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Abstract
In this position paper, we examine some of the assumptions held about logic and

its relevance to the development of modern AI, which is primarily driven by deep
learning. The paper aims to address fundamental misunderstandings about logic
and ultimately argue for the benefits of symbolic formalisms in modeling uncertain
worlds. While it is now recognized that statistical associations learned from data
are limited in their ability to understand the world, there is still a great deal of
criticism and hesitancy regarding the use of symbolic logic to achieve or support
a broader vision for AI. By arguing that symbolic logic is more flexible than non-
experts believe, we make a case for Neuro-Symbolic AI, which offers the best of
both worlds.
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Preface

This article lies between a position paper and a survey paper, and it does two things.
On one hand, it discusses the breadth and diversity of solutions encompassed within
symbolic logic. We believe that many of these dimensions are not obvious to people
outside the logical community, and perhaps, even those working within certain areas of
logic might not be aware of the latest developments in statistical relational learning. On
the other hand, it points to common objections to using logic when building complex
AI systems involving machine learning. Essentially, this paper serves as a survey that
tackles both of these aspects.

1. Introduction

Artificial Intelligence (AI) is widely acknowledged as a new kind of science that will
bring about (and is already enabling) the next technological revolution. Virtually every
week, exciting reports come our way about the use of AI for drug discovery, game play-
ing, stock trading and law enforcement. And virtually all of these are mostly concerned
with a very narrow technological capability, that of predicting future instances based on
past instances.

Identifying statistical patterns, correlations, and associations is, without doubt, ex-
tremely useful. In the first instance, it is needed in numerous applications to inspect fea-



tures and properties of interest in observed data. It serves as the backbone of recommen-
dation systems, for example, and is likely more than sufficient, even with flaws, when
gathering context. While searching for “how to raise lambs” in an online bookstore, we
might be a little disappointed if it suggests “Silence of the Lambs” by Thomas Harris,
and somewhat annoyed if it suggests cookbooks on “how to cook lamb”, but such low
quality results are unlikely to have long-term effects. This type of AI might also be useful
but somewhat problematic for, say, fast-tracking the review of job applications, provided
these models are adjusted for bias, and a human intervenes and interprets the outcome
and determines how to act further. This type of AI was largely believed to be sufficient
for vision systems [185], until it was observed that self-driving cars fail stupendously,
and that the state-of-the-art systems can be fooled in strange and unnatural ways [79].

Be that as it may, this is a very narrow view of AI capabilities. AI, as understood by
both scientists and science fiction writers, is clearly much broader. What distinguishes
big-data analysis from AI is that the set of capabilities we wish to enable with the latter.
We are interested in a general-purpose, autonomous computational entity that, in the very
least, has agency. Many of these concerns were widely debated, discussed, and developed
during the heyday of good old-fashioned AI [55,121,116].

However, despite recognizing that data-driven statistical learning is limited in its
ability to understand the world and model its knowledge [130], there is still a lot of crit-
icism and hesitancy about the use of symbolic logic to accomplish or assist in a broader
vision for AI [48].

In this position paper, we examine some of the assumptions held about logic and its
relevance to the development of modern AI, which is primarily driven by deep learning.
The paper aims to address fundamental misunderstandings about logic and ultimately
argue for the benefits of symbolic formalisms in modeling uncertain worlds. By arguing
that symbolic logic is more flexible than non-experts and critics believe, we make a case
for Neuro-Symbolic AI, which offers the best of both worlds.

2. Logic is old-fashioned

In the first part of this article, we will look at some of the criticisms against using logic.
We then turn to a number of positive dimensions to examine the integration of logic and
learning.

2.1. Neural approaches and nothing else!

Modern AI has moved on, we are told. The idea of using symbolic logic is outdated, and
the area of knowledge representation defined over symbolic logic is now affectionately
(or perhaps pejoratively) called good old-fashioned AI, or GOFAI for short. For example,
in [28], Bengio et al. write:

. . . machine learning is the only viable approach to building AI systems that can
operate in complicated real-world environments.

In the early days of AI, John McCarthy put forward a profound idea to realise ar-
tificial intelligence (AI) systems [131]: he posited that what the system needs to know
could be represented in a formal language, and a general-purpose algorithm would then
conclude the necessary actions needed to solve the problem at hand. The main advantage



is that the representation can be scrutinised and understood by external observers, and
the system’s behaviour could be improved by making statements to it.

Numerous such languages emerged in the years to follow, but first-order logic re-
mained at the forefront as a general and powerful option [141]. Propositional and first-
order logic continue to serve as the underlying language for several areas in AI, including
constraint satisfaction [30], automated planning [165], database theory [123], ontology
specification [109], verification [11], and knowledge representation [121].

And yet, “modern” AI has decided that these efforts are superfluous, or at least
easily replaceable once a training dataset has been created. For example, Sejnowski [172]
writes:

The early goals of machine learning were more modest than those of AI. Rather than
aiming directly at general intelligence, machine learning started by attacking practical
problems in perception, language, motor control, prediction, and inference using learn-
ing from data as the primary tool. In contrast, early attempts in AI were characterized by
low-dimensional algorithms that were handcrafted. However, this approach only worked
for well-controlled environments. For example, in blocks world all objects were rectan-
gular solids, identically painted and in an environment with fixed lighting. These algo-
rithms did not scale up to vision in the real world, where objects have complex shapes,
a wide range of reflectances, and lighting conditions are uncontrolled. The real world
is high-dimensional and there may not be any low-dimensional model that can be fit
to it. Similar problems were encountered with early models of natural languages based
on symbols and syntax, which ignored the complexities of semantics. Practical natural
language applications became possible once the complexity of deep learning language
models approached the complexity of the real world. Models of natural language with
millions of parameters and trained with millions of labeled examples are now used rou-
tinely.

He goes on to suggest that:
Is there a path from the current state of the art in deep learning to artificial general

intelligence? From the perspective of evolution, most animals can solve problems needed
to survive in their niches, but general abstract reasoning emerged more recently in the
human lineage. However, we are not very good at it and need long training to achieve
the ability to reason logically. This is because we are using brain systems to simulate
logical steps that have not been optimized for logic. Students in grade school work for
years to master simple arithmetic, effectively emulating a digital computer with a 1-s
clock. Nonetheless, reasoning in humans is proof of principle that it should be possible to
evolve large-scale systems of deep learning networks for rational planning and decision
making.

The “theory of everything” approach in science, or perhaps its analog in AI, that
of having a single algorithm/architecture/framework for all tasks [59], is undoubtedly
appealing. Some theoretical physicists have hopes pinned on string theory, for example,
to come up with a single framework that unifies all observational data, across large and
minuscule physical bodies [57]. Likewise, the appeal of purely neural model is attractive.
However, there is lots to debate here.

Firstly, deep learning models are loosely inspired by the brains but not fully accurate
representations (yet) [180,139].

Secondly, there is the notion of innateness [186], and how much evolution might help
the brain in understanding and processing the world in a structured manner. And thirdly,



we must bear in mind that we still lack a complete understanding of how the neurons
of a bird (let alone a human) are wired, and how that influences cognitive capabilities.
Merely knowing that neural weights enable birds to solve puzzles and recognize faces
does not necessarily imply that our implementation of their neurons should resemble or
possess similar properties. These concerns had also been debated in the literature in the
1980s [162,177].

Lastly, Sejnowski [172] also offers the social element of learning:
Although the focus today on deep learning was inspired by the cerebral cortex, a

much wider range of architectures is needed to control movements and vital functions.
Subcortical parts of mammalian brains essential for survival can be found in all verte-
brates, including the basal ganglia that are responsible for reinforcement learning and
the cerebellum, which provides the brain with forward models of motor commands. Hu-
mans are hypersocial, with extensive cortical and subcortical neural circuits to support
complex social interactions.

Putting such issues aside, it is also worth noting that proponents of the symbolic
approach to AI never explicitly claimed the existence of symbolic representations within
our minds [32,121]. In essence, the symbolic approach offers a coherent strategy for:
(a) executing symbolic expressions, which capture the knowledge of the system about
the world, and (b) comprehending the (idealized) implications of one’s knowledge, as
specified by inference rules in logic.

