
Neurosymbolic Artificial Intelligence 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Assessing LLMs Suitability for Knowledge
Graph Construction
Vasile Ionut Remus Iga a and Gheorghe Cosmin Silaghi a,*

a Business Informatics Research Center, Babeş-Bolyai University, Cluj-Napoca, Romania
E-mails: vasile.iga@ubbcluj.ro, gheorghe.silaghi@ubbcluj.ro

Abstract. Recent work has shown the capability of Large Language Models (LLMs) to solve tasks related to Knowledge Graphs
including Knowledge Graph Construction, even in Zero- or Few-Shot paradigms. However, they are known to hallucinate answers
or output results in a non-deterministic manner, thus leading to wrongly reasoned responses, even if they satisfy the user’s
demands. This hinders the inclusion of a LLM in the automatic processing pipeline of software products based on natural
language processing, like chatbots or Task-Oriented Dialogue systems. To highlight opportunities and challenges in knowledge
graphs-related tasks, we experiment with three distinguished LLMs, namely Mixtral-8x7b-Instruct-v0.1, GPT-3.5-Turbo-0125
and GPT-4o, on Knowledge Graph Construction for static knowledge graphs, using prompts constructed following the TELeR
taxonomy in Zero- and One-Shot contexts, on a Task-Oriented Dialogue system usecase. We introduce a flexible measurement
paradigm for the computation of the performance evaluation metrics in order to better assess all usable pieces of information
produced by the LLM. When evaluated using both strict and flexible metrics measurement manners, our results show that LLMs
could be fit for such a task if prompts encapsulate sufficient information and relevant examples.

Keywords: Large language models, Knowledge graph, Knowledge graph construction, Prompt engineering, Task-oriented
dialogue system

1. Introduction

Knowledge Graphs (KGs) are defined as graphs of data intended to accumulate and convey knowledge of the real
world [7]. Their nodes represent entities of interest and edges represent potentially different relations between these
entities. KGs are integrated into various systems to enhance their abilities of storing and processing information.

Task-Oriented Dialogue (TOD) systems, alongside chatbots, are conversational agents possessing capabilities of
engaging in natural language dialogues with human users. Different from chatbots, TOD systems aim to solve the
user’s specific tasks within certain domains [2]. In our previous work [9] we focused on developing an ontology-
enhanced TOD system equipped with a static KG capable of mapping the context of the discussion and storing
relevant information. Numerous benefits stem from adopting this approach, including enabling concurrent threads of
conversation within a single discourse and utilizing the KG to validate data as a proxy. Additionally, the system gains
the capability to execute Create-Retrieve-Update-Delete (CRUD) operations on domain-specific KGs. The acronym
CRUD refers to the four basic operations that can be executed against persistent storages, such as relational or object
databases, or other types of knowledge bases like KGs, to create, maintain or update them. As TOD systems aim
to solve a variety of specific tasks, we decided that enabling such basic, but important operations is a suitable use-
case to start with. Specifically, in our TOD system we employed the Knowledge Graph Construction (KGC) task to

*Corresponding author. E-mail: gheorghe.silaghi@ubbcluj.ro.

2949-8732/$35.00 © 0 – IOS Press. All rights reserved.

mailto:vasile.iga@ubbcluj.ro
mailto:gheorghe.silaghi@ubbcluj.ro
mailto:gheorghe.silaghi@ubbcluj.ro

2 V.I.R. Iga and G.C. Silaghi / Assessing LLMs Suitability for Knowledge Graph Construction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

create two KGs and the Knowledge Graph Reasoning (KGR) task to handle CRUD operations. KGC’s objective is
to extract structured information from natural text and further use the extracted information to create or extend KGs.

Nonetheless, our TOD system [9] relies on input text template-matching rules, constraining the authenticity of
dialogues and hindering adaptability to novel concepts beyond the predefined ontology. Hence, in a subsequent
study [8], we experimented with training neural networks - specifically fine-tuning BERT, a pre-trained model, to
discern user intent and pertinent associated entities from input text. While embedding deep learning models into the
TOD system architecture demonstrated encouraging outcomes, we still failed to completely address the previously
mentioned limitations.

Therefore, in our current work, we study the use of LLMs to solve the KGC task, in the context of a TOD system.
Literature [6, 15, 16, 23, 25] identified a potential for synergy between KGs and LLMs, as KGs can enrich LLMs by
supplying external knowledge for inference and explainability, while LLMs, in turn, can address KG-related tasks
through natural language prompts. The aim is that, with the help of a LLM, to extract facts from the natural text and
furthermore, to be able to automatically use the extracted facts in the processing pipeline of the TOD system.

Our experiments explore LLMs for static KGs contexts. Three well-established LLMs are used: Mixtral-8x7b-
instruct-v0.11 [12], GPT-3.5-Turbo-01252, alongside the most advanced GPT model, the GPT-4o3 version, each
possessing different properties. Communicating with such models involves the use of prompts, which are natural
language instructions formatted in such way that the model understands the user’s intent. We test their capabilities of
solving the aforementioned KGC task using multiple prompting styles, including human-created and model-specific
rephrased ones. Each prompt belongs to a level defined according to the TELeR taxonomy [18], that includes
techniques such as Direct Prompting (DP), In-Context Learning (ICL), or Chain of Thought (COT), under Zero-
and One-Shot contexts. To illustrate an appropriate application scenario for LLMs and KG tasks, we extract sample
phrases from the training phase of our TOD system. Two datasets are obtained, including one with an increased
difficulty, with test cases requiring reasoning steps that are not explicitly mentioned in the prompts. This approach
allows us to not only evaluate the capability of LLMs in addressing the KG-specific tasks, but also to investigate
their synergy with TOD systems. Finally, we report the recall and triple F1 scores [4, 6] of each LLM on both
dataset, under two measurement paradigms: strict and flexible.

Our research makes the following contributions. (i) We assess the performance of three prominent LLMs: one
open-source and the other two proprietary, for the KGC task. This evaluation involves employing various prompts,
either defined by humans or rephrased by the LLMs themselves, across different levels of complexity. We utilize
three distinct prompting techniques (DP, ICL, COT) within two data contexts (Zero-Shot and One-Shot), yielding
valuable insights into the capabilities of a robust LLM in performing such task. Performance is measured within
two paradigms: strict and flexible, shedding light on the challenges encountered during post-processing. (ii) We
construct and propose a novel flexible metric, aiming to positively evaluate every piece of information produced by
the LLM that could be automatically incorporated in the TOD system pipeline with some additional post-processing
computation steps. (iii) We introduce two personalized datasets tailored to gauge the performance of LLMs in the
KGC task, featuring varying levels of difficulty. (iv) We investigate the feasibility of integrating such models into a
domain-specific ontology-enhanced TOD system, by extracting and using test phrases specific to its context and by
assessing its performance under the flexible metric measurement paradigm.

This paper extends our previous work [10] by better defining the preliminary conditions, by revising the related
work section with the inclusion of the latest relevant research, by formally introducing the flexible measurement
paradigm and by presenting more detailed results that allow extracting further conclusions, including some related
with the capability of the tested LLMs to solve tasks of various levels of difficulty.

The paper evolves as follows. Section 2 describes the related work about solving the KGC task with LLMs.
Section 3 presents our methodology, describing the ingredients of our experiments. Section 4 presents and discusses
the results, while section 5 wraps up the paper with concluding remarks.

1https://huggingface.co/mistralai/Mixtral-8x7b-Instruct-v0.1
2https://platform.openai.com/docs/models/gpt-3-5-turbo
3https://platform.openai.com/docs/models/gpt-4o

https://huggingface.co/mistralai/Mixtral-8x7b-Instruct-v0.1
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-4o

V.I.R. Iga and G.C. Silaghi / Assessing LLMs Suitability for Knowledge Graph Construction 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2. Related Work

Knowledge Graph Construction (KGC) aims to build a structured representation of knowledge within a defined
domain from a free text by identifying entities and their corresponding relationships. The process generally involves
several stages in a standard pipeline approach: 1) entity discovery, 2) coreference resolution, and 3) relation extrac-
tion. Recent methods also include 4) end-to-end KGC, which constructs a complete knowledge graph in a single
step, and 5) extracting knowledge graphs directly from from text with the help of LLMs [16].

