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Abstract.
Ontology embeddings map classes, relations, and individuals in ontologies into Rn, and within Rn similarity between entities

can be computed or new axioms inferred. For ontologies in the Description Logic EL++, several embedding methods have
been developed that explicitly generate models of an ontology. However, these methods suffer from some limitations; they do
not distinguish between statements that are unprovable and provably false, and therefore they may use entailed statements as
negatives. Furthermore, they do not utilize the deductive closure of an ontology to identify statements that are inferred but not
asserted. We evaluated a set of embedding methods for EL++ ontologies, incorporating several modifications that aim to make
use of the ontology deductive closure. In particular, we designed novel negative losses that account both for the deductive closure
and different types of negatives and formulated evaluation methods for knowledge base completion. We demonstrate that our
embedding methods improve over the baseline ontology embedding in the task of knowledge base or ontology completion.

Keywords: Ontology Embedding, Knowledge Base Completion, Description Logic EL++

1. Introduction

Several methods have been developed to embed Description Logic theories or ontologies in vector spaces [10,
11, 21, 29, 40, 42, 44, 55]. These embedding methods preserve some aspects of the semantics in the vector space,
and may enable the computation of semantic similarity, inferring axioms that are entailed, and predicting axioms
that are not entailed but may be added to the theory. For the lightweight Description Logic EL++, several geometric
embedding methods have been developed [21, 29, 40, 42, 55]. They can be proven to “faithfully” approximate
a model in the sense that, if a certain optimization objective is reached (usually, a loss function reduced to 0),
the embedding method has constructed a model of the EL++theory. Geometric model construction enables the
execution of various tasks. These tasks include knowledge base completion and subsumption prediction via either
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testing the truth of a statement under consideration in a single (approximate) model or aggregating truth values over
multiple models.

Advances on different geometric embedding methods have usually focused on the expressiveness of the em-
bedding methods; originally, hyperballs [29] where used to represent the interpretation of concept symbols, yet
hyperballs are not closed under intersection. Therefore, axis-aligned boxes were introduced [21, 44, 55]. Further-
more, EL++allows for axioms pertaining to relations, and several methods have extended the way in which relations
are modeled [21, 29, 55]. However, there are several aspects of geometric embeddings that have not yet been inves-
tigated. In particular, for EL++, there are sound and complete reasoners with efficient implementations that scale
to very large knowledge bases [26]; it may therefore be possible to utilize a deductive reasoner together with the
embedding process to improve generation of embeddings that represent geometric models.

We evaluate geometric embedding methods and incorporate deductive inference into the training process. We use
the ELEmbeddings [29], ELBE [44], and Box2EL [21] models for our experiments; however, our results also apply
to other geometric embedding methods for EL++.

Our main contributions are as follows:

– We propose loss functions that incorporate negative samples in all normal forms and account for deductive
closure during training.

– We introduce a fast approximate algorithm for computing the deductive closure of an EL++theory and use it
to improve negative sampling during model training.

– We formulate evaluation methods for knowledge base completion that account for the deductive closure during
evaluation.

This is an extended version of our previous work [35]. We now include a more comprehensive treatment of
computing the deductive closure and using the deductive closure with EL++embedding methods. We make our
code and data available at https://github.com/bio-ontology-research-group/DELE.

2. Preliminaries

2.1. Description Logic EL++

Let Σ = (C,R, I) be a signature with set C of concept names, R of role names, and I of individual names. Given
A, B ∈ C, r ∈ R, and a, b ∈ I, EL++concept descriptions are constructed with the grammar ⊥ | ⊤ | A ⊓ B | ∃r.A |
{a}. ABox axioms are of the form A(a) and r(a, b), TBox axioms are of the form A ⊑ B, and RBox axioms are
of the form r1 ◦ r2 ◦ · · · ◦ rn ⊑ r. EL++generalized concept inclusions (GCIs) and role inclusions (RIs) can be
normalized to follow one of these forms [3]: C ⊑ D (GCI0), C ⊓ D ⊑ E (GCI1), C ⊑ ∃R.D (GCI2), ∃R.C ⊑ D
(GCI3), C ⊑ ⊥ (GCI0-BOT), C ⊓D ⊑ ⊥ (GCI1-BOT), ∃R.C ⊑ ⊥ (GCI3-BOT) and r ⊑ s (RI0), r1 ◦ r2 ⊑ s (RI1),
respectively.

To define the semantics of an EL++ theory, we use [3] an interpretation domain ∆I and an interpretation function
·I . For every concept A ∈ C, AI ⊆ ∆I ; individual a ∈ I, aI ∈ ∆I ; role r ∈ R, rI ∈ ∆I ×∆I . Furthermore, the
semantics for other EL++ constructs are the following (omitting concrete domains and role inclusions):

⊥I = ∅

⊤I = ∆I ,

(A ⊓ B)I = AI ∩ BI ,

(∃r.A)I =
{

a ∈ ∆I | ∃ b : ((a, b) ∈ rI ∧ b ∈ AI)
}
,

(a)I = {a}

An interpretation I is a model for an axiom C ⊑ D if and only if CI ⊆ DI , for an axiom B(a) if and only if
aI ∈ BI ; and for an axiom r(a, b) if and only if (aI , bI) ∈ rI [4].

https://github.com/bio-ontology-research-group/DELE
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2.2. Knowledge Base Completion

The task of knowledge base completion is the addition (or prediction) of axioms to a knowledge base that are
not explicitly represented. We call the task “ontology completion” when exclusively TBox axioms are predicted.
The task of knowledge base completion may encompass both deductive [24, 48] and inductive [7, 15] inference
processes and give rise to two subtly different tasks: adding only “novel” axioms to a knowledge base that are not
in the deductive closure of the knowledge base, and adding axioms that are in the deductive closure as well as some
“novel” axioms that are not deductively inferred; both tasks are related but differ in how they are evaluated.

Inductive inference, analogously to knowledge graph completion [12], predicts axioms based on patterns and
regularities within the knowledge base. Knowledge base completion, or ontology completion, can be further distin-
guished based on the information that is used to predict “novel” axioms. We distinguish between two approaches to
knowledge base completion: (1) knowledge base completion which relies solely on (formalized) information within
the knowledge base to predict new axioms, and (2) knowledge base completion which incorporates side information,
such as text, to enhance the prediction of new axioms. Here, we mainly consider the first case.