As argued by Levesque [119], this is not a novel concept – Leibniz articulated cen-
turies ago that certain types of thinking adhere to symbolic processing. Hence, why not
employ an algebraic treatment for cognition? As scientists, we may debate whether it is
more useful to have an exact model of computation that approximates the reasoning in
the brain [177,99] or whether we should forego these models altogether and simply be
satisfied with informal descriptions of reasoning [156], as might emerge from a trained
model [47].

We reiterate that the allure of a purely neural approach is understandable, given its
simplicity and the sense of a “unified theory” it evokes. However, the arguments regard-
ing the effectiveness of the training process in capturing intricate reasoning [91] and the
potential for incorrect [189] and unreliable predictions [5] suggest that a purely neural
approach may not be sufficiently robust to exploit and capture structure. Indeed, despite
Sejnowski [172] offering that “it should be possible to evolve large-scale systems of deep
learning networks for rational planning and decision making”, he admits also that “a
hybrid solution might also be possible, similar to neural Turing machines developed by
DeepMind for learning how to copy, sort, and navigate.”

More generally, by taking a step back, we realize that until the past few centuries, our
understanding of the brain and neurons was limited. Yet, during this time, we were able
to calculate, develop number theory, construct calculators, and ultimately build comput-
ers [187]. Imagine if we had solely dedicated ourselves to constructing elaborate brain
replicas in the hopes that they could handle (say) tax calculations for us. Most impor-
tantly, we cannot test for a capability without first defining that capability, such as (say)
deduction [156].

All of this underscores the significance of the symbolic approach, which offers an
idealized framework for well-defined (relative to the formal language) forms of reason-
ing. There is a popular analogy [32] suggesting that we need not build wings and feathers
to build airplanes; comprehending the principles of aerodynamics is enough. So, why



shouldn’t the development of a theory of artificial cognition be just as relevant for a type
of AI that is behaviorally similar to humans in some instances, without necessarily re-
sorting to a brain-like architecture? Or perhaps a combination of the symbolic and the
neural, as offered by neuro-symbolic AI [90]? The mistrust may stem from the miscon-
ception that logic and probabilistic learning are fundamentally incompatible or entirely
separate domains—a notion we will now challenge.

2.2. There is a dichotomy

A common view held by many in the broader community that there is an inherent di-
chotomy between symbolic logic and machine learning — the former for discrete do-
mains, and the latter for continuous ones. The exact boundary between “discreteness”
and symbolic logic might be obfuscated even in works that are strong proponents of us-
ing logic in machine learning. For example, in one of the most popular representations
of probabilistic relational learning — so-called Markov logic networks (MLNs) — the
following is said:

• First-order logic (with Assumptions above) is the special case of MLNs obtained
when all weights are equal

• Every probability distribution over discrete or finite- precision numeric variables
can be represented as a Markov logic network.

The assumptions these statements refer to ensure that the set of constants in the
domain of discourse is finite, leading to finitely many possible interpretations, all of
which are of finite size. A reader not familiar with logic might incorrectly infer that
we are only able to construct discrete probability distributions using first-order logic.
Likewise, even in a nuanced survey such as [38] on the importance of unifying logic and
learning, they write:

• The term ‘discrete representation’, used throughout this paper, denotes a discretely
valued variable that represents some concept, which can take on either a limited
or a countably infinite number of distinct values.

• Discrete processing consists of the application of any discrete function to input
data. A discrete mathematical function has a domain, and hence a range, consist-
ing only of discrete sets of values. Examples can be found in integer arithmetic, in
computer programming languages and in first order logic.

• As deep models are currently trained using gradient descent, it is relevant to note
that discrete functions are not differentiable (in any subset of their domain).

• Modern neural networks are representative of continuous processing. First order
logic or symbolic AI models are representative of discrete processing.

Although they go on to mention fuzzy logic and non-monotonic logics later, readers
might still come away with the impression that symbolic logic is primarily suited for
discrete entities. To be clear, first-order logic, interpreted over a finite or a countably
infinite domain and interpreted classically, does not lend itself to differentiability. We
will return precisely to this point, but non-logicians might conclude: (a) symbolic logic
as used in AI is focused on discrete symbols; and (b) symbolic processing in vector (real-
valued) space is a separate topic of study that can be independently done from symbolic
logic.

What we are seeing here is a narrowing of the use of “logic” simply as classical
logic – say, as introduced in [63] – defined over Boolean truth values. Moreover, the



use of logic is also assumed to be limited to discrete propositional assertions, as seen
in ontologies that capture relationships and hierarchies about commonsensical concepts
[132], as well as in early attempts at logic programming [110].

We will now discuss the use of non-Boolean truth values and continuous properties
in logic, and how that is making an appearance in the area of neuro-symbolic AI. The
subtlety and clarification here is that indeed logical objects are discrete entities, or more
precisely, discrete structures. To compute entailments, moreover, we algebraically ma-
nipulate symbols. However, these structures might capture continuous properties either
by allowing non-binary truth values, by using function symbols over the real space, or
by distributions on the models of formulas. This leads to various paradigms of relational
learning and neuro-symbolic AI, many of which are differentiable.

2.2.1. Real-valued truth values

To a large extent, it is true that the area of knowledge representation in AI focuses on
discrete symbols and a Boolean interpretation [32]. But, on the other hand, it’s been close
to 60 years since we have fuzzy logic [206], among others languages for non-binary truth
values [105]. These allow us to assign a truth value between 0 and 1 to propositions, with
the understanding that these values indicate the degree to which the proposition may be
true. Fuzzy logic can also be utilized to represent ambiguous concepts, such as stating
that a person is tall, without specifying tall as a categorical property.

The use of such values to propositions means that the interpretation of Boolean
connectives also changes. For example, the formula α∧β could be mapped onto the min
of the truth values of the individual formulas. That is:

α ∧ β
.
= min(α, β).

If α is assigned a truth value of 0.6 and β is assigned a truth value of 0.4, then the
conjunction would be given a truth value of 0.4. Of course, one can see that if the truth
values are either 0 or 1, then the min function aligns with classical logic in the sense that
if either α or β is 0, then the conjunction will also have the truth value of 0.

By construction, the outputs of neural networks can be mapped to real numbers
between 0 and 1. Owing to the nature of truth values in such logics, these outputs can be
directly modeled as atoms in logical formulas. This led to an early wave of neurosymbolic
AI formalisms [74] and the development of a field that integrates neural outputs in a
logical language [90]. Perhaps the most representative examples in this space are logic
tensor networks [8] and other approaches based on fuzzy logic [195]. The motivation
for many of these languages is to logically capture concepts that have been learned from
neural networks, in order to reason about these concepts as part of a commonsensical
knowledge base. Thus, the agent would be reasoning about hierarchies and relationships,
but many of the relations in this knowledge are learned directly using neural networks,
presumably from observational data.

It is worth noting that reasoning about concepts and relations is an ongoing problem
with neural networks – see efforts such as capsule networks [169] and module networks
[4] – and there are very few general solutions. Neuro-symbolic AI is stepping in here,
especially if it were to allow a general framework for injecting knowledge expressed in
a fragment of first-order logic, could be very welcome.



2.2.2. From discrete to continuous

Capturing the output of neural networks as truth-values in a logical formula is one ap-
proach to reasoning about vector spaces. However, we can also use logic to reason about
continuous properties as formulas.

Although it is common to discuss discrete properties in logical AI, it is not necessary
that they must do so. Logical formulas are indeed discrete structures, but they can also
express properties about countably infinite or even uncountably many objects [88,161,
26,17].

Reasoning about real numbers have long been an area of interest in mathematical
logic [100], going back to Tarksi, and are a major concern in satisfiability modulo theo-
ries (SMT) [11]. SMT can be seen as a generalization of SAT for propositional logic and
is being used for the verification of timed and hybrid systems that involve both discrete
and continuous properties. For example, the following formula expresses that a logical
function with one argument f applied to x is lesser than the square of y. This could be
conjoined using Boolean connectives with other assertions, such as one that says y is
greater than the two-variable function g applied to x and z:

f(x) ≤ y2 ∧ y > g(x, z).

