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Abstract. Generating vector representations (embeddings) of OWL ontologies is a growing task due to its applications in pre-
dicting missing facts and knowledge-enhanced learning in fields such as bioinformatics. The underlying semantics of OWL
ontologies is expressed using Description Logics (DLs). Initial approaches to generate embeddings relied on constructing a
graph out of ontologies, neglecting the semantics of the logic therein. Recent semantic-preserving embedding methods often
target lightweight DL languages like EL++, ignoring more expressive information in ontologies. Although some approaches
aim to embed more descriptive DLs like ALC, those methods require the existence of individuals, while many real-world on-
tologies are devoid of them. We propose an ontology embedding method for the ALC DL language that considers the lattice
structure of concept descriptions. We use connections between DL and Category Theory to materialize the lattice structure
and embed it using an order-preserving embedding method. We show that our method outperforms state-of-the-art methods
in several knowledge base completion tasks. This is an extended version of our previous work [74] where we incoporate
saturation procedures that increase the information within the constructed lattices. We make our code and data available at
https://github.com/bio-ontology-research-group/catE.

Keywords: Ontology embedding, Knowledge Base Completion, Neuro-symbolic AI

1. Introduction

Ontologies are usually developed and maintained by manual curation of experts and therefore the knowledge
therein can be inconsistent or incomplete. Traditionally, symbolic reasoners are used to test for consistency of the
knowledge within ontologies and to infer new statements. However, they are designed to infer statements that are
logically entailed from the ontology or knowledge base; in some cases, it is useful to also suggest axioms that are
probably true but not entailed, leading to the task of “ontology completion” or “knowledge base completion”.

From the viewpoint of knowledge graph completion [21], we can initially define knowledge base completion as
the task of predicting “missing” or “novel” axioms in a knowledge base (or ontology). “Novel” may be understood
temporally as axioms that are added at a later time to a knowledge base, or, more commonly, with respect to existing
axioms in the knowledge base. However, unlike knowledge graphs, a knowledge base (ontology) has an infinitely
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large deductive closure with deductively entailed statements. Those statements can be considered “novel” because
they do not exist in the knowledge base but can effectively be generated by a deductive reasoner. Therefore, knowl-
edge base completion can have a two-fold presentation: (1) knowledge base completion as approximate entailment,
where the completion system first generates the deductively entailed statements, and then, with potentially lower
confidence, the system generates the non-entailed but probable statements, and (2) the completion system generates
only non-entailed statements and, optionally, has access to information to the deductive closure.

Transversally, knowledge base completion methods can be evaluated based on the type of axioms to complete.
We distinguish between two sub-tasks: “TBox completion”, when the axioms to generate are terminological and are
of the form C ⊑ D, and “ABox completion”, when the axioms to generate are assertional and are of the form C(a)
or r(a, b). TBox completion systems have been proposed as supporting tools to assist or automate ontology curation
procedures [10, 19] or to match concepts between ontologies [19]. ABox completion systems are evaluated along-
side neuro-symbolic reasoners in challenges like SemREC [10]. Furthermore, ABox completion can be regarded as
knowledge graph completion enhanced with ontological knowledge [33].

Several neuro-symbolic approaches have been developed to perform the knowledge base completion tasks [18,
19, 37, 41], and most are based on generating embeddings that preserve some logical properties of a knowledge base.
Methods which perform knowledge base completion follow different strategies. One type of methods corresponds
to transforming ontology axioms into graphs. Under this approach, axioms in a DL knowledge base are transformed
into a graph and then knowledge graph completion methods are applied [18]. Although this strategy has proved to
be useful, this set of methods does not capture all information in axioms and the embedding process is usually not
invertible [73]; therefore, these methods do not allow exact inference of axioms and are often used for similarity-
based tasks.