3. Related Work

3.1. Graph-Based Ontology Embeddings

Graph-based ontology embeddings rely on a construction (projection) of graphs from ontology axioms mapping
ontology classes, individuals and roles to nodes and labeled edges [57]. Embeddings for nodes and edge labels are
optimized following two strategies: by generating random walks and using a sequence learning method such as
Word2Vec [39]or by using Knowledge Graph Embedding (KGE) methods [54]. These type of methods have been
shown effective on knowledge base and ontology completion [10] and have been applied to domain-specific tasks
such as protein–protein interaction prediction [10] or gene–disease association prediction [1, 11]. Graph-based
methods rely on adjacency information of the ontology structure but cannot easily handle logical operators and
do not approximate ontology models. Therefore, graph-based methods are not “faithful”, i.e., do not approximate
models, do not allow determining whether statements are “true” in these models, and therefore cannot be used to
perform semantic entailment.

3.2. Geometric-Based Ontology Embeddings

Multiple methods have been developed for the geometric construction of models for the EL++ language. ELEm-
beddings [29] constructs an interpretation of concept names as sets of points lying within an open n-dimensional ball
and generates an interpretation of role names as the set of pairs of points that are separated by a vector in Rn, i.e., by
the embedding of the role name. EmEL++ [40] extends ELEmbeddings with more expressive constructs such as role
chains and role inclusions. ELBE [44] and BoxEL [55] use n-dimensional axis-aligned boxes to represent concepts,
which has an advantage over balls because the intersection of two axis-aligned boxes is a box whereas the intersec-
tion of two n-balls is not an n-ball. BoxEL additionally preserves ABox facilitating a more accurate representation
of knowledge base’s logical structure by ensuring, e.g., that an entity has the minimal volume. Box2EL [21] rep-
resents ontology roles more expressively with two boxes encoding the semantics of the domain and codomain of
roles. Box2EL enables the expression of one-to-many relations as opposed to other methods. Axis-aligned cone-
shaped geometric model introduced in [42] deals with ALC ontologies and allows for full negation of concepts and
existential quantification by construction of convex sets in Rn. This work has not yet been implemented or evaluated
in an application.

3.3. Knowledge Base Completion Task

Several recent advancements in the knowledge base completion rely on side information as included in Large
Language Models (LLMs). [23] explores how pretrained language models can be utilized for incorporating one on-
tology into another, with the main focus on inconsistency handling and ontology coherence. HalTon [9] addresses
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the task of event ontology completion via simultaneous event clustering, hierarchy expansion and type naming uti-
lizing BERT [13] for instance encoding. [33] formulates knowledge base completion task as a Natural Language
Inference (NLI) problem and examines how this approach may be combined with concept embeddings for identi-
fying missing knowledge in ontologies. As for other approaches, [38] proposes a method that converts an ontology
into a graph to recommend missing edges using structure-only link analysis methods, [51] constructs matrix-based
ontology embeddings which capture the global and local information for subsumption prediction. All these methods
use side information from LLMs and would not be applicable, for example, in the case where a knowledge base is
private or consists of only identifiers; we do not consider methods based on pre-trained LLMs here as baselines.

3.4. Approximate Semantic Entailment

We follow [19] to state that when a model M of a theory T is also a model of an axiom C ⊑ D defined over T , we
call it entailment and denote it as T |= C ⊑ D. In this sense, semantic entailment can be understood as entailment
over all the models of T , which is expressed as Mod(T ) ⊆ Mod(C ⊑ D). Geometric-based ontology embedding
methods construct geometric models for EL++theories. However, since the collection Mod(T ) is a class, it is not
possible to construct all the possible geometric models. Therefore, we refer as approximate semantic entailment to
the construction of a finite set of geometric models for a EL++theory.

In the context of bioinformatics, methods such as DeepGOZero [28] formulate the prediction of protein functions
as an entailment problem, relying on ELEmbeddings to generate a model for the Gene Ontology. Subsequently,
the extension to approximate semantic entailment is implemented in [30], where it is effectively showed that the
generation of multiple models improves predictive performance of protein functions.

4. Methods

4.1. Datasets

4.1.1. Gene Ontology & STRING Data
Following previous works [21, 29, 44] we use common benchmarks for knowledge-base completion, in particular

a task that predicts protein–protein interactions (PPIs) based on the functions of proteins. We also use the same data
for the task of protein function prediction. For these tasks we use two datasets, each of them consists of the Gene
Ontology (GO) [59] with all its axioms, protein–protein interactions (PPIs) and protein function axioms extracted
from the STRING database [37]; each dataset focuses on only yeast proteins. GO is formalized using OWL 2
EL [17].

For the PPI yeast network we use the built-in dataset PPIYeastDataset available in the mOWL [58] Python
library (release 0.2.1) where axioms of interest are split randomly into train, validation and test datasets in ratio
90:5:5 keeping pairs of symmetric PPI axioms within the same dataset, and other axioms are placed into the training
part; validation and test sets are made up of TBox axioms of type {P1} ⊑ ∃interacts_with.{P2} where P1, P2

are protein names. The GO version released on 2021-10-20 and the STRING database version 11.5 were used.
Alongside with the yeast interacts_with dataset we collected the yeast has_ f unction dataset organized in the same
manner with validation and test parts containing TBox axioms of type {P} ⊑ ∃has_ f unction.{GO}. Based on
the information in the STRING database, in PPI yeast, the interacts_with relation is symmetric and the dataset
is closed against symmetric interactions. We normalize each train ontology using the updated implementation of
the jcel [36] reasoner 1 where we take into consideration newly generated concept and role names. Although role
inclusion axioms may be utilized within the Box2EL framework we ignore them since neither ELEmbeddings nor
ELBE incorporate these types of axioms. Table in the appendix A shows the number of GCIs of each type in the
datasets and the number of concepts and roles after normalization. For more precise evaluation of novel knowledge
prediction we remove entailed axioms from the test set for function prediction task based on the precomputed
deductive closure of the train ontology (see Section 5.2.1).

1https://github.com/julianmendez/jcel/pull/12
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4.1.2. Food ontology
Food Ontology [14] contains structured information about foods formalized in SRIQ DL expressivity [10] in-

volving terms from UBERON [41], NCBITaxon [16], Plant Ontology [22] etc. The data for subsumption prediction
was extracted from the case studies used to evaluate OWL2Vec* [10]2; the train part of the ontology was restricted
to EL fragment and normalized using the jcel [36] reasoner. Since the normalization procedure splits each complex
axiom into a set of shorter axioms including subsumptions between atomic concepts from the signature, it may
result in adding axioms represented in the validation or test part of the ontology to the train part; to avoid this,
we filtered out such axioms from the original validation and test datasets after the train ontology for subsumption
prediction was normalized. Additionally, as described in Section 4.1.1, we remove entailed axioms from the test
dataset. Statistics about the number of axioms of each GCI type, relations and classes can be found in Appendix B.