Many non-LLM techniques address the task by solving the first three stages rather separately. However, they
could also be combined into a single process, known as Knowledge Graph Completion. This task aims to deduce
absent information within a specified KG [16], drawing from either input text or preexisting knowledge. Ji et al. [11]
present multiple solutions for the KG Completion utilizing embedding-based models like TransE [1], relation path
reasoning exemplified by the Path-Ranking Algorithm [14], reinforcement-learning path finding [21], rule-based
reasoning such as KALE [5], and meta relational learning [22] utilizing R-GCN or LSTM. Similar insights are
shared by Zhang et al. [23], categorizing them into neural, symbolic, and neural-symbolic approaches.

The aforementioned studies emphasize the usage of neural networks, logic networks, logic rules, or mathematical
operations to address KGC. Interestingly, none of these endeavors particularly delve into the utilization of LLMs.
Wei et al. [20] advocate for a multi-stage dialogue with ChatGPT to extract pertinent information from input texts,
based on a predefined schema. They do solve the KGC task by dividing it into Named Entity Recognition, Relation
Extraction and Event Extraction. Zhu et al. [25] experiment with ChatGPT and GPT4 for KGC in the pipeline
manner, determining that while they lag behind state-of-the-art fine-tuned Pre-Trained Language models (PLMs)
in a zero/one shot paradigm for construction, their reasoning capabilities often match or surpass those of SOTA
models. Nevertheless, the comparative efficiency of an LLM versus a specialized PLM remains ambiguous. They
also tackle the end-to-end KGC task, by designing an interface where an AI assistant and AI user collaborate in a
multi-party setting to complete the specified task. Their findings show that LLMs can solve the KGC task on their
own, when a multi-turn interaction takes place. Maintaining the end-to-end KGC paradigm, Han et al. [6] introduce
PiVE, a prompting technique where a ChatGPT-based LLM extracts facts from input texts, while a smaller fine-
tuned PLM iteratively verifies and supplements its responses. They demonstrate that the verifier module is key to
preserve the correctness of LLMs. Khorashadizadeh et al. [13] explore the capabilities of foundation models such
as ChatGPT to generate KGs from the knowledge it captured during pre-training as well as the new text provided to
it in the prompt, grounded by several research questions. Their results show promising use cases for such models.
Trajanoska et al. [19] experiment with a specialized pre-trained model (REBEL) and ChatGPT for automating
the extraction of KGs from news articles. They conclude that ChatGPT, when prompted adequately using enough
information and guidelines, can solve the task with promising results. Ghanem et al. [4] evaluate various LLMs
using direct prompting techniques like Zero- and Few-Shot, or precedes them by model fine-tuning. They report
metrics including TF1, GF1, and Graph Edit Distance (GED) introduced in [6], while also defining new metrics for
hallucination and information omission.

As opposed to the above mentioned literature, we emphasize the use of a well-defined ontology to guide the
extraction of facts and, subsequently, construction of the KG. This approach stands in contrast to methods that either
lack background information or rely solely on small, predefined lists of specific types and relationships. Moreover,
we increase the number of textual inputs, expanding the generality of our conclusions. We share similarities with [15,
17]. Mihindukulasooriya et al. [15] distill two datasets specifically for KGC from other well-established sources and
create additional metrics to test two LLMs, Vicuna-13B and Alpaca-LoRA-13 on the aforementioned task, resulting
in a benchmark for KGC. However, unlike their approach, our datasets are manually curated, and we utilize an in-
house designed flexible paradigm to evaluate LLM performance from a different perspective, while testing models
of various types and sizes. Polat et al. [17] experiment with different prompting techniques and paradigms, from
Zero to Few-Shot and DP to COT for the extraction of KGs from free input text. Different from us, prompts are
enhanced with extra information obtained via various RAG approaches, while the evaluation of the output is done
using SPARQL queries to Wikidata. Similar to us, they test also with Mixtral. However, in our paper, we intend to
assess the performance of the LLMs on the KGC task solely based on the user free text input, without helping the
LLM with additional contextual information, like the one that could be supplied with a RAG.

4 V.I.R. Iga and G.C. Silaghi / Assessing LLMs Suitability for Knowledge Graph Construction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Consequently, we test the capacity of a proprietary LLM – namely GPT, with two versions: GPT-3.5-Turbo-0125
and GPT-4o on the KGC task. Additionally, we include an open-source LLM - Mixtral-8x7b-Instruct-v0.1 [12],
to facilitate research on open-source models, given their greater adaptability and cost-effectiveness compared to
proprietary alternatives. Another difference from them is that our prompts are more diverse and easier to track,
as they are leveled according to the TELeR taxonomy [18]. We introduce flexible metrics for gauging additional
post-processing efforts. Finally, we also test the possibility of integrating an LLM with an ontology-enhanced TOD
system, to sharpen its natural language processing and KG-related capabilities, by utilizing sample phrases from its
training routine, resulting in two datasets, differentiated by their level of difficulty.

3. Methodology

This section introduces our methodology used thorough this paper. We describe preliminary definitions of key
concepts, the ontology used to anchor the LLMs knowledge, the datasets format and distribution, the prompt engi-
neering steps, and the metrics measurement paradigms.

3.1. Preliminaries

Definition 1. A Knowledge Graph typically represents information as triples (or facts). Let KG denote the graph,
where each triple (h, r, t) consists of head (h) and tail (t) entities, and a relationship (r) between them. The set of all
entities is denoted by E, and the set of all relationships as R. The definition of a KG can be formalized as:

KG = {(h, r, t)|h, t ∈ E, r ∈ R} (1)

An example of a fact can be (Bill_Clinton, presidentO f ,US A), where Bill_Clinton is the head entity,
presidentO f is the relationship, and US A is the tail.

Definition 2. A Large Language Model (LLM) is a neural network with billions of parameters, trained on vast
datasets to understand the semantics of words in texts, making it highly effective for Natural Language Processing
(NLP) tasks. LLMs are classified into three types: 1) encoder-only, 2) encoder-decoder, and 3) decoder-only [16].
The decoder-only models, like those in the GPT series, are the most widely used. These models predict the next
word in a sequence solely based on the preceding words. In essence, a decoder-only LLM can be described as:

LLM(w0,w1, ...,wn) = p(wn+1|w0,w1, ...,wn) (2)

where the sequence (w0,w1, ...,wn) contains the words in the input text, n is its length, while wn+1 is the next
predicted word in the sentence. Hence, based on a given input text, a decoder-only LLM generates a probabilistic
distribution p over all the possible words in the vocabulary.

Definition 3. The Knowledge Graph Construction task, as outlined in section 2, involves extracting entities and
relationships as triples needed to build or update a KG. Typically, a dedicated system or model performs this task.
In our case, an LLM serves as the extractor of the target triples - deemed as golden labels, based on a predefined
ontology of entity types and relationships. The model’s input is a prompt containing the task description (T D),
ontology (O), and input text (IT), with an optional set of examples ([EX]) illustrating the process on different text
inputs. Hence, KGC is formulated as follows:

LLM(Prompt(T D, [EX],O, IT)) = [(h, r, t)0, (h, r, t)1, ..., (h, r, t)i] (3)

where (h, r, t)i is an extractable triple from the input text, while i is the total number of predicted triples.