Here, the domain of x, y, and z could range over the set of natural numbers N, the
set of integers Z, or even the set of reals R.

Therefore, we can use these formulas to represent constraints on geometric spaces.
A recent body of work has examined the idea of regularizing neural networks by adding
logical constraints to the loss functions. The idea is to train the network such that the loss
is calculated against this logical constraint, which is backpropagated. The goal then is to
train the network in such a way that predictions always satisfy these logical constraints.
There is existing work on propositional constraints [73], real-valued constraints [91] as
well as temporal formulas [97], the latter of which trains the network to dynamically
navigate an environment in only the valid geometric space.

One of the interesting observations in almost all of these papers on loss functions is
that they demonstrate that it is much more effective to train the network using such loss
functions than assuming the constraints are represented in the data. So it is much more
sample efficient [96]. Moreover, some of these architectures also allow for the complete
satisfaction of the constraints [91]. This is necessary in safety-critical and high-stakes
applications.

2.3. Logic is not good for probabilistic uncertainty

Classical quantifiers in logic, as well as the connectives, allow for disjunctive uncertainty,
the existence of individuals, and properties applicable to all individuals in the domain.
Because the data we collect is often noisy, or we sometimes have to approximate and
average over populations, the use of probability theory is essential [150]. Since classical
logic traditionally did not represent probabilistic assertions, much of the learning and
uncertainty in the AI community moved away from logic. We will discuss here that
the connection between logic and probability is deep, and there is a vibrant community
focussed precisely on this agenda [159].



2.3.1. Probabilistic logical models

Since the work of Nilsson [143], the use of logic to capture non-trivial probabilistic
spaces and reason logically about events in those spaces has been a major concern in
uncertainty quantification in AI [168] and statistical relational learning [159]. The key
idea here is that it should be possible to assign probabilities to atoms, which would
then provide a way to extend these probabilities to complex formulas. That is, if α is
a well-defined (classical) formula in a logical language L, then so is Pr(α) [84]. This
leads to a representation language that may involve a combination of deterministic and
probabilistic assertions, capturing the knowledge base of a putative agent. For example
[25], consider the following formula:

α ∧ Pr(β) > Pr(γ) ∧ Pr(γ) ≤ 0.6.

It is assumed that α is true, and the probability that β is true is greater than the probability
that γ is true. Additionally, γ is believed with a probability of less than or equal to
0.6. Here, α may be a non-probabilistic assertion. The probability of γ is not given a
unique value, and we are allowed to compare the likelihoods of two formulas. Such
combinations are difficult to express using probability theory alone.

In recent years, there has been a steady progress on designing languages that can
not only capture Bayesian networks and factor graphs [113], but also extend them with
a relational and a logical syntax. Popular languages for pragmatic specifications of logic
and probability include Markov logic networks [164], ProbLog [160] and BLOG [136].
Many of these not only investigate the representational restrictions that enable the capture
of distributions succinctly, but also explore how to reason with the resulting distribution,
and in some cases, learn the distributions or representations themselves. (They have to
restrict the expressiveness of the language in order to ensure that their representations
capture a single distribution; so the above formula may be difficult to express here too.)
Consider the following program in ProbLog [160]:

0.5::heads1.
0.6::heads2.
twoHeads :- heads1, heads2.

This allows us to capture a mixture distribution composed of a biased coin toss and
an unbiased coin toss, with the latter having a 0.6 probability of landing heads.

Interestingly, Bayesian networks can also be modeled as ProbLog programs [159].
And what is more interesting is that probabilistic inference in Bayesian networks [42],
ProbLog programs [69], Markov logic networks [164], and factor graphs [113] can all be
shown to be reducible to the same computational task known as weighted model counting
[6]. Weighted model counting is an extension to SAT in the sense that each satisfying
assignment is assigned a weight. By computing the sum of the weights of all satisfying
assignments, we can relate that sum to the conditional probability and marginals in a
Bayesian network. That is, for a propositional language L, assume a weight function w
maps its literals to R[0,1]. Then, for some ϕ ∈ L,



WMC(ϕ,w) =
∑

{M |M |=ϕ}

∏
{l|l∈M}

w(l).

The product operation here is defined in terms of all the literals that are true in a
given model of ϕ.

As argued in [193,16], it is not only the case that logical languages allow us to reason
about probability distributions over combinatorial spaces, but it is also the case that the
syntax of logic can help capture complex relationships that are difficult to model using
standard probabilistic languages [77]. Moreover, by way of weighted model counting,
there is a single generic approach for probabilistic reasoning over discrete, combinatorial
spaces that is competitive [42]. It is also amenable to both exact as well as approximate
inference schemes [40].

Recently, there have also been extensions from discrete combinatorial spaces to
continuous ones [27,44], referred to as weighted model integration. Here, the formula
x ∈ [−5, 5] with a weight of 0.56 might represent a continuous random variable x whose
piecewise constant density for all values between −5 and 5 is 0.56. Analogously, the
same formula with the weight of x2/2 might represent a piecewise polynomial density
specification for x, such that for all values between −5 and 5, its density is given by the
square of that value divided by 2. As with weighted model counting, inference in this
formulation is performed by means of a notion of model counting in SMT [11].

2.3.2. Generalising the specification of a distribution

Going back to the history of the use of logic in AI [141], there has been considerable
interest in unifying logic and uncertainty. Note that, through the use of quantifiers, it is
possible to express uncertainty that may not always align with a single distribution. For
instance, McCarthy [133] was concerned about probabilities in the early years of using
first-order logic for knowledge representation. However, he makes a very salient point
that we need to think carefully how numbers and first-order sentences fit together. For
example, he argues [133]:

(i) It is not clear how to attach probabilities to statements containing quantifiers in
a way that corresponds to the amount of conviction people have.

(ii) The information necessary to assign numerical probabilities is not ordinarily
available. Therefore, a formalism that required numerical probabilities would be episte-
mologically inadequate.

His point, simply, is that we should not be expected to put probabilities on every
formula; sometimes it suffices to say that p ∨ q holds without saying which, and by how
much. Moreover, if we assign a probability of r on that formula, or to, say, ∃xP (x),
such an assertion in itself does not provide any additional information on how to further
assign a probability to p, q, P (a), and so on. Many popular languages for logic and
probability mentioned above, including Markov logic networks [164], ProbLog [160]
and BLOG [136], do not allow this level of flexibility. In fact, this requires a different type
of machinery altogether, one which permits multiple prior distributions [24]. Consider a
sub-formula from the example from above:

Pr(γ) ≤ 0.6.



The formula should, in principle, allow for every distribution that accommodates a
probability of γ being less than or equal to 0.6. In contrast, in ProbLog, it is assumed that
there is a single distribution over the model, and not specifying a probability on (say) a
disjunction might be interpreted as a hard constraint that is true in all possible worlds.
However, there are languages that do permit such rich specifications. See, for example,
works such as [146] and [25].

More generally, probability measures [72] on first-order structures and other pro-
posals on logic and uncertainty [164,160,136,24] allow us to append probabilities and
weights in a logical language in different ways, yielding formal frameworks that go be-
yond and generalize the standard definition for a probability space. There are also ap-
proaches [60] that are based on possibility theory, which permits a different model for un-
certainty that can be powerful when experts disagree or are uncertain about probabilistic
assertions.

2.4. Symbols without (explicit) semantics

In the machine learning literature, it is not uncommon to find syntactical objects, espe-
cially well-defined symbolic expressions, such as programs, that are learned without an
explicit definition of the semantics [115]. In such cases, one would need to define only
the interpreter and the compiler [62], with an implicit notion that the atomic objects refer
to concrete objects in the real world, as obtained by the process of symbol grounding
[183].

