tasks in a more trustworthy and reliable
manner.
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1. Introduction

Knowledge Graphs (KGs) are structured representations of real-world entities and their relationships, organized
in the form of nodes and edges, where nodes represent entities while edges illustrate the relationships between
them. KGs have gained significant attention for their applications in tasks like question-answering, information
retrieval, and recommender systems [3, 19, 30, 68]. Despite the availability of large amounts of source data and
the inclusion of millions of facts, knowledge graphs (KGs) remain incomplete, with missing entities or facts about
entities. Knowledge Graph Embedding Models (KGEMs) have been proposed to address this limitation. Since the
early 2010s, significant advancements have been made in developing KGEMs, which aim to project entities and
relations in KGs into a low-dimensional latent vector space. This representation enables machine readability and
manipulation of KG data while preserving the relationships between entities. In doing so, KGEMs offer a sub-
symbolic way of representing both entities and their connections within the original graph [6]. Several types of
KGEMs exist, such as translation-based models (e.g., TransE [4], TransH [5]) and semantic matching models (e.g.,
RESCAL [46], ComplEx [62]). These models have proven useful in various tasks, including link prediction [50],
entity alignment [58], recommendation systems [49] and so on (see [22, 63] for an overview).

Although KGEMs were primarily designed and trained for the task of link prediction or triple completion in
knowledge graphs, there is a widespread belief that these models can also effectively capture similarities between
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Fig. 1. Overview of the proposed InterpretE method

entities, suggesting that similar entities will naturally cluster together in the vector space. As a result, KGEMs have
been widely adopted for semantic tasks, including entity or relation similarity and conceptual clustering [20, 40, 59].
The assumption that KGEMs possess strong semantic capabilities was first called into question by Jain et al. [34]. In
their study, the authors conducted simple yet systematic experiments, revealing that entities belonging to the same
type or ontological class do not consistently cluster together in the vector space, except for the most basic entity
types such as person and organization. Subsequently, other recent studies have delved into this further, arriving at
similar conclusions [1, 31]. These findings cast doubt on the generalizability and utility of KGEMs for tasks that
rely on capturing semantic relationships effectively.

A fundamental challenge for KGEMs in capturing semantic properties arises from the complexity of the underly-
ing data. Entities in a knowledge graph possess diverse aspects in terms of their attributes as well their relationships
with other entities, all of which significantly impact their vector representations. This complexity makes it exceed-
ingly difficult to identify the specific factors that shape the distribution of vectors within the embedding space. Given
that entities have different types and numbers of connections in the KG, and the learned vectors span hundreds of di-
mensions, there is no clear correspondence between entity aspects and the dimensions of the resulting vectors. This
absence of a direct mapping leads to a lack of semantic interpretability, making it difficult to understand why cer-
tain vectors in the embedding space are similar or to determine which entity aspects influence their representations.
While the ability to represent complex data in low-dimensional spaces allows for large-scale vector manipulations,
this same factor contributes to the poor semantic interpretability of these models. Nevertheless, KGEMs are also
widely used in different semantic tasks, making the ability to capture and interpret the semantic features of under-
lying entities highly desirable. This work aims to bridge this gap by mapping the semantics of the entities with the
dimensions in the vector representations of these entities, enhancing the interpretability of these embeddings.

In this paper, we propose a novel neuro-symbolic approach InterpretE that explicitly connects the embedding
vectors to the desired task-driven or user selected aspects of the KG entities. Taking inspiration from previous works
on conceptual spaces [25], we accomplish this by deriving new vector spaces (from the vector of a given KGEM)
having interpretable dimensions that can be understood in terms of the human-understandable aspects of the entities.
This understandability can help in enabling informed decisions in downstream semantic tasks (e.g. recommendation
systems and entity clustering), debugging and comparing the models as well as understanding hidden biases [56].
An overview of the proposed approach is shown in Figure 1. While several previous works have proposed KG
embedding models that attempt to capture the semantics of entities in terms of ontological information [28, 72],
these approaches are limited to encapsulating only the ontological classes or types of entities (e.g., whether an
entity is a person or an organization). They are not designed to account for other relevant or application-specific
aspects of the entities, for instance, the location where a person was born or the awards received by a scientist.
In contrast, our approach allows for the incorporation of a broader range of existing and interesting aspects from
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KG data, especially for entities. Through various experiments, we demonstrate that the vector spaces generated by
InterpretE can effectively encapsulate any desired semantic aspects from the KG. Moreover, our method is highly
flexible, accommodating a diverse array of entity aspects in terms of both quantity and type. The evaluation of the
approach is presented in terms of the quality of the resulting clusters in the derived vector space, as well in terms of
the semantic similarity of the corresponding entities. We also make the code publicly available' to promote further
research in this important direction.

Our work is situated within the broader context of explainable Al (XAI) research, where, with the popularity
of large language models (LLMs) and their increasing integration across various applications, the importance of
transparency and interpretability in these models has garnered significant attention. As large models become more
widespread in fields such as healthcare, finance, and autonomous systems, understanding how these models make
decisions has become crucial. The importance of XAI stems from concerns related to trust, fairness, and account-
ability, especially given that deep learning models and KGEMs are often regarded as ‘black boxes’. To the best of
our knowledge, the InterpretE framework introduced in this work represents the first effort to address this issue
for KGEMs in terms of restoring semantic interpretability to entity vectors by explicitly mapping these vectors to
underlying, human-understandable aspects of the entities.

The salient contributions of our work can be summarized as follows.

— Presentation of a novel neuro-symbolic approach called InterpretE that can derive interpretable embeddings
(from any KG embedding model) for the KG entities.

— Description of the data-driven process of identifying and selecting desired user-selected or task-oriented entity
aspects from KG datasets.

— Demonstration of the proposed method in that the embeddings generated by InterpretE encapsulate the desired
semantic aspects of the underlying entities and that InterpretE is highly flexible in terms of the number and
types of aspects that it can work with, making it scalable for different datasets.

— The evaluation of the approach and the resulting embeddings in terms of the properties in the vector space as
well as with the measurement of semantic similarity of the entities illustrates that InterpretE indeed leads to
improved interpretability for KG embeddings.

The rest of the paper is organized as follows: Section 2 introduces key concepts and background that is essential
for understanding the proposed method in detail. Section 3 provides a comprehensive review and comparison with
related work, highlighting the ongoing challenges addressed by our approach. In Section 4, we describe the selection
process for entity aspects or features from the KG datasets, followed by a formal description of the InterpretE
method in Section 5. Section 6 presents the method’s evaluation through various experiments, demonstrating its
effectiveness and assessing the interpretability of the derived vectors, supported by illustrative plots and a discussion
of results. Section 7 discusses the application of large language models (LLMs) for two distinct tasks: feature
selection and semantic similarity evaluation. Finally, Section 8 concludes the paper and suggests directions for
future work.

