
Neurosymbolic Artificial Intelligence 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Towards Learning to Reason: Comparing
LLMs with Neuro-Symbolic on Arithmetic
Relations in Abstract Reasoning
Michael Hersche a,*, Giacomo Camposampiero a,b, Roger Wattenhofer b, Abu Sebastian a and
Abbas Rahimi a

a IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
b ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland.

Abstract. This work compares large language models (LLMs) and neuro-symbolic approaches in solving Raven’s progressive
matrices (RPM), a visual abstract reasoning test that involves the understanding of mathematical rules such as progression or
arithmetic addition. Providing the attributes directly as textual prompts, which assumes a perfect visual perception, allows us to
measure the model’s abstract reasoning capability in isolation. Despite providing such compositionally structured representation
and advanced prompting techniques, both GPT-4 and Llama-3 70B cannot achieve perfect accuracy on the center constellation
of the I-RAVEN dataset. Our analysis reveals that the root cause lies in the LLM’s weakness in understanding and executing
arithmetic rules. As a potential remedy, we introduce the Abductive Rule Learner with Context-awareness (ARLC), a neuro-
symbolic approach that learns to reason with distributed vector-symbolic architectures (VSAs) representations and operators.
We find that ARLC achieves almost perfect accuracy on the center constellation of I-RAVEN, demonstrating also a high
fidelity in arithmetic rules. To stress the length generalization capabilities of the models, we extend the RPM tests to larger
matrices (3×10 instead of typical 3×3) and larger dynamic ranges of the attribute values (from 10 up to 1000). We find that
the LLM’s accuracy of solving arithmetic rules drops to sub-10%, especially as the dynamic range expands, while ARLC can
maintain a high accuracy due to emulating symbolic computations on top of properly distributed representations.

Keywords: Analogical reasoning, large language models, vector-symbolic architectures, reasoning benchmarks

1. Introduction

Abstract reasoning is often regarded as a core feature of human intelligence. This cognitive process involves
abstracting rules from observed patterns in a source domain, and applying them in an unseen target domain. With
the ultimate aim to achieve human-level intelligence, abstract reasoning tasks have sparked the interest of many
in machine learning research. Thanks to the availability of large datasets [1–3], various learning-based methods,
ranging from pure connectionist [4, 5] to neuro-symbolic [6–9] approaches, achieved promising results in this
domain.

More recently, the zero- and few-shot capabilities of large language models (LLMs) and their multi-modal vari-
ants have been tested on various abstract reasoning tasks such as verbal [10–12] or visual [10, 13–21] analogies. One
natural approach towards zero-shot visual abstract reasoning is to leverage multi-modal LLM’s vision capabilities
to solve the task end-to-end. However, these multi-modal models perform significantly worse than their text-only

*Corresponding author. E-mail: michael.hersche@ibm.com.

2949-8732/$35.00 © 0 – IOS Press. All rights reserved.

mailto:michael.hersche@ibm.com

2 M. Hersche et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Context

Answer candidates

?

b) Solving RPMs through LLM promptinga) RPM example

c) Solving RPMs with neuro-symbolic ARLC

Map attributes to
high-dimensional

 space

Learning to
reason

Extract
attribute
values

LLMPrompting
attr2text

Extract pred.
text2attr

Select
answer

candidate

Select
answer

candidate

Fig. 1. This work compares the abstract reasoning capabilities of LLMs and neuro-symbolic ARLC on Raven’s progressive matrices (RPM)
tests. a) An RPM example taken from the center constellation of I-RAVEN. The task is to find the empty panel at the bottom-right of the
context matrix by selecting one of the answer candidates. b) Solving RPMs through LLM prompting. Visual attribute values are extracted from
the I-RAVEN dataset and assembled to individual per-attribute text-only prompts. LLMs are prompted to predict the attribute of the empty
panel. Finally, the attribute predictions are compared with the answer candidates, whereby the best-matching answer is selected as the final
answer. c) Solving RPMs with neuro-symbolic ARLC that relies on distributed similarity-preserving representations and manipulates them via
dimensionality-preserving operations; it learns rule-formulations as a differentiable assignment problem.

version [15], which might stem from a missing fine-grained compositional feature comprehension [13]. As an ad-
ditional help, LLMs have been provided with text-only inputs by giving them access to an oracle perception, i.e.,
providing perfectly disentangled representations [10, 14]. While this generally improves their reasoning abilities,
LLMs still fail to achieve perfect accuracy on many simple tasks. One example is represented by Raven’s pro-
gressive matrices (RPMs) [22], a benchmark that tests visual abstract reasoning capabilities by measuring the fluid
intelligence of humans. Here, the state-of-the-art (SOTA) LLM-based approach [14] achieves only 86.4% accuracy
in the center constellation of I-RAVEN [3], which we observe to be a gate-keeper for this task (see Section 2.1).

In contrast, recent neuro-symbolic approaches showed not only almost perfect accuracy on the center con-
stellation of I-RAVEN, but also demonstrated high fidelity in out-of-distribution (OOD) settings. For instance, the
Abductive Rule Learner with Context-awareness (ARLC) represents attribute values with high-dimensional, dis-
tributed representations based on vector-symbolic architectures (VSAs) [23–26]. Learning the RPM rules boils
down to a differentiable assignment problem of high-dimensional panel representations in a series of binding and
unbinding operations, which can be solved with unconstrained optimization algorithms such as stochastic gradient
descent (SGD). ARLC outperformed the SOTA LLM-based approach [14] both on in-distribution and OOD, thanks
to relying on structured and similarity-preserving representations based on fractional power encoding (FPE) [24].

This paper extends on the initial work on ARLC [9], by comparing its abstract reasoning capability with two
prominent LLMs (GPT-4 [27] and Llama-3 70B [28]) (see Fig. 1). Circumventing the perception by providing
ground-truth attribute labels to the models allows us to measure their analogical and mathematical reasoning ca-
pabilities in isolation when such compositionally structured (i.e., disentangled) representations are provided. Our
comprehensive prompting efforts lead to very high accuracy for Llama-3 70B (85.0%) and GPT-4 (93.2%), where
the latter notably outperforms previous reports with GPT-3 [14] (86.4%) and GPT-4 o1-preview [21] (18.00%).
This LLM’s imperfect accuracy on the isolated task motivated us to further analyze their capability of detecting and
executing different rules. In both GPT-4 and Llama-3 70B, we find a notable weakness in performing arithmetic
rules that require row-wise additions or subtractions (e.g., see the last prompt in Fig. 2). To gain more insight about
this behavior, we set up a new RPM dataset (I-RAVEN-X) that increases the grid size from 3×3 to 3×10, addition-
ally allowing for a configurable dynamic range for the arithmetic computations. Also here, we observe a notable
weakness in the arithmetic rule that gets even amplified by an increasing dynamic range. On the other hand, ARLC

M. Hersche et al. / 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

demonstrates high accuracy on larger grid sizes and allows to increase the dynamic range without further retraining,
thanks to the the capability of adjusting the underlying structured FPE representations.