Another type of methods for embedding DL knowledge bases constructs an approximate model of the knowl-
edge base. ELEmbeddings [41] represent concepts as n−dimensional balls and roles are represented as geometric
translations of concepts. By modifying the geometric structure from balls to boxes, methods such as BoxEL [71]
guarantee intersectional closure of concepts (i.e., the intersection of two boxes is a box). However, representing roles
as translations can only encode one-to-one relations. Therefore, Box2EL [37] represents roles as two boxes, repre-
senting the domain and the codomain of the role, respectively. This representation enables encoding many-to-many
relations. However, all these methods target the EL++ language, which is a lightweight language that does not sup-
port the construction of axioms involving full negation or universal restrictions, therefore they cannot leverage more
expressive statements in DL knowledge bases. In this regard, methods such as FALCON [65], which is a method
similar to Logic Tensor Networks [9], can construct an approximate model for ALC knowledge bases. FALCON
represents concepts as fuzzy sets and treats logical connectives as fuzzy operators [66]. However, FALCON requires
the existence of individuals to populate the fuzzy sets, which is a limiting factor in cases involving knowledge bases
without individuals such as the Gene Ontology (GO). Another approach for modeling the ALC language is found
in [53] with a theoretical analysis on the use of axis-aligned cones to represent ontology concepts.

To overcome limitations of current ontology embedding approaches, we propose CatE, a lattice-preserving em-
bedding method for the ALC language. Our approach relies on the fact that the concept descriptions in a DL
knowledge base can be arranged in a lattice structure. The lattice construction of DL concepts can be formulated in
the context of Formal Concept Analysis [7], using connections between DL and Modal Logic [6, 61, 68] or using
connections between DL and Category Theory [16, 27]. We use the category-theoretical formulation and construct a
lattice out of all concept descriptions that are sub-concepts of any concept description in the knowledge base. After
materializing the lattice we represent its elements as vectors in an ordered-vector space. To enforce the ordered
structure of the vector space, we use an order-embedding method. We apply CatE and show that it can outperform
state-of-the-art methods in the different forms of the knowledge base completion task. Additionally, arranging con-
cept descriptions in a lattice enables the application of (partial) procedures that can introduce new information to
the lattice in terms of new elements and morphisms. We apply partial saturation to the lattice and show that these
procedures can improve the knowledge completion performance on some metrics such as mean reciprocal rank. Our
contributions are the following:

– We propose an embedding method for ALC knowledge bases that preserves the lattice structure of the seman-
tics of concept descriptions.
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– We show that our method can perform competitively on generating statements in the deductive closure and
generating probable statements.

– We show that our method can perform competitively in both TBox and ABox completion tasks.
– We show that partial saturation procedures can enhance the embedding representation of ontology concept

descriptions.

2. Preliminaries

2.1. Description Logics

A Description Logic signature Σ = (C,R, I) consists of a set of concept names C, a set of role names R, and a
set of individual names I. In the Description Logic ALC, all concept names are concept descriptions; if A and B are
concept descriptions, r a role name, and a, b are individual names, then A⊓B, A⊔B, ¬A, ∃r.A, and ∀r.A are concept
descriptions; A ⊑ B, A(a) and r(a, b) are axioms. A set of axioms is an ALC theory [8].

An interpretation I of an ALC theory consists of an interpretation domain ∆I and an interpretation function ·I
such that for every concept name C ∈ C, CI ⊆ ∆I ; for every individual name a ∈ I, aI ∈ ∆I ; and every role
name r ∈ R, rI ∈ ∆I ×∆I ; and, inductively:

⊥I = ∅

⊤I = ∆I

(¬A)I = ∆I\AI ,

(C ⊓ D)I = CI ∩ DI

(C ⊔ D)I = CI ∪ DI ,

(∃r.C)I =
{

a ∈ ∆I | ∃b.((a, b) ∈ rI ∧ b ∈ CI)
}

(∀r.C)I =
{

a ∈ ∆I | ∀b.((a, b) ∈ rI → b ∈ CI)
}

An interpretation I is a model for an axiom C ⊑ D iff CI ⊆ DI , for an axiom B(a) iff aI ∈ BI , and for an
axiom r(a, b) if and only if (aI , bI) ∈ rI [8]. Given an ALC theory T , an axiom is entailed from T if it is true in
all models of T .

3. Construction of the Lattice Structure

A preorder (P,⩽) contains a set P equipped with a reflexive and transitive binary relation ⩽. A partial order is
a preorder that is also antisymmetric. A lattice is a partially ordered set where each two-element subset has a least
upper bound and greatest lower bound. If a lattice has a greatest element, it is denoted ⊤, and if it has a least element
it is denoted ⊥ [25].