4.2. Evaluation Scores and Metrics

For GO & STRING data, we predict GCI2 axioms of type {P1} ⊑ ∃interacts_with.{P2} or {P} ⊑
∃has_ f unction.{GO} depending on the dataset. On Food Ontology, we predict GCI0 axioms of type C ⊑ D, C
and D are arbitrary classes from the signature. For each axiom type, we use the corresponding loss expressions
to score axioms. This is justified by the fact that objective functions are measures of truth for each axiom within
constructed models.

The predictive performance is measured by the Hits@n metrics for n = 1, 10, 100, macro and micro mean rank,
and the area under the ROC curve (AUC ROC). For rank-based metrics, we calculate the score of C ⊑ ∃R.D or
C ⊑ D for every class C from the test set and for every D from the set C of all classes (or subclasses of a certain
type, such as proteins or functions for domain-specific cases) and determine the rank of a test axiom C ⊑ ∃R.D.
For macro mean rank and AUC ROC, we consider all axioms from the test set; for micro metrics, we compute
corresponding class-specific metrics averaging them over all classes in the signature:

micro_MRC⊑∃R.D = Mean(MRC({C ⊑ ∃R.D, D ∈ C})) (1)

micro_MRC⊑D = Mean(MRC({C ⊑ D, D ∈ C})) (2)

micro_AUC_ROCC⊑∃R.D = Mean(AUC_ROCC({C ⊑ ∃R.D, D ∈ C})) (3)

micro_AUC_ROCC⊑D = Mean(AUC_ROCC({C ⊑ D, D ∈ C})) (4)

Additionally, we remove axioms represented in the train set or deductive closures (see Section 5.2.1) to obtain
corresponding filtered metrics (FHits@n, FMR, FAUC).

4.3. Training Procedure

All models are optimized with respect to the sum of individual GCI losses (here we define the loss in most general
case using all positive and all negative losses):

L = lC⊑D + lC⊓D⊑E + lC⊑∃R.D + l∃R.C⊑D + lC⊑⊥ + lC⊓D⊑⊥ + l∃R.C⊑⊥+

+lC ̸⊑D + lC⊓D̸⊑E + lC ̸⊑∃R.D + l∃R.C ̸⊑D + lC ̸⊑⊥ + lC⊓D̸⊑⊥ + l∃R.C ̸⊑⊥
(5)

2https://github.com/KRR-Oxford/OWL2Vec-Star/tree/master/case_studies
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All model architectures are built using mOWL [58] library on top of mOWL’s base models. All models were
trained using the same fixed random seed.

All models are trained for 2,000 epochs for STRING & GO datasets and 800 epochs for Food Ontol-
ogy dataset with batch size of 32,768. Training and optimization is performed using Pytorch with Adam op-
timizer [27] and ReduceLROnPlateau scheduler with patience parameter 10. We apply early stopping if vali-
dation loss does not improve for 20 epochs. For ELEmbeddings, hyperparameters are tuned using grid search
over the following set: margin γ ∈ {−0.1,−0.01, 0, 0.01, 0.1}, embedding dimension {50, 100, 200, 400}, learn-
ing rate {0.01, 0.001, 0.0001}; since none of our datasets contains unsatisfiable classes, we do not tune the pa-
rameter ε appearing in GCI0-BOT and GCI3-BOT negative losses. For ELBE, grid search is performed over
60 randomly chosen subsets of the following hyperparameters: embedding dimension {25, 50, 100, 200}, margin
{−0.1,−0.01, 0, 0.01, 0.1}, ε ∈ {0.1, 0.01, 0.001} (for experiments with all negative losses involved), learning rate
{0.01, 0.001, 0.0001}. The same strategy is applied to Box2EL models for embedding dimension {25, 50, 100, 200},
margin γ ∈ {−0.1,−0.01, 0, 0.01, 0.1}, δ ∈ {1, 2, 4}, ε ∈ {0.1, 0.01, 0.001} (similarly, for experiments with all
negative losses involved), regularization factor λ ∈ {0, 0.05, 0.1, 0.2}, and learning rate {0.01, 0.001, 0.0001}. For
experiments with negatives filtration during training we use the same set of hyperparameters for random and filtered
mode of negative sampling. See Appendix C for details on optimal hyperparameters used.

5. Results

5.1. Negative sampling and objective functions

Ontology embedding methods select negatives by replacing one of the classes with a randomly chosen one; e.g.,
for axioms of type C ⊑ D represented within the ontology C ⊑ D′ for some arbitrary or semantically valid concept
D′. ELEmbeddings, ELBE and Box2EL use a single loss for “negatives”, i.e., axioms that are not included in the
knowledge base; the loss is used only for axioms of the form C ⊑ ∃R.D (GCI2) which are randomly sampled; nega-
tives are not sampled for other normal forms. Correspondingly, the embedding methods were primarily evaluated on
predicting GCI2 axioms (Box2EL was also evaluated on subsumption prediction); this evaluation procedure might
have introduced biases towards axioms of type GCI2, and influenced the ability of geometric models to predict
axioms of other types.

Consequently, we also sample negatives for other normal forms and add “negative” losses (i.e., losses for the
sampled “negatives”) for all other normal forms. We test the effect of the expanded negative sampling and negative
losses first on a small ontology that can be embedded and visualized in 2D space, and then on a larger application.