2. Datasets

2.1. I-RAVEN

We test the models on the center constellation of I-RAVEN [3] (see Fig. 1). The test consists of a 3×3 context
matrix and eight answer candidate panels. Each panel contains an object, characterized by different attributes (shape,
size, and color). The relation between each attribute’s value in different panels is governed by a well-defined set
of rules: constant, progression, arithmetic, and distribute three. The task is to infer the rule
governing each attribute in the context matrix and use it to determine the content of the missing (bottom-right)
panel, selecting it within the eight candidate answers. Compared to other RPM benchmarks that have been used
to evaluate LLMs [10], I-RAVEN tests a more complex range of logical and arithmetic skills. While I-RAVEN
provides tests in various constellations with more objects that may intuitively appear more arduous to solve, LLMs
are more challenged with the seemingly simple constellations. For instance, GPT-3 achieved a higher accuracy
on the 2x2 and 3x3 constellations (78.0% and 86.4%) than on center (77.2%) [14]. Moreover, high accuracy
can be maintained on the 2x2 and 3x3 constellations while only looking at the last row of the context matrix [14],
effectively showing that no analogical reasoning is required to solve the test in these constellations. Hence, we opted
to focus our evaluation on the center constellation only, using 500 samples from I-RAVEN’s test set. Inspired by
recent works [10, 14], we simplify RPM from a visual abstract reasoning test to a purely abstract reasoning test.
Assuming a perfect perception, we extract the attribute values from I-RAVEN and use them to create the prompts
for the model.

2.2. New I-RAVEN-X

To further evaluate the mathematical reasoning capabilities at scale, we introduce an extension of the I-RAVEN’s
center constellation, called I-RAVEN-X. Our new benchmark maintains I-RAVEN’s rules and attributes but al-
lows for a parameterizable number of columns (g) and a dynamic range of attribute values (m). When generat-
ing a new RPM example, we uniformly sample from one of the available rules (constant, progression,
arithmetic, and distribute three). Note that the attribute shape does not incur the arithmetic rule.
We use I-RAVEN’s attribute bisection tree [3] to generate unbiased candidate answers.

In the following, we describe the context matrix generation for the individual rules. The overall goal is that the
values stay in the range [0,m − 1].

– constant: This rule keeps the attribute value constant per row. For each row, we uniformly sample an integer
from the set {0, 1, ...,m − 1}, and duplicate along the row.

– progression: The attribute value monotonically increases or decreases in a row by a value of 1 or 2. First,
we uniformly sample the progressive increment/decrement (δ) from the set {−2,−1,+1,+2}. In case of a
positive increment, we first define the values of the right-most columns, by uniformly sampling from the set
{(g− 1) · δ, ...,m− 1} for each row. Then, the rest of the matrix is completed by applying the progression rule.
The sampling for a negative δ is done specularly from the first column.

– arithmetic: The attribute values of the first g − 1 panels are either added (arithmetic plus) or sub-
tracted (arithmetic minus), yielding the attribute value of the last panel in the row. In arithmetic
plus, we sequentially sample the values from the first g − 1 panels in the row. For each panel, we set the
sampling range to {0, ...,m − s}, where s is the sum of the already sampled panels in the row. Afterward, the
first g − 1 panels are shuffled. Finally, the values of the last panels are the sum of the first g − 1 ones, applied
row-wise. For arithmetic minus, we apply the same sampling strategy but leave the first column empty.
The value of the first column is then defined as the sum of the other columns.

– distribute-n: We uniformly sample distinct values for the first row from {0, ...,m − 1}. The content of
the remaining rows is defined by applying a circular shift per row (either right or left).

Fig. 2b shows example prompts generated from samples of our new dataset.

4 M. Hersche et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

System: Complete the Raven's progressive matrix:
User: Only return the missing numbers!
 row 1: 5, 5, 5;
 row 2: 3, 3, 3;
 row 3: 6, 6,
Output: 6

System: Complete the Raven's progressive matrix:
User: Only return the missing numbers!
 row 1: 6, 6, 6;
 row 2: 4, 4, 4;
 row 3: 2, 2,
Output: 2

Attribute: shape
Rule: constant
Correct answer: 6

System: Complete the Raven's progressive matrix:
User: Only return the missing numbers!
 row 1: 8, 2, 6;
 row 2: 1, 0, 1;
 row 3: 8, 7,
Output: 6

Attribute: size
Rule: constant
Correct answer: 2

Attribute: color
Rule: arithmetic -
Correct answer: 1

a) LLM prompts for I-RAVEN

System: Complete the Raven's progressive matrix:
User: Only return the missing numbers!

Output: 242

System: Complete the Raven's progressive matrix:
User: Only return the missing numbers!

Output: 695

Attribute: shape
Rule: progression
Correct answer: 242

System: Complete the Raven's progressive matrix:
User: Only return the missing numbers!

Output: 352

Attribute: size
Rule: constant
Correct answer: 695

Attribute: color
Rule: arithmetic -
Correct answer: 58

b) LLM prompts for our new I-RAVEN-X

2,
387,
0,

63,
106,
0,

3,
7,
551,

5,
308,
0,

5;
38;

20,
2,
0,

4,
0,
0,

667,
0,
2,

row 1: 769,
row 2: 848,
row 3: 611,

0,
0,
0,

328,
726,
232,

332,
730,
236,

334,
732,
238,

336,
734,
240,

338;
736;

330,
728,
234,

326,
724,
230,

322,
720,
226,

row 1: 320,
row 2: 718,
row 3: 224,

324,
722,
228,

73,
677,
695,

73,
677,
695,

73,
677,
695,

73,
677,
695,

73;
677;

73,
677,
695,

73,
677,
695,

73,
677,
695,

row 1: 73,
row 2: 677,
row 3: 695,

73,
677,
695,

Fig. 2. a) Individual per-attribute text-only prompts to solve RPM tasks from I-RAVEN. b) Example prompts with of our novel configurable
I-RAVEN-X dataset of size 3×10 with a value range of m = 1000. In both the I-RAVEN and I-RAVEN-X examples, the LLM (GPT-4) errs in
the arithmetic rules.