However, with programs in the program induction literature [82], there is (or rather,
should be) an implicit logical syntax and semantics that defines: (a) what sort of expres-
sions can be constructed, and (b) what they mean and capture. For example, sequential
instructions could be understood as conjunctions, and while loops can be captured using
second-order quantification [118,184,82]. If we further want to understand what prop-
erties are entailed by these programs, then we need to define the semantics comprehen-
sively and analyze what follows from the logical theory corresponding to a program.

Indeed, without a clear specification of how compositions of expressions should be
interpreted and evaluated, how are we to know what these programs are yielding [131]?
There has been a surge of a new family of programming languages that capture intri-
cate machine learning models. Typically, these languages allow the use of random prim-
itives as well as operators for conditioning and providing evidence. These are referred
to as probabilistic programming – see, for example, Church [80], ProbLog [53], and the
generic construction in [178]. In some cases, they might support combinations of dis-
crete and continuous distributions, and higher-order functions. A general approach to un-
derstanding how these programs can be constructed and what sort of distributions they
model is through the use of a formal semantical setup, usually in a fragment of first or
second-order logic.

See also works such as [12] for discussions on attempting to construct the semantics
for one programming language syntax from another. Such a move is especially desirable
if we want to check for the internal consistency of an ad hoc programming language. For
philosophical arguments on the importance of semantics, see, for example, [46].



2.5. Logic is about categorical propositional assertions

As discussed above, often “logic” is synonymous with (the classical interpretation of)
propositional logic.

There are many systems for writing down symbols, and interpreting logical symbols
and formulas built up these symbols. Classical approaches include propositional logic
(Boolean symbols, A and B is true iff A is true and B is true) and first-order logic,
which uses quantifiers. In first-order logic, there is a domain of discourse which stands
for the objects in the world. We then say that ∃x. P (x) is true if and only if there is
some individual from the domain of discourse such that the property P is true for that
individual. Likewise, the formula ∀x, y. Grandparent(x, y) ⊃ ∃z. Parent(x, z) says that
if x is a grandparent of y, there must be some individual z whose parent is x. First-order
logic can also use functions over reals, as seen in satisfiability modulo theory (SMT)
[11]. As we illustrated with weighted model integration, which is also defined using
SMT, we can express formulas such as x ≤ 5 ∧ x ≥ −5 ∧ x > y2. Here, both the
variables are assumed to be nullary functions. But we could also have functions with
arguments and nestings of these functions to construct well-defined formulas of the sort:
f(f(x, y), y) ≤ y2.

We might also be interested in entertaining multiple possible truth assignments to
model uncertainty about the environment. For example, there is modal logic [112], which
can capture possibilities, beliefs, and intentions [171]. A variant of modal logic with
numbers on worlds can lead to probabilistic logics [84], that allow us to reason about
probabilities on formulas [67] as well as beliefs about these formulas [66,24].

Beyond these formalisms that map atoms (and by extension, formulas) to binary
truth values, there are logics that relax that assumption. Fuzzy logics map Boolean sym-
bols to real numbers, leading to real-valued semantics for non-atomic formulas con-
structed using connectives. For example, if A and B get values between 0 and 1, then
A ∨ B gets a value of 1 iff max(A,B) is 1. Moreover, the conjunction could also get a
value between 0 and 1, by way of min(A,B). Such a definition reduces to the classical
semantics when both A and B are assigned 1, in which case the maximum of the two
would also be 1.

These are all part and parcel of symbolic logic. The choice of the language, the
choice of the semantic rules that we use over the well-defined formulas, along with its
computational properties such as decidability are aspects of a logical framework. More-
over, once a logical framework is considered, we could choose to prove logical entail-
ments either by considering assignments to the variables and seeing if the consequent
follows, or by applying inference rules established in a proof theory [86]. If we choose
to add weights [42], measures [84], or belief functions [60], this then leads to notions
such as weighted model counting [6] and algebraic model counting [107], defined over
the models of a formula (i.e., possible worlds). Ultimately, we could consider theorem
proving [86], model checking [9], SAT solving [11], or model counting [78], depending
on the context and application.

Each of these dimensions is already impacting current inquiries into the properties
of machine learning models. For example, to tasks from knowledge-based completion to
reasoning with ontology triples using neural techniques, there has been development on
so-called neural theorem provers [137]. These are inspired by Prolog’s proof-theoretic
backward chaining mechanism [53] and the aim in those works is to implement that



scheme in an end-to-end learning paradigm. Both SAT solving [200] and model count-
ing [73] are important ingredients in state-of-the-art approaches to regularizing neural
networks using logical formulas. This is motivated by the need to ensure neural network
predictions always satisfy certain domain constraints. Model checking tools are main-
stream for checking the robustness of neural networks [81]. There is also some work
[195] on studying whether using real-valued fuzzy logics to permit differentiability in
neural networks is comparable to differentiability as a result of probabilistic extensions
to model counting [73].

In summary, we can explore a variety of logical syntax and semantics, each of which
may have interesting interactions with machine learning properties and capabilities.

2.6. Monotoncity

Classical logic is monotonic. That is, if α1, . . . , αk |= β, then it cannot be the case
that adding new knowledge, say, α′ forces us to retract β: formally, it has to be that
α1, . . . , αk, α

′ |= β also.
John McCarthy was concerned about the problem of monotonicity and wondered

how we might deal with exceptions and abnormality. The problem of monotonicity is
so ubiquitous, it even comes up in the formulation of automated planning [163]. For
example, imagine that you have an action to paint a box blue and another action that
pushes the object. Let us say we paint the object and next, we push the object. When
we execute the second action, it is implicit that the color of the object does not change.
So we would have to somehow codify not only what the effects of the push action are,
but also what the non-effects are. And if we start writing down all the non-effects, there
could be exponentially many. Moreover, there are various preconditions that must hold
for us to be able to push the object. For instance, we should be strong enough to push
it, we must not be holding other objects, we are presumably operating under reasonable
gravity assumptions, and so on. And if we start expressing all of them, it again looks like
a hopeless task. Yet under some assumptions – so-called causal completeness [163] –
modelling domains is feasible. These assumptions state that the conditions provided are
both necessary and sufficient for describing the action. (These concerns arise in causal
modeling in machine learning as well [151], as we need to accurately identify all the
parent variables that influence the variable of interest and describe them at the appropriate
level of detail.)

If we do not make that assumption, the alternative approach would be to con-
sider a wide range of typical cases, while also accounting for unusual and exceptional
cases by incorporating the concept of abnormality. All of this requires notions of non-
monotonicity.

It might be interesting to conceptually contrast this to the machine learning approach
to dealing with anomalies and exceptions. With learning models, when trained on ex-
isting data, they can identify typical patterns and detect abnormalities within that data
[108,129]. An outlier is viewed as a data point with atypical features and an unusual la-
bel. For instance, while most men in their forties might be categorized as low or middle-
income earners, a data point representing a forty-year-old male banker would likely be
classified as a high-income earner. Conversely, we might expect a large proportion of
high-income earners to be male bankers in their forties, making them the group that
deviates from the norm. In this case, they would be the outliers relative to the general
population.



Be that as it may, there is no universal mechanism to address default concepts in a
general way with such approaches. Moreover, non-monotonic logic reasoning has given
us notions like stable model semantics [76] which now powers recent approaches to
neuro-symbolic learning [205]. Interestingly, non-monotonic semantics can also allow us
to capture cycles in graphs [54], which ordinarily requires recursion using second-order
logic [63]. This may be an important aspect as we utilize neural networks for reasoning
about large graphs and the web more generally [145]. Thus, attempting to disregard this
area of research seems premature.

2.7. Differentiability

Recent approaches to machine learning can be summarized by emphasizing the impor-
tance of differentiability as a key concept. However, it is widely held that logic cannot
play a role in this. For example, Turing Award winner Yann LeCunn quips [117]:

How can machine reason and plan in ways that are compatible with gradient-based
learning?

Our best approaches to learning rely on estimating and using the gradient of a loss,
which can only be performed with differentiable architectures and is difficult to reconcile
with logic-based symbolic reasoning.

But as indicated by the sections above, this view is simply uniformed. Probabilities
as well as real arithmetic can be mapped on to logical expressions and this means that
both routes – a probabilistic one [73] and real-valued semantics [195] one – seem to
naturally lead to differentiability. Let us elaborate further below.