5.1.1. ELEmbeddings Negative Losses
For ELEmbeddings, we construct the following “negative” losses:

lossC ̸⊑D(c, d) = max(0, rη(c) + rη(d)− ∥ fη(c)− fη(d))∥+ γ) + |∥ fη(c)∥ − 1|+ |∥ fη(d)∥ − 1| (6)

lossC⊓D̸⊑E(c, d, e) = max(0,−rη(c)− rη(d) + ∥ fη(c)− fη(d))∥ − γ)+

+max(0, rη(c)− ∥ fη(c)− fη(e))∥+ γ) + max(0, rη(d)− ∥ fη(d)− fη(e))∥+ γ)+

+|∥ fη(c)∥ − 1|+ |∥ fη(d)∥ − 1|+ |∥ fη(e)∥ − 1|

(7)

loss∃R.C ̸⊑D(r, c, d) = max(0, rη(c) + rη(d)− ∥ fη(c)− fη(r)− fη(d))∥+ γ)+

+|∥ fη(c)∥ − 1|+ |∥ fη(d)∥ − 1|
(8)
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lossC ̸⊑⊥(c) = max(0, ε− rη(c)) (9)

lossC⊓D ̸⊑⊥(c, d) = max(0,−rη(c)− rη(d) + ∥ fη(c)− fη(d))∥ − γ) + |∥ fη(c)∥ − 1|+ |∥ fη(d)∥ − 1| (10)

loss∃R.C ̸⊑⊥(r, c) = max(0, ε− rη(c)) (11)

Here, γ stands for a margin parameter, and ε is a small positive number. We employ notations from the ELEmbed-
dings method where rη(c), rη(d), rη(e) and fη(c), fη(d), fη(e) denote the radius and the ball center associated with
classes c, d, e, respectively; and fη(r) denotes the embedding vector associated with relation r. There is a geometrical
part as well as a regularization part for each new negative loss forcing class centers to lie on a unit ℓ2−sphere.

As reflected in Eq. 6, we use the original GCI1-BOT loss for disjoint classes; although non-containment of
ball corresponding to C within the ball corresponding to D is not equivalent to their disjointness, the loss aims to
minimize the classes’ overlap for better optimization. The same logic applies for the negative loss in Eq. 8 where
we minimize overlap between the translated ball corresponding to class C and the ball representing D.

Negative loss 7 is constructed similarly to the C⊓D ⊑ E loss: the first part penalizes non-overlap of the classes C
and D (we do not consider the disjointness case since, for every class X, we have ⊥ ⊑ X); furthermore, for negative
sampling of axioms of this type, we vary only the E part of GCI1 axioms from the ontology, so the intersection of
C and D is non-empty by assumption. The second and the third part force the center corresponding to E not to lie
in the intersection of balls associated with C and D. Here we do not consider constraints on radius of the ball for E
class and focus only on relative positions of C,D and E class centers and overlapping of n-balls representing C and
D. Since the first part of the loss encourages classes to have a non-empty intersection, we use it as a negative loss
for GCI1-BOT axioms (see Eq. 10).

In the original method losses for axioms of type GCI0-BOT and GCI3-BOT force radii of unsatisfiable classes
to become 0. For the correspondent negative losses (see Eq. 9 and Eq. 11) we use the interpretation for satisfiable
classes as balls with non-zero radius, i.e., with radius which equals to or greater than some small positive number ε.

5.1.2. ELBE Negative Losses
ELBE is a model that relies on boxes instead of balls. The negative losses for ELBE have the following form:

lossC ̸⊑D(c, d) = ∥max(zeros,−|ec(c)− ec(d)|+ eo(c) + eo(d) + margin)∥ (12)

lossC⊓D ̸⊑E(c, d, e) = ∥max(zeros,−|ec(new)− ec(e)|+ eo(new) + eo(e) + margin)∥ (13)

loss∃R.C ̸⊑D(r, c, d) = ∥max(zeros,−|ec(c)− ec(r)− ec(d))|+ eo(c) + eo(d) + margin)∥ (14)

lossC ̸⊑⊥(c) = max(0, ε− ∥eo(c)∥) (15)

lossC⊓D̸⊑⊥(c, d) = max(0, ε− ∥eo(new)∥) (16)
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loss∃R.C ̸⊑⊥(r, c) = max(0, ε− ∥eo(c)∥) (17)

Here, similarly, ε is a small positive number, ec(c), ec(d) and eo(c), eo(d) denote the box center and the box off-
set associated with classes c, d, respectively, ec(r) denotes the embedding vector associated with relation r, and
ec(new), eo(new) correspond to the center and the offset of the box which is the result of intersection of boxes
associated with concepts c and d.

Following the same method of negative loss construction for ELEmbeddings, we use GCI1-BOT loss as a negative
loss for C ⊑ D axioms (see Eq. 12). Since axis-aligned hyperrectangles are closed under intersection, we also use
GCI1-BOT for the intersection of boxes representing C and D concepts and the E box. This property also allows us
to interpret each negative sample for C ⊓ D ⊑ ⊥ axioms as a box intersection with nonzero offset (see Eq. 16).

5.1.3. Box2EL Negative Losses
Box2EL is also based on boxes but uses a different relation model compared to ELBE. The corresponding negative

losses are designed as follows:

lossC ̸⊑D(c, d) = ∥max(0,−(d(Box(C), Box(D)) + γ))∥ (18)

lossC⊓D ̸⊑E(c, d, e) = ∥max(0,−(d(Box(C) ∩ Box(D), Box(E)) + γ))∥ (19)

loss∃R.C ̸⊑D(r, c, d) = (δ− µ(Head(r)− Bump(C), Box(D)))2 (20)

lossC ̸⊑⊥(c) = max(0, ε− ∥o(C)∥) (21)

lossC⊓D̸⊑⊥(c, d) = max(0, ε− ∥o(Box(C) ∩ Box(D))∥) (22)

loss∃R.C ̸⊑⊥(r, c) = max(0, ε− ∥o(C)∥) (23)

Additionally making use of the notations from Box2EL [21], ε is a small positive number, Box(C), Box(D), Box(E)
are boxes associated with classes c, d, e, respectively, γ denotes a margin parameter, δ is a parameter from the GCI2
negative loss, Head(r) represents the head box of relation r interpretation, and Bump(C) corresponds to a bump
vector associated with concept C.

Equations 18 and 19 are constructed in a similar fashion as for ELBE based on the GCI1-BOT loss which penalizes
the element-wise distance d between axis-aligned boxes; negative losses 21–23 encourage boxes to be non-empty.
The GCI3 negative loss reflects the structure of the original GCI3 loss, and the negative loss for GCI2 axioms forces
the minimal distance µ between the “bumped” box representing class C and box D to be at least δ.
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(a) GCI2 negative loss (b) All negative losses

Fig. 1. ELEmbeddings example. Dashed circles represent translated classes by relational vector corresponding to has_ f unction relation.

5.1.4. Experiments
We evaluate whether adding negative losses for all normal forms will allow for the construction of a better model

and improve the performance in the task of knowledge base completion. We formulate and add negative losses for
all normal forms given by equations 6–23.