3. LLM-based RPM solving

3.1. Models

We focused our evaluations on text-only LLMs. There exist attempts [13, 15, 17–19] that leverage vision sup-
port of some multi-modal LLMs (e.g., GPT-4V) directly feeding the models with visual RPM data; however, they
achieve consistently lower reasoning performance than with text-only prompting. The SOTA LLM-based abstract
reasoning approach [14] relied on reading out GPT-3’s (text-davinci-002) token probabilities. However, this
model is no longer accessible to users and its successive iterations do not allow the retrieval of prediction logits.
Hence, we considered discrete classification approaches that are based on output strings rather than distribution
over tokens. In particular, we investigated two SOTA LLMs: the proprietary GPT-4 [27]1 (gpt-4-0613) and the
open-source Llama-3 70B [28]2. More recent iterations of these models were not considered in our analysis for
different reasons. Meta’s attribution requirement in their updated terms regarding naming conventions prevented
us from testing Llama-3.1 During initial tests, GPT-4o yielded worse results than GPT-4, hence we focused on
GPT-4. Moreover, GPT-4 o1’s poor abstract reasoning results on RPM [21] (18% on 2x2 RAVEN) and its lim-
ited availability (only preview version available) prevented us from performing statistically significant tests on this
chain-of-thought model.

3.2. Prompting and classification

Entangled and disentangled prompts. Following [14], we evaluated two different prompting strategies, entangled
and disentangled prompting. The entangled prompting provides all the attributes’ values in a single prompt (see
Appendix A.1). The disentangled prompting, on the other hand, is a compositionally structured approach that queries
the LLM for individual attribute prediction. Disentangled prompting simplifies the task, but increases the number
of queries by 3×.

Discriminative and predictive classification. Similarly to [12], we consider two approaches to solve RPM tests
with LLMs. In the discriminative approach, we provide the attribute descriptions of both the context matrix and
the answer candidates. The LLM is then asked to return the panel number of the predicted answer. Appendix A.2

1GPT-4 was accessed between 07/03/2024–10/30/2024.
2The model weights were downloaded and evaluated locally.

M. Hersche et al. / 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

provides an example prompt of the discriminative approach. In the predictive approach, we prompt the LLM only
with the context matrix without the candidate answers. The LLM has to predict the value of the empty panel (see
Fig. 2). For selecting the final answer, we compare the predicted values with the answer panels and pick the one
with the highest number of overlapping values. While the predictive approach may appear more difficult, it implicitly
biases the LLM to approach the task as humans usually do, i.e., first applying a generative process to abduce rules
and execute them to synthesize a possible solution, and then discriminatively selecting the most similar answer
from choices [29]. Moreover, the final answer selection is done without the intervention of the LLM, rendering
phenomena like hallucinations less likely. Thus, the predictive classification can be seen as a more guided approach
that helps LLM to solve the task.

Self-consistency As an optional extension, we employ self-consistency [30, 31] by querying the model multiple
times (n = 7 times), sampling the next token from the distribution with a non-zero soft-max temperature. We find
the optimal soft-max temperature for GPT-4 (T = 0.5) and Llama-3 70 B (T = 0.4) via a grid search on a subset
of 50 I-RAVEN problems. We did not explore the effect of other parameters, such as top-k or top-p, and set them to
the default values. The final prediction is determined by a majority vote over the sampled outputs. The selection of
an odd number of samples (i.e., n = 7) helps to prevent potential ties.

In-context learning For a better understanding of the RPM task, we optionally prefix 16 in-context examples to
the prompt [32]. In the predictive classification approach (where no answer candidates are provided), we simply
provide complete example RPM matrices. The in-context samples are randomly selected from I-RAVEN’s training
set. Examples that had the same context matrix as the actual task are discarded and re-sampled to prevent shortcut
solutions.

4. ARLC: learning abductive reasoning using VSA distributed representations

This section presents the Abductive Rule Learner with Context-awareness (ARLC), which performs neuro-
symbolic reasoning with distributed VSA representations (see Fig. 3). ARLC projects each panel’s attribute value
(or distributions of values) into a high-dimensional VSA space. The resulting VSA vectors preserve the seman-
tic similarity between attribute values: i.e., the dot products between corresponding VSA encoded vectors define
a similarity kernel [24, 33]. Moreover, simple component-wise operations on these vectors, binding and unbind-
ing, perform addition and subtraction respectively on the encoded values. For rule learning, ARLC introduces a
generic rule template with several terms forming a series of binding and unbinding operations between vectors.
The problem of learning the rules from data is reduced to a differentiable assignment problem between the terms
of the general rule template and the VSA vectors encoding the contents of the panels, which can be learned with
standard SGD. ARLC was initially presented in [9]; this work mainly compares it to the reasoning capabilities of
LLMs on I-RAVEN, and demonstrates its seamless extension to larger grid sizes and dynamic ranges on our novel
I-RAVEN-X.

4.1. From visual attributes to distributed VSA representations

ARLC’s key concept is to represent attribute values with high-dimensional, distributed VSA vectors that preserve
the semantic similarity between the attribute values thanks to an introduced kernel notion. We start by defining a
VSA that equips the space with dimensionality-preserving vector operations (binding ⊗, unbinding ⊘, and bundling
⊕) as well as a similarity function (cos(·, ·)). For example, ARLC uses binary generalized sparse block codes
(GSBCs) [34] as a particular VSA instance. In binary GSBCs, the D-dimensional vectors are divided into B blocks
of equal length, L = D/B, where only one (randomly selected) element per block is set to 1 (D = 1024 and B = 4).
The algebraic operations of binary GSBCs are defined in Table 1. See Appendix B for a detailed background on
VSA.

Next, we define a mapping z : Z+ → RD that enables the projection of input RPM attributes into a correspond-
ing high-dimensional, semantically-rich feature space. Note that this work focuses on mapping integer values as the

6 M. Hersche et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

?