V.I.R. Iga and G.C. Silaghi / Assessing LLMs Suitability for Knowledge Graph Construction 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 1. The ontology used throughout the experiments with three classes and six relationships

Table 1
Input phrase examples and their types

Input phrase example Input phrase type

I want you to insert a project instance with code being A9I, its class is C, named BestApp
and put Robert as the manager.

explicit information

Please put a project called UBBDemo identified by ZK5 managed by someone with some-
thing Mara and put it with other Python projects.

implicit information

Add a porject with code DS2, nme as Taskmate, class is Python and someone with role
assistant as maager.

misleading information (MS1)

I want you to insert an program instance with code being something like 0-Q7 its class is
BASIC named UBBDemo and put Oscar as the manager.

misleading information (MS2)

3.2. Datasets format and distribution

Fig. 1 depicts the ontology introduced in our prior research [9] and used here. It comprises three classes: Project,
Employee, and Status, along with six relationships connecting them - such as hasManager and hasStatus or associ-
ating classes with literal values - like hasName, hasRole, hasClass, and hasCode. The ontology is described in RDF,
using the Turtle syntax.

Input phrases are sourced from the training schedule of the TOD system developed in [9], aimed to solve business
operations around the concepts described in the above-presented ontology. Each phrase corresponds to the Create
(Insert) intent within CRUD operations, being focused either to one of the three available classes in the ontology or
to other out-of-distribution (OOD) classes. Only few phrases resemble basic tasks without the Insert intent (labeled
as w/o Insert). These, along with the OOD phrases, do not contain extractable triples and are labeled as having
None class type. The texts convey a various range of information, including both (i) explicit information where
intent, class type, associated relationships, and values are clearly articulated, and/or (ii) implicit information where
additional reasoning steps are required to identify the necessary details. For instance, texts may already provide
an ID for the related instance, or the value might imply a name, role, or unspecified property. We also constructed
phrases with misleading alternatives, where the first category contains grammatical errors, while the second one
focuses on the None class type and ad-hoc values for some relationships of the target instance. For example, as the
relationship hasClass requires a programming language, we include words that do not resemble existing ones, such
as Dandy, Erlang etc. (labeled as WV, which stands for Wrong Values).

Table 1 presents examples from each category. Details about the explicit types are available in the project’s repos-
itory4. Each text is accompanied by its related relationships, values, intent, and text type. Using regex templates, the
information is converted into a dictionary. At the end, we obtained two datasets: Templates Easy (TE) and Templates
Hard (TH). The first dataset includes easier explicit and misleading text types with a lower number of implicit ones,
while the second one benefits of an increased overall difficulty and additional implicit-type texts. Table 2 presents
the distribution of texts per class type, on each dataset.

4https://github.com/IonutIga/LLMs-for-KGC

https://github.com/IonutIga/LLMs-for-KGC

6 V.I.R. Iga and G.C. Silaghi / Assessing LLMs Suitability for Knowledge Graph Construction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Datasets distribution of texts per class type - number of phrases

Datasets
Class type

Total
Project Employee Status None

Templates Easy (TE) 58 4 3 7 72
Templates Hard (TH) 56 4 3 15 78

{ ’text’: ’i want you to insert a project instance with code being A9I its class
is C named BestApp and put Robert as the manager.’,

’golden_labels’: "[{’subject’: ’Project1’, ’relationship’: ’rdf:type’, ’object’: ’Project’},
{’subject’: ’Project1’, ’relationship’: ’hasManager’, ’object’: ’Employee1’},
{’subject’: ’Employee1’, ’relationship’: ’rdf:type’, ’object’: ’Employee’},
{’subject’: ’Employee1’, ’relationship’: ’hasName’, ’object’: ’Robert’},
{’subject’: ’Project1’, ’relationship’: ’hasCode’, ’object’: ’A9I’},
{’subject’: ’Project1’, ’relationship’: ’hasClass’, ’object’: ’C’},
{’subject’: ’Project1’, ’relationship’: ’hasName’, ’object’: ’BestApp’}]",

’alternative_labels’: "[{’subject’: ’Project1’, ’relationship’: ’hasManager’, ’object’: ’Robert’}]",
’fp_ok_labels’: "[{’subject’: ’Employee1’, ’relationship’: ’hasRole’, ’object’: ’Manager’},

{’subject’: ’Employee1’, ’relationship’: ’hasRole’, ’object’: ’manager’}]",
’class_type’: ’Project’,
’text_type’: ’MPS’}

Fig. 2. Example of a dictionary object with its text-related details.

We associate each text with a set of golden labels, which are the target triples that can be extracted from the input
text. Additionally, we consider that under the flexible metrics measurements paradigm introduced in subsection 3.4,
we can accept some triples as alternatives for the golden ones, i.e. some facts reported as false positives could be
accepted if no other background information is available. It is widely acknowledged that extracting triples from text
could yield a variety of results depending on the expertise of the annotator. Therefore, we should allow room for
LLMs to exhibit such variability.

To better illustrate the above description of the dataset, Fig. 2 presents an example of the obtained dictionary. The
proposed alternative triple substitutes for triples two, three, and four. The accepted false positive triple refers to the
user’s role, that can be inferred from the hasManager relationship.

3.3. Prompt engineering

To better encapsulate information and facilitate the replication of experiments, we utilize regex templates to
convert each dictionary object - representing a text from a dataset, into a Prompt object. Such objects hold many
details, such as the system prompt, its version and level, the input text, its type and mentioned class type, the golden
labels and the ones that could be accepted alternatively, the system message order, and metadata information about
each model’s prediction of the input prompt. For a more comprehensive analysis, we enable the adjustment of the
system’s message position within the final prompt. Practice suggests that positioning the system’s prompt after the
user’s message could potentially enhance the performance of LLMs by mitigating long-context memory limitations.
Lastly, we provide the option to flatten each Prompt object into dictionaries that are placed in text files for future
reuse.

Three important paradigms are usually employed when designing prompts [24]: Zero-, One- and Few-Shot. The
former’s prompt includes only the objective’s description and the input data that should be processed. One-Shot in-
cludes exactly one example of how the task should be solved against some different input data. Intuitively, Few-Shot
refers to multiple, relevant examples added to the prompt. After selecting the paradigm, one should decide about the
prompting technique [24]. The current work employes three main approaches, as follows: Direct Prompting which
refers to a prompt that only comprises the task’s description and the input to work on; In-Context Learning (ICL)
which adds a relevant example of a solution to the given task on a different input data, and Chain of Thought (COT)
which expands the prompt with the exemplified solution’s intermediary reasoning steps.

To test the model’s capacity to solve a task, we follow the guidelines of [18] by assigning a level to each version
of a system prompt. Specifically, we utilize levels 1 through 4 as outlined in [18]. Within the fourth level, we further
divide it into 4.1 and 4.2 to accommodate both ICL and COT variations of the prompt.

V.I.R. Iga and G.C. Silaghi / Assessing LLMs Suitability for Knowledge Graph Construction 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

’You are a Knowledge Graph Expert. A domain ontology is provided to you, delimited by double quotes. The syntax used
to describe the ontology is Turtle. Your input is a natural language text. The input text may or may not contain references to
instances of classes provided in the ontology, together with specific relationships. Given the provided ontology, your task
is to extract triples about the mentioned instances from the input text. Each instance should be identified by an ID, using
the format "Class" + "1", where "Class" is the name of the detected class and + is concatenation. Put each triple in a JSON
object, as follows: {{"subject" : ID, "relationship" : value, "object" : value}}. If any triple refers to another instance, add
all triples you assumed of that instance too. Respond only with the JSON object(s) in a list. If no triple is detected, output
"None". \n Provided ontology: {ontology} \n’

Fig. 3. The level 1 system prompt.

For better understanding, we exemplify the first level in Fig. 3. It sets the model’s role as a KG expert, followed
by instructions regarding the provided ontology. Subsequently, we outline the task at hand along with formatting
guidelines for each instance’s ID and triple. Finally, the required output pattern is presented, attaching the target
ontology. Level 2 adds a directive about the addition of the rdf:type relationship. It then evolves into level 3, where
we transform the text into a detailed bullet list of sub-tasks to be performed. All these levels adhere to the Zero-
Shot paradigm, while levels 4.1 and 4.2 emulate ICL and COT, respectively, in a One-Shot manner. Depending on
the golden labels of the target input text, we include either an example with no output triples or one with existing
golden labels to better suit the specific scenario. Moreover, as suggested in [16], we ask each model to rephrase the
existing system prompts to better suit their needs. Therefore, we end up with two types of prompts: hand-written,
and model-rephrased.