First, we investigate a simple example corresponding to the task of protein function prediction using the EL-
Embeddings model. Let us consider an ontology consisting of two axioms stating that there are two disjoint
functions {GO1} and {GO2}, and proteins having these functions are also disjoint: {GO1} ⊓ {GO2} ⊑ ⊥,
∃has_ f unction.{GO1} ⊓ has_ f unction.{GO2} ⊑ ⊥. After normalization, the last axiom is substituted by the
following three axioms: A ⊓ B ⊑ ⊥, ∃has_ f unction.{GO1} ⊑ B, ∃has_ f unction.{GO2} ⊑ A where A, B are new
concept names. To visualize the results, we embed these axioms in 2D space. Figure 1(a) shows the embedding
generated with the original ELEmbeddings model. Since there are no axioms of type GCI2 represented within the
knowledge base, the model learns without any negative examples and demonstrates poor performance compared to
the model with incorporated negative losses for all normal forms as demonstrated in Figure 1(b).

Since we are interested in predicting not only axioms of type C ⊑ ∃R.D for which negative sampling is used in
the original ELEmbeddings, ELBE and Box2EL, we also examine the effect of all negative losses utilization during
training on Food Ontology for subsumption prediction (see Table 3). We find that the ELEmbeddings model does
not improve on the Food Ontology subsumption prediction task, but ELBE with additional losses improves over the
original model; Box2EL with additional losses surpasses its version with just GCI2 negative loss in Hits@n metrics.

Additionally, we evaluate the performance on a standard benchmark set for protein–protein interaction (PPI)
prediction (see Table 2). For this task, the test axioms are of the type GCI2. We observe that ELEmbeddings and
ELBE with negative losses for all normal forms integrated demonstrate superior performance compared to their
initial configurations in terms of Hits@n metrics; it also allows Box2EL to lower ranks of test axioms. Generally,
for the task of PPI prediction, additional negative sampling improves performance.

5.2. Negative sampling

In the case of knowledge base completion where the deductive closure contains potentially many non-trivial
entailed axioms, the random sampling approach for negatives may lead to suboptimal learning since some of the
axioms treated as negatives may be entailed (and should therefore be true in any model, in particular the one con-
structed by the geometric embedding method). As an example, let us consider the simple ontology consisting of two
axioms: A⊓B ⊑ C and D ⊑ B. For the A⊓B ⊑ C axiom, random negative sampling will sample A⊓B ⊑ C′ where
C′ is one of A, B,C,D. Since the knowledge base makes the axioms A ⊓ B ⊑ A, A ⊓ B ⊑ B, and A ⊓ B ⊑ C true, in
75% of cases we will sample a negative for this axiom that is actually true in each model.
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We suggest to filter selected negatives during training based on the deductive closure of the knowledge base: for
each randomly generated axiom to be used as negative, we check whether it is present in the deductive closure and,
if it is, we delete it.

ALGORITHM 1
An algorithm for computation of axioms in the deductive closure using inference rules; axioms in bold correspond to
subclass/superclass axioms derived using ELK reasoner (here we use the transitive closure of the ELK inferences);
plain axioms come from the knowledge base.

for all C ⊓ D ⊑ E in the knowledge base do

C ⊓ D ⊑ E C′ ⊑ C D′ ⊑ D E ⊑ E′

C′ ⊓ D′ ⊑ E′

end for
for all C ⊑ ∃R.D in the knowledge base do

C ⊑ ∃R.D C′ ⊑ C D ⊑ D′ R ⊑ R′

C′ ⊑ ∃R′.D′
C ⊑ ∃R.D D ⊑ ∃R′.E R ◦ R′ ⊑ S

C ⊑ ∃S .E

end for
for all ∃R.C ⊑ D in the knowledge base do

∃R.C ⊑ D C′ ⊑ C D ⊑ D′ R′ ⊑ R
∃R′.C′ ⊑ D′

end for
for all C ⊓ D ⊑ ⊥ in the knowledge base do

C ⊓ D ⊑ ⊥ C′ ⊑ C D′ ⊑ D
C′ ⊓ D′ ⊑ ⊥

C ⊓ D ⊑ ⊥
C ⊓ D ⊑ E

end for
for all ∃R.C ⊑ ⊥ in the knowledge base do

∃R.C ⊑ ⊥ C′ ⊑ C R′ ⊑ R
∃R′.C′ ⊑ ⊥

end for

5.2.1. Deductive Closure
The deductive closure of a theory T refers to the smallest set containing all statements which can be inferred

by deductive reasoning over T ; for a given deductive relation ⊢, we call T⊢ = {ϕ |T ⊢ ϕ} the deductive closure
of T . In knowledge bases, the deductive closure is usually not identical to the asserted axioms in the knowledge
base; it is also usually infinite. Representing the deductive closure is challenging since it is infinite, but, in EL++,
any knowledge base can be normalized to one of the seven normal forms; therefore, we can compute the deductive
closure with respect to these normal forms, and this set will be finite (as long as the concept and role names are
finite). However, EL++reasoners such as ELK [26] compute subsumption hierarchies, i.e., all axioms of the form
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C ⊑ D in the deductive closure, but not entailed axioms for the other normal forms. We use the inferences computed
by ELK (of the form C ⊑ D where C and D are concept names) to design an algorithm that computes (a part of) the
deductive closure with respect to the EL++normal forms; the algorithm implements a sound but possibly incomplete
set of inference rules. Algorithm 1 contains inference rules for deriving entailed axioms of type GCI1, GCI2, GCI3,
GCI1-BOT and GCI3-BOT from axioms explicitly represented within a knowledge base; GCI0 and GCI0-BOT
axioms are precomputed by ELK. Algorithm 2 provides a set of additional rules depending on arbitrary classes
and relations represented within a knowledge base after inferred axioms from Algorithm 1 are computed. Although
we can use ELK or similar reasoners to query for arbitrary entailed axioms, the algorithms we propose have an
advantage over this method since it does not require the addition of a new concept to an ontology and recomputing
the concept hierarchy.