Context

Answer candidates

Projection to the
VSA space

Rule computation

Fig. 3. ARLC architecture. ARLC maps attribute values, or distributions of values, to distributed VSA representations, where the semantic
similarity between values is preserved via a notion of kernel. Learnable rules (r1, ..., rR) predict the VSA representation of the empty panel
(v̂(3,3)

a,r) together with a confidence value (sr). The closest answer to the predicted soft-selected prediction (v̂(3,3)
a) is chosen as the final answer.

Fig. 4. Similarity kernel in VSA. Mapping two values (v1 and v2) to a VSA space (i.e., GSBC in ARLC) that uses fractional power encoding
(FPE) and computing their similarity in the VSA space yields the shown similarity kernel K(v1 − v2).

attribute values in I-RAVEN are integer-valued too. However, generalizing this approach to real-valued domain map-
pings is possible using frequency holographic reduced representations (FHRR) [23]. Leveraging fractional power
encoding (FPE) [24], a value v ∈ Z+ is encoded as

z(v) = zv =

v⊗
n=1

z,

where z ∈ RD is a randomly drawn binary GSBC vector. This mapping yields a similarity kernel between neigh-
boring vector representations [33], as shown in Fig. 4.

Let us assume two variables with values v1 and v2, which are represented with two VSA vectors (z(v1) = zv1

and z(v1) = zv2). Binding the two vectors yields z(v1) ⊗ z(v2) = zv1 ⊗ zv2 = zv1+v2 . Hence, binding in the
VSA space is equivalent to the addition in R. In other words, the FPE initialization allows to establish a semantic
equivalence between high-dimensional vectors and real numbers. This property is consistently exploited in ARLC’s
framework, as it allows to solve the analogies in the RPM puzzles as simple algebraic operations in the domain
of real numbers. For example, by computing the similarity between the bound representation and a third projected
variable (sim(zv1+v2 , zv3)), we can evaluate if v1 + v2

?
= v3 representing the arithmetic plus rule in RPM.

One advantage of performing reasoning with distributed VSA representations is its capability to represent per-
ceptual uncertainty in the variable values. Connecting to the previous example, let us assume that the first variable
takes value v1 with probability p and value v′1 with probability p′ = 1 − p. The distribution can be encoded as the
weighted superposition of the two corresponding codewords: p · zv1 + p′ · zv′1 . The similarity computation between

M. Hersche et al. / 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Supported VSA operations and their equivalent in R.

Operation Binary GSBCs with FPE Equivalent in R

Binding (⊗) Block-wise circular convolution Addition +

Unbinding (⊘) Block-wise circular correlation Subtraction −
Bundling (⊕) Sum & normalization —
Similarity (⊙) Cosine similarity (cos(·, ·)) —

the bound representation and a third variable would then yield

sim((p · zv1 + p′ · zv′1)⊗ zv2 , zv3) = sim(p · zv1 ⊗ zv2 + p′ · zv′1 ⊗ zv2 , zv3)

= p · sim(zv1 ⊗ zv2 , zv3) + p′ · sim(zv′1 ⊗ zv2 , zv3),

where the first equality uses the linearity of the binding operation, and the second one the linearity of the similarity
metric. Overall, this formulation allows the validation of multiple solutions (in this case two) using only a single
binding and similarity computation.

In the RPM application, each panel’s label is translated to a probability mass function (PMF) p(i, j)
a , where a is

the attribute, i is the row index and j is the column index of the panel. The panel’s PMF is then projected into the
VSA space as

v(i, j)
a =

m∑
k=1

p(i, j)
a [k] · zk,

where m is the number of possible values that the attribute a can assume. Overall, this yields eight VSA vectors for
each attribute a (one for each panel of the input RPM matrix), represented by

Va :=
(
v(1,1)

a ,v(1,2)
a , . . . ,v(3,2)

a

)
. (1)

Note that the basis vectors are pre-computed and stored in a dictionary C = {zk}r
i=1 containing m elements.

4.2. Learning RPM rules as an assignment problem

As we have seen in the previous example, RPM rules can be represented using VSA operations. Generalizing the
application beyond the arithmetic plus rule, we find that the rules used in RPM can be framed as a series of
binding and unbinding operations:

r = (c1 ⊗ c2 ⊗ c3 ⊗ c4 ⊗ c5 ⊗ c6)⊘ (c7 ⊗ c8 ⊗ c9 ⊗ c10 ⊗ c11 ⊗ c12) , (2)

where ci represents a context panel v(i, j)
a or the identity e. In this setting, learning the rules of RPM can hence be

interpreted as an assignment problem between VSA vectors and terms of Equation (2).
Motivated by works in cognitive sciences and psychology that argue for the importance of context in the solution

of analogies for humans [35, 36], ARLC uses a general formulation of the soft-assignment problem which relies on
the notion of context:

ck =

I∑
i=1

wi
k · xi +

J∑
j=1

u j
k · o j + vk · e, (3)

8 M. Hersche et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(a) X = {R1},O = {R2,R3} (b) X = {R2},O = {R1,R3} (c) X = {R3},O = {R1,R2}

Fig. 5. Visualization of current samples (X = {x1, x2}, in yellow) and context (O = {o1, . . . , o5}, in green) panels when predicting the third
panel for different rows, namely the first row (left), second row (center) and third row (right). Black objects represent panels that are not used for
the computation, while the question mark represents the unknown test panel, which is unavailable during inference.

where w,u,v are the learned parameters and they are subject to the following constraints:

I∑
i=0

wi
k +

J∑
j=0

w j
k + vk = 1, 0 ⩽ wi

k ⩽ 1∀i, 0 ⩽ u j
k ⩽ 1 ∀ j, 0 ⩽ vk ⩽ 1, ∀k.

Here, X = {x1, . . . ,xI} is the set of attributes that define the current sample, that is, the description of the problem
for which we infer a solution. O = {o1, . . . ,oJ} is the set of attributes that define the context for that sample, that
could be interpreted as a working memory from which additional information to infer the answer can be retrieved.
For predicting the empty panel in the last row, the context (O corresponds to the first two rows and the current
samples (X) to the last row (see Fig. 5c). We augment this standard prediction with two more permutations, which
aim to predict the last panel of the first and second row (see Fig. 5a and Fig. 5b). The knowledge of the right-most
panels in the first two rows allows us to compute a rule confidence by comparing the rule’s prediction with the actual
panel representation via the cosine similarity.