2. Preliminaries
2.1. Knowledge Graphs

A knowledge graph (KG) is a directed graph that represents knowledge in a structured format. It consists of nodes
that correspond to real-world entities, such as people or cities, and edges that represent the relationships between
these entities. The edges are labeled to indicate the nature of these relationships. More formally, a knowledge graph
can be represented as G = {h,r,t|h,t € &,r € R} where ¢ is the set of all entities and R is the set of all possible
relations between entities. Each combination (4, r,7) is referred to as a triplet, indicating a relationship r between
the head & and the tail #. KGs play a crucial role in modeling networks of interconnected objects, such as citations,

"https://github.com/toniodo/InterpretE
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relationships among individuals, and more. Their structured representation facilitates semantic understanding, en-
abling both machines and humans to interpret complex relationships and contexts within the data. This capability
has led to their increasing adoption in diverse fields, such as Computer Vision, where they have been shown to
enhance performance through techniques like Graph Convolutional Networks [41]. KGs are particularly useful in
various applications in Natural Language Processing. They significantly enhance question-answering systems by
allowing the pruning of irrelevant information, which reduces the search space and accelerates the retrieval of ac-
curate answers. For example, the QA-GNN framework [68] showcases how KGs can improve the efficiency and
effectiveness of question-answering tasks.

2.2. Knowledge Graph Embeddings

Knowledge graph embedding models aim to represent entities and relations from knowledge graphs as contin-
uous vectors or matrices, known as embeddings (see [63] for an overview). The main purpose of learning these
embeddings is to simplify downstream tasks, while preserving the underlying structure of the knowledge graph. A
scoring function is used to evaluate how likely a predicted entity is to accurately complete a triple, ensuring that the
embeddings maintain the integrity of the original graph’s relationships.

Notable types of KGE models are as follows:

Translation Distance Models. These models operate under the assumption that adding the vectors of the head
and relation will result in a vector close to that of the tail. One of the earliest examples of this type of KGEMs is
TransE [4]. Formally, if /&, r and ¢ denote the vectors of the head, relation, and tail respectively, then it holds that:
h + r =~ t. To ensure the accuracy of the triple, the following scoring function must be minimized:

f(h,rt) = ||)?h+)?r—)?t\|LL2 1)

where )_()h, )?r and )_('t are the vectors of the head, relation, and tail, respectively, all residing in the same shared
embedding space.

However, TransE struggles to capture complex relationships such as one-to-many, many-to-one, and many-to-
many. TransH [5] addresses this limitation by introducing a relation-specific hyperplane for each relationship, al-
lowing entities connected through that relationship to be distinguished based on their unique semantics within that
context. TransR [44] builds on a similar concept but defines relation-specific spaces instead of hyperplanes. TransR
is further refined by TransD [38], which uses two embedding vectors for each entity and relation and introduces a
mapping matrix that generates two distinct mapping matrices for the head and tail entities.

Semantic Matching Models. These models employ a scoring mechanism based on vector similarity, where en-
tities are represented as vectors and relations as matrices. The core assumption is that the transformation of the
head embedding will closely approximate the tail embedding, which is formalized as: XY, ~ X,, where X, and X,
are the vectors of the head and tail, respectively, and Y, is the matrix representing the relation used for mapping.
RESCAL [46] utilizes a bilinear scoring function, where each relation is represented as a matrix, and the mapping
between the head and tail vectors is computed using this matrix. DistMult [66] simplifies RESCAL by constrain-
ing the relation matrix to be diagonal, which reduces the number of trainable parameters. ComplEx [62] extends
this approach by introducing complex-valued embeddings, enabling the model to capture asymmetrical relations
effectively.

Among other types of models, ConvE [18] was the first to predict missing links in knowledge graphs using Con-
volutional Neural Networks (CNNs). Unlike fully connected dense layers, CNNs can train with fewer parameters,
allowing them to capture complex non-linear relationships. ConvE establishes local interactions across multiple
dimensions between different entities, enabling it to model intricate patterns more effectively.

2.3. Conceptual Spaces and Interpretable Dimensions

According to Girdenfors [25], a conceptual space is a multidimensional framework where each dimension repre-
sents a different quality or property of a concept. These dimensions serve to describe various aspects of a concept in
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a structured and meaningful way. For example, when considering animals, dimensions such as height, weight, and
color could represent specific quality dimensions that collectively define the concept of ‘animal’. These dimensions
are fundamental in understanding how concepts are represented and compared within the space. Each dimension
in a conceptual space is assumed to have its own inherent structure. For instance, some dimensions, like time or
weight, are one-dimensional, represented by real, non-negative values. For more complex attributes, such as color,
Girdenfors explains that the mental model can be represented by three dimensions: hue (circular), saturation, and
brightness (linear), creating a cognitive conceptual space where different points correspond to specific colors.

In this context, interpretable dimensions [17] refer to the axes or directions in the conceptual space that corre-
spond to human-understandable properties of entities. For example, in a conceptual space representing animals, the
interpretable dimensions could be height, weight, and speed. Each of these dimensions has a clear and intuitive
meaning, making it easier to relate the points in the space to real-world attributes. Interpretable dimensions are
critical because they allow us to map abstract vectors or mathematical representations back to meaningful, seman-
tic concepts. To understand the semantics of conceptual spaces, consider that a language L can be interpreted as a
projection onto a conceptual space. In this projection, distinct elements of the language are represented as vectors,
and predicates within the language correspond to regions or areas in the conceptual space. These regions can be
primary, representing fundamental concepts, or secondary, derived from other regions. In a conceptual space, every
point represents a possible individual, with each point consistently displaying well-defined properties based on its
position along the interpretable dimensions. This structure allows for clear comparisons and distinctions between
concepts, helping to identify similarities and differences based on their positions within the space (see [17] for
further details).

3. Related work
3.1. Explainability in Large Models

Recently, the majority of embedding spaces have emerged from the training of large language models (LLMs).
However, Simhi et al. [56] highlight a significant limitation of such representations: they often exceed human com-
prehension. To address this issue, they propose a new method for generating a conceptual space with dynamic
granularity based on demand. Their work also introduces a novel assessment technique that demonstrates that the
conceptualized vectors indeed reflect the semantics of the original latent representations, validated through either
human raters or LLM-based raters. In relation with large models, Cunningham et al. [14] discuss the concept of
polysemanticity, which poses a challenge to the interpretation of neural networks. They attempt to reconstruct the
internal activations of the language model to tackle the issue arising from neural networks having fewer neurons
compared to the features they represent. This line of research is important within the framework of explainable
Al [2], and our work focuses on Knowledge Graph Embedding Models (KGEMs). By striving to make represen-
tations more understandable and interpretable, we aim to address the challenges faced in downstream applications
where semantics are critical, such as entity similarity and recommendation systems.

3.2. Semantics in KG Embeddings

KG embedding models provide sub-symbolic representations of entities and relations in a KG, and enable the
vector manipulations of the data for tasks such as KG completion and triple classification. In recent literature,
several critical works have questioned the widely-held assumption that KGEMs produce semantically meaningful
representations of underlying entities [31, 34]. In a popular previous work, Jain et al. [34] investigated the degree
to which similar entities correspond to similar vectors and concluded that this does not hold true universally. They
demonstrated that entity embeddings derived from KGEMs often struggle to effectively discern entity types within
a Knowledge Graph (KG), with simpler statistical methods offering comparable performance. Additionally, Ilievski
et al. [32] observed consistent under-performance of KGEMs compared to simpler heuristics in tasks reliant on
similarity, particularly within word embeddings. The authors argue that many properties that heavily relied upon
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by KGEMs are not conducive to determining similarity, thereby introducing noise that ultimately undermines per-
formance. In [31], Hubert et al. challenge the widely held belief that entity similarity within a graph is adequately
represented in the embedding space. Their comprehensive tests assess the capacity of KGEMs to effectively group
related entities and investigate the underlying characteristics of this phenomenon. However, these previous studies
primarily focus on questioning the validity of the aforementioned assumption without offering concrete solutions to
address the identified shortcomings, which is the focus of our work.