There has been a historical understanding that logic and probability are compatible
with each other [168,159,17]. These include topics such as 0-1 laws for studying the
probability of satisfaction of first-order structures [65], the use of probability to compare
the fit of logical hypothesis against observations [37], and perhaps most recently, the use
of logic-based solvers by means of (weighted) model counting to compute conditional
probabilities for Bayesian networks [42].

At this point, there are plenty of approaches that explicitly use logic for the training
of neural networks, especially in the context of regularization and differentiability. This
started with the work of UCLA’s Semantic Loss [73] and KU Leuven’s DeepProbLog
[128], both of which adjust the loss function of the deep learning model based on a logical
encoding of the constraints and program, respectively. This is an end-to-end approach in
the sense that the predictions of the neural network are corrected using the logical solver
and back-propagated to the network so that the trained network predicts outputs that are
compatible with the constraints. There are also recent approaches that are based on real-
valued variables, such as in [92] and in [195]. Providing arithmetic constraints to the
training of deep learning networks and ensuring consistency with the provided domain
knowledge is an important problem for areas like physics [179] and robotics [97].

However, it would be remiss not to point out that just because differentiability seems
to be an important ingredient in the training of machine learning models, it does not mean
that we expect every scientist in the area of logic to play game. There is still profound
and rigorous work to be done on the integration of logical querying (e.g., computational
effort needed to evaluate queries on a large knowledge basis [126]) and probability [13],
for example. On the representation side, there are important issues to grapple with, such
as languages to reason about logic and probability that permit the domain of quantifi-



cation to be countably infinite (e.g., natural numbers) and uncountable (e.g., reals) sets
[124]. Moreover, modal logics like temporal logics and dynamic logics become useful
for deep learning-based endeavors as we navigate to more open-ended problems in dy-
namic domains [118]. For example, in [96], temporal logic formulas are used to train
deep reinforcement learning agents. In [176,181], large language models are used to rea-
son about dynamic epistemic properties [21], including the modelling of theory of mind
[68]. And in [97], a temporally extended semantic loss function is considered.

An orthogonal direction of work that has recently been considered is the capturing
of neural architectures, such as graph neural networks, using fragments of first-order
logic [10]. For the purposes of our discussion, it suffices to say that simply focusing on
differentiability or differentiable logics does not quite capture the range of questions that
one can investigate in the AI landscape. Issues such as expressiveness, computational
properties, and the development of hybrid architectures that combine the advantages of
logical and uncertain reasoning continue to be valuable areas of research.

It is worth noting that the metalinguistic applications of logic can be both “external”
and “internal.” In this subsection, we largely discussed the external view that the machine
learning system as a whole needs to be understood as a logical theory. This could involve
providing a logical semantics with probabilistic programming, or providing a logical
language for multiple autonomous learning entities, even logically formalizing machine
learning properties such as fairness [20]. However, it is also possible to use logic as a
mathematical function inside a machine learning system — that is, applied internally
— which is discussed in a few subsequent subsections. In these cases, for example, a
logical formula may act as a constraint that could be incorporated into the loss function of
learning paradigms, or may serve as an oracle to reason correctly over machine learning
predictions. Thus, logic could be used as a mathematical language to understand the
system as a whole or as a mathematical function inside a machine learning system.

2.8. What about “human-like” semantic definitions?

The most well-studied semantics, or perhaps more accurately, the most widely-used se-
mantics in computer science, remains classical [34]. That is, atoms are accorded values
of either 0 or 1, and so formulas become Boolean functions. If modalities are introduced,
such as time and actions [68], then we look at sequences of models: either a linear se-
quence or a tree-like sequence [163], for example.

But as mentioned above, there are also approaches where a degree of truth is ac-
corded to formulas, either by allowing the atoms themselves to have non-binary values
[206] or by according probabilities or other kinds of measures for complex formulas
[60].

All of these notions are explored by establishing some kind of well-definedness, and
logicians explore the implications of those conditions. For example, intuitionistic logic
looks to weaken material implication [61]. Non-classical belief logics control the proof-
depth of logical reasoners [125]. Fuzzy logic [206] was initially introduced with the idea
that a truth definition needs to be provided to vague notions [70] such as being tall or
making water warm.

Be that as it may, there is an informal argument often made that a mathematically
rigorous definition of truth is too precise. Perhaps by training neural networks with real-
world observations, they might exhibit more human-like reasoning capabilities that es-



chew a well-defined notion altogether? The evidence for this has not yet been established.
Moreover, is such a feature desirable? Let us, for the moment, consider correct reasoning
and understand what can be said about deep learning models implicitly inferring logical
steps.

2.8.1. Correct reasoning

There are a number of recent papers looking at the reasoning abilities of large language
models, which are so-called transformer architectures trained on large troves of textual
data [29]. Despite allowing for a number of different ways to backtrack and infer the
correct premise for a query (e.g., so-called “chain-of-thought”), as shown in a number of
papers, they seem to incorrectly reason in a number of different ways [36,47,189][138,
[208]]. For example, sometimes they struggle with symmetry [153,204]. Although newer
models are able to recognize an increasing set of patterns and might get logical rela-
tionships and connectives, there is little evidence that they are consistently correct — as
[106] puts it: “So close, and yet so far!”

Thus, impressive as they are, these models are not reliable [98]. There is a also grow-
ing body of recent work on the limitations of formal reasoning with large language mod-
els. For example, [182] consider how well LLMs perform with theory of mind reasoning,
seen in card games and gossip protocols [68]. In [190], the performance of OpenAI’s
latest model for reasoning (so-called “o1”)1 for automated planning is considered, and
generally poor performance is reported. A study from a team at Apple [138] reports that
minor variations to the reasoning questions can lead to dramatic changes in performance,
which is problematic. In [208], it is suggested that LLMs learn the statistical properties
of logical tests, rather than emulate the correct reasoning function.

In light of these limitations, there is a compelling argument for a neuro-symbolic
approach. For instance, implementing a logical error checker as a post hoc mechanism
could effectively verify the results, predictions, and completions generated by large lan-
guage models. For example, a systematic integration of ChatGPT and Wolfram Alpha
was recently attempted.2 More generally, recent approaches seek to incorporate logical
solvers as oracles [155] that can validate or disprove the predictions of neural architec-
tures, including large language models [207,149,148,134].

Putting this altogether, the “native” reasoning capabilities of purely neural mod-
els seem clearly limited. It is, of course, plausible that a novel training architecture or
new types of datasets might provide the right sort of environment for neural models to
perform correct reasoning. But for the moment, validating results and/or improving the
training of neural architectures using logical solvers—that is, a neuro-symbolic learning
pipeline—seems to be the most promising avenue. Kautz makes a stronger claim [106]:

The observation that tools greatly enhance the power of LLMs is not original. In-
deed, commercial LLMs already make heavy use of tools – in particular, tools for inter-
net search for the retrieval augmented generation (RAG) paradigm. Kambhampati et al.
(2024) recently showed that an LLM can convert planning and verifications problems
presented in natural language into formal STRIPS notation and solve them using an ex-
ternal planning system. I go farther than most researchers pursuing the tool approach in

1https://openai.com/o1/
2https://writings.stephenwolfram.com/2023/03/chatgpt-gets-its-wolfram-superpowers/



that I mean the title of this paper, “Tools Are All You Need”, quite literally: a language
model augmented with reasoning tools is sufficient to create true artificial intelligence.

He uses “tools” to mean SAT solvers, or other such logical oracles, very much in line
with the thrust of this article, and goes on to argue how LLMs “are the only kind of ma-
chine learning system that, like humans, can reliably generalize from a single example”,
and how that coupled with logical tools may support general-purpose AI.