4.3. Executing and selecting the learned rules

Inference with the learned rule set is a two-step process: an execution step (where all the rules are applied in
parallel to the input) and a selection step (where a prediction for the missing panel is generated). The application of
each rule r to an RPM example generates a tuple of three VSA vectors (v̂(i,3)

a,r)3i=1, which corresponds to the result
of the rule execution on the three rows of the RPM matrix, together with a rule confidence value sr. The confidence
value is computed as the sum of the cosine similarities between the predicted VSA vectors and their respective
ground-truth vector,

sr =

3∑
i=1

cos
(
v(i,3)

a , v̂(i,3)
a,r

)
. (4)

During inference, the last term of the sum (i = 3) is omitted, as the ground truth for the third row is unknown.
The answer is finally produced by taking a linear combination of the VSA vectors generated by executing all the

rules, weighted by their respective confidence scores (normalized to a valid probability distribution using a softmax
function). More formally, if we define s = [s1, . . . , sR] to be the concatenation of all rules’ confidence score and
V̂

(3,3)
a = [v̂

(3,3)
a,1 , . . . , v̂

(3,3)
a,R] to be the concatenation of all rules’ predictions for the missing panel, the final VSA

vector predicted by the model for the attribute a becomes

v̂(3,3)
a = softmax (s) · V̂(3,3)

a . (5)

M. Hersche et al. / 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Task accuracy (%) on the center constellation of I-RAVEN. Among the baselines, we replicate Learn-VRF [8]; the other results are taken
from [7]. The standard deviations are reported over 10 random seeds. Llama-3 and GPT-4 are queried with the corresponding best prompting
technique (see Table 3). Number of parameters for GPT-4 is not publicly available. The reasoning backend of PrAE, NVSA, and our ARLCp 7→l
do not have trainable parameters.

Method Parameters Accuracy

MLP [8] 300 k 97.6
SCL [5] 961 k 99.9±0.0

PrAE [6] n.a. 83.8±3.4

NVSA [7] n.a. 99.8±0.2

Learn-VRF [8] 20 k 97.7±4.1

GPT-3 [14] 175 b 86.4

Llama-3 70 b 85.0
GPT-4 unk. 93.2
ARLCprogr n.a. 97.2±0.0

ARLCp 7→l 480 97.6±0.0

ARLClearn 480 98.4±1.5

The use of the weighted combination can be understood as a soft-selection mechanism between rules and was found
to be more effective compared to the hard-selection mechanism provided by sampling [8].

4.4. Training Loss and other Implementation Aspects

We follow the training recipe provided by Learn-VRF [8]. The model is trained using stochastic gradient descent
(SGD) with a learning rate lr = 0.01 for 25 epochs. The training loss is defined as the inverse cosine similarity
between the three predicted panels and their corresponding ground truth

L = 1−
3∑

i=1

cos
(
v(i,3)

a , v̂(i,3)
a

)
. (6)

As in Learn-VRF, we set the number of rules to R = 5. A single set of rules is instantiated and shared between
all RPM attributes.

4.5. Applying ARLC on I-RAVEN-X

While ARLC was initially designed for I-RAVEN, it can be seamlessly extended to our I-RAVEN-X only with
minor modifications. First, the number of binding/unbinding terms in Equation (2) is increased, e.g., from 12 to
22 to support the larger grid size of g = 10. Moreover, we increase the number of entries in the dictionary (C)
to support the larger dynamic range (m). Notably, only varying the dynamic range at constant grid size does not
require retraining: we can simply replace the dictionary in order to support OOD generalization. Indeed, we could
demonstrate that ARLC trained on a dynamic range of m = 45 can favorably generalize to a dynamic range of
m = 1000.

5. Results

5.1. Main results on I-RAVEN

Table 2 compares our LLM results with ARLC on the center constellation of I-RAVEN, considering also a
range of neuro-symbolic and connectionist baselines. For the LLMs, we show the results with the corresponding

10 M. Hersche et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 3
Ablation study considering various LLM prompting techniques. We report the task accuracy (%) on the center constellation of I-RAVEN.

Predictive/
discriminative

Disentangled queries
per attribute (3×queries)

Self-consistency
(n=7)

In-context learning
(s=16)

GPT-4 Llama-3 70B

Discriminative 56.0 22.8
Discriminative ✓ 60.0 22.4
Predictive 74.8 79.0
Predictive ✓ 91.4 83.2
Predictive ✓ ✓ 93.2 84.8
Predictive ✓ ✓ 85.4 84.8
Predictive ✓ ✓ ✓ 86.4 85.0

Table 4
Accuracy (%) of predicting the correct attribute value. Self-consistency (n=7) is used. Results are averaged across all attributes.

Model
Disentangled queries
per attribute (3×queries)

Constant Progression Distribute three Arithmetic

GPT-4
No 100 98.0 91.6 27.1
Yes 100 100 99.5 73.6

Llama-3 70B
No 100 97.2 99.3 31.0
Yes 100 100 96.6 45.0

best prompting techniques (see the ablation in Section 5.2). Moreover, we present results for three different ver-
sions of ARLC: ARLCprogr, where the model’s weights are manually programmed with RPM rules (R = 4, since
constant can be considered as a special case of progression), ARLCp 7→l, where the model is initialized with
the programmed rules and then trained with gradient descent, and ARLClearn, where the rules are learned from
scratch from data.

Among the LLM approaches, our GPT-4-based approach achieved the highest accuracy (93.2%) notably outper-
forming previous SOTA LLM-based abstract reasoning approaches on this benchmark (86.4%) [14]. Yet, all LLM
approaches fall behind the tailored connectionist and neuro-symbolic solutions. Notably, with only 480 learnable
parameters, ARLC achieves a high accuracy of 98.4%. Moreover, we show that post-programming training allows
to extend the knowledge of the model, rather than completely erasing it as shown in other settings [37], resulting in
a monotonic increase in downstream accuracy.

5.2. Ablation of LLM prompting techniques

Table 3 shows the task accuracy on I-RAVEN using GPT-4 and Llama-3 70B in various prompting configurations.
Overall, both models benefit from the additional guidance provided by our prompting techniques. Concretely, using
a predictive approach and querying for individual disentangled attributes yielded already high accuracies (91.4%
and 83.2% for GPT-4 and Llama-3 70B, respectively). Introducing self-consistency further improves the accuracy
for both models. Llama-3 70B’s performance can be further pushed (to 85.0%) by using self-consistency and in-
context learning. On the contrary, GPT-4 cannot make use of the additional in-context samples, yielding a lower
accuracy instead.