In a ALC theory T , the set C of concept names can be used to create arbitrarily complex and infinitely many
concept descriptions. We consider only the concept descriptions in the knowledge base with their sub-expressions
and call this set C̃. We furthermore denote C̃I = {CI | C ∈ C̃}.

The pair (C̃I ,⊆) can form a lattice where concept descriptions CI ,DI ∈ C̃I stand in a relationship if CI ⊆
DI . Within models of ALC theories, the relation ⊆ is reflexive and transitive. For a pair of concepts descriptions
AI , B ∈ C̃I , the least upper bound is denoted as (A ∪ B)I and the greatest lower bound is denoted using (A ∩ B)I .
Additionally, for any concept description X it holds ⊥I ⊆ XI ⊆ ⊤I .

To represent the lattice (C̃I ,⊆), we use the syntactic representation of the axioms (where the operator is ⊑ and
not ⊆) and denote it as (C̃,⊑) (Figure 1). The representation based on ⊑ does not hold all the properties of lattices;
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Fig. 1. Lattice representation. ⊥ is the bottom element and ⊤ is to top element. Arrows represent the ⊑ operator.

however, it is used as an intermediate structure between the lattice (C̃I ,⊆) and the embedding space which will be
introduced later (Section 3.2).

The concepts in C̃ are materialized following a recursive process and, depending on the type of concept descrip-
tions, C̃ can be extended with new elements. We rely on connections between DL and Category Theory described
in [27].

Intersection of concepts: Given a concept description A ⊓ B in the theory, we add the following relationships to
(C̃,⊑): A ⊓ B ⊑ A and A ⊓ B ⊑ B. Additionally, for any X, if relationships X ⊑ A ⊓ B are found in (C̃,⊑), we add
the relationships X ⊑ A and X ⊑ B (Figure 2a). Concepts A, B are processed recursively.

Union of concepts: Given a concept description A ⊔ B in the theory, we add the following relationships to (C̃,⊑):
A ⊑ A ⊔ B and B ⊑ A ⊔ B. Additionally, for any X, if relationships A ⊔ B ⊑ X are found in (C̃,⊑), we add the
relationships A ⊑ X and B ⊑ X (Figure 2b). Concepts A, B are processed recursively.

Negation of concepts: Given a concept ¬C, elements C ⊓ ¬C and C ⊔ ¬C are added to ~C. The relationships
C ⊓ ¬C ⊑ ⊥, ⊤ ⊑ C ⊔ ¬C are added to (C̃,⊑). Additionally, for any X, if the relationship C ⊓ X ⊑ ⊥ is found
in (C̃,⊑), we add the relationship X ⊑ ¬C, and if the relationship ⊤ ⊑ C ⊔ X is found in (C̃,⊑), we add the
relationship ¬C ⊑ X (Figure 2c). The concept C is processed recursively.

Existential restriction of concepts: First, an auxiliary preorder is constructed for DL roles, denoted as (R̃,⊑). In
this preorder, elements r, s stand in a relationship r ⊑ s if rI ⊆ sI or if r ⊑ s is entailed. R̃ is extended from
R during the lattice construction process. For any role r represented in R̃, elements domain(r) and codomain(r)
are added to C̃. Given a concept description ∃r.C, the relationship r∃r.C ⊑ r is added to (R̃,⊑). Relationships
codomain(r∃r.C) ⊑ C, domain(r∃r.C) ⊑ ∃r.C and ∃r.C ⊑ domain(r∃r.C) are added to (C̃,⊑). Additionally, if there
are roles s ∈ R̃ with relationships s ⊑ r and codomain(r) ⊑ C, the relationship domain(s) ⊑ domain(r∃r.C) is
added to (C̃,⊑). The concept C is processed recursively.

Universal restriction of concepts: Given a concept description ∀r.C, the element ¬∃r.¬C is added to C̃ with
relationships ∀r.C ⊑ ¬∃r.¬C and ¬∃r.¬C ⊑ ∀r.C. Furthermore, if there are roles s ∈ R̃ with relationships s ⊑ r
and domain(s) ⊑ ∀r.C, the relationship codomain(r) ⊑ C is added to (C̃,⊑). Concepts ¬∃r.¬C, ¬C and C are
processed recursively.