ALGORITHM 2
Additional entailed axioms

for all concepts C,D, E, E′ in the signature do

C ⊓ ⊥ ⊑ E
D ⊑ ⊥

C ⊓ D ⊑ E
E ⊑ E′

C ⊓ E ⊑ E′
C ⊓ D ⊑ ⊥
C ⊓ D ⊑ E

C ⊑ E D ⊑ E C′ ⊑ C D′ ⊑ D E ⊑ E′

C′ ⊓ D′ ⊑ E′
C ⊑ C′

C ⊓ ⊤ ⊑ C′

end for
for all relations R and all concepts D ̸= ⊥ in the signature do

⊥ ⊑ ∃R.D
C ⊑ ⊥

C ⊑ ∃R.D

end for
for all relations R and all concepts C ̸= ⊥ in the signature do

∃R.C ⊑ ⊤

end for

We show a detailed example of the algorithm works in Appendix D based on the simple ontology example
introduced in Section 5.1.4.

5.2.2. Experiments
Using the example introduced in Section 5.1.4 and the ELEmbeddings embedding model, we demonstrate that

negatives filtration may be beneficial for constructing a model of a theory. Apart from axioms mentioned earlier, i.e.,
{GO1} ⊓ {GO2} ⊑ ⊥, A ⊓ B ⊑ ⊥, ∃has_ f unction.{GO1} ⊑ B and ∃has_ f unction.{GO2} ⊑ A, we add 10 more
axioms about 5 proteins {P1}, . . . , {P5} having function {GO1} (i.e., {Pi} ⊑ ∃has_ f unction.{GO1}, i = 1, . . . , 5),
and 5 proteins {Q1}, . . . , {Q5} having function {GO2} (i.e., {Qi} ⊑ ∃has_ f unction.{GO2}, i = 1, . . . , 5). Figure 2
shows the constructed models with and without negatives filtering. We observe that the model with filtered negatives
provides faithful representation of GCI3 axiom ∃has_ f unction.{GO2} ⊑ A and axioms introducing proteins having
function {GO2} as opposed to its counterpart with random negatives.

Tables 2–3 show results in the tasks of protein–protein interaction and subsumption prediction. We find that
excluding axioms in the deductive closure for negative selection slightly improves or yields similar results. One
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(a) With random negatives (b) With filtered negatives

Fig. 2. ELEmbeddings example. Dashed circles represent translated classes by relational vector corresponding to has_ f unction relation. ‘Red’
classes represent proteins {Q1}, . . . , {Q5}, ‘green’ classes represent proteins {P1}, . . . , {P5}.

possible reason is that a randomly chosen axiom is very unlikely to be entailed since very few axioms are entailed
compared to all possible axioms to choose from.

(a) (b)

Fig. 3.

Because the chance of selecting an entailed axiom as a negative depends on the knowledge base on which the
embedding method is applied, we perform additional experiments on Food Ontology with ELEmbeddings model
where we bias the selection of negatives; we chose between 100% negatives to 0% negatives from the entailed ax-
ioms. We find that reducing the number of entailed axioms from the negatives has an effect to improve performance
and the effect increases the more axioms would be chosen from the entailed ones (see Figure 3).

5.3. Evaluation Strategies

In the task of knowledge base completion with many non-trivial entailed axioms, the deductive closure can also
be used to modify the evaluation metrics, or define novel evaluation metrics that distinguish between entailed and
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non-entailed axioms. So far, ontology embedding methods that have been applied to the task of knowledge base
completion have used evaluation measures that are taken from the task of knowledge graph completion; in particular,
they only evaluate knowledge base completion using axioms that are “novel” and not entailed. However, any entailed
axiom will be true in all models of the knowledge base, and therefore also in the geometric model that is constructed
by the embedding method.

We suggest to filter entailed axioms from training or test sets when the aim is to predict “novel” (i.e., non-entailed)
knowledge. The geometric embedding methods generate models making all entailed axioms true in all models. It
is expected that methods explicitly constructing models preferentially make entailed axioms true and rank them
higher than non-entailed axioms. If the evaluation is based solely on non-entailed axioms, it will consider all similar
inferred axioms false, and to avoid this, we may filter such axioms from the ranking list. The more axioms are
filtered, the more entailed axioms are predicted by a model.

We compute filtered metrics for the protein function and subsumption prediction tasks. Both of them account for
entailed axioms prediction since if, e.g., C ⊑ D is being predicted then first models may predict axioms of type C ⊑
D′ where D′ is any superclass of D; the same is true for function prediction axioms {P} ⊑ ∃has_ f unction.{GO}
and all superclasses {GO′} of {GO} class. Note that the protein–protein interaction prediction task is not tailored
for evaluation using deductive closures of the train or test set: for each protein {P} its subclasses include only ⊥
and superclasses include only ⊤. As a result, the only inferred axioms will be of type ⊥ ⊑ ∃interacts_with.{P},
{P1} ⊑ ∃interacts_with.{P2} or {P} ⊑ ∃interacts_with.⊤, and filtered metrics may be computed only with respect
to the train part of the ontology.

For function prediction and subsuption prediction, we employ filtration of metrics based on the deductive closure
of the train set and of the test set. Tables 3 and 1 contain results for subsumption prediction on Food Ontology and
function prediction on GO, respectively.

Our findings suggest that the baseline ELEmbeddings predicts primarily entailed axioms of GCI2 type, yet for
GCI0 the model predicts “novel” knowledge first whereas the model modifications with additional negative losses
and negatives filtration derive entailed knowledge in the first place. Losses for all normal forms and negatives fil-
tering during training aid ELBE and Box2EL to construct model-generated embeddings which first predict logically
inferred knowledge and then non-entailed axioms of type GCI2 or GCI0, respectively. The results indicate that
models with all types of valid negatives in most cases explicitly construct models.

6. Discussion

We evaluated properties of ELEmbeddings, ELBE and Box2EL, ontology embedding methods that aims to gen-
erate a model of an EL++theory; the properties we evaluate hold similarly for other ontology embedding methods
that construct models of EL++theories. While we demonstrate several improvements over the original model, we
can also draw some general conclusions about ontology embedding methods and their evaluation. Knowledge base
completion is the task of predicting axioms that should be added to a knowledge base; this task is adapted from
knowledge graph completion where triples are added to a knowledge graph. The way both tasks are evaluated is
by removing some statements (axioms or triples) from the knowledge base, and evaluating whether these axioms
or triples can be recovered by the embedding method. This evaluation approach is adequate for knowledge graphs
which do not give rise to many entailments. However, knowledge bases give rise to potentially many non-trivial
entailments that need to be considered in the evaluation. In particular, embedding methods that aim to generate a
model of a knowledge base will first generate entailed axioms (because entailed axioms are true in all models);
these methods perform knowledge base completion as a generalization of generating the model where either other
statements may be true, or they may be approximately true in the generated structure. This has two consequences:
the evaluation procedure needs to account for this; and the model needs to be sufficiently rich to allow useful pre-
dictions.