5.3. LLMs show weakness in arithmetic rule

Even though both LLMs achieve a reasonable overall task accuracy, they fail in some instances. We shed more
light on the reasoning capability of the two models by analyzing the accuracy of predicting the correct value for a
given rule. As shown in Table 4, both models perform well on constant, progression, and distribute

M. Hersche et al. / 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 5
Task accuracy (%) on I-RAVEN and our novel I-RAVEN-X. The LLMs use self-consistency (n=7).

I-RAVEN I-RAVEN-X
3× 3 3× 10

Dynamic range (m) 5–10 50 100 1000

Llama-3 70B 85.0 76.8 73.0 74.2
GPT-4 93.2 82.2 79.6 76.6
ARLCprogr 97.2 100.0 100.0 99.7
ARLClearn 98.4 95.0 95.0 90.6

Table 6
Arithmetic accuracy (%) on I-RAVEN and our novel I-RAVEN-X. The LLMs use self-consistency (n=7).

I-RAVEN I-RAVEN-X
3× 3 3× 10

Dynamic range (m) 5–10 50 100 1000

Llama-3 70B 45.0 1.5 2.6 0.4
GPT-4 73.6 30.4 25.1 8.4
ARLCprogr 100.0 99.8 100.0 99.5
ARLClearn 99.9 81.6 78.8 61.6

three rules, whereas the accuracy notably drops for the arithmetic rule. One explanation for the accuracy
drop could be the LLM’s tendency for (short-sighted) relational reasoning, instead of performing relational mapping
that requires the understanding of the first two rows before applying a rule on the last row [11]. We analyze this
hypothesis in Appendix C, where we attempt to explain the LLM’s wrong predictions by rules that may have been
inferred from the last row. For GPT-4, 32 out of 68 errors can be explained by rules that might have been inferred
from a partial context matrix, e.g., a constant or progression rule based on the last row.

5.4. Results on our novel I-RAVEN-X

Finally, we conduct experiments on our novel I-RAVEN-X test, which allows us to configure the matrix size and
the dynamic range of the attribute values. We fix the grid size to 3 × 10 and vary the dynamic range between 50,
100, and 1000. As shown in Table 5, the LLM’s drops not only due to the larger grid size but also generally degrades
with an increasing dynamic range. At the same time, our ARLC maintains a high accuracy across the board, while
only being trained at dynamic range of 50 and reconfigured for the higher ranges. Investigating the performance on
the arithmetic rule in Table 6 explains the overall accuracy degradation: the arithmetic accuracy drops below
10% for both LLMs at the highest dynamic range (1000).

6. Conclusion

This work revealed LLM’s limitations in recognizing and executing arithmetic rules in abstract reasoning tasks,
despite being provided disentangled prompts with ground-truth visual attributes and using advanced prompting
techniques. We further showed the serious limitation on a larger (3×10) RPM test. As a viable alternative, we
presented a neuro-symbolic approach (ARLC) that achieves a high accuracy both on I-RAVEN and our I-RAVEN-
X, thanks to learning to reason with distributed VSA representations and operators. We hope that our findings will
lead to the development of architectures that aim to improve reasoning capabilities, e.g., by integrating symbolic
solvers such as our ARLC into LLMs.

12 M. Hersche et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

References

[1] D.G.T. Barrett, F. Hill, A. Santoro, A.S. Morcos and T. Lillicrap, Measuring abstract reasoning in neural networks, in: International
Conference on Machine Learning (ICML), 2018, pp. 511–520.

[2] C. Zhang, F. Gao, B. Jia, Y. Zhu and S.-C. Zhu, RAVEN: A Dataset for Relational and Analogical Visual REasoNing, in: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Long Beach, CA, USA, 2019, pp. 5312–5322.

[3] S. Hu, Y. Ma, X. Liu, Y. Wei and S. Bai, Stratified Rule-Aware Network for Abstract Visual Reasoning, Proceedings of the AAAI Conference
on Artificial Intelligence 35(2) (2021), 1567–1574.

[4] Y. Benny, N. Pekar and L. Wolf, Scale-Localized Abstract Reasoning, in: 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, Nashville, TN, USA, 2021, pp. 12552–12560.

[5] Y. Wu, H. Dong, R. Grosse and J. Ba, The Scattering Compositional Learner: Discovering Objects, Attributes, Relationships in Analogical
Reasoning, arxiv preprint arXiv:2007.04212 (2020).

[6] C. Zhang, B. Jia, S.-C. Zhu and Y. Zhu, Abstract Spatial-Temporal Reasoning via Probabilistic Abduction and Execution, in: 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Nashville, TN, USA, 2021, pp. 9731–9741.

[7] M. Hersche, M. Zeqiri, L. Benini, A. Sebastian and A. Rahimi, A Neuro-vector-symbolic Architecture for Solving Raven’s Progressive
Matrices, Nature Machine Intelligence 5(4) (2023), 363–375.

[8] M. Hersche, F. di Stefano, T. Hofmann, A. Sebastian and A. Rahimi, Probabilistic Abduction for Visual Abstract Reasoning via Learning
Rules in Vector-symbolic Architectures, in: The 3rd Workshop on Mathematical Reasoning and AI at NeurIPS’23, 2024.

[9] G. Camposampiero, M. Hersche, A. Terzic, R. Wattenhofer, A. Sebastian and A. Rahimi, Towards Learning Abductive Reasoning using
VSA Distributed Representations, in: International Conference on Neural-Symbolic Learning and Reasoning, Springer, 2024, pp. 370–385.

[10] T. Webb, K.J. Holyoak and H. Lu, Emergent analogical reasoning in large language models, Nature Human Behaviour 7(9) (2023), 1526–
1541.

[11] C.E. Stevenson, M. ter Veen, R. Choenni, H.L.J. van der Maas and E. Shutova, Do large language models solve verbal analogies like
children do?, arxiv preprint arXiv:2310.20384 (2023).

[12] G. Gendron, Q. Bao, M. Witbrock and G. Dobbie, Large Language Models Are Not Strong Abstract Reasoners, in: Thirty-Third Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), Vol. 7, 2024, pp. 6270–6278, ISSN: 1045-0823.

[13] X. Cao, B. Lai, W. Ye, Y. Ma, J. Heintz, J. Chen, J. Cao and J.M. Rehg, What is the Visual Cognition Gap between Humans and Multimodal
LLMs?, arXiv preprint arXiv:2406.10424 (2024).