Subsumption axioms: Axioms C ⊑ D are incorporated directly to the lattice. Additionally, relationships ⊤ ⊑
¬C ⊔ D are added to (C̃,⊑). Concepts C and D are processed recursively.

Class assertion axioms: Given an axiom C(a), we construct the element {a} in C̃ with the following relationships:
⊥ ⊑ {a}, {a} ⊑ C and {a} ⊑ ⊤.

Role assertion axioms: Given an axiom r(a, b), we construct elements {a}, {b} in C̃ with the following relation-
ships: ⊥ ⊑ {a}, {a} ⊑ ⊤, ⊥ ⊑ {b}, {b} ⊑ ⊤ and {a} ⊑ ∃r.{b}.

Every operator (⊓ | ⊔ | ¬ | ∃ | ∀ |⊑) introduces a constant number of elements into C̃ and a constant number
of relationships in (C̃,⊑). Therefore, for a formula in the knowledge base with n operators the space and time
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BB���

(c) Negation

Fig. 2. Lattice representations of complex concept descriptions.

complexity to process it is O(n). The lattice construction process is not complete since we consider a subset C̃ from
the infinite set C of possible concept descriptions.

3.1. Saturation procedures

The lattice structure of concept descriptions allow for implementing partial saturation procedures. By “satura-
tion” we refer to the process of adding new elements and morphisms to the lattice until a fixed point is reached.
However, the saturation process we perform is partial, in the sense that the fixed point might not be actually ob-
tained but some additional information is added to the lattice. Since the lattice is equipped with a transitive relation,
an inmediate saturation rule is to compute the transitive closure of the lattice. Additionally, as specified in [16],
certain deduction rules can be transformed into partial saturation procedures. We specify the rules below in the
form of precondition ⇒ consequence, where precondition denotes the set of morphisms existing in the lattice
and consequence denotes the set of elements and morphisms to be added to the lattice. Therefore, for elements
C,D, E ∈ C̃ and for elements in r ∈ R̃:

C ⊑ ¬D ⇒ D ⊑ ¬C (1)

C ⊓ D ⊑ ⊥ ⇒ C ⊑ ¬D (2)

⊥ ⊑ C ⊔ D ⇒ ¬C ⊑ D (3)

C ⊑ D,D ⊑ E ⇒ C ⊑ E (4)

C ⊑ D ⇒ ∃r.C ⊑ ∃r.D (5)
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Equations 1, 2, 3 are applicable to a subset of the asserted morphisms in the lattice and all of them introduce one
new element to the lattice. Equation 4 correspond to the transitive closure of the lattice and only introduces new
morphisms but not new elements. Equation 5 is applicable to all morphisms in the lattice and introduces 2 × |R̃|
elements per each morphisms in the lattice. Due to the large space complexity of Equation 5, we do not consider it
in our analysis.

3.2. Embedding into an ordered-vector space

With the structure (C̃,⊑) in place, we proceed to embed it into an ordered-vector space. This step is crucial
for preserving the hierarchical relationships within the lattice, ensuring that our embeddings reflect the inherent
ordering of concepts descriptions. We use an ordered-vector space (X,⪯) over Rn where, for elements in a, b ∈ X
with a = (a1, ..., an) and b = (b1, ..., bn), a ⪯ b if and only if a1 ⩽ b1, ..., an ⩽ bn.

Theorem 1 ((X,⪯) is a partial order). The pair (X,⪯) over Rn, where for elements a, b ∈ X with a = (a1, ..., an)
and b = (b1, ..., bn), a ⪯ b if and only if a1 ⩽ b1, ..., an ⩽ bn, is a partial order.

Proof. We demonstrate for each property of a partial order:

1. Reflexivity (⇒): Let a ∈ X with a ⪯ a. By definition, we have ai ⩽ ai for any i. (⇐): Let a ∈ X. Since
ai ⩽ ai for any i, then a ⪯ a.