3.3. KG Embeddings and Ontologies

There has been considerable work on embedding ontologies in the literature [24, 26, 28, 57, 72]. Recent tech-
niques have aimed to develop robust and efficient methods for embedding OWL (Web Ontology Language) and
OWL2 ontologies that effectively express their semantics. Holter et al. [28] computed embeddings for OWL2 on-
tologies by projecting ontology axioms into a graph and creating a corpus of phrases through random walks over this
graph. A neural language model generates concept embeddings from this corpus. This work addresses limitations
in earlier approaches [57, 72] that treated each axiom as a sentence, leading to issues such as insufficient corpus
size for small to medium ontologies, noise introduced by OWL constructs, and Word2Vec’s inability to differentiate
between logically similar sentences. To overcome these challenges, the authors developed a system that (i) creates
a graph from the ontology, (if) navigates the ontology graph using various techniques, (iii) constructs a corpus of
phrases based on these walks, and (iv) derives concept embeddings from this corpus.

Chen et al. [12] introduced OWL2VecVec*, an ontology embedding technique based on random walks and word
embedding that captures the semantics of an OWL ontology by considering its semantic information, logical con-
structors, and graph structure. They expanded OWL2Vec to create OWL2Vec*, a more robust embedding system.
OWL2Vec* navigates the graph forms of an OWL (or OWL2) ontology to generate a corpus of three documents that
encapsulate various aspects of the ontology’s semantics, including (i) graph topology and logical constructors, (if)
syntactic information, and (iii) a combination of (i) and (ii). Ultimately, OWL2Vec* employs a word embedding
model to produce word and entity embeddings from the generated corpus. While these works primarily focus on
embedding the semantics represented in ontologies, their goals differ significantly from ours. They do not aim to
establish clear connections between the embedding space and the underlying concepts in the ontology. Addition-
ally, these approaches do not address knowledge graph data, which is central to our work, as we seek to represent
meaningful and task-relevant aspects of the KG entities in the embedding space. Another line of work concerns
with creating embeddings specifically for Ontologies with the goal to enable ontology specific tasks such as ontol-
ogy learning, reasoning and ontology-mediated question answering [33, 65, 67]. Ontology embedding methods also
have been used for vision tasks such as few shot learning and image classification [36, 37].

There are yet other works that are concerned with the integration of ontological knowledge directly into embed-
ding models (e.g., [12, 16, 21, 27, 42, 64, 71]), typically through modifications to the loss function during training.
Indeed, while these works have the same motivation of improving the semantics in KG embedding models by lever-
aging the information in the ontology concepts and roles, contrary to our work, these works do not focus on the
interpretability of the embedding spaces that they generate. While adding ontological information during the train-
ing of embeddings has been shown to enhance the semantic capabilities of the embeddings in some cases [35], this
does not automatically entail interpretability in terms of human-understandable aspects of the entities for the gen-
erated embedding space. Moreover, the InterpretE approach is not limited to the ontological classes of KG entities.
It can derive interpretable dimensions corresponding to various relevant aspects, including entity attributes (e.g.,
gender for person entities, genre for movie entities) and relationships with other entities (e.g., bornin [location] for
person entities, locatedIn [location] for organization entities), or any combination thereof. In fact, InterpretE can be
applied to any of the aforementioned KG embedding techniques, generating interpretable embedding spaces with
dimensions reflecting desired semantic aspects.

3.4. Interpretable Dimensions

Various approaches have focused on constructing interpretable spaces using multiple data sources, primarily text
but also images [7, 8, 17, 56, 70]. As discussed in Section 2.3, conceptual spaces [25] represent concepts through
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Fig. 3. Top 10 most represented relations for person entities in

Fig. 2. Top 10 most represented entity classes in YAGO3-10 YAGO3-10

cognitively meaningful features known as quality dimensions. These dimensions are typically derived from human
judgments and serve as an intermediary representation layer between neural and symbolic representations. Bouraoui
et al. [17] discuss techniques that facilitate a looser integration between embeddings and symbolic knowledge, de-
riving similarity and other forms of conceptual relatedness from vector space embeddings to support adaptable
reasoning using ontologies. In another work, Bouraoui et al. [8] demonstrate that incorporating conceptual neigh-
bors leads to more accurate region-based representations through a straightforward technique for identifying them.
Derrac et al. [7] illustrate how a large corpus of text documents can be leveraged to learn essential semantic relations.
While these approaches show promise for advancing explainable Al, they have not been extended to more complex
datasets like knowledge graphs and their representations using KGEMs. In contrast, our proposed approach repre-
sents a first step toward identifying interpretable dimensions for such models, focusing on the underlying aspects of
knowledge graph entities and thereby deriving vector spaces that are more human-understandable.

4. Data Analysis and Selecting Entity Aspects

In Section 35, the InterpretE method will be explained as a generalized and scalable process for obtaining entity
aspects or entity features® from a given KG dataset, as well as deriving interpretable entity vectors from it. In this
section, we focus on dataset acquisition, specifically providing a detailed explanation of the data-driven analysis
conducted for two KG benchmark datasets. This analysis aims to illustrate the nuances of entity feature extraction for
real-world entities. To derive and categorize aspects for different entities in the KG, their type (or ontological class)
information was essential. As such, we leveraged KG datasets with associated ontologies, focusing on subsets of
Yago (Yago3-10 [45]) and Freebase (FB15k-237) [60]. Additionally, we reused Wordnet-based entity type mappings
from Jain et al. [34] to obtain the ontological classes for the entities. As a first step, the entities in the KGs were
categorized by their ontological classes using WordNet types such as persons, organizations, and locations. Next,
for each entity type, the most representative relations were selected and their values were categorized based on their
distribution in KG triples.

4.1. YAGO

An overview of the dataset analysis in terms of the most representative entity types for the YAGO3-10 dataset
is shown in Figure 2. The YAGO3-10 dataset is dominated by entities of the class person. In Figure 2, it can be
seen that while person is the most frequent class, various subclasses of person (at different levels of hierarchy in the

2The terms aspects and features of the entities are used interchangeably throughout the paper.
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hasGender - 13.7 % graduatedFrom - 14.2 %
hasChild - 11.4 % worksAt - 13.2 %
playsFor - 9.7 % hasGender - 11.1 %
B wasBornin - 8.9 % wasBornin - 8.0 %
graduatedFrom - 8.2 % isCitizenOf - 7.0 %
isPoliticianOf - 6.7 % diedin - 5.2 %
influences - 6.1 % livesin - 4.3 %

diedIn - 5.7 % playsFor - 3.6 %

Fig. 4. Most represented relations for class politician in Fig. 5. Most represented relations for class scientist in
YAGO3-10 YAGO3-10
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‘

Fig. 7. Most represented values for class person in with the rela-

Fig. 6. Most represented values for class organization with rela- tion isAffiliatedTo in YAGO3-10

tion isLocatedIn in YAGO3-10

ontology structure) are also frequent. For instance, player is a subclass of person, while football_player is a subclass
of player. This illustrates that the person type is extensively represented throughout the dataset, ensuring sufficient
data availability for this type in subsequent experiments, as the number of triples associated with it is substantial.