2.8.2. The intentional stance

It is worth noting that, strictly speaking, we do not require that the semantics be given
by humans, or that they be hand-written. Symbols can obtained from low-level data (via
symbol grounding), or from closely related languages [12], or from abstract descriptions
[51] of concepts [115]. The use of symbols in AI also does not mean that symbolic logic
experts assume humans manipulate symbols in their head. See [121] for philosophical
discussions on this point, which can ultimately be tied to the “intentional stance” [55].
The intuition here is that any capability we attribute to an (artificial or human) agent
could be understood in terms of intentions, beliefs, and other mental attitudes, which
allow us to characterize what the agent is trying to do. It is a pragmatic perspective rather
than a literal representation of the agent’s behavior model.

There is extensive work on trying to characterize natural language utterances [140],
including connectives [87], and their formal counterparts [191]. This also involves the
use of terms and formulas, whose meaning may be built up from context and social
environment [196]. While the search for a logic that accurately characterizes these kinds
of observations with humans is still ongoing, it is worth noting that we do not need
a logical knowledge basis to be consistent either. For example, there is work on para-
consistent logics [31].

Ultimately, we have a range of language choices to work with. We may disagree
on the semantics, but having a few different systems that can be mathematically studied
seems like a good start.

A follow-up question might be to the tune of: does it still make sense to bother
with classical semantics? Just as it makes sense to study logic outside the context of
differentiability, we would argue the study of classical semantics is also worthwhile in
the AI context. Reasons include: (a) it is a well-defined mathematical model, (b) with
the use of modalities and/or non-classical semantics, we can relate different systems,
(c) we do not really know which semantics best approximates human reasoning, (d) we
may not want mathematical truths that play fast and loose with inevitable conclusions
just because we think humans might have some cognitive biases and exhibit inconsistent
reasoning, and (e) the science of robust AI is still evolving.

3. Logic and learning can be complementary

As already hinted above, symbolic logic can play an important role in training deep learn-
ing models but also in integrating reasoning as a post-hoc process or as a metalinguistic
paradigm. That is, we can ensure that the distribution of the trained network respects do-
main constraints [92]. We can extract rules from trained models and reason about them
outside the framework of the network [155]. Or we can use the outputs of the network as
inputs to a computational paradigm such as probabilistic programming [128]. There is



very interesting work on the semantics of programs that inherently support some notion
of differentiation [1]. This is an object of intense theoretical study that can have con-
sequences on the types of distributions that are expressible in programming languages
[178]. So, this theory has far-reaching effects on what type of probabilistic models can
be modelled effectively.

In the second half of the article, we make the following point: symbols and DL need
not compete with each other, and can be complementary. Perhaps the most representative
example of this is the burgeoning field of neuro-symbolic AI [74], which has come to
encompass things like neural program induction [115], neural theorem improvers, and
differentiable logics [207]. We consider some other categories below, as usual, with over-
lap.

3.1. Symbolic logic as meta-theory

An argument made previously [18] is that symbolic logic can be used to formalize no-
tions currently out of the purview of standard machine learning. These include things like
the semantics of involved probabilistic programming languages [178] and understanding
the limits of differentiable logics [195], but it can also pertain to a range of more exotic
topics.

For example, it is very common in AI applications these days to require frame-
works for multi-agent reasoning [3]. In explainable AI [83], in particular, we might re-
quire that the robot holds beliefs about the human agent [104]. Modal logics study such
phenomena. Thus, there has been a significant amount of recent work on incorporating
agent modeling into learning frameworks, with multi-agent reinforcement learning be-
ing a prominent example [3]. Furthermore, incorporating agent modeling for explainable
planning [2] and utilizing user-provided constraints as reward functions in reinforcement
learning [96] are topics of study.

Moreover, complex AI systems are not going to be purely based on providing pre-
dictions. They will involve search, constraint reasoning, and planning [167]. This has ne-
cessitated new approaches for compositionality [178] and modularity [184]. On a related
note, it was noted that weighted model counting [78], which provides the foundation for
mapping Bayesian inference to SAT solvers, can be upgraded to also reason about max-
imization and minimization of properties [107], leading to languages where a number of
different AI sub-areas, such as search and optimization, can be unified [23].

An orthogonal but very interesting line of research in the recent years looks at the ex-
pressiveness of mainstream neural architectures using logical languages. Primarily, they
look at fragments of first-order logic to capture (a simplified version of) neural architec-
tures such as transformers [197] and graph neural networks [203]. These investigations
have identified that graph neural networks capture fairly limited fragments of first-order
logic [10], while attention mechanisms have been shown to be Turing-complete [154].
In the case of graph neural networks, the community is still exploring the implications of
these results but it is believed that these architectures may fail in tasks involving queries
that require more expressiveness than the fragment they correspond to. So, in this sense,
using logical tools to understand neural architectures can have serious implications in
terms of how these architectures are being used and in which circumstances they could
be considered reliable.



3.2. High-level knowledge

The interplay between reasoning and learning is often compared to Kahneman’s [103]
famous distinction of system 1 versus system 2 type cognition in humans [166]. This is
owing to the fact that AI scientists, for a very long time, have been deliberating on the ap-
propriate way to abstract away low-level perception data with high-level concept knowl-
edge, perhaps going back to Shakey [114]. Many “hybrid” formalisms for reasoning with
perceptual data attempt to address the interplay between concepts and observations in a
systematic way, e.g., [102,144].

Providing mechanisms as well as formal semantics for abstraction remains a topic
of theoretical interest even today [14,93]. Roughly, the idea is given a representation R
of the high-level model, to find another representation of R′ involving low-level data
and concepts, such that R and R′ agree on atoms under a suitable mapping µ. That is,
R entails an atom a iff R′ entails µ(a). In a probabilistic setting, this might mean that
we abstract a continuous distribution w.r.t. to evidence in terms of a discrete distribution
[94]. There has also been some work on abstracting causal models [15].

In the specific case of deep learning systems, a key agenda point is how to define
abstract concepts, whether extracted directly from data or defined externally, in order to
coordinate and interoperate with these systems [115,22,35].

More generally, it is widely acknowledged that concepts such as time, abstraction,
and causality will play a key role in designing a general-purpose AI [130]. We would
expect such an AI to be capable of reasoning with a rich world model, one that can be
interpreted by humans [33]. Roughly, the idea is that given some system description, Σ,
it is desirable to reason about the following:

1. Temporal abstractions: Given two events, e and e′, we would like to know which
happened earlier, and whether some trigger in e led to whatever happened in e′.

2. Induction: Suppose we have a set of events, p1, . . . , pn. We would like to find an
idealized instance that generalizes these examples, p̃.

3. Abstraction: We would like find atomic descriptions, p̂, that characterize the in-
teraction between some of those instances (e.g., p1 ∧ p2 ≡ p̂). The idea, then, is to
use the abstract descriptor for increased comprehensibility [94,93].

4. Causation: Finally, given a causal chain from events p1 to pn in the sense that p1
or its descendants causes pn, we would like to understand what would happen if
pi was set to a certain value (intervention) or assumed a value not necessarily seen
in the data (counterfactual).

Although there is some work on providing a causal semantics to deep learning sys-
tems [127], it is still in the early years and studied in a limited way. In contrast, we have
very well-studied models of time [157] and causality with symbolic calculi [163,85,89].
It seems like a wasted opportunity to not utilise these frameworks simply because they
are purely symbolic, and hence deemed “old-fashioned.”

As has been the case for many years now, symbols can be used as abstract iden-
tifiers for human-in-the-loop systems [104], and/or interactive machine learning espe-
cially when you have non-expert stakeholders engaging with predictors trained on high-
dimensional data. In particular, there are very concrete examples from the neurosym-
bolic landscape that particularly highlight the benefits of using symbols. For example, the
work on reward machines [96] looks to train deep learning-based reinforcement learning
agents by means of high-level, temporally extended specifications, such as formulas ex-



pressed in linear temporal logic [41]. The propositions of the language are abstract de-
scriptions of properties that can be understood by humans. There is also work on reason-
ing about neural concepts in a logical language. Although there have been prior works on
hybrid formalisms that allow for machine learning constructs to be used in logic [102],
recent neurosymbolic approaches such as DeepProbLog [128] allow us to not only in-
clude neural concepts as objects in the logical program, but also to reason about this
program as signals that could be fed back into the neural network training. This leads to
a trained model that provides predictions and learns distributions that are consistent with
the logical specification [91].