2. Transitivity (⇒): Let a, b, c ∈ X. If a ⪯ b and b ⪯ c, we have that ai ⩽ bi and bi ⩽ ci; therefore, ai ⩽ ci for
any i. (⇐): Let a, b, c ∈ X with ai ⩽ bi and bi ⩽ ci for any i. It follows that ai ⩽ ci, which implies a ⪯ c.

3. Antisymmetry (⇒): Let a, b ∈ X. If a ⪯ b and b ⪯ a, it follows that ai ⩽ bi and bi ⩽ ai. Therefore, ai = bi

and a = b. (⇐): Let a, b ∈ X with ai = bi for any i. It implies that ai ⩽ bi and bi ⩽ ai, therefore, a ⪯ b and
b ⪯ a.

Consequently, we introduce a parameterized function fθ which maps objects in (C̃,⊑) to the ordered-vector space
(X,⪯) over Rn. In this way, we intend fθ to be a lattice-preserving function of (C̃,⊑). Since fθ is unknown, our task
is to find the set of parameters θ ∈ Θ that accommodates to the intended structure of the space X. We optimize fθ
using gradient descent. We use the following order-preserving scoring function [67]:

s(A, B) = ||max(0, fθ(A)− fθ(B))||2 (6)

for elements A, B ∈ C̃ with a relationship A ⊑ B. If fθ(A) ⪯ fθ(B), then s(A, B) = 0, and otherwise s(A, B) > 0.
We apply the following loss function to all relationships A ⊑ B ∈ (C̃,⊑):

L =
∑

A⊑B∈(C̃,⊑)

∑
A⊑B′ /∈(C̃,⊑)

s(A, B) + max (0, γ − s(A, B′)) (7)

Relationships A ⊑ B′ /∈ (C̃,⊑) are called negative samples and are generated by replacing B in an existing
relationship A ⊑ B by a corrupted entity B′ obtained by random sampling in a uniform distribution. The parameter
γ is a margin parameter enforcing a minimum score value of the negative samples.

We show that the space X gets a partial order structure whenever the loss function L = 0.

Theorem 2 (Lattice-preserving embeddings). Let O be a ALC theory with signature Σ = (C,R, I) and (C̃,⊑)
the lattice of concepts descriptions generated from O. Let (X,⪯) be an ordered-vector space where for elements
a, b ∈ X with a = (a1, ..., an) and b = (b1, ..., bn), a ⪯ b if and only if a1 ⩽ b1, ..., an ⩽ bn. Let fθ be a function
mapping objects from C̃ to X. If L = 0, then fθ is a lattice preserving function of (C̃,⊑) into (X,⪯).
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Table 1
Number of axioms in training, validation and testing ontologies and number of relationships in the corresponding training lattices.

Dataset Training Validation Testing Lattice

ORE1 61245 7578 15157 364849
FoodOn 34224 2977 5957 631423
GO 81844 7260 14521 1257443
PPI 351435 12038 12040 4479085

Proof. Let us assume that L = 0 and there exist a relationship A ⊑ B in the lattice such that fθ(A) ⪯̸ fθ(B),
meaning that the order is not preserved in the vector space X. Reordering the definition of L in Equation 7, we
have that L = s(A, B) + K, where K is a non-negative number. Therefore, since L = 0, it follows that s(A, B) =
||max 0, fθ(A)− fθ(B)|| = 0. Consequently, we have that fθ(A) ⪯ fθ(B), which leads to a contradiction.

Now that we have shown that any relationship A ⊑ B in the lattice (C̃,⊑) is preserved as fθ(A) ⪯ fθ(B) in (X,⪯),
we now verify that fθ preserves partial-order properties:

1. Reflexivity: Let A ⊑ A be a relationship in (C̃,⊑). Since L = 0, it implies that fθ(A) ⪯ fθ(A).
2. Transitivity: Let A ⊑ B and B ⊑ C be relationships in (C̃,⊑). Since L = 0, it follows that fθ(A) ⪯ fθ(B) and

fθ(B) ⪯ fθ(C) and, by the transitive property of ⪯ (Theorem 1), fθ(A) ⪯ fθ(C).
3. Antisymmetry: Let A ⊑ B and B ⊑ A be relationships in (C̃,⊑). Since L = 0, it follows that fθ(A) ⪯ fθ(B)

and fθ(B) ⪯ fθ(A) and, by the antisymmetry property of ⪯ (Theorem 1), fθ(A) = fθ(B).