When analyzing a given entity class, emphasis was placed on identifying the most represented relations. High-
frequency relations are expected to be effectively captured by the embedding model, encapsulating relevant re-
lational information within the final entity embeddings. The most significant relations for the person entities are
shown in Figure 3. In this context, the relations isAffiliatedTo and playsFor emerge as the most represented for per-
son class. It is interesting to note that an analysis of these relations in the YAGO3-10 dataset revealed that 87.65%
of the triples associated with playsFor were identical to those linked with isAffiliatedTo. Due to this redundancy,
only one of these relations was retained in the experiments to reduce overlap.

This process was repeated for other classes. To perform an in-depth analysis of various relations, the most rep-
resented values for a given relation (i.e. entities or values serving as the tail in the (%, r, ) triplets) were examined,
with the intention of finding out the values that were prominent for specific relations. These values, coupled with the
associated relation, serve as the entity aspects for the experiments. As shown in Figure 6, for entities of type organi-
zation and the relation isLocatedlIn, certain countries appeared frequently; for example, the United States accounted
for 57.8% of all triples that pertained to organization entities with the relation isLocatedIn.

The different types of values associated with each entity-relation pair were also examined, as illustrated in Fig-
ures 7 and 8. This analysis was aimed at informing the design of potential processes for transforming these values.
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1 1
award - 68.2 % psychological_feature - 13.4 %
2 EEE order-12.2 % W abstraction - 13.4 % 2
B symbol - 7.5 % B act-124%
3 decoration - 5.8 % event-12.4 % 3
4 event-4.3 % activity - 11.9 % 4
mm election-1.1% B occupation - 11.9 %
S scholarship - 0.8 % person - 6.2 % 5
6 B causal_agent- 6.2 % 6
whole - 6.2 %

7 physical_entity - 6.2 % 7

8 8

9 9
10 10
11 11
12 12
13 13
14 14
15 Fig. 8. Most represented values for class scientist with the rela- Flg' 9. M.OSI represe.nted values type for person in FB15K-237 15
16 tion hasWonPrize in YAGO3-10 with relation profession 16
17 . . . . . . . . . 17
18 It was found to be particularly valuable in instances where the distribution of values was nearly uniform, comprising 18
19 a wide range of distinct entries. By understanding the type of each value, appropriate transformation strategies could 19
20 be implemented. For instance, for the relation isAffiliated, it was found that the most frequently represented value 50
- type was club. With this insight, methods to categorize the clubs based on various criteria, such as their geograph- -
25 ical locations (e.g., country, continent. ..) or the specific sports they are associated with, could be conceptualized. -
23 Different experiments could be designed to capture such features as desired. 23
24 24

4.2. Freebase
25 25
26 26
27 30% 27
70%
28 259% 28
29 00% 29
20%
30 50% 30
15%
31 40% 31
32 10% 32
30%

33 5% 33
. - " N
% 5 & @ X og & & s >
35 10% - B R N >

o’ @ 3 < ] Sas && 3
36 0% & @w/ $ SIS 5 Qg 36
2D & @ N & & & S & s & N & & ¢ S8
38 £ S & & ¢ § >
S A &
39 N 39
“0 Fig. 11. Top 10 d relations for film entities i 40
Fig. 10. Top 10 most represented entity types in FB15K-237 1. 11. 10p most represented relations for film entities in
4L FB15K-237 41
42 42
43 Similar to Yago3-10, we conducted a statistical analysis to select features for the FB15K-237 benchmark dataset. 43
44 First, the most represented classes in the dataset were identified. In Figure 10, the most represented classes are 44
45 displayed without any distinction according to their hierarchical levels in the ontology. For each type considered, 45
46 we identified the most represented relations, this is detailed in Figure 11 for film entities as an example. Being 46
47 the most represented relations, release_region and genre were focused upon for the film class entities as shown in 47
48 Figure 12 and Figure 13. In a different example, Figure 9 shows the most frequent types of professions for person 48
49 class entities in this dataset. As with Yago3-10, this dataset study serves as a guideline for the experimental design, 49
50 and similar figures were generated across various classes, relations, and values to extract the most pertinent and 50

51 representative information from the dataset. 51
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object - 13.1 %

physical_entity - 13.1 %

location - 12.8 %

district - 12.7 %

region - 12.7 %

mmm administrative_district - 12.7 %
country - 9.1 %

abstraction - 17.2 %
psychological_feature - 16.2 %
event - 8.9 %
cognition - 8.5 %
whole - 8.3 %
B object-8.3%

physical_entity - 8.3 %

B geographical_area - 4.6 % m idea-8.1%
tract - 4.6 % content - 8.1 %
site-4.4 % show - 7.9 %
Fig. 12. Most represented values for film class with relation re- Fig. 13. Most represented values for film class with relation genre
lease_region in FB15K-237 in FB15K-237

It is interesting to note here that different levels of abstraction were considered for the features of the entities
while designing the experiments,. For example, for person entities, the relation wasBornin (e.g., wasBornln Paris)
was found to be significant. One experiment mapped locations from specific cities to their respective countries (e.g.,
France), while another grouped cities by continent (e.g., Europe), allowing for evaluations across varying abstrac-
tion levels. (These experiments are presented and discussed in Section 6). This adaptable process was primarily
driven by the availability of sufficient data points for the entity features within the KG. Once features were defined,
entities were labeled with binary values indicating the presence or absence of each feature. This labeled data was
subsequently used for SVM training in the next phase.

Another alternative method for selecting entity aspects from the KGs was explored using large language models
due to their promise of capturing complex relationships in data. The method, along with its limitations that prevented
its inclusion in the final approach, is discussed later in Section 7.

S. InterpretE

In this section, we present the proposed InterpretE approach, which aligns vector representations with entity
features by manipulating vector spaces to enhance interpretability. Figure 14 illustrates the components of this ap-
proach. The method begins with feature selection, leveraging data from the KG and associated ontology to select
the desired entity features that are intended to be represented in the vector space. These features can be task-specific
and context-driven (e.g., distinguishing players from politicians or grouping similar professions). The main idea is
to guide the entity representation based on these features, ensuring that entities with shared features are positioned
close together in the final derived space. The selected entity features (suppose d), along with the original pre-trained
entity vectors from a KGEM (typically having n>=100 dimensions), form the dataset. To generate interpretable
embeddings, Support Vector Machine (SVM) classifiers are trained on this dataset, with the entity features as guid-
ing labels. This process transforms the n-dimensional vectors into d-dimensional InterpretE vectors, where each
dimension explicitly corresponds to one of the entity features (as illustrated in the figure with a 2-dimensional space
featuring Feature X and Feature Y). A formal representation of the approach, including the feature selection and
SVM training process, is detailed below.

5.1. Feature Selection

The InterpretE approach is centered around the representation of the desired aspects or features of the entities in
the vector space. We designed several experiments with different features to test the approach, as detailed previously
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Fig. 14. Different components of InterpretE

in Section 4. Feature selection was crucial as it guided experiment design 3.

Formally, given a Knowledge Graph G = (E, R, T), where E is the set of entities, R is the set of relations, V, is
the set of values given the relation r and T is the set of triples (h,r, ) suchthath € E, t € E, and r € R. The overall
goal is to extract interpretable features from entities in the KG and transform the latent vectors for these entities
(from a KGEM) to a human-understandable vector space representing the features.