3.3. Symbolic logic can instantiate new methods of inference

One observation we emphasized earlier is that precisely because of the close relationship
between logic and probability [37,192,16], it is possible to use logic-based solvers for
doing probabilistic reasoning. This in turn, can mean that logic-based solvers are used in
learning modules in probabilistic machine learning [193], or perhaps to reason about the
output distributions of neural networks [73].

This is primarily instantiated via weighted model counting [78], which – as dis-
cussed above – is an extension of SAT solving to identify all possible satisfying assign-
ments [6]. And as mentioned, there is also an extension of this strategy to deal with con-
tinuous properties via so-called weighted model integration [27]. One broader observa-
tion here is that because weighted model counting is defined in terms of weights on the
possible models of a logical formula, it is possible to use different types of weights. This
means a whole range of different computational tasks defined over the models of a logi-
cal formula can be approached using the same abstract specification of weighted model
counting. This leads to the notion of algebraic model counting [107], where instead of
sums over the models and products over the weights of literals, we can consider different
kinds of corresponding operations such as maximum and minimum [6].

A notable development in this space is knowledge compilation [49]. This stems from
the observation that given a probabilistic model, we may have to compute conditional
queries repeatedly. Therefore, there have been efforts in representing a logical formula
as a data structure that permits the computation of model counting [49], including in the
presence of distinct conditional queries, effectively. This development can be coupled
with the notion of algebraic model counting [107], but it has also served as a computa-
tional backbone for many emerging representations that unify logic and probability, such
as relational Bayesian and Markov networks [194] – in addition to classical Bayesian
networks [42], of course – and probabilistic logic programming languages like ProbLog
[69].

Circuits provide a new way of doing inference with probabilistic models with the
following properties: you pay a one-time cost for compiling the representation, such as
a Bayesian network, into such a circuit, and then every query afterwards can be done in
time polynomial in the size of the circuit. There is also a broader program of learning
such circuits directly [122]. The goal is to find an alternative to classical machine learning
models with attractive computational properties for inference [198]. This is a new and
exciting way of doing probabilistic reasoning and has even led to new approaches to
inference in probabilistic programming [95].



3.4. Logical oracles

There is considerable work on verifying neural networks [174] for safety properties [39]
as well as robustness [75], where we want to ensure that the prediction of neural networks
does not change arbitrarily for small perturbations to the input. Along these lines, there
is a new direction of work where logical reasoners serve as oracles to machine learning
predictions to ensure that the predictions are consistent.

A representative example here is the contrasting of reasoning capabilities of large-
scale learned models, such as large language models, against that of a symbolic oracle.
Recent work on Wolfram Alpha [202] looks to integrate an arithmetic solver with the
output of ChatGPT so that reasoning outputs are consistent and coherent with mathe-
matical principles. Similarly, although there is some work on how the chain-of-thought
prompting approach can lead to better reasoning outputs by large language models, the
use of a logical oracle leads to provably correct outputs. The capabilities of ChatGPT, for
example, have been directly studied in [71] and [98], and the use of a logical oracle to
provide an externally sourced solution to reasoning problems with large language models
is considered in [148]. In [181,176], such an approach has been shown to be applicable
to involved problems involving the mental states of multiple agents, commonly referred
to as the theory of mind [175,68].

Intuitively, the idea here is related in spirit to the investigations on logic-based loss
functions [73] because there too, predictions are expected to conform to logical con-
straints [91].

3.5. Logic benefits from learning

In the article written so far, we have made the case for machine learning benefiting from
logical tools and languages. However, on the other hand, looking back to the early days of
logical thought, Aristotle argued for the importance of the process of induction [18]. We
need mechanisms to learn the general from the particular, which involves generalizing
from specific instances to create a generic statement that applies to all instances. That is,
a quantified formula that entails all the atoms. In modern AI, this process is a key source
of logical knowledge obtained from data [170,52], in addition to information provided
by experts [50].

However, if our logical knowledge is to consist of a combination of expert-provided
knowledge and knowledge drawn from examples, there are a number of concerns we
need to address. For example, how can we ensure that a hypothesis that is consistent
with the background knowledge is extracted from the observations [142]? What kind
of properties should the resulting knowledge base have [135]? How do we deal with
observations that might be incorrect or noisy [7]? How do we ensure that the formula we
generalize from the observations captures not only the observations made so far but also
the observations we have not yet seen and might encounter in the future [188,101]?

In recent years, a variety of approaches ranging from statistical relational learning
[159] to probably-approximate correct (PAC) semantics [158] to neural program induc-
tion [115] and neural rule induction [64] have been explored. These approaches utilize
state-of-the-art machine learning tools and theory to learn logical expressions. In some
cases, noise in the observations is treated by assuming that the observations are drawn
from an unknown distribution. In other cases, the generalization capabilities of neural
networks are exploited to learn representations that are empirically robust to this noise.



It is now believed that machine learning will likely impact almost all of computer
science because it provides a mechanism to construct models from data [173]. This
means that we will continue considering combinations of model-based and data-driven
domain knowledge in the future. All of this is even more reason to not entertain notions
of dichotomy between logic and learning.

4. Concluding thoughts

In this article, we looked at a few of the misunderstandings that arise when considering
the relevance and use of symbolic AI in modern AI systems. We hope the reader is
convinced that not only does reasoning and learning have significant overlap – including
ideas such as model counting appearing in and linking to multiple concerns – but it is
also the case that recent advances are exploiting state-of-the-art learning for reasoning
(and vice versa), and in the process, improving on the state-of-the-art.

Whether there might be a future architecture that is very close in spirit to current
neural models and makes logical tools redundant is yet to be seen. However, as we have
argued, it is hard to imagine that, from a theoretical standpoint, logical analysis itself
will become redundant, because many of the desired properties sought out are logical in
nature. Despite reported advances in the reasoning capabilities of large language models,
currently seen as the culmination of large-scale deep learning models, they still struggle
with consistency and correctness in both logical and arithmetic problems.

4.1. Other dimensions

We have not discussed a few key issues that are emerging in the AI landscape. With the
growing use of AI systems in financial and industrial applications, issues of trustworthi-
ness and responsibility keep coming up [130].

For example, one area where symbolic logic is widely used in many stochastic sys-
tems [43] is the verification of safety properties [174], and/or testing for robustness [39].
The idea with safety properties is to ensure that certain regions in a geometric space
are avoided because they might represent dangerous operational areas. In the case of
robustness, we want to ensure that small perturbations to the input do not dramatically
change the prediction from the neural network. It should not come as a surprise that ideas
from logic-based computer science, including temporal logic [41] as well as satisfiabil-
ity modulo theories [11], are the main tools to formalize and investigate these types of
properties.

Another interesting avenue for examining trustworthy and responsible AI is under-
standing the ethical principles and norms under which AI systems should operate [58]. In
this subarea, although mainstream models of concepts such as fairness do not necessarily
use logic [199], further analysis of how systems could conform to ethical principles is
often pursued through symbolic logic [56]. For example, notions such as act-deontology
[111] or consequentialism can be formalized as properties that the system’s execution
should obey [147,201]. There has been work on using symbolic causal models to under-
stand notions of blameworthiness, and the degree of responsibility [45]. Finally, there is
considerable recent work on explainable planning [104], where a formal model is used to
capture the user’s intent and contrast it with the system’s understanding of the world in



which it operates [175]. For an overview on how knowledge representation can provide
much needed frameworks for ethical and trustworthy AI, see [19].

4.2. Neuro-symbolic AI

As we discussed, one area where concerns about the use of logic seem to disappear
is neuro-symbolic AI. Neuro-symbolic AI holds a lot of promise because it can offer
interesting ways to combine symbolic logic and deep learning, and build on the success
of both. And like the maxim: “the whole is greater than the sum of the parts,” such
an integration may not simply be the communication of outputs in a divorced way, but
could involve a deeper type of synthesis [90]. Some approaches have dealt with loss
functions, while others have focused on post-hoc logical reasoning or extracting rules
from networks. All of these approaches are interesting in their own right.