4. Evaluation

To show the effectiveness of our method, we evaluate on the following tasks: (1) generation of entailed axioms
and (2) generation of probable axioms. In the task of generating entailed axioms, we use the ORE1 dataset from
SemREC [10] and generate axioms of the form C(a), where C is a concept name and a is an individual. In the case
of generating probable axioms, we constructed datasets using GO [4] and FoodOn [26] to generate axioms of the
form C ⊑ D, where C,D are concept names. For each case, we also show that partially saturating the constructed
lattice impacts the performance of axiom generation. Additionally, we applied our method to the biomedical task of
predicting protein–protein interactions. This task is a form of generation of probable statements of the form r(a, b),
where r is a role and a, b are individuals. We show information about datasets in Table 1.

4.1. Experimental Setup

To find the optimal hyperparameters for our method, we performed a grid search over parameters: embedding
dimension ∈ [50, 100, 200], margin (γ) ∈ [0, 0.01, 0.1, 1], number of negative samples ∈ [1, 2, 4], batch size ∈
[8192, 16384, 32768], and learning rate ∈ [1e−5, 1e−4, 1e−3, 1e−2]. We used the Adam optimizer [39] with a Cyclic
Learning Rate scheduler [64].

As baseline methods we selected those approaches that use only the ontology axioms, without any external knowl-
edge such as text[18, 19]. Therefore, we selected ELEmbeddings [41] and Box2EL [37]. We used the implementa-
tions provided in the mOWL library [75]. To obtain optimal parameters for baseline methods, we performed a grid
search over embedding dimension ∈ [50, 100, 200], margin ∈ [0, 0.01, 0.1] batch size ∈ [5000, 10000, 20000] and
learning rate ∈ [1e−5, 1e−4, 1e−3]. Additionally, we compared with FALCON [65]; however, due to high memory
and time requirements, we were unable to test different hyperparameters for this method. All selected hyperparam-
eters are provided in the Appendix A.

We report a variety of rank-based metrics such as Mean Rank (MR), Mean Reciprocal Rank (MRR), Hits@3,
Hits@10, Hits@100 and ROC AUC. In all tasks we report filtered metrics only and filter statements from the
training set. In the task of generating axioms C(a), we additionally filter statements from the deductive closure of
the training set.
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Table 2
Prediction of axioms C(a) where C is a concept and a is an individual. We selected the ORE1 dataset proposed in [10].

Method MR MRR Hits@3 Hits@10 Hits@100 AUC

ELEmbeddings 105 0.12 0.08 0.22 0.87 0.99
Box2EL 122 0.10 0.08 0.18 0.70 0.98
FALCON 603 0.02 0.00 0.02 0.34 0.92
CatE 37 0.18 0.10 0.51 0.96 0.99

Table 3
TBox completion task over axioms C ⊑ D in GO and FoodOn.

Method
GO FoodOn

MR H@10 H@100 AUC MR H@10 H@100 AUC

ELEmbeddings 3562 0.19 0.37 0.92 3336 0.25 0.38 0.88
Box2EL 6621 0.01 0.07 0.85 2763 0.06 0.19 0.90
FALCON (5 models) 8982 0.02 0.08 0.79 3815 0.02 0.12 0.86
CatE 2968 0.22 0.58 0.93 2764 0.30 0.47 0.90

4.2. Generating Entailed Axioms C(a)

The SemREC challenge [10], which evaluates neuro-symbolic reasoners, provides a number of benchmark
datasets. We selected a representative data set called ORE1. We used the ORE1 dataset to test our method on
the task of predicting axioms C(a), where C is a concept description and a is an individual. We perform a ranking-
based evaluation, where we rank every testing statement C(a) against every C′(a) where C′ is a named concept. We
show results in Table 2, where we can see CatE performs better than baseline methods across all metrics.