3.4. Metrics

To gain a deeper understanding of the models’ performance, we measure their precision, recall, and F1 score as
TF1 (Triple-matching F1) [4, 6] on both datasets. We employ two paradigms, namely strict and flexible metrics
measurements. In what follows, we describe the metrics used in our paper.

For each text, the LLM produces a list of m triples. Let’s denote it with PT = {si, i = 1,m}. For that text, the
set of golden labels is GL = {t j, j = 1, n} with n triples. Worth-to-consider triples are those si ∈ PT such that
∃t j ∈ GL|si ≡ t j.

Under the strict criterion, metrics will be calculated in a standard text extraction manner, specifically counting
how many predicted triples from PT are among the golden ones GL, adhering to identical formatting. This approach
enables the assessment of a model’s ability to exactly follow the given prompt and process the input text, such that
its results can be directly used in subsequent pipelines.

With the flexible metric measurement paradigm proposed here we allow the LLM to produce formatting mistakes
that can be corrected in post-processing steps, or triples that are partially true to be counted as being accurate. This
flexible measurement allows one to positively evaluate models that might not be such precise, but require fewer
resources than more elaborate ones and parts of their output could be still used in the other subsequent processing
steps.

To accommodate this, for each triple si ∈ PT we compute a hit score 0 ⩽ hi ⩽ 1 with the GL, where hi = 1 if
the triple is found as-it-is in the GL (as under the strict measurement paradigm) and hi = 0 is the triple is not found
in GL or is totally unusable in further post-processing steps.

Under the flexible measurement paradigm we include certain penalties in the hit score of a triple that could be
considered valid, even if it does not exactly follow the given prompt instructions. Therefore, hi = 1−

∑
k pk and hi

will still remain non-negative but less than 1.
To summarize, we have:

hi =

0, i f si /∈ GL
1, i f ∃ t j ∈ GL | si ≡ t j

1−
∑

k pk, i f ∃ t j ∈ GL | si ≈ t j, under f lexible measurement paradigm
(4)

where pk are the penalties considered in the design phase of the experiment.

8 V.I.R. Iga and G.C. Silaghi / Assessing LLMs Suitability for Knowledge Graph Construction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Below, we list the penalties we considered for each sort of LLM output errors.
Format Penalties at the whole output level. The prompt demands a reply comprising solely a list of triples adhering

to the specified template. Therefore, we consider a penalty of 2.5% for outputs with multiple lists and a penalty of
7.5% for the LLM producing additional text. We apply these penalties for all triples that result after eliminating the
global formatting errors.

Format Penalties at the triple level. If the prompt asks not to include the full IRI of an entity i.e. without the
namespace, we penalize each addition with 1%. Finally, if a triple is output but does not contain exactly the three
necessary keys, a penalty of 10% is applied.

Content Penalties refer to penalties related to the information content of a triple. For example, let’s ask a model to
construct a simple ID for each given instance of a class - specifically, the capitalized name of the class concatenated
with "1". We have noticed that some models tend to replace the number "1" with another single digit. Thus, if
altering the final digit of a predicted identifier to "1" signifies correctness for a triple, the model is subjected to a
penalty of 33%. This percentage value adheres to the three-component structure of a fact, such that, if one part is
wrong, while the other two are correct, the model should still gain benefit of its prediction. This method of evaluation
only applies to the validity of a constructed ID(s). Any other type of mistakes are not allowed, since they would
alters the factuality of the implied information.

As previously noted, we permit certain alternative triples to the designated correct ones to be regarded as valid.
Specifically, in Fig. 2, concerning the relationship labeled as hasManager between a Project instance and an Em-
ployee instance, if a model predicts the value of the object to directly be the employee’s name, instead of creating an
Employee instance and assign its type and name, the substitution will be counted as being correct. Nevertheless, the
flexible metrics will attribute only one-third of the replacement as being accurate, implicitly penalizing the model
for deviating from the prescribed ontology and guidelines. Additionally, some false positive triples may be deemed
true in the absence of background knowledge (FP_okay triples), such as inferring the role of an employee as being
a manager from the hasManager relationship, thus not counting them as being wrong during the calculation of the
model’s precision. However, we treat them as any other triple under the flexible paradigm, thus penalizing them for
content mistakes, if any.

The penalty values described above and considered in our paper fit our specific task. We emphasize that these
values are not fixed, and someone who wants to adapt the flexible measurement paradigm for another task is free to
change them, according with her specific needs.

Next, the evaluation metrics are calculated according to the following widely-known formulas:

Precisiontext =
∑m

i=1 hi

m , Recalltext =
∑m

i=1 hi

n
(5)

F1text =
2 ∗ Precisiontext ∗ Recalltext

Precisiontext + Recalltext
(6)

T F1 =
∑

text F1text

|text| , Recall =
∑

text Recalltext

|text| (7)

If the strict metric measurement paradigm is considered, the hit scores hi could be only 0 or 1 and the metrics
computed according with eq. 5-7 are the standard ones used in the literature (precision, recall and triple F1). If
the flexible metric measurement paradigm is considered, the metrics computed according with the above-presented
equations are more optimistic, allowing one better assess usefulness of the LLM output for subsequent processing
steps.

4. Results and discussion

This section presents the obtained results and discuss them in order to conclude about the paper’s research ques-
tions.

V.I.R. Iga and G.C. Silaghi / Assessing LLMs Suitability for Knowledge Graph Construction 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Experiments were conducted on Google Colab, utilizing a virtual machine equipped with two Intel Xeon CPU
2.20GHz processors. We experimented with Mixtral-8x7b-Instruct-v0.1, GPT-3.5-Turbo-0125 and GPT-4o. Mix-
tral is open-source, leveraging the Mixture of Experts[12] architecture, consisting of eight sub-networks, each of
7B parameters, accounting for a total of 56B parameters. GPT-3.5-Turbo-0125 is a well-known proprietary model
that represents a fine-tuned version of GPT 3, consisting of 175B parameters. GPT-4o boasts over 200B param-
eters, being the latest OpenAI model, advertised as their best performer. For Mixtral-8x7b-Instruct-v0.1, we used
the HuggingFace Serverless API endpoint, whereas for GPT-3.5-Turbo-0125 and GPT-4o queries were directed to
OpenAI’s official API.

Each experiment was iterated three times, involving aprox. 6750 prompts in total, with each run lasting approxi-
mately 120 minutes. Interaction with Mixtral consumed about 50% of the experimentation time. GPT-4o generated a
cost around 40USD, while the GPT-3.5-Turbo-0125 only about 5USD. For Mixtral, the HuggingFace endpoint gen-
erated no cost. Each set of predictions could be loaded, tested and visualized from the paper’s repository, available
at https://github.com/IonutIga/LLMs-for-KGC.

We notice that for the GPT models, an extra post-processing step is required, after receiving the produced output.
Due to their ability to generate JSON formatted output, it surrounds its response with a specific tag (i.e. "“‘json...“‘").
One solution is to include a guideline in the prompt to avoid this behavior, but very rarely, around 0.5% of times, it
still adds it. Thus, to ensure that prompts are identical for all models, and be sure that the tag is not present in the
output, we post-process the GPT output in our code. We do this to enable a fair analysis solely of the output text.

Tables 3 to 6 display the results per model and prompt level, considering both strict and flexible metrics measure-
ment paradigms. The first two tables focus on the Templates Easy (TE) dataset, while the latter ones on Templates
Hard (TH) dataset. Tables 3 and 5 display the results for the hand-written system prompts, while in tables 4 and 6,
each model had to rephrase the prompts beforehand.

Tables 7 and 8 present class-wise model performance across both datasets, based solely on metrics from hand-
written prompts, which outperformed model-rephrased alternatives, as shown in former tables.

Fig. 4 displays the recall and TF1, under the flexible paradigm for each model per phrase type from Table 1, on
both datasets, using hand-written prompts.