Let Cyep = {C1,Co,...,Ci} be the set of ontological classes (e.g., persons, organizations, locations) defined by
the KG ontology. For each class C € Cg, the entities of class C are denoted as:

Ec ={e € E | class(e) = C}

Next, for each relation r € R, the frequency P(r | class(head) = C) for a given value v € V, is computed based
on its occurrences in triples where the head entity belongs to E¢. A threshold 7 is used to select significant relations
for each class C, such that:

r € Re,v eV, if P(r,v| class(head) =C) > 7

It is important to note that the value of the threshold 7 is highly dependent on the characteristics of the dataset and
may vary for different relations within the dataset. Generally, the threshold was established such that values falling
below this threshold were deemed irrelevant in comparison to the most frequent values. Thus, only those values
exceeding the threshold were included in the analysis.

For each selected relation r € Rc, the values V, = {t | (h,r,t) € T,h € Ec} (the objects in the triples involving
relation r) are categorized into features based on their unique values at different abstraction levels (e.g., cities,
countries, continents for location entities).*

For each entity e € E¢, the binary value for the feature f,(e) associated with relation r is defined as:

1, if entity e has value v € V, for relation r

fro(e) =

0, otherwise
Thus, for each class C, a set of features F is defined, and the feature vector for each entity e € E¢ is given by:

Je = frimi (€)s friwa(€)s frowi (€)s s frow(€)] forry,ra,....rm € Re,vi,ve € Vi, vi €V, W €V,

3Note that the attributes of the KG entities could not be considered as features since most KGEMs are not trained on them, hence such features
cannot be derived from the original vectors.

4The number of selected categories of values was determined through a similar analysis to that of the threshold 7; values that were not
statistically significant were omitted.
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5.2. Dataset Curation

After selecting features, we pair the entities with their corresponding pre-trained KG embedding vectors u, (from
the KGEM). The labeled feature vector f, forms the training dataset:

D ={(ue, f.) | e € Ec}
The dataset D is then used in the subsequent phases for deriving interpretable vector spaces.
5.3. Derivation of Interpretable Vectors

After curating the dataset with the extracted features for different types of entities, the next step is to derive in-
terpretable vectors using Support Vector Machine (SVM) classifiers. For each feature identified during the feature
extraction phase, a separate SVM classifier is trained to map the pre-trained KG embedding vectors to a new inter-
pretable vector space. This approach builds on the methodology used by Derrac et al. [17], with the goal of learning
dimensions in the vector space that correspond to human-understandable features of the entities.

Although the ground truth feature vectors f, are available for each entity, directly converting these into binary
vectors would result in a significant loss of the detailed information encapsulated in the original KG embeddings
u.. Instead, we employ SVM classifiers, which allow us to leverage the continuous information from the original
embeddings while learning to separate entities based on the selected features.

For each feature f,, € F¢ (where F¢ is the set of features defined for entities in class C), we define a binary
classification problem. The binary label y,,(e) for each entity e is derived from the feature function:

yr,v(e) = fr,V(e)

A separate SVM classifier SVM,,, is trained for each feature f,,, using the KG embedding vectors u, as input.
The objective of the SVM is to find a hyperplane that best separates the entities possessing the feature f;, from
those that do not. Formally, the SVM optimization problem is defined as follows:

N
1
Wy = argamin o v + c;maxm, 1= yrler) (W - g, + b))

Here, w,, € R" is the weight vector corresponding to feature f.,, b is the bias term, C is the regularization
parameter controlling the trade-off between margin maximization and classification error, and N is the number of
training examples.

The weight vector w,,, can be perceived as the direction in the embedding space that corresponds to feature f;,.
These weights are used to define the hyperplane that separates entities having the feature from those that do not. The
decision function associated with each hyperplane provides the signed distance between the estimated hyperplane
and a given entity. This value represents the new coordinate for the corresponding feature. Specifically, the decision
function for feature f,, is given by:

u,(r,v) = g(wy,, u,) where g is the decision function given the weight vector w,,,, and an embedding u,

The sign of this decision function determines whether the entity is classified as having the feature (above the
hyperplane, class 1) or not (below the hyperplane, class 0). The scalar value itself is used as the new coordinate for
this feature in the derived vector space, thus encoding both the presence of the feature and its relative strength in the
embedding space.

The resulting weight vector w,,, characterizes the estimated hyperplane for feature f,,, and the decision function
provides the corresponding coordinate for each entity.
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Algorithm 1 Feature Selection and Vector Derivation in InterpretE

1: Input: Knowledge Graph G = (E, R, T), Ontological classes C, threshold 7, Pre-trained embeddings U
2: Qutput: Interpertable embeddings U’

3: Initialize W «+ 0

4: Initialize U’ <

5: for each class C € Cy do

6:  Extract entities Ec = {e € E | class(e) = C}

7. Select relations and values Rc = {r € R,v € V, | P(r,v | class(h) = C) > 7}
8: foreachr,v € Rc do

9: Derive feature vectors f,(e) for entities e € E¢
10: Construct dataset D = {(u,, f,.v(¢)) | e € Ec,u, € U}
11:  end for
12:  for each feature f, € F¢ do
13: Train SVM,.,, on D to estimate hyperplane weight vector w,.,,
14 W+ WU {w,,}
15: u,(r,v) < g(wpp, o)

16:  end for

170wy U, u(r,v)
18 U + U Uu{u}
19: end for

20: return U’

InterpretE Vector Space. The collection of weight vectors w,, for all features f., € F¢ defines the set of estimated
hyperplanes which help to transform the embeddings in the new vector space (via the decision function):

W =A{w,, | frn € F}

For each estimated hyperplane (represented by the weight vector) the new coordinates (one for each hyperplane)
are computed for each entities. u.(r, v) represents the coordinate linked to the value v of the relation r for the entity
e. The association of all coordinates forms the new vector u/, associated to e:

u, = [u,(r,v),Vr,v]

Each new coordinate u/(r,v) refers to a human-understandable feature, such that entities sharing common fea-
tures are positioned close together in the transformed space. This makes the new vectors, referred to as InterpretE
embeddings u,, more interpretable and transparent than the original KG embeddings.

The above process is described in Algorithm 1.

6. Experiments

In this section, we present experiments evaluating the efficacy of the proposed approach. We first specify the KG
embedding models used in our experiments, then the implementation details for the SVM classifiers, followed by
the assessment of the performance of the derived InferpretE embeddings in two distinct ways. We introduce metrics
that capture the accuracy of the method and the consistency of the generated embedding space, providing scores and
visualizations of the resulting embeddings to illustrate the results.

6.1. KG Embedding Models

Following previous works [31, 34], several popular and benchmark KGEMs were considered for the experiments
to analyse the flexibility of the InterpretE approach across vector spaces generated with different methods, including
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ConvE [18], TransE [4], DistMult [66], Rescal [46] and Complex [62]. Although more recent embedding models
have been introduced in the literature, as demonstrated by Ruffinelli et al. [52], classical embedding models remain
highly competitive when paired with effective parameter optimization. Therefore, we have chosen the most widely
used and popular embedding models as representative methods, obtaining the pretrained embeddings from previous
work’, where the best parameters were found using the LibKGE library [52]. It is important to note that our approach
is entirely independent of the specific KGEM used and can be applied in conjunction with any pretrained model, as
long as the embedding vectors can be extracted from it.