4.3. Generating Probable Axioms C ⊑ D

To evaluate on the task of generating probable axioms, we generate two benchmark sets following procedures
designed in previous methods [18, 50]. We create two datasets using the Gene Ontology [4] and the Food Ontol-
ogy [26]. In each ontology we remove 30% of the axioms C ⊑ D uniformly at random and distribute 10% for
validation and 20% for testing. The training set contains the 70% of the subsumption axioms together with the other
axioms existing in the ontology.

We focus on the prediction of subsumption axioms C ⊑ D and perform a rank-based evaluation ranking scores
of axioms of interest C ⊑ D over all axioms C ⊑ D′ where D′ are named concepts. Table 3 shows the results. We
can see that CatE consistently outperforms baselines in all metrics.

4.4. Protein–Protein Interaction Prediction

Protein-protein interactions (PPIs) are direct or indirect interactions between proteins, and information about PPIs
is useful in systems biology and network-based bioinformatics methods. While PPIs can be investigated experimen-
tally, several strategies have been developed to predict them using a variety of information, including the predicted
or experimentally determined functions of proteins. The functions of proteins can be represented using the GO, and
if X is a class from the GO, the axiom p1 ⊑ ∃hasFunction.X asserts that the class of proteins p1 has function
X. PPIs can be encoded in axioms interacts(p1, p2) where p1, p2 are proteins. In order to apply our method, we
need to ensure that elements ∃interacts.pi exists in the lattice for any class of proteins pi. Therefore, we added the
relationships ⊥ ⊑ ∃interacts.pi and ∃interacts.pi ⊑ ⊤ to the lattice structure for all classes of proteins pi. We used
the PPI dataset provided in [75]. We compare our method against state-of-the-art methods such as ELEmbeddings
and Box2EL. [43], [71], We show the results in Table 4, where we can see that CatE is not able to outperform over
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Table 4
Protein-protein interaction prediction on Yeast. Left-side shows the results on PPI axioms. Right side shows the results on axioms C ⊑ D that
are learned during training.

Method
PPI axioms r(a, b) Axioms C ⊑ D

MR MRR H@3 H@10 H@100 AUC MR H@100 AUC

ELEmbeddings 289 0.10 0.09 0.25 0.73 0.95 23812 0.00 0.53
Box2EL 188 0.17 0.19 0.43 0.81 0.97 23234 0.00 0.54
CatE 223 0.08 0.07 0.18 0.69 0.96 8936 0.28 0.82

baselines. The PPI benchmark relies on the assumption that the information GO acts as background knowledge to
predict protein–protein interactions. To further investigate on this task, we evaluate how well the methods capture
the hierarchy of GO functions, which are axioms of the type C ⊑ D. We compute the deductive closure of axioms
C ⊑ D using the ELK reasoner [38], and evaluate the capability of each method to generate the axioms in this
new set. We find that ELEmbeddings and Box2EL do not capture the semantics of GO axioms at all, yet they can
perform PPI predictions. Originally, ELEmbeddings and Box2EL are trained with negative samples just for PPI
axioms, which can cause the other axioms types to converge to a trivial solution. Since CatE uses negative samples
for all relationships in the lattice, it can predict PPIs while capturing other type of information in GO. Our analysis
shows that predicting PPIs on its own is not sufficient to show that a particular embedding method is utilizing the
background knowledge. Further analysis on embedding methods should be required, which is out of the scope of
this work.

4.5. Effect of partial saturation procedures

To analyze the impact of the saturation procedures, we extend the lattices of the ORE1, GO and FoodOn use
cases. We first experiment with the ORE1 lattice as it is the smallest one and apply three types of saturation: (a) S1,
which consists of applying Equations 1, 2, 3, (b) Tr, which consists on computing the transitive closure of the lattice,
and (c) S1-Tr, which consists on performing S1 followed by Tr. For GO and FoodOn use cases, which produce larger
lattices, we only apply S1 because the other settings introduce a large number of elements and morphisms which
make the optmization costly and also hinders the hyperparameter search. We show performance results in Table 5
and notice that the S1 procedure contributes to improve the Mean Reciprocal Rank and Hits@3 metrics in the three
use cases. Additionally, for ORE1, the Tr procedure improves metrics such as Mean Rank and Hits@100; however,
the combination of S1-Tr does not contribute to improve the performance.