Table 9 highlights an in-depth analysis of the "MS 2" category from Fig. 4, given three phrase sub-types. Table 10
outlines the results of each model when the link between a Project and an Employee instance is referenced through
an ID or role, compared with standard human names.

We highlight the most effective prompt types per model and level in bold. The overall best prompts are under-
scored, while the overall best prompts per level are printed in italics.

Several interesting conclusions are discusses below.

Elaborate Instructions Without Examples Do Not Necessarily Yield Better Results. Upon analyzing both
types of prompts across all levels, it appears that augmenting the prompt with more information without examples
does not consistently enhance performance. Level 3 prompts, when evaluated rigorously, exhibit an average decline
of around 7% in recall and TF1 scores compared to levels 1 and 2. When evaluated using more flexible metrics,
the discrepancy diminishes to almost zero. GPT-4o tends to increase its performance with each level when using
hand-written prompts, while it dramatically decreases it for the model-rephrased ones. The other two models con-
sistently lower their metrics at the third level, especially Mixtral-8x7b, which can be attributed to the inclusion of
explanatory text, as it strives to replicate the input text.

ICL and COT Prompting Techniques Lead to Best Results. Most of each models best results happened when
prompted at levels 4.1 and 4.2, no matter the dataset or prompting template. Only GPT-4o had its best results for
strict metrics at the first level when prompts where model-rephrased, which could be attributed to poor paraphrasing
for the latter levels. It is no surprise that such models work best when an adequate output example is given, as
literature [18] suggests. However, as Mixtral-8x7b sometimes provides explanations for its output, erroneous rea-
soning steps are noticeable, especially in cases where the input text contains a class type that is not present in the
ontology. Thus, despite the GPT models exhibiting this behavior less frequently, LLMs still have significant room
for improvement in terms of reasoning capabilities.

https://github.com/IonutIga/LLMs-for-KGC

10 V.I.R. Iga and G.C. Silaghi / Assessing LLMs Suitability for Knowledge Graph Construction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 3
Results on Template Easy (TE) dataset, using hand-written system prompts

Model Mixtral GPT-3.5-Turbo GPT-4o Total

Level Metric strict | flexible strict | flexible strict | flexible strict | flexible

1
Recall 0.23 | 0.47 0.38 | 0.45 0.61 | 0.63 0.41 | 0.52
TF1 0.25 | 0.58 0.47 | 0.58 0.73 | 0.75 0.48 | 0.64

2
Recall 0.19 | 0.49 0.45 | 0.51 0.63 | 0.85 0.42 | 0.62
TF1 0.18 | 0.53 0.52 | 0.61 0.64 | 0.89 0.45 | 0.68

3
Recall 0.19 | 0.44 0.37 | 0.44 0.71 | 0.86 0.42 | 0.58
TF1 0.20 | 0.55 0.48 | 0.58 0.72 | 0.89 0.47 | 0.67

4.1
Recall 0.25 | 0.63 0.88 | 0.88 0.89 | 0.91 0.67 | 0.81
TF1 0.25 | 0.63 0.88 | 0.88 0.89 | 0.91 0.67 | 0.81

4.2
Recall 0.19 | 0.69 0.85 | 0.87 0.89 | 0.91 0.64 | 0.82
TF1 0.19 | 0.75 0.85 | 0.87 0.89 | 0.91 0.64 | 0.84

Total Recall 0.21 | 0.54 0.59 | 0.63 0.75 | 0.83 0.52 | 0.68
Total TF1 0.22 | 0.61 0.65 | 0.72 0.78 | 0.87 0.55 | 0.73

Table 4
Results on Template Easy (TE) dataset, using model rephrased prompts

Model Mixtral GPT-3.5-Turbo GPT-4o Total

Level Metric strict | flexible strict | flexible strict | flexible strict | flexible

1
Recall 0.38 | 0.50 0.40 | 0.46 0.62 | 0.64 0.47 | 0.53
TF1 0.42 | 0.59 0.48 | 0.57 0.73 | 0.75 0.54 | 0.64

2
Recall 0.15 | 0.37 0.45 | 0.47 0.36 | 0.85 0.32 | 0.56
TF1 0.17 | 0.49 0.54 | 0.58 0.36 | 0.90 0.36 | 0.66

3
Recall 0.20 | 0.42 0.40 | 0.46 0.07 | 0.77 0.22 | 0.55
TF1 0.22 | 0.51 0.50 | 0.59 0.07 | 0.73 0.26 | 0.61

4.1
Recall 0.19 | 0.58 0.85 | 0.89 0.66 | 0.90 0.57 | 0.79
TF1 0.19 | 0.59 0.85 | 0.89 0.66 | 0.88 0.59 | 0.79

4.2
Recall 0.42 | 0.74 0.84 | 0.89 0.31 | 0.87 0.52 | 0.83
TF1 0.42 | 0.78 0.84 | 0.89 0.31 | 0.87 0.52 | 0.85

Total Recall 0.27 | 0.52 0.59 | 0.63 0.40 | 0.81 0.42 | 0.65
Total TF1 0.28 | 0.59 0.65 | 0.71 0.43 | 0.83 0.45 | 0.71

Mixtral-8x7b Rarely Follows the Required Output Format. The two metric measurement paradigms offer
valuable insights into the models capacity to follow the given prompts. While GPT 3.5-turbo and GPT-4o exhibit
minimal disparity between the two perspectives, Mixtral 8x7b rarely produces texts that align with the specified
template. Common errors include the addition of explanatory text, as evidenced by the 0 scores at the 4.2 level in
table 5, or the full IRI of an entity. When strictly evaluated, the open-source model only tops 42% recall on the
Template Easy (TE), while on flexible paradigm it reaches 74% recall on the same dataset. GPT-3.5 outputs 88%
recall under both metrics measurements, while the GPT-4o variant yields 89%.

Asking Models to Rephrase the System Prompt Might Generally Be a Good Idea for Mixtral-8x7b. Some
experiments in the literature [16] ask the LLMs to formulate prompts for a given task. Inspired by it, we ask the
LLMs to rephrase our manually written prompts to better align with their capabilities. As a comparison, Mixtral-
8x7b benefits the most under rigorous evaluation, with an average increase of 7% for each recall and TF1 score.
GPT-3.5-Turbo seems to conserve its behavior, signaling an increase of only 2%. Surprisingly, GPT-4o exhibit a
significant decrease in performance when it paraphrased the input prompts. On average, it lowered its performance
by 33% for both metrics, with third level prompts being the worst affected. Nonetheless, it’s promising to see the

V.I.R. Iga and G.C. Silaghi / Assessing LLMs Suitability for Knowledge Graph Construction 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 5
Results on Template Hard (TH) dataset, using hand-written prompts

Model Mixtral GPT-3.5-Turbo GPT-4o Total

Level Metric strict | flexible strict | flexible strict | flexible strict | flexible

1
Recall 0.25 | 0.41 0.37 | 0.42 0.53 | 0.54 0.38 | 0.46
TF1 0.28 | 0.48 0.45 | 0.53 0.62 | 0.64 0.45 | 0.55

2
Recall 0.08 | 0.30 0.46 | 0.51 0.54 | 0.72 0.36 | 0.51
TF1 0.08 | 0.35 0.53 | 0.59 0.55 | 0.75 0.39 | 0.56

3
Recall 0.09 | 0.35 0.36 | 0.41 0.59 | 0.74 0.35 | 0.50
TF1 0.10 | 0.46 0.45 | 0.52 0.60 | 0.75 0.38 | 0.58

4.1
Recall 0.15 | 0.47 0.77 | 0.77 0.71 | 0.76 0.54 | 0.67
TF1 0.15 | 0.49 0.77 | 0.78 0.71 | 0.75 0.54 | 0.69

4.2
Recall 0.00 | 0.47 0.75 | 0.76 0.73 | 0.74 0.49 | 0.66
TF1 0.00 | 0.56 0.75 | 0.76 0.73 | 0.75 0.49 | 0.69

Total Recall 0.11 | 0.39 0.54 | 0.57 0.62 | 0.70 0.42 | 0.56
Total TF1 0.12 | 0.47 0.59 | 0.65 0.64 | 0.73 0.45 | 0.61