[14] X. Hu, S. Storks, R. Lewis and J. Chai, In-Context Analogical Reasoning with Pre-Trained Language Models, in: Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics,
Toronto, Canada, 2023, pp. 1953–1969.

[15] M. Mitchell, A.B. Palmarini and A. Moskvichev, Comparing Humans, GPT-4, and GPT-4V On Abstraction and Reasoning Tasks, in: AAAI
2024 Workshop on ”Are Large Language Models Simply Causal Parrots?”, 2024.

[16] G. Camposampiero, L. Houmard, B. Estermann, J. Mathys and R. Wattenhofer, Abstract Visual Reasoning Enabled by Language, in:
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, Vancouver, BC, Canada, 2023,
pp. 2643–2647.

[17] Y. Jiang, J. Zhang, K. Sun, Z. Sourati, K. Ahrabian, K. Ma, F. Ilievski and J. Pujara, MARVEL: Multidimensional Abstraction and Reason-
ing through Visual Evaluation and Learning, arXiv preprint arXiv:2404.13591 (2024).

[18] K. Ahrabian, Z. Sourati, K. Sun, J. Zhang, Y. Jiang, F. Morstatter and J. Pujara, The Curious Case of Nonverbal Abstract Reasoning with
Multi-Modal Large Language Models, arXiv preprint arXiv:2401.12117 (2024).

[19] Y. Zhang, H. Bai, R. Zhang, J. Gu, S. Zhai, J.M. Susskind and N. Jaitly, How Far Are We from Intelligent Visual Deductive Reasoning?,
in: ICLR 2024 Workshop: How Far Are We From AGI, 2024.

[20] A. Wüst, T. Tobiasch, L. Helff, D.S. Dhami, C.A. Rothkopf and K. Kersting, Bongard in Wonderland: Visual Puzzles that Still Make AI
Go Mad?, in: The First Workshop on System-2 Reasoning at Scale, NeurIPS’24, 2024.

[21] E. Latif, Yifan Zhou, Shuchen Guo, Yizhu Gao, Lehong Shi, M. Nyaaba, Gyeonggeon Lee, L. Zhang, A. Bewersdorff, Luyang Fang,
Xiantong Yang, Huaqin Zhao, Hanqi Jiang, Haoran Lu, Jiaxi Li, Jichao Yu, Xuansheng Wu, Weihang You, Zhengliang Liu, V.S. Liu,
H. Wang, Zihao Wu, J. Lu, F. Dou, P. Ma, Ninghao Liu, Tianming Liu and Xiaoming Zhai, A Systematic Assessment of OpenAI o1-
Preview for Higher Order Thinking in Education (2024), Publisher: Unpublished.

[22] J.C. Raven, J.H. Court and J. Raven, Raven’s progressive matrices, Oxford Psychologists Press, 1938.
[23] T.A. Plate, Holographic Reduced Representations, IEEE Transactions on Neural Networks and Learning Systems 6(3) (1995).
[24] T.A. Plate, Holographic Reduced Representations: Distributed Representation for Cognitive Structures, Center for the Study of Language

and Information, Stanford, 2003.
[25] R.W. Gayler, Vector Symbolic Architectures answer Jackendoff’s challenges for cognitive neuroscience, in: Proceedings of the Joint Inter-

national Conference on Cognitive Science. ICCS/ASCS, 2003, pp. 133–138.
[26] P. Kanerva, Hyperdimensional Computing: An Introduction to Computing in Distributed Representation with High-Dimensional Random

Vectors, Cognitive Computation 1(2) (2009), 139–159.
[27] OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F.L. Aleman, D. Almeida, J. Altenschmidt, S. Altman et al., GPT-4

Technical Report, arXiv preprint arXiv:2303.08774 (2024).
[28] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten, et al., The Llama 3 Herd of Models, arxiv

preprint arXiv:2407.21783 (2024).

M. Hersche et al. / 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[29] K.J. Holyoak and R.G. Morrison, The Oxford Handbook of Thinking and Reasoning, OUP USA, 2013.
[30] X. Wang, J. Wei, D. Schuurmans, Q. Le, E.H. Chi, S. Narang, A. Chowdhery and D. Zhou, Self-Consistency Improves Chain of Thought

Reasoning in Language Models, in: The Eleventh International Conference on Learning Representations (ICLR), 2023.
[31] A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski, V. Ramasesh, A. Slone, C. Anil, I. Schlag, T. Gutman-Solo, Y. Wu,

B. Neyshabur, G. Gur-Ari and V. Misra, Solving Quantitative Reasoning Problems With Language Models, in: Advances in Neural Infor-
mation Processing Systems (NeurIPS), Vol. 35, 2022, pp. 3843–3857.

[32] T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D.M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever and D. Amodei, Language Models are Few-Shot Learners,
arxiv preprint arXiv:2005.14165 (2020).

[33] E.P. Frady, D. Kleyko, C.J. Kymn, B.A. Olshausen and F.T. Sommer, Computing on Functions Using Randomized Vector Representations
(in brief), in: Neuro-Inspired Computational Elements Conference, ACM, Virtual Event USA, 2022, pp. 115–122.

[34] M. Hersche, A. Terzic, G. Karunaratne, J. Langenegger, A. Pouget, G. Cherubini, L. Benini, A. Sebastian and A. Rahimi, Factorizers for
Distributed Sparse Block Codes, Neurosymbolic Artificial Intelligence (2024).

[35] D.J. Chalmers, R.M. French and D.R. Hofstadter, High-level perception, representation, and analogy: A critique of artificial intelligence
methodology, Journal of Experimental & Theoretical Artificial Intelligence 4(3) (1992), 185–211.

[36] Y. Cheng, Context-dependent similarity, in: Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, Elsevier
Science Inc., 1990, pp. 41–50.

[37] X. Wu, X. Zhang and X. Shu, Cognitive Deficit of Deep Learning in Numerosity, Proceedings of the AAAI Conference on Artificial
Intelligence 33(01) (2019), 1303–1310.

[38] D. Kleyko, D.A. Rachkovskij, E. Osipov and A. Rahimi, A Survey on Hyperdimensional Computing aka Vector Symbolic Architectures,
Part I: Models and Data Transformations, ACM Computing Surveys 55(6) (2023), 1–40.