6.2. Classifier Training and Optimization

To streamline the training of the SVM classifiers, a grid search with cross-validation was performed using the
Scikit-learn [47] library, which is based on LibSVM [10]. This process allowed us to automatically select the opti-
mal hyperparameters (e.g., the regularization parameter and prevent overfitting, thereby ensuring a more generalized
solution. Class imbalance, which is common in large scale KGs as well as popular benchmark datasets, was ad-
dressed by assigning weights to entities based on the distribution of positive and negative examples for each feature.
This weighting scheme helped balance the influence of underrepresented classes in the training process. A held-out
test set comprising 20% of the entities (with no overlap with the training set) was used to evaluate the performance
of each SVM classifier.

6.3. Evaluation of InterpretE Vector Space

The derived InterpretE vector spaces are expected to yield entity vectors that are organized into clusters that align
with the selected features. To assess the effectiveness of these clusters and ensure a consistent representation across
different entity types, we calculated the Cohen’s kappa coefficient (x score) for the test set (following [17]). This
metric evaluates the level of agreement between two sets of categorical labels, in this case, the predictions made by
the trained SVM and the ground truth labels for the test entities. The k score ranges from -1 to 1, with values closer
to 1 indicating a stronger alignment between the model’s classifications and the expected feature-based grouping of
entities in the vector space.

The mean « scores across various experiments on the Yago3-10 dataset are shown in Table 1, with results for
FB15k-237 provided in Table 3. As discussed in Section 4, entity features were selected in a range of combinations
to explore diverse configurations and capture a variety of aspects for the entities, leading to a large number of
experimental configurations. To streamline presentation, these results represent the aggregated mean values of the
metrics across experiments, organized by the number of selected features. For each feature count, a representative
example experiment and its corresponding scores are provided in Table 2 for Yago3-10 and Table 4 for FB15k-237.
The « values, which are close to 1 in most cases, underscore the approach’s strong potential in effectively clustering
entities by the selected features.

Furthermore, to clearly illustrate the advantages of the proposed approach in generating interpretable dimensions
within the vector space and to compare these with the dimensions in the original KGEM vector spaces, we visu-
alize both in a 2D space by applying Principal Component Analysis (PCA) [29]. As depicted in Figure 15, the
reduced dimensions in the original KGEM space (in this case, ComplEx) fail to convey any meaningful or human-
understandable representations for the entity vectors. Moreover, the person entities are not clustered according to
the hasGender and was-Bornln "Europe" features. Essentially, these vectors do not yield significant dimensions
and do not facilitate the identification or clustering of entities based on specific features. In contrast, the InterpretE
vectors derived from the ComplEx KGEM vectors as shown in Figure 16 reveal distinct clusters, with the enti-
ties within each cluster sharing common features as represented by the dimensions, i.e. they reveal distinct and
meaningful clusters, dictated by human-understandable entity aspects as dimensions. We also present several other
visualizations for different experiments in Figure 17 and Figure 18 that convey similar characteristics.

Shttps://github.com/nitishajain/KGESemanticAnalysis
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6.4. Evaluation of Semantic Similarity

InterpretE vectors are dictated by the selected features for the entities that they represent, as such we evaluated
the semantic similarity of the derived vectors (in terms of the features) to measure this desirable characteristic.
We propose a simple metric simfopk to measure the similarity of entities’ neighbors. For each entity, we analyze
its neighborhood to estimate the similarity based on the corresponding feature used in the SVM experiment. The
parameter k represents the number of neighbors considered. The score assigned to the original entity is calculated as
the mean value of the similarities computed with these neighboring entities. This process is repeated for all entities,
and the mean value of these scores is computed to serve as the final metric. The proposed simtopk metric can be
formulated as:

I (1
simtopk:;Z % Z f(ni,n;) (2)

i=1 JENi(k)

where:

n : the number of total entities; k : the number of considered neighbours; N;(k) : the k closest neighbours of the
i-th entity, determined using a euclidean distance; f (-, -) : returns 1 if the two entities are similar in terms of features,
0 otherwise.

The values of this metric for k=10 for the original and the derived InterpretE embeddings for the different ex-
periments and the various embedding models are shown in Tables 1 and 2, for Yago3-10. The scores are better for
InterpretE vectors as compared to the original pre-trained vectors (obtained from various KGEMs) across the board,
indicating that similar entities are being represented by vectors that are closer in the new vector space, as desired.
The results for FB15k-237 are presented in Tables 3 and 4. Similar to our findings with Yago3-10, we observed
enhanced semantic similarity with FB15K-237. This improvement is evidenced by the higher simropk value in the
final space compared to the original space.

An alternative way to evaluate the semantic similarity using large language models was also explored and is
presented in Section 7.2.

6.5. Discussion

The results from the designed experiments for each dataset demonstrate the potential of the proposed approach.
However, there are several considerations for the experiment design that depend heavily on the data distributions and
characteristics of the underlying KG data. For example, there is often class imbalance in entities concerning selected
features (e.g., hasGender having more male representatives than female). These factors can impact the performance
of the SVM classifier. Class-based weights have been applied to the data points to address this issue, but it remains
a design challenge.

In some experiments, our method achieves a simtopk value very close to 1. This indicates that in the resulting
space, similar entities are clustered together nearly perfectly. However, this level of clustering is not consistently
observed across all experiments. The variability can be explained by the fact that other underlying features, not
covered in the current experiment, could contribute to more accurately clustering similar entities. An analogy can be
drawn with the well-known kernel trick used in SVMs, where an additional dimension (in our case, the consideration
of a new feature) is introduced to better distinguish different labeled data (in this context, non-similar entities).
Another challenge is the abstraction of features, especially if the underlying data is noisy and non-canonicalized
(e.g., different labels for the same value such as ‘UK’ and ‘United Kingdom’). Resolving these issues is crucial
for creating useful feature categories. A potential limitation of this approach could be scalability. As the size of
the knowledge graph (KG) increases, the time complexity of training the SVM also increases. The time complexity
of SVM training is O(n?d), where n is the number of entities and d is the number of dimensions. Despite these
challenges, InterpretE represents a significant step towards deriving interpretable vector spaces from KGEM vectors.
It is flexible and applicable to any KGEM. We aim to further develop this approach to streamline the design and
engineering process as well as improving its scalability across various datasets.
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Table 1

k scores on the test set and simtop10 scores on the original and InterpretE vectors for different number of features (mean values) with Yago3-10
for the different KGEMs.

Number of features ConvE  TransE  DistMult Rescal Complex
K score .93 .88 92 .95 91

1 original 182 195 .199 21 206
InterpretE 233 223 233 234 232

K score .87 .83 .86 .88 .84

2 original 177 231 230 240 229
InterpretE 270 .268 270 270 270

K score .62 49 .61 .63 .6

3 original 577 .607 .640 .666 .648
InterpretE 928 914 918 924 .893

K score .89 .88 .90 91 .90

4 original .665 .695 .691 .696 707
InterpretE 814 726 787 810 824

K score 5 71 75 74 5

6 original .635 .659 .679 .678 .648
InterpretE 938 .888 945 923 936

K score .87 .83 .86 .88 .84

9 original 343 353 337 347 345
InterpretE .624 556 .624 622 621

7. Exploration with Large Language Models

An alternative approach for generating entity aspects from the KG datasets was explored by leveraging Large
Language Models (LLMs). This section presents the details of this approach, along with its limitations, which
restricted its application within the InterpretE process. We also present an alternative approach for estimating the
semantic similarity of InterpretE vectors.