Table 6
Results on Template Hard (TH) dataset, using model rephrased prompts

Model Mixtral GPT-3.5-Turbo GPT-4o Total

Level Metric strict | flexible strict | flexible strict | flexible strict | flexible

1
Recall 0.33 | 0.43 0.37 | 0.42 0.51 | 0.54 0.40| 0.46
TF1 0.37 | 0.50 0.45 | 0.52 0.60 | 0.64 0.47 | 0.55

2
Recall 0.14 | 0.35 0.43 | 0.47 0.28 | 0.72 0.28 | 0.51
TF1 0.15 | 0.45 0.50 | 0.56 0.28 | 0.77 0.31 | 0.59

3
Recall 0.12 | 0.39 0.41 | 0.45 0.09 | 0.66 0.20 | 0.50
TF1 0.13 | 0.46 0.50 | 0.55 0.09 | 0.65 0.23 | 0.55

4.1
Recall 0.07 | 0.47 0.71 | 0.75 0.55 | 0.76 0.44 | 0.66
TF1 0.07 | 0.48 0.71 | 0.75 0.55 | 0.75 0.44 | 0.66

4.2
Recall 0.31 | 0.56 0.70 | 0.74 0.18 | 0.73 0.40 | 0.68
TF1 0.31 | 0.61 0.70 | 0.74 0.18 | 0.74 0.40 | 0.70

Total Recall 0.19 | 0.44 0.52 | 0.57 0.32 | 0.68 0.34 | 0.56
Total TF1 0.20 | 0.50 0.57 | 0.63 0.34 | 0.71 0.37 | 0.61

open-source model enhancing its output by closely adhering to the provided system prompt.

Implicit Reasoning Poses Challenges for LLMs. Template Hard (TH) dataset contains cases where the LLM
needs to understand that a given value is already an ID that references an existing instance in a KG or that a state-
ment implies a specific relationship pertaining to a class. As concluded by the results presented in the tables from 3
to 6, under flexible metrics, Mixtral 8x7b achieves an recall of 56% and an TF1 score of 61% on the more difficult
dataset, which is 17.5% lower than its performance on the easier one. GPT-3.5-Turbo narrows this margin, reducing
from a peak recall and TF1 of 89% to 78% on Template Hard (TH). Same behaviour is observed with GPT-4o, as
it falls from 91% recall and TF1 score to around 76%. Interestingly enough, Mixtral-8x7b yields its best scores at
level 1 prompts, when strictly measured. Fig. 4 displays the differences in a compact form, based on each phrase’s
type. Thus, it shows a decrease in performance when phrases require extra reasoning steps, i.e. Implicit Information,
compared to simple, direct ones i.e. Explicit Information. For instance, all models reduce their recall, on average,
with 12%, and their TF1 score with 13%.

12 V.I.R. Iga and G.C. Silaghi / Assessing LLMs Suitability for Knowledge Graph Construction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 7
Results on Templates Easy (TE) dataset, using hand-written prompts, on class types. Symbol "P" stands for Project, "E" for Employee, "S" for
Status, and "N" for None

Model Mixtral GPT-3.5-Turbo GPT-4o Total

Class Metric strict | flexible strict | flexible strict | flexible strict | flexible

P
Recall 0.22 | 0.59 0.60 | 0.66 0.80 | 0.88 0.54 | 0.71
TF1 0.23 | 0.67 0.67 | 0.76 0.83 | 0.93 0.57 | 0.79

E
Recall 0.25 | 0.68 0.63 | 0.66 0.85 | 0.89 0.58 | 0.74
TF1 0.23 | 0.70 0.68 | 0.72 0.88 | 0.92 0.60 | 0.78

S
Recall 0.18 | 0.47 0.53 | 0.62 0.60 | 0.68 0.44 | 0.59
TF1 0.17 | 0.47 0.55 | 0.66 0.64 | 0.72 0.45 | 0.61

N
Recall 0.09 | 0.10 0.43 | 0.43 0.38 | 0.43 0.30 | 0.32
TF1 0.09 | 0.13 0.43 | 0.43 0.36 | 0.44 0.29 | 0.33

Total Recall 0.21 | 0.54 0.59 | 0.63 0.75 | 0.83 0.52 | 0.68
Total TF1 0.22 | 0.61 0.65 | 0.72 0.78 | 0.87 0.55 | 0.73

Table 8
Results on Templates Hard (TH) dataset, using hand-written prompts, on class types. Symbol "P" stands for Project, "E" for Employee, "S" for
Status, and "N" for None

Model Mixtral GPT-3.5-Turbo GPT-4o Total

Class Metric strict | flexible strict | flexible strict | flexible strict | flexible

P
Recall 0.14 | 0.50 0.64 | 0.68 0.77 | 0.85 0.52 | 0.68
TF1 0.15 | 0.59 0.71 | 0.76 0.81 | 0.90 0.56 | 0.75

E
Recall 0.13 | 0.38 0.43 | 0.51 0.27 | 0.40 0.28 | 0.43
TF1 0.13 | 0.46 0.49 | 0.60 0.30 | 0.43 0.31 | 0.50

S
Recall 0.07 | 0.29 0.56 | 0.60 0.40 | 0.48 0.34 | 0.46
TF1 0.07 | 0.33 0.61 | 0.66 0.42 | 0.50 0.37 | 0.50

N
Recall 0.03 | 0.03 0.19 | 0.20 0.18 | 0.22 0.13 | 0.15
TF1 0.03 | 0.07 0.19 | 0.20 0.19 | 0.24 0.13 | 0.17

Total Recall 0.11 | 0.39 0.54 | 0.58 0.62 | 0.70 0.42 | 0.56
Total TF1 0.12 | 0.47 0.59 | 0.65 0.64 | 0.73 0.45 | 0.61

GPT-4o is More Consistent and Performant, While GPT-3.5-Turbo Achieves the Best Results on the Harder
Dataset. Despite showing fluctuations in results when it rephrased the prompts, GPT-4o was the best overall model.
Based on Table 3, on the TE dataset, under strict measurements, it had 75% recall and 78% for the TF1 score, almost
four times more than Mixtral-8x7b and with 13.5% more than GPT-3.5-Turbo. We can interpret the results as GPT-
4o is more reliable than the other two models, regardless of the prompt level. However, GPT-3.5-Turbo came close
to it considering their top performances, being only 3% away from GPT-4o on the TE dataset, while surpassing it
by 4% on the TH dataset, as we can notice on Table 5. Depending on the user’s objectives, while considering the
model’s costs, the choice of the final model could vary.

Complex Class Types Do Not Imply More Difficult Reasoning. Analyzing both Tables 7 and 8, all models seem
to perform better on the Project type, compared with the other three classes. It may be attributed to the inclusion of
more difficult phrase types, combined with a notable lower amount of examples for the latter three. In spite of this
difference, the results for the Project type are still significantly higher than for the other ones, although it requires
the extraction of five relationships, compared with two for Employee and one for Status. For example, under the
flexible paradigm, the average recall and TF1 score are 70% and 77% for the Project class, while for Employee, the
models only achieve 59% and 64%. This suggests a potential hypothesis regarding LLM behavior when handling
complex versus simpler classes. Finally, the recall and TF1 score on the Status class are 53% and 56%, respectively

V.I.R. Iga and G.C. Silaghi / Assessing LLMs Suitability for Knowledge Graph Construction 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 4. Recall and TF1 for each model per phrase type under the flexible paradigm on both datasets using hand-written prompts. Symbol "EI"
stands for Explicit Information, "II" for Implicit Information, "MS1" and "MS2" for "Misleading Information types 1 or 2"

Table 9
In-depth analysis of the "Misleading Information type 2" (MS2) phrase type (from Table 1). Phrases include OOD class types, basic tasks "w/o
Insert" intent, or ad-hoc values for the target instance’ relationships ("WV").