We have introduced a method to compute the deductive closure of EL++knowledge bases; this method relies
on an automated reasoner and is sound. We use all the axioms in the deductive closure as positive axioms to be
predicted when evaluating knowledge base completion, to account for methods that treat knowledge base completion
as a generalization of constructing a model and testing for truth in this model. We find that some models (e.g.,
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modified box-based models using valid negatives of all types) can predict entailed axioms well, some (e.g., the
original Box2EL model) preferentially predict “novel”, non-entailed axioms; these methods solve subtly different
problems (either generalizing construction of a model, or specifically predicting novel non-entailed axioms). We
also modify the evaluation procedure to account for the inclusion of entailed axioms as positives; however, the
evaluation measures are still based on ranking individual axioms and do not account for semantic similarity. For
example, if during testing, the correct axiom to predict is C ⊑ ∃R.D but the predicted axiom is C ⊑ ∃R.E, the
prediction may be considered to be “more correct” if D ⊑ E was in the knowledge base than if D ⊓ E ⊑ ⊥ was
in the knowledge base. Novel evaluation metrics need to be designed to account for this phenomenon, similarly to
ontology-based evaluation measures used in life sciences [46]. It is also important to expand the set of benchmark
sets for knowledge base completion.

Use of the deductive closure is not only useful in evaluation but also when selecting negatives. In formal knowl-
edge bases, there are at least two ways in which negatives for axioms can be chosen: they are either non-entailed
axioms, or they are axioms whose negation is entailed. However, in no case should entailed axioms be considered
as negatives; we demonstrate that filtering entailed axioms from selected negatives during training improves the
performance of the embedding method consistently in knowledge base completion (and, obviously, more so when
entailed axioms are considered as positives during evaluation).

While we only report our experiments with ELEmbeddings, ELBE and Box2EL, our findings, in particular about
the evaluation and use of deductive closure, are applicable to other geometric ontology embedding methods. As
ontology embedding methods are increasingly applied in knowledge-enhanced learning and other tasks that utilize
some form of approximate computation of entailments, our results can also serve to improve the applications of
ontology embeddings.

Table 1
Protein function prediction experiments on yeast proteins. ‘l’ corresponds to all negative losses, ‘l+n’ means a model was trained using all
negative losses and negatives filtering. For each model we report non-filtered metrics (NF) and filtered metrics with respect to the deductive
closure of the train and the test set combined together (F). Values in bold indicate best metrics; underlined values highlight best filtered metrics.

Model
H@1 H@10 H@100 macro_MR micro_MR macro_AUC micro_AUC

NF F NF F NF F NF F NF F NF F NF F

ELEm 0.00 0.00 0.01 0.01 0.03 0.03 21198 21150 21165 21118 0.62 0.62 0.63 0.63

ELEm+l 0.00 0.00 0.00 0.00 0.03 0.03 9603 9575 9449 9423 0.83 0.83 0.84 0.84

ELEm+l+n 0.00 0.00 0.00 0.00 0.03 0.03 9488 9460 9334 9307 0.83 0.83 0.84 0.84

ELBE 0.00 0.00 0.03 0.03 0.24 0.24 4229 4209 4156 4137 0.92 0.92 0.93 0.93

ELBE+l 0.00 0.00 0.00 0.00 0.01 0.01 12920 12865 12797 12745 0.77 0.77 0.78 0.78

ELBE+l+n 0.00 0.00 0.00 0.00 0.01 0.01 12900 12845 12772 12719 0.77 0.77 0.78 0.78

Box2EL 0.05 0.09 0.28 0.31 0.55 0.55 1988 1979 1988 1980 0.96 0.96 0.97 0.97

Box2EL+l 0.04 0.06 0.24 0.27 0.54 0.55 2129 2120 2099 2091 0.96 0.96 0.97 0.97

Box2EL+l+n 0.05 0.06 0.24 0.27 0.54 0.55 2161 2152 2147 2139 0.96 0.96 0.96 0.96
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Table 2
Protein–protein interaction prediction experiments on yeast proteins. ‘l’ corresponds to all negative losses, ‘l+n’ means a model was trained using
all negative losses and negatives filtering. Non-filtered metrics are reported. Values in bold indicate best non-filtered metrics.

Model H@1 H@10 H@100 macro_MR micro_MR macro_AUC micro_AUC

ELEm 0.00 0.05 0.31 599.21 701.57 0.90 0.90
ELEm+l 0.00 0.06 0.35 532.93 681.02 0.91 0.90

ELEm+l+n 0.00 0.06 0.37 519.62 671.19 0.91 0.91
ELBE 0.00 0.07 0.37 829.86 1123.47 0.91 0.89

ELBE+l 0.00 0.08 0.40 984.92 1259.54 0.84 0.82
ELBE+l+n 0.00 0.08 0.40 984.18 1281.20 0.84 0.82

Box2EL 0.00 0.05 0.57 215.07 287.16 0.96 0.96
Box2EL+l 0.00 0.05 0.57 200.85 250.17 0.97 0.96

Box2EL+l+n 0.00 0.05 0.58 197.73 250.47 0.97 0.96

Table 3
Subsumption prediction experiments on Food Ontology. ‘l’ corresponds to all negative losses, ‘l+n’ means a model was trained using all negative
losses and negatives filtering. For each model we report non-filtered metrics (NF) and filtered metrics with respect to the deductive closure of the
train and the test set combined together (F). Values in bold indicate best metrics; underlined values highlight best filtered metrics.