There is also a trade-off, at least as per our current understanding, between the com-
plexity and level of detail of the logical knowledge and how effectively it can integrate
with a learning system. For example, papers focusing on loss functions typically deal
with smaller-sized formulas and constraints [92], while works exploring the integration
of learning with knowledge graphs often consider ontologies with more than a hundred
or even a thousand nodes [145]. Some may argue at this point whether these exam-
ples clearly indicate instances of neurosymbolic paradigms exceeding the capabilities of
state-of-the-art machine learning. However, this is somewhat of a nebulous measure be-
cause state-of-the-art machine learning does encompass various neurosymbolic notions,
even if they do not explicitly acknowledge it. Examples range from concept learning
[115] to Wolfram Alpha-type integrations with large language models [202].

Of course, with such a diversity of solutions, it may be challenging to determine the
correct approach. Perhaps there is no one-size-fits-all solution, and the combination of
logic and deep learning can vary depending on the application. Regardless of the specific
approach, it is clear that we need to understand the principles of logical languages and
semantics to ensure that resulting mathematical objects are well-defined with desired
properties. This appreciation is essential for both theoretical exploration and practical
applications.

It should be noted that there is a case to be made for expressive representations.
For example, some might come away feeling that the best way to approach the future of
neuro-symbolic AI is to focus on very limited languages. But such an view may not be
fruitful in the long term. For example, it is widely understood that first-order is useful
for generalized assertions [119], and modal logics for time and multi-agent beliefs [68].
In general, the language is critical for capturing the domain correctly. In a statement
remarkably similar in spirit, Judea Pearl writes [152]:

This is why you will find me emphasizing and reemphasizing notation, language,
vocabulary and grammar. For example, I obsess over whether we can express a certain
claim in a given language and whether one claim follows from others. My emphasis on
language also comes from a deep conviction that language shapes our thoughts. You
cannot answer a question that you cannot ask, and cannot ask a question that you have
no words for.



4.3. Much to learn

To sum up, there is a lot to be gained by the relating the mathematical foundations of
logic and deep learning. And the benefit is not purely for the logician, but also for the
deep learning researcher who wants to think more broadly than prediction with big data.

We should, of course, celebrate successes — its neither an accident nor misplaced
opportunism that logic/programming language folks are interested in learning and are
eager to understand the latest and best [82]. Moreover, what combination of logic and/or
learning would be needed for general-purpose AI is not well-understood yet. We cannot
point to the exact approach or balance of innateness vs tabula rasa we need for general
AI, because we simply do not know. We can only loosely articulate requirements (e.g.,
correct, fair and safe by design), capabilities (e.g., ability to reason about causality, time
and space models) and corresponding desiderata.

Indeed, although AlphaGo and large language models represent a major triumph
for AI, these achievements inevitably raise questions about generality and correctness.
As mentioned earlier, Kautz [106] argues that a reasoning oracle coupled with a lan-
guage model might be providing the steps towards general-purpose automated intelli-
gence. Conversely, we may want to be wary of “silver bulletism” —the notion of a single
solution addressing all of AI’s concerns and capabilities. As Levesque puts it [120]:

As a field, I believe that we tend to suffer from what might be called serial silver
bulletism, defined as follows: the tendency to believe in a silver bullet for AI, coupled
with the belief that previous beliefs about silver bullets were hopelessly naı̈ve.

Silver bulletism also contributes to the hubris and hype of AI. In view of creating
general-purpose, safe, and reliable AI, we need to look at the best of all worlds. And in
that regard, the unification of logic and learning continues to bear fruit, of which neuro-
symbolic AI is the latest installment.
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P. Madhyastha, and B. Wagner, editors, Neural-Symbolic Learning and Reasoning - 18th International
Conference, NeSy 2024, Barcelona, Spain, September 9-12, 2024, Proceedings, Part II, volume 14980
of Lecture Notes in Computer Science, pages 245–257. Springer, 2024.

[183] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. Teller, and N. Roy. Approaching
the symbol grounding problem with probabilistic graphical models. AI magazine, 32(4):64–76, 2011.

[184] E. Ternovska and D. G. Mitchell. Declarative programming of search problems with built-in arithmetic.
In Proc. IJCAI, pages 942–947, 2009.

[185] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.
[186] J. Tooby, L. Cosmides, and H. C. Barrett. Resolving the debate on innate ideas. The innate mind:

Structure and content, pages 305–337, 2005.
[187] A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433–460, 1950.
[188] L. G. Valiant. Robust logics. In Proceedings of the thirty-first annual ACM symposium on Theory of

Computing, pages 642–651, 1999.
[189] K. Valmeekam, A. Olmo, S. Sreedharan, and S. Kambhampati. Large language models still can’t plan

(a benchmark for llms on planning and reasoning about change). arXiv preprint arXiv:2206.10498,
2022.

[190] K. Valmeekam, K. Stechly, and S. Kambhampati. Llms still can’t plan; can lrms? a preliminary evalu-
ation of openai’s o1 on planbench. arXiv preprint arXiv:2409.13373, 2024.

[191] J. van Benthem. Semantic parallels in natural language and computation. In Studies in Logic and the
Foundations of Mathematics, volume 129, pages 331–375. Elsevier, 1989.

[192] J. van Benthem. Against all odds: when logic meets probability. ModelEd, TestEd, TrustEd: Essays
Dedicated to Ed Brinksma on the Occasion of His 60th Birthday, pages 239–253, 2017.

[193] G. Van den Broeck. Lifted Inference and Learning in Statistical Relational Models. PhD thesis, KU
Leuven, 2013.

[194] G. Van den Broeck, W. Meert, and J. Davis. Lifted generative parameter learning. In Statistical
Relational Artificial Intelligence, AAAI Workshop, 2013.

[195] E. van Krieken, E. Acar, and F. van Harmelen. Analyzing differentiable fuzzy logic operators. Artificial
Intelligence, 302:103602, 2022.

[196] M. van Wijk. Logical connectives in natural language: a cultural evolutionary approach. 2006.
[197] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.

Attention is all you need. Advances in neural information processing systems, 30, 2017.
[198] A. Vergari, Y. Choi, A. Liu, S. Teso, and G. Van den Broeck. A compositional atlas of tractable circuit

operations for probabilistic inference. Advances in Neural Information Processing Systems, 34:13189–
13201, 2021.

[199] S. Verma and J. Rubin. Fairness definitions explained. In 2018 ieee/acm international workshop on
software fairness (fairware), pages 1–7. IEEE, 2018.

[200] P.-W. Wang, P. Donti, B. Wilder, and Z. Kolter. Satnet: Bridging deep learning and logical reasoning
using a differentiable satisfiability solver. In International Conference on Machine Learning, pages
6545–6554. PMLR, 2019.

[201] A. Winfield, C. Blum, and W. Liu. Towards an ethical robot: internal models, consequences and ethical
action selection. In Proceedings of the 14th Conference Towards Autonomous Robotic Systems, pages
85–96, 2014.

[202] S. Wolfram. Wolfram— alpha as the way to bring computational knowledge superpowers to chatgpt.
Stephen Wolfram Writings RSS, Stephen Wolfram, LLC, 9, 2023.

[203] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

[204] S. Yamamoto, K. Kobayashi, and R. Tanaka. An empirical automated evaluation and analysis of sym-
metrical reasoning in large language models. Authorea Preprints, 2024.

[205] Z. Yang, A. Ishay, and J. Lee. Neurasp: Embracing neural networks into answer set programming. In
29th International Joint Conference on Artificial Intelligence (IJCAI 2020), 2020.



[206] L. A. Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.
[207] H. Zhang, J. Huang, Z. Li, M. Naik, and E. Xing. Improved logical reasoning of language models via

differentiable symbolic programming. arXiv preprint arXiv:2305.03742, 2023.
[208] H. Zhang, L. H. Li, T. Meng, K.-W. Chang, and G. V. d. Broeck. On the paradox of learning to reason

from data. arXiv preprint arXiv:2205.11502, 2022.