7.1. Feature Selection

LLMs excel at summarizing data and identifying specific patterns that may elude human analysts. Given a prompt
q formulated in natural language, an LLM f generates a response ¢ = f(gq) = maxP(x|q), utilizing the most
X

probable words based on the context. However, LLMs have finite knowledge and are prone to hallucinations. To
address these limitations, various strategies have been developed. Some approaches involve retraining the LLM to
enhance performance on specific tasks, often focusing on resource-efficient methods.

Alternatively, certain techniques bypass the need for retraining altogether. One notable approach is Retrieval-
Augmented Generation (RAG) [43], which constructs a Data Store from a collection of documents. These docu-
ments, or their segments, are represented as vectors, allowing the model to enrich the initial prompt by selecting
relevant vectors from a pre-built Vector Database. This equips the LLM with the necessary contextual knowledge
to respond accurately, effectively mitigating hallucinations. The objective in this study was to utilize a KG to cre-
ate the Vector Database, thereby capturing semantically meaningful dimensions of the conceptual space directly
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Table 2

k scores on the test set and simtop 10 scores on the original and InterpretE vectors for representative experiments with Yago3-10 for the different
KGEMs.

Experiments and features ConvE  TransE  DistMult Rescal Complex
K score 1 1 1 1 .99
person: hasGender original .068 .059 .054 061 .068
InterpretE 079 079 079 079 079
K score .96 93 95 .96 94
person : hasGender - wasBornIn —
Europe original 456 496 492 .507 504
InterpretE 540 529 538 543 539
K score 92 .84 .90 .94 .90
person : wasBornIln —
(Europe - Asia - North America) original .687 .8 814 871 .831
InterpretE 987 959 983 987 979
L. . K score 94 .96 .96 98 98
city : isLocatedIn (Europe - Asia - —
(North - South) America) original .899 959 .949 .966 972
InterpretE 989 993 991 996 996
entist: hasWonPri K score .96 .84 97 .85 .98
scientist: hasWonPrize —
6 top prizes original .539 510 575 538 578
InterpretE 958 934 966 926 972
. K score 77 75 78 78 74
person: types, player - artist - —
politician - scientist - officeholder - writer original 745 772 805 7194 662
InterpretE 953 945 958 944 938
person: hasGender, wasBornln (Europe - Asia - K score .87 .83 .86 .88 .84
North America), types (player - artist - original 343 353 337 347 345
politician - scientist - officeholder) InterpretE 624 556 624 622 621

through LLM queries. For this purpose, Llamalndex (v0.10.28) ® was employed, a framework that facilitates the
construction of this pipeline. The Mistral-7B LLM [39] was selected due to its robust performance and minimal
local resource requirements. This framework offers flexibility in the methods used to build the Vector Database,
typically guided by the input data format. Since knowledge graphs can be represented as structured graphs, they
provide a key advantage over plain text due to their inherent structure.

Building the database. The Llamalndex framework includes various classes for constructing the database. Focus
was placed on two primary storage types: the VectorStorelndex and the KnowledgeGraphlndex.

With the VectorStorelndex, documents are divided into smaller chunks, with each chunk associated with a corre-
sponding vector that is stored in the database. As a result, the constructed database consists of vectors representing
the various document chunks. In this approach, the Knowledge Graph (KG) is processed as plain text, with triples
expressed in simplified, human-understandable terms. Due to the efficiency of this technique, it was valuable for
gaining initial insights into the overall approach. However, a major drawback was the loss of the graph’s inherent
structure.

With the KnowledgeGraphindex, documents are divided into smaller chunks, and a Knowledge Graph (KG) is
constructed by creating triples for each chunk, resulting in a graph database. This approach addresses the previous
limitation by utilizing the inherent structure of a graph. However, it assumes input files that are not already in KG

Ohttps://www.llamaindex.ai/
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Table 3

k scores on the test set and simtop10 scores on the original and InterpretE vectors for different number of features (mean values) with FB15K-237
for the different KGEMs.

Number of features ConvE  TransE  DistMult Rescal Complex
K score .90 .80 .90 .90 .85
1 original 211 210 214 215 210
InterpretE 322 298 313 322 319
K score .89 8 9 9 .89
2 original 336 .329 342 .343 335
InterpretE 484 480 493 514 509
K score 72 .68 72 .65 73
5 original .561 538 545 523 547
InterpretE 853 844 .889 882 .868
K score .84 73 .83 .88 .84
6 original 587 .524 575 .563 .563
InterpretE 952 918 936 956 932

Table 4

k scores on the test set and simtop10 scores on the original and InterpretE vectors for representative experiments (mean values) with FB15K-237
for the different KGEMs.

Experiments and features ConvE  TransE  DistMult Rescal Complex

91 78 92 92 90
person : gender - place_of_birth k score

United States original .676 .689 .689 .693 .675
InterpretE 909 909 932 99 977
78 .70 75 .58 .79

organizations: locations K.SC.OI‘C
(USA - UK - Japan - Canada - Germany original 766 738 758 731 768
InterpretE 951 947 958 959 96
1 .69 1 .66 71

film: film_release_region K.sc'ore
(USA - Sweden - France - Spain - Finland) original 705 66 -661 621 661
InterpretE 876 .866 903 907 .892
flm: fil K score .68 .65 g1 72 .70

m: film genre —

(drama - comedy - romance - thriller - action) original 212 217 215 217 213
InterpretE 732 719 805 .78 753

format (e.g., text files), as KG construction is embedded within this index. As with the VectorStorelndex, our KG-
described as a set of triples-was initially treated as a text file. The KG generated by the pipeline closely resembled the
original, with minor variations. While effective for smaller KGs, this approach demanded substantial computational
resources for larger KGs, such as Yago3-10 or FB15K-237.

To overcome this limitation and preserve the structure of the KG, an attempt was made to manually rebuild the
KG using Llamalndex’s coded methods and the provided set of triples. However, the approaches tested were unable
to construct the KG as expected, often resulting in an empty output. Ultimately, focus was shifted to the VectorStor-
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elndex approach, which allowed for the extraction of all KG knowledge, though at the expense of disregarding the
graph’s structural information.

Answer Generation. Once the database was built, the goal was to retrieve relevant information to augment the user
prompt with the appropriate knowledge. Multiple techniques are proposed by Llamalndex, each of which was tested
in our pipeline:

— refine: For each retrieved chunk, both the prompt and the generated answer were processed through the LLM
with a specific prompt designed to refine the response.

— compact: Similar to the refine method, but retrieved chunks were sometimes concatenated to reduce the number
of LLM calls.

— tree_summarize: The LLM was queried multiple times using a specific template that included the prompt. This
generated multiple answers, which were subsequently queried to produce a single consolidated answer.

— simple_summarize: All retrieved chunks were used to augment the prompt and generate a response.