Model
H@1 H@10 H@100 macro_MR micro_MR macro_AUC micro_AUC

NF F NF F NF F NF F NF F NF F NF F

ELEm 0.01 0.02 0.12 0.12 0.21 0.21 4659 4656 4662 4659 0.84 0.84 0.84 0.84

ELEm+l 0.01 0.02 0.10 0.11 0.19 0.19 5015 5013 5020 5017 0.83 0.83 0.83 0.83

ELEm+l+n 0.01 0.02 0.10 0.11 0.19 0.19 5022 5019 5027 5024 0.83 0.83 0.83 0.83

ELBE 0.00 0.00 0.01 0.01 0.09 0.09 6695 6692 6688 6686 0.77 0.77 0.77 0.77

ELBE+l 0.00 0.00 0.04 0.04 0.14 0.14 5428 5426 5412 5409 0.81 0.81 0.82 0.82

ELBE+l+n 0.00 0.00 0.04 0.04 0.14 0.14 5427 5424 5410 5408 0.81 0.81 0.82 0.82

Box2EL 0.00 0.00 0.01 0.01 0.10 0.10 3900 3898 3877 3874 0.87 0.87 0.87 0.87

Box2EL+l 0.00 0.00 0.04 0.04 0.13 0.13 7550 7547 7555 7553 0.74 0.74 0.74 0.74

Box2EL+l+n 0.00 0.00 0.05 0.05 0.14 0.14 6865 6862 6869 6866 0.76 0.76 0.77 0.77
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Appendix A. GO & STRING data Statistics, Train Part

Dataset GCI0 GCI1 GCI2 GCI3 GCI0_BOT GCI1_BOT GCI3_BOT Classes Relations
Test

axioms

Yeast iw 81,068 11,825 269,567 11,823 0 31 0 61,846 16 12,040

Yeast hf 81,068 11,825 290,433 11,823 0 31 0 61,850 16 1,530

Appendix B. Food Ontology Statistics, Train Part

GCI0 GCI1 GCI2 GCI3 GCI0_BOT GCI1_BOT GCI3_BOT Classes Relations
Test

axioms

21,795 1,267 10,719 897 0 495 0 24,969 43 5,752
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Appendix C. Hyperparameters

Dataset Model dim lr γ ϵ δ λ

Yeast iw

ELEm 100 0.0001 -0.10
ELEm+l 50 0.0001 0.00
ELBE 200 0.0001 0.00

ELBE+l 200 0.0100 0.00 0.001
Box2EL 200 0.0010 0.01 1 0.05

Box2EL+l 200 0.0010 0.01 0.010 2 0.05

Yeast hf

ELEm 200 0.0001 0.01
ELEm+l 50 0.0001 -0.10
ELBE 200 0.0001 0.10

ELBE+l 200 0.0001 0.10 0.010
Box2EL 200 0.0100 0.10 4 0.20

Box2EL+l 200 0.0100 0.10 0.010 4 0.05

FoodOn

ELEm 400 0.0010 -0.10
ELEm+l 400 0.0010 -0.10
ELBE 200 0.0100 0.10

ELBE+l 200 0.0100 -0.01 0.001
Box2EL 100 0.0100 0.10 1 0.20

Box2EL+l 200 0.0010 0.10 0.01 4 0.10

Appendix D. Deductive Closure Computation Example

Let us add two more axioms to the simple ontology example from Section 5.1.4 about proteins {P} and {Q}
having functions {GO1} and {GO2}, respectively. ELK will infer the following class hierarchy:

C Concepts D where C ⊑ D

⊥ ⊥, {P}, {Q}, A, B, {GO1}, {GO2}, ⊤

{P} {P}, B, ⊤

{Q} {Q}, A, ⊤

A A, ⊤

B B, ⊤

{GO1} {GO1}, ⊤

{GO2} {GO2}, ⊤

⊤ ⊤

In this small protein function prediction example there are two disjointness axioms: A ⊓ B ⊑ ⊥ and {GO1} ⊓
{GO2} ⊑ ⊥. Taking into consideration the concept hierarchy and inference rules from part 2 the algorithm will
infer the following GCI1 and GCI1_BOT axioms:
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8 8

9 9
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11 11

12 12
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14 14
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16 16

17 17

18 18

19 19
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21 21

22 22
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27 27
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47 47

48 48

49 49

50 50

51 51

C D Subsumptions E where C ⊓ D ⊑ E

⊥

⊥ ⊥

{P} ⊥, {P}, {Q}, A, B, {GO1}, {GO2}, ⊤

{Q} ⊥, {P}, {Q}, A, B, {GO1}, {GO2}, ⊤

A ⊥, {P}, {Q}, A, B, {GO1}, {GO2}, ⊤

B ⊥, {P}, {Q}, A, B, {GO1}, {GO2}, ⊤

{GO1} ⊥, {P}, {Q}, A, B, {GO1}, {GO2}, ⊤

{GO2} ⊥, {P}, {Q}, A, B, {GO1}, {GO2}, ⊤

⊤ ⊥, {P}, {Q}, A, B, {GO1}, {GO2}, ⊤

{P}

{P} {P}, B, ⊤

{Q} ⊥, {P}, {Q}, A, B, {GO1}, {GO2}, ⊤

A ⊥, {P}, {Q}, A, B, {GO1}, {GO2}, ⊤

B {P}, B, ⊤

{GO1} {P}, {GO1}, B, ⊤

{GO2} {P}, {GO2}, B, ⊤

⊤ {P}, B, ⊤

{Q}

{Q} {Q}, A, ⊤

A {Q}, A, ⊤

B ⊥, {P}, {Q}, A, B, {GO1}, {GO2}, ⊤

{GO1} {Q}, {GO1}, A, ⊤

{GO2} {Q}, {GO2}, A, ⊤

⊤ {Q}, A, ⊤

A

A A, ⊤

B ⊥, {P}, {Q}, A, B, {GO1}, {GO2}, ⊤

{GO1} A, {GO1}, ⊤

{GO2} A, {GO2}, ⊤

⊤ A, ⊤

B

B B, ⊤

{GO1} B, {GO1}, ⊤

{GO2} B, {GO2}, ⊤

⊤ B, ⊤

{GO1}
{GO1} {GO1}, ⊤

{GO2} ⊥, {P}, {Q}, A, B, {GO1}, {GO2}, ⊤

⊤ {GO1}, ⊤

{GO2}
{GO2} {GO2}, ⊤

⊤ {GO2}, ⊤

⊤ ⊤ ⊤
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For GCI2 axioms {P} ⊑ ∃has_ f unction.{GO1} and {Q} ⊑ ∃has_ f unction.{GO2} the algorithm will output

C Concepts D ̸= ⊥ where C ⊑ ∃has_ f unction.D

⊥ {P}, {Q}, A, B, {GO1}, {GO2}, ⊤

{P} {GO1}, ⊤

{Q} {GO2}, ⊤

For GCI3 axioms ∃has_ f unction.{GO1} ⊑ B and ∃has_ f unction.{GO2} ⊑ A the algorithm will infer

C ̸= ⊥ Concepts D where ∃has_ f unction.C ⊑ D

{P} ⊤

{Q} ⊤

A ⊤

B ⊤

{GO1} B, ⊤

{GO2} A, ⊤

⊤ ⊤
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