Model OOD w/o Insert WV

Mixtral 8x7b-instruct-v0.1 0.00 0.28 0.57
GPT 3.5-turbo-0125 0.01 1.00 0.64
GPT-4o 0.04 1.00 0.86

Table 10
Results, under the flexible paradigm, of hand-written prompts by each model on the phrases that include Employee instances referenced by an
ID or their hasRole relationship value instead of the hasName one; only available in the TH dataset.

Model
with ID reference with Role reference
Recall TF1 Recall TF1

Mixtral 8x7b-instruct-v0.1 0.30 0.38 0.47 0.54
GPT 3.5-turbo-0125 0.45 0.52 0.68 0.75
GPT-4o 0.46 0.54 0.83 0.88

- 6% and 8% lower than for the Employee class. This might indicate that LLMs leverage internal knowledge for task
resolution, particularly since Employee instances often involve familiar person names and roles, which are more
likely included during LLM training, unlike the more variable nature of Status instances names (e.g., ’in-progress’).

LLMs Appear to Adhere to the Ontology. While the results in Tables 3-8 and Fig. 4 demonstrate strong per-
formance across various prompt levels, classes, and phrase types, suggesting that LLMs may grasp the provided
ontology, closer analysis of the misleading information type 2 category (MS2) category from Fig. 4 raises concerns.
This category had the lowest scores, with an average recall of 48% and an TF1 score of 53% across the three mod-
els. Although these results might seem acceptable at first glance, a deeper look at the phrase types reveals flaws in
LLMs’ behavior. All models performed reasonably well when encountering ad-hoc values for the target instance’
relationships, reaching 86% recall using GPT-4o, as we can notice in Table 9.

However, phrases involving basic tasks without the Insert intent (e.g., ’generate all the reports you have’) posed
an issue for Mixtral-8x7b, which attempted to extract triples instead of outputting ’None’. The most significant

14 V.I.R. Iga and G.C. Silaghi / Assessing LLMs Suitability for Knowledge Graph Construction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

challenge was presented by out-of-distribution (OOD) class types, such as the example in last row of Table 1, where
none of the models followed the prompt or ontology. Instead of verifying the detected type against the ontology and
outputting ’None,’ 98% of the time they incorrectly treated it as valid. This suggests that LLMs do not truly reason
but are highly adept at mapping input text to target output when the cases are general enough.

Top-tier LLMs Effectively Address Grammatical Errors. Fig. 4 highlights the Misleading information type 1
(MS1) category, where phrases contain misspelled words, as shown in the third row of Table 1. While Mixtral-8x7b
achieves only 55% recall and a 63% for TF1 score, GPT models handle most errors and even correct known class
names (e.g., ’Porject’ to ’Project’). For instance, GPT-4o reaches 86% recall and a 91% for TF1 score under the
flexible paradigm.

The Underlying Semantics of Words Pose a Challenge for LLMs. The Project and Employee classes are linked
through the hasManager relationship, and most test phrases reference the Employee’s name, requiring the creation
of an additional Employee instance, as described in subsection 3.4. Such tasks are trivial for high-performant models,
as names can be linked with persons, which can be seen as a supertype for the Employee class. With their complex
training schedule, it is highly probable their dataset contained such cases. However, when we start referencing such
instances by their role (i.e. a job type), their performance starts to decline, though not drastically. As shown in Ta-
ble 10, GPT-4o maintains 83% recall and an 88% TF1 score, close to its overall performance (85% recall, 90% for
TF1 in Table 8, Project class type). However, performance drops sharply when using terms likely absent from train-
ing, such as an ID (e.g., Employee123), with GPT-4o achieving just 46% recall and 54% for TF1. This suggests that
referencing class instances with unusual terms, like IDs, challenges LLMs to grasp deeper semantic relationships.

In summary, KGC remains a challenging task for LLMs under Zero-Shot prompting. As models become better,
they performance tend to increase, while shifting the focus on optimizing the costs. Moreover, when checking their
intermediate reasoning steps, they show lack of ability to follow the provided ontology. The open-source model
has difficulties in conforming to the required output format. However, One-Shot contexts give promising results
as LLMs excel in emulating a provided example. This implies that a less resource-intensive Few-Shot training
approach could potentially boost performances, with a focus on techniques like Retrieval-Augmented-Generation to
select more suitable examples within a given prompt. Another plus is their ability to enhance their inner knowledge
to detect some implicit relationships from the input text. Nevertheless, as suggested by Fill et al. [3], presently
we may use such LLMs as helpful assistants for solving such tasks, rather than ultimately faithful extractors in a
pipelined system.

5. Conclusion

The proposed experiments showcases the ability of three leading LLMs, namely Mixtral-8x7b-Instruct-v0.1,
GPT-3.5-Turbo-0125 and GPT-4o, in tackling the Knowledge Graph Construction task. Using both hand-written
and model-rephrased prompts, we incorporated various prompt engineering techniques, such as In-Context Learn-
ing or Chain of Thought, focusing on Zero- and One-Shot contexts. Metrics measurement enabled the evaluation
of the LLMs for strictly following the given prompt, as well as the their flexibility in producing useful output to
be considered in post-processing steps. The results obtained from two distinct datasets tailored to various reasoning
challenges highlight the LLMs strengths and weaknesses. These include their adaptability in Zero- or One-Shot
scenarios and their utilization of internal knowledge to deduce implicit reasoning steps. However, they still lack
self-awareness, not being able to adhere to explicit guidelines in the given prompt, or fully understand and exploit
the considered ontology.

Additionally, we proposed two personalized datasets capable of assessing both the models’ ability to solve the
Knowledge Graph Construction task and their potential integration with task oriented dialogue systems simultane-
ously and a flexible measurement procedure to measure the capacity of the LLM to give logically correct results,
but in an approximate format.

V.I.R. Iga and G.C. Silaghi / Assessing LLMs Suitability for Knowledge Graph Construction 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Future work will prioritize the integration of additional LLMs for testing, facilitated by our interface’s seamless
incorporation of new endpoints. Moreover, we plan to test the possible influence of placing the system prompt at
the end of the message, after the input text, to mitigate long-context memory issues. Lastly, we plan to move from
single turns to a dialogue context, where the extraction happens as a discussion between a user and the LLM.

References

[1] A. Bordes, N. Usunier, A. García-Durán, J. Weston and O. Yakhnenko, Translating Embeddings for Modeling Multi-relational Data, in:
Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceed-
ings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, C.J.C. Burges, L. Bottou, Z. Ghahramani and K.Q. Wein-
berger, eds, 2013, pp. 2787–2795. https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html.

[2] H. Chen, X. Liu, D. Yin and J. Tang, A Survey on Dialogue Systems: Recent Advances and New Frontiers, ACM SIGKDD Explorations
Newsletter 19(2) (2017), 25–35. doi:10.1145/3166054.3166058.

[3] H. Fill, P. Fettke and J. Köpke, Conceptual Modeling and Large Language Models: Impressions From First Experiments With ChatGPT,
Enterp. Model. Inf. Syst. Archit. Int. J. Concept. Model. 18 (2023), 3. doi:10.18417/EMISA.18.3.

[4] H. Ghanem and C. Cruz, Fine-Tuning vs. Prompting: Evaluating the Knowledge Graph Construction with LLMs, in: 3rd International
Workshop on Knowledge Graph Generation from Text (Text2KG), Co-located with the Extended Semantic Web Conference (ESWC
2024), May 26–30, 2024, Hersonissos, Greece, S. Tiwari, N. Mihindukulasooriya, F. Osborne, D. Kontokostas, J. D’Souza, M. Kejri-
wal, M.A. Pellegrino, A. Rula, J.E.L. Gayo, M. Cochez and M. Alam, eds, CEUR Workshop Proceedings, Vol. 3747, CEUR-WS.org, 2024.
https://ceur-ws.org/Vol-3747/text2kg_paper7.pdf.

[5] S. Guo, Q. Wang, L. Wang, B. Wang and L. Guo, Jointly Embedding Knowledge Graphs and Logical Rules, in: Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, J. Su,
X. Carreras and K. Duh, eds, The Association for Computational Linguistics, 2016, pp. 192–202. doi:10.18653/V1/D16-1019.