After several trials, the tree_summarize method was selected, as it provided the most consistent answers.
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Prompting. The choice of the prompt was crucial to obtain the most precise answer for our task. This was identified
as an interesting prompt engineering task in itself, but the aim was to develop the simplest possible prompt template.
The goal of this pipeline was to extract the salient features of the given KG to build conceptual spaces. Efforts
were made to provide the LLM with the complete definition of a conceptual space, which helped achieve more
controlled responses. Additionally, specifications were made regarding the presentation of the answers to facilitate
any subsequent automated processing.

Limitations. This approach appeared promising due to the potential abilities of LLMs in reasoning and summa-
rizing tasks, which we aimed to incorporate into our overall strategy. One limitation encountered was the lack of
transparency of the answers generated. Despite RAG helping to mitigate potential hallucinations of the LLMs, un-
certainty remained regarding whether the answers were derived from actual knowledge. It was also unclear whether
the responses were formulated solely from the LLM’s training or from the constructed database.

The quality of the produced answers was crucial, as it laid the foundation for our future conceptual space. Un-
fortunately, no metrics were available to measure answer quality, making it challenging to evaluate the various
responses beyond a few exploratory experiments. The only viable method was human feedback on each answer,
which was inherently biased.

Hllustrative Results. The quality of the results is not bad overall. In Figure 7.1, we provided two examples of
answers we got from the pipeline. We can observe that some suggested quality dimensions belongs to the most
represented relations present in Yago3-10. Some presented quality dimensions were also used in our study. But
sometimes, like in the right example, the suggested dimensions were too specific. The difference between both
examples is the prompt used which slightly differs. This also raised another phenomenon which is the stability of
the LLM regarding the prompt. The produced results were sometimes unstable leading to a prompt engineering task
to find the potential best prompt.

In light of the unsatisfactory results, we opted not to pursue this approach and instead adopted a more manage-
able, interpretable, and systematic method of performing data-driven analysis in the InterpretE method, which was
discussed in Section 4 in detail.

7.2. Semantic Similarity Evaluation with LLMs

We also explored an alternative way to the simfopk metric using a large language model (LLM) in a limited exper-
iment. We attempted this approach with few-shot prompting using Llama3-70B [61]. Additionally, we experimented

4 )
Prompt. [INST]You are a useful information retrieval agent, A conceptual ( )
space is a geometric structure that represents a number of quality dimen- Prompt [INST] You are a useful information retrieval agent, answer the
sions, which denote basic features by which concepts and objects can be Question: From the context, can you make a list of 20 concepts that repre-
compared, From the context, extract 20 quality dimensions, present the re- sent the knowledge graph? [/INST]
sult as a list.[/INST] L Y,
. 7
s )
1. Country (mentioned multiple times)
1. Affiliation to a football club or basketball team 2. Western Cape (a specific region)
2. Gender (male or female) 3. South Africa (a country)
3. Is influenced by another person or concept 4. Algeria (a country)
4. Influences another person or concept 5. African Union
5. Acts in a film or play 6. United Nations
6. Marital status 7. World Trade Organization
7. Citizenship of a country or region 8. Arab League
8. Plays for a football club or basketball team 9. Organisation of Islamic Cooperation
9. Has won a prize or award 10. International Bank for Reconstruction and Development
10. Is connected to an airport or location 11. International Development Association
11. Graduated from a specific university 12. International Finance Corporation
12. Is affiliated to a specific organization, be it sports-related or not 13. Multilateral Investment Guarantee Agency
13. Has musical role (in this case, plays the guitar) 14. International Centre for Settlement of Investment Disputes
14. Plays for a national football team 15. African Development Bank
15. Is located in a country or city 16. Arab Bank for Economic Development in Africa
16. Died in a specific location 17. Asian Development Bank
17. Belongs to a specific political party 18. Organisation internationale de la Francophonie
18. Created an album or song 19. UNESCO
19. Has a specific role in a sports team (goalkeeper, midfielder, forward) 20. Universal Postal Union
20. Is affiliated to a football club from a different country L
\

Fig. 19. Example results using Llamalndex with Mistral-7B for Yago3-10
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Prompt. <s>[INST] You are a good knowledge base. Tell if these two en-
tities are similar in terms of gender and continent of birth: Albert Einstein
and Winston Churchill? [/INST]

Yes, these two entities are similar because they both are male and were born
in Europe. </s>

<s>[INST] You are a good knowledge base. Tell if these two entities are
similar of gender and continent of birth: Marie Curie and Louis Pasteur?
[/INST]

No, these two entities are not similar because they don’t have the same
gender, even though they were born in the same continent. </s>
<s>[INST] You are a good knowledge base. Tell if these two entities are
similar of gender and continent of birth: Pierre Curie and John F. Kennedy?
[/INST]

Prompt. <s>[INST] You are a good knowledge base. Tell if these two en-
tities are similar in terms of countries of country of location between US,
UK, Canada, Japan, France, Australia and others: ENSTA Paris and Agence
France-Presse? [/INST]

Yes, these two entities are similar because they both are location in the same
country. </s>

<s8>[INST] You are a good knowledge base. Tell if these two entities are
similar in terms of countries of country of location between US, UK,
Canada, Japan, France, Australia and others: International Civil Aviation
Organization and United Nations? [/INST]

No, these two entities are not similar because they are not located in the
same country. </s>

<s>[INST] You are a good knowledge base. Tell if these two entities are
similar in terms of countries of country of location between US, UK,

21

Canada, Japan, France, Australia and others: King’s College London and
University of Cambridge? [/INST]

No, these two entities are not similar because they were born in different - )

continents, even though they have the same gender. .. . .
e Y & Yes, these two entities are similar because they both are located in the same

\ country, which is the UK.

Fig. 20. Partial example of few-shot prompts with Llama 3 70B using HuggingChat

with a RAG pipeline using the entire initial knowledge graph with Mistral7B [39] and Llamalndex. However, the
results were not consistently convincing, and the model sometimes contradicted itself.

In our prompt to the LLM, we provided two examples: one positive and one negative, randomly chosen from all
possible entities. We also specified the type of similarity we were evaluating, as it depended on the selected feature
for a given experiment. This method allows us to assess our approach by examining how similar the neighborhood
of a given entity is to the entity itself. An example is shown in Figure 7.1. This approach seemed promising and
needs to be applied to all entities to obtain a global evaluation metric, which we plan to explore in future work.

8. Conclusion

This work attempts to address the oft overlooked issue of lack of semantic interpretability in latent spaces gener-
ated by popular KG embedding techniques. The proposed InterpretE approach is shown to be capable of deriving
interpretable spaces from existing KGEM vectors with human-understable dimensions that are based on the features
in the underlying KG. Through the design and evaluation of different experiments, we have showcased the promise
of the approach for encapsulating entity features in the vectors for different feature abstraction levels, customizable
as per the dataset. By aiming to bridge the gap between entity representations and human-understandable features,
InterpretE paves the way for enhanced understanding and utilization of KGEMs in various applications. Future re-
search can further explore the implications of this approach and extend its applicability to broader contexts within
the field of knowledge representation and reasoning.

By providing interpretable insights into how entities are represented and clustered in knowledge graphs, our
approach aims to contribute to the broader goal of Al transparency. This can allow practitioners to trace back
decisions to underlying features, identify potential biases, and ensure that Al-driven systems operate in a manner
that is both reliable and ethical. This focus on explainability ensures that AI models are not only accurate but also
comprehensible, making them more suitable for deployment in critical decision-making contexts.
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