4.6. Effect of hyperparameters

The time and space complexity of CatE increases linearly with the number of operators. However, the number
of operators can be arbitrarily large for axioms in ALC. Furthermore, hyperparameters such as embedding size and
number of negative samples can have an impact on training and/or inference time as well as on memory consump-
tion. In Table 3, we analyze how these hyperparameters impact on performance. We chose Hits@100 and ROC AUC
metrics and show that while the embedding dimension has a direct impact performance (the higher the dimension
the better the performance), the number of negative samples does not have large effect (either positive or negative).

5. Discussion

We have developed a method named CatE that generates embeddings for the ALC language. CatE consists on
materializing the lattice structure of concept descriptions found in a ALC knowledge base. Furthermore, we use
an order-preserving loss function to optimize the embedding space, and we show that when our loss function is
minimized, the embedding space preserves partial order properties. We have applied our method to different forms of
knowledge base completion tasks, and we showed that our method can outperform several state-of-the-art methods.
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Table 5
Impact of the application saturation procedures on the performance of generation of axioms.

Method MRR H@3 H@10 H@100 MR

ORE1

CatE 0.175 0.097 0.505 0.958 37
CatE-S1 0.176 0.115 0.426 0.884 46
CatE-Tr 0.164 0.104 0.381 0.991 23
CatE-S1-Tr 0.155 0.098 0.367 0.931 30

GO

CatE 0.062 0.008 0.216 0.578 2968
CatE-S1 0.066 0.011 0.226 0.595 3002

Method
FoodOn

CatE 0.087 0.023 0.298 0.473 2764
CatE-S1 0.094 0.121 0.238 0.419 3310
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Fig. 3. Impact of embedding size and number of negatives on the Hits@100 and ROC AUC over different datasets.

Additionally, we implemented saturation procedures to extend the lattices and the information therein. We showed
that saturated versions of the lattices can improve on some metrics. However, not all the saturation rules can be
applied if the knowledge bases are large because the size of the resulting lattice and the number of morphisms can
hinder the application of the optimization process. A potential direction for future work can be to generating some
concepts directly in the embedding space rather than explicitly materializing them within the lattice.

Current graph-based methods to embed DL knowledge bases (ontologies) construct graphs relying on syntactic
information therein and the embedding process is not guaranteed to be invertible. On the other hand, methods such
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as ELEmbeddings, Box2EL and FALCON are able to generate approximate models for DL knowledge bases. We
state that CatE stands in a midpoint between both types of methods. CatE looks into the syntactical information in
the knowledge base to construct a lattice and, consequently, an embedding space that is consistent to the semantics.

However, as in graph-based embeddings, CatE cannot make inferences over concepts that are not explicitly stated
in the lattice. This is a limitation that was exposed in the protein–protein interaction task, where we had to add
concept descriptions a priori in order to be able to make inferences over them. To mitigate this issue, future work
can focus on solutions based on inductive learning over knowledge graphs, which can be applicable in the context
of lattices.

6. Conclusion

We developed an embedding method for the ALC that preserves the lattice structure of concept descriptions. Our
method materializes the lattice structure following connections between Description Logics and Category Theory.
The lattice in place is embedded into an ordered-vector space. We provide empirical results that our method can
perform effectively across different tasks involving knowledge base completion.
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Appendix A. Hyperparameter Selection

Table 6
Selection of hyperparameters for the different methods with respect to the dataset used. E.S.: Embedding size, L.R.: learning rate, M: margin,
B.S.: batch size, N.N.: number of negative samples.

Method E.S. L.R. M B.S. N.N.

GO

ELEmbeddings 200 0.0001 0.1 20000 1
Box2EL 200 0.00001 0.1 20000 1
CatE 200 0.00001 1 32768 4

FoodOn

ELEmbeddings 50 0.001 0.1 20000 1
Box2EL 200 0.0001 0.1 40000 1
CatE 200 0.0001 1 8192 2

ORE1

ELEmbeddings 200 0.00001 0.01 4096 1
Box2EL 200 0.0001 0 8192 1
CatE 200 0.0001 1 32768 4

PPI

CatE 256 0.0001 0.1 2048 4
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