[6] J. Han, N. Collier, W.L. Buntine and E. Shareghi, PiVe: Prompting with Iterative Verification Improving Graph-based Generative Ca-
pability of LLMs, in: Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meet-
ing, August 11-16, 2024, L. Ku, A. Martins and V. Srikumar, eds, Association for Computational Linguistics, 2024, pp. 6702–6718.
doi:10.18653/V1/2024.FINDINGS-ACL.400.

[7] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, S. Kirrane, J.E.L. Gayo, R. Navigli, S. Neumaier, A.N. Ngomo,
A. Polleres, S.M. Rashid, A. Rula, L. Schmelzeisen, J. Sequeda, S. Staab and A. Zimmermann, Knowledge Graphs, Synthesis Lectures on
Data, Semantics, and Knowledge, Morgan & Claypool Publishers, 2021. doi:10.2200/S01125ED1V01Y202109DSK022.

[8] V.I. Iga and G.C. Silaghi, Leveraging BERT for Natural Language Understanding of Domain-Specific Knowledge, in: 25th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2023, Nancy, France, September 11-14, 2023, IEEE,
2023, pp. 210–215. doi:10.1109/SYNASC61333.2023.00035.

[9] V.I. Iga and G.C. Silaghi, Ontology-Based Dialogue System for Domain-Specific Knowledge Acquisition, in: Information Systems Develop-
ment: Organizational Aspects and Societal Trends (ISD2023 Proceedings), Lisbon, Portugal, 30 August - 1 September 2023, A.R. da Silva,
M.M. da Silva, J. Estima, C. Barry, M. Lang, H. Linger and C. Schneider, eds, Instituto Superior Técnico / Association for Information
Systems, 2023. doi:10.62036/ISD.2023.46.

[10] V.I. Iga and G.C. Silaghi, Assessing LLMs Suitability for Knowledge Graph Completion, in: Neural-Symbolic Learning and Reasoning -
18th International Conference, NeSy 2024, Barcelona, Spain, September 9-12, 2024, Proceedings, Part II, T.R. Besold, A. d’Avila Garcez,
E. Jiménez-Ruiz, R. Confalonieri, P. Madhyastha and B. Wagner, eds, Lecture Notes in Computer Science, Vol. 14980, Springer, 2024,
pp. 277–290. doi:10.1007/978-3-031-71170-1_22.

[11] S. Ji, S. Pan, E. Cambria, P. Marttinen and P.S. Yu, A Survey on Knowledge Graphs: Representation, Acquisition, and Applications, IEEE
Trans. Neural Networks Learn. Syst. 33(2) (2022), 494–514. doi:10.1109/TNNLS.2021.3070843.

[12] A.Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D.S. Chaplot, D. de Las Casas, E.B. Hanna, F. Bres-
sand, G. Lengyel, G. Bour, G. Lample, L.R. Lavaud, L. Saulnier, M. Lachaux, P. Stock, S. Subramanian, S. Yang, S. Anto-
niak, T.L. Scao, T. Gervet, T. Lavril, T. Wang, T. Lacroix and W.E. Sayed, Mixtral of Experts, CoRR abs/2401.04088 (2024).
doi:10.48550/ARXIV.2401.04088.

[13] H. Khorashadizadeh, N. Mihindukulasooriya, S. Tiwari, J. Groppe and S. Groppe, Exploring In-Context Learning Capabilities of Founda-
tion Models for Generating Knowledge Graphs from Text, in CEUR Workshop Proceedings, Vol. 3447, S. Tiwari et al., ed., CEUR-WS.org,
2023, pp. 132–153. https://ceur-ws.org/Vol-3447/Text2KG_Paper_9.pdf.

[14] N. Lao and W.W. Cohen, Relational retrieval using a combination of path-constrained random walks, Mach. Learn. 81(1) (2010), 53–67.
doi:10.1007/S10994-010-5205-8.

[15] N. Mihindukulasooriya, S. Tiwari, C.F. Enguix and K. Lata, Text2KGBench: A Benchmark for Ontology-Driven Knowledge Graph Gen-
eration from Text, in: The Semantic Web - ISWC 2023 - 22nd International Semantic Web Conference, Athens, Greece, November 6-10,
2023, Proceedings, Part II, T.R. Payne, V. Presutti, G. Qi, M. Poveda-Villalón, G. Stoilos, L. Hollink, Z. Kaoudi, G. Cheng and J. Li, eds,
Lecture Notes in Computer Science, Vol. 14266, Springer, 2023, pp. 247–265. doi:10.1007/978-3-031-47243-5_14.

[16] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang and X. Wu, Unifying Large Language Models and Knowledge Graphs: A Roadmap, IEEE
Trans. Knowl. Data Eng. 36(7) (2024), 3580–3599. doi:10.1109/TKDE.2024.3352100.

https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://ceur-ws.org/Vol-3747/text2kg_paper7.pdf
https://ceur-ws.org/Vol-3447/Text2KG_Paper_9.pdf

16 V.I.R. Iga and G.C. Silaghi / Assessing LLMs Suitability for Knowledge Graph Construction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[17] F. Polat, I. Tiddi and P. Groth, Testing Prompt Engineering Methods for Knowledge Extraction from Text, Semantic Web accepted (2024).
[18] S.K.K. Santu and D. Feng, TELeR: A General Taxonomy of LLM Prompts for Benchmarking Complex Tasks, in: Findings of the ACL:

EMNLP 2023, Singapore, 2023, H. Bouamor et al., ed., ACL, 2023, pp. 14197–14203. doi:10.18653/V1/2023.FINDINGS-EMNLP.946.
[19] M. Trajanoska, R. Stojanov and D. Trajanov, Enhancing Knowledge Graph Construction Using Large Language Models, CoRR

abs/2305.04676 (2023). doi:10.48550/ARXIV.2305.04676.
[20] X. Wei, X. Cui, N. Cheng, X. Wang, X. Zhang, S. Huang, P. Xie, J. Xu, Y. Chen, M. Zhang, Y. Jiang and W. Han, ChatIE: Zero-Shot

Information Extraction via Chatting with ChatGPT, CoRR abs/2302.10205 (2023). doi:10.48550/ARXIV.2302.10205.
[21] W. Xiong, T. Hoang and W.Y. Wang, DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning, in: Proceedings

of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11,
2017, M. Palmer, R. Hwa and S. Riedel, eds, Association for Computational Linguistics, 2017, pp. 564–573. doi:10.18653/V1/D17-1060.

[22] W. Xiong, M. Yu, S. Chang, X. Guo and W.Y. Wang, One-Shot Relational Learning for Knowledge Graphs, in: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, E. Riloff, D. Chi-
ang, J. Hockenmaier and J. Tsujii, eds, Association for Computational Linguistics, 2018, pp. 1980–1990. doi:10.18653/V1/D18-1223.

[23] J. Zhang, B. Chen, L. Zhang, X. Ke and H. Ding, Neural, symbolic and neural-symbolic reasoning on knowledge graphs, AI Open 2 (2021),
14–35. doi:10.1016/J.AIOPEN.2021.03.001.

[24] W.X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen,
J. Jiang, R. Ren, Y. Li, X. Tang, Z. Liu, P. Liu, J. Nie and J. Wen, A Survey of Large Language Models, CoRR abs/2303.18223 (2023).
doi:10.48550/ARXIV.2303.18223.

[25] Y. Zhu, X. Wang, J. Chen, S. Qiao, Y. Ou, Y. Yao, S. Deng, H. Chen and N. Zhang, LLMs for knowledge graph construction and reasoning:
recent capabilities and future opportunities, World Wide Web (WWW) 27(5) (2024), 58. doi:10.1007/S11280-024-01297-W.

	Introduction
	Related Work
	Methodology
	Preliminaries
	Datasets format and distribution
	Prompt engineering
	Metrics

	Results and discussion
	Conclusion
	References