14 M. Hersche et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Appendix A. Prompting details

This appendix provides more details on our prompting strategy. While the prompt design was mainly inspired
by [14], we extended it with predictive and discriminative classification and fine-tuned it for the different models.
For example, we found that adding a prefix (“Only return the missing number”) helped to slightly improve GPT4’s
accuracy, whereas it reduced Llama-3 70B’s performance. Thus, we used individual prompts for the different mod-
els.

A.1. Joint attribute querying

As an alternative to individually querying the LLM for predicting the separate attributes, we also devised a joint
attribute prompting scheme, shown in Fig. A.6. The attributes of each panel are represented in brackets: (shape,
size, color). In this setting, the LLM is required to predict all three attributes of the missing panel at once. For
better distinguishing between the different attributes, they are scaled with individual factors (1×, 0.1×, 10×).

System: Complete the Raven's progressive matrix:
User: Only return the missing numbers!
 row 1: (3,0.5,50), (6,0.5,50), (4,0.5,50);
 row 2: (4,0.3,10), (3,0.3,10), (6,0.3,10);
 row 3: (6,0.1,70), (4,0.1,70), (
Out: 3,0.1,70)

Fig. A.6. Example prompt for joint prediction of all three attributes.

A.2. Discriminative classification approach

Fig. A.7 shows an example prompt for performing discriminative classification. As shown, the answers only
contain two distinct values (“6” and “7”); finding the correct answer requires the consideration of all attributes. For
choosing the final answer, we extract all attribute values that correspond to the predicted answer (e.g., value “7” for
shape) and select the best matching answer candidate, i.e., the answer with the highest number of overlaps with
the predicted attributes.

System: Complete the Raven's progressive matrix:
User: row 1: 4, 4, 4;
 row 2: 6, 6, 6;
 row 3: 7, 7,

 Select the correct Answer from the following list
 Answer #0: 7
 Answer #1: 6
 Answer #2: 7
 Answer #3: 7
 Answer #4: 6
 Answer #5: 6
 Answer #6: 7
 Answer #7: 6

 Solution: The correct answer is Answer #
Output: 0: 7

Fig. A.7. Example prompt for discriminative classification approach, where the answer candidates are provided. The underlying attribute is
shape and the rule is constant.

M. Hersche et al. / 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Appendix B. Vector-symbolic architectures

Vector-symbolic architectures (VSAs) [23–26] are a family of computational models that rely on the mathematical
properties of high-dimensional vector spaces. VSAs make use of high-dimensional distributed representations for
structured (symbolic) representation of data while maintaining the advantages of connectionist distributed vector
representations (see [38] for a survey). Here is a formal definition of VSAs:

Definition 1 (VSA). A vector-symbolic architecture (VSA) consists of a 4-tuple V = (C,⊕,⊗,⊙), where C is a set
of high-dimensional distributed vectors equipped with two main operations, ⊕ (bundling) and ⊗ (binding), and on
which it is possible to define a similarity measure ⊙.

Bundling is a similarity-preserving operation that creates a superposition of the operands, that is, the resulting
vector will have a high similarity with the two operands. Binding, on the other hand, is an operation that allows to
bind a vector (value) to another vector (key) and does not preserve similarities; it usually allows an inverse operation,
called unbinding. The specific realization of the bundling, binding, and vector space constitute the main difference
between members of the VSA family.

Appendix C. Analysis of arithmetic errors

This appendix aims to find explanations for LLM’s errors by analyzing the structure behind the predicted answers.
A recent study [11] showed that LLMs tend to solve verbal analogy problems in an associative way instead of
performing proper relational mapping. The associative reasoning can be explained as ignoring the source domain
and solving the task directly at the target domain (e.g., only looking at the possible solutions without reading the
questions). Interestingly, children tend to perform associative reasoning, whereas adults opt for relational mapping.

In RPMs, the source domain can be defined as the first two rows (with values x1,1, x1,2, x1,3 and x2,1, x2,2, x2,3),
whereby the target domain is the last row (x3,1, x3,2). Therefore, an associative reasoner would only look at the last
row to solve the task. In the following, we aim to find potential incorrect rules that the LLMs may have been inferred
from the last row(s):

– constant: The values of the last row are identical (x3,1 = x3,2), and the model predicts x̂3,3 = x3,2 = x3,1
– progression: The values of the last row differ by δ = x3,2 − x3,1, and the model predicts x̂3,3 = x3,2 + δ
– short constant: The model just copies the penultimate value: x̂3,3 = x3,2.
– short distribute three: Assuming a distribute three over the last two rows: x3,1 ∈ {x2,1, x2,2, x2,3},

x3,2 ∈ {x2,1, x2,2, x2,3}, and hence x̂3,3 ∈ {x2,1, x2,2, x2,3}.

Fig. C.8 shows the resulting confusion matrix summarizing all the attributes. The arithmetic rule has fewer
occurrences as this rule is not integrated in the attribute shape. As already stated in the main text, the majority of
wrong predictions are related to the arithmetic rule. For GPT-4, our new rule interpretations can explain 32 out
of the 68 errors, while 36 errors remain unknown. Llama-3 70B showed many more errors in the arithmetic rule;
here, we can explain 57 out of 142 errors with relational reasoning. In summary, some (40.1–47.1%) of the LLM’s
errors can be rooted in relational reasoning. Further understanding the behavior of the unknown rules is scope for
future work.

16 M. Hersche et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

G
ro

u
n

d
-t

ru
th

 r
u

le

Inferred rule

GPT-4 Llama-3 70B

Inferred rule

Fig. C.8. Rule confusion matrix of GPT-4 (left) and Llama-3 70B (right).

	Introduction
	Datasets
	I-RAVEN
	New I-RAVEN-X

	LLM-based RPM solving
	Models
	Prompting and classification

	ARLC: learning abductive reasoning using VSA distributed representations
	From visual attributes to distributed VSA representations
	Learning RPM rules as an assignment problem
	Executing and selecting the learned rules
	Training Loss and other Implementation Aspects
	Applying ARLC on I-RAVEN-X

	Results
	Main results on I-RAVEN
	Ablation of LLM prompting techniques
	LLMs show weakness in arithmetic rule
	Results on our novel I-RAVEN-X

	Conclusion
	References
	Appendix A. Prompting details
	Joint attribute querying
	Discriminative classification approach

	Appendix B. Vector-symbolic architectures
	Appendix C. Analysis of arithmetic